Chapter 1. Foundations

We use computer algorithms to solve problems, e.g., to compute the maximum of a
set of real numbers or to compute the product of two integers. A problem P consists
of infinitely many problem instances. An instance of the maximum problem is e.g.,
to compute the maximum of the following five numbers 2,7,3,9,8. An instance of
the multiplication problem is, e.g., to compute the product of 257 and 123. We
associate with every problem instance p € P a natural number g(p), its size.
Sometimes, the size will be a tuple of natural numbers; e.g., we measure the size of
a graph by a pair consisting of the number of nodes and the number of edges. In the
maximum problem we can define the size as the cardinality of the input set (5 in
our example), in the multiplication problem we can define the size as the sum of the
lengths of the decimal representations of the factors (6 in our example). Although
the definition of size is arbitrary, there is usually a natural choice.

Execution of a program on a machine requires resources, e.g., time and space.
Resource requirements depend on the input. We use T4(p) to denote the running
time of algorithm A on problem instance p. We can determine T'4(p) by experiment
and measure it in milliseconds.

Global information about the resource requirements of an algorithm is in gen-
eral more expressive than information about resource requirements on particular
instances. Global information such as maximal running time on an input of size n
cannot be determined by experiment. Two abstractions are generally used: worst
case and average case behavior.

Worst case behavior is the maximal running time on any input of a particular
size. We use T4(n) to denote the worst case running time (or simply running time)
of algorithm A on an input of size n, i.e.,

Ta(n) = sup{Ta(p); p € P and g(p) = n}.

Worst case behavior considers algorithms from a pessimistic point of view. For
every n we single out the input with maximal running time.

Sometimes, we are given a probability distribution on the set of problem in-
stances. We can then talk about average case behavior (or expected behavior);
it is defined as the expectation of the running time for problems of a particular size,
ie.,

T3 (n) = E({Ta(p); p € P and g(p) = n}).

In this book (Chapters 2 and 3), computing expectations is always reduced to
computing finite sums. Of course, average case running time is never larger than
worst case running time and sometimes much smaller. However, an average case
analysis always poses the following question: does the actual use of the algorithm
conform to the probability distribution on which our analysis is based?

We can now formulate one goal of this book. Determine T4(n) for important
algorithms A. More generally, develop methods for determining T4(n). Unfortu-
nately, this goal is beyond our reach for many algorithms at the moment. We have

Version: 18.10.99 Time: 17:53 -1-

to confine ourselves to determine upper and lower bounds for T'4(n), i.e., to asymp-
totic analysis. A typical claim will be: T'(n) is bounded above by some quadratic
function. We write T'(n) = O(n?) which means that T(n) < ¢ - n? for constants
¢ > 0 and ng and all n > ngy. Or we claim that T'(n) grows at least as fast as nlogn.
We write T'(n) = Q(nlogn) which means that there are constants ¢ > 0 and ng
such that T'(n) > ¢ - nlogn for all n > ngy (log denotes log to base two throughout
this book). We come back to this notation in Section 1.6.

We can also compare two algorithms A; and A, for the same problem. We say
that A; is faster than Ay if Ty, (n) < T4,(n) for all n and that A; is asymptot-
ically faster than A; if lim,_, o, T4,(n)/Ta,(n) = 0. Of course, if A; is asymp-
totically faster than A, then A, may still be more efficient than A; on instances of
small size. This trivial observation is worth being exemplified.

Let us assume that we have 4 algorithms A, B, C, D for solving problem P with
running times T4 (n) = 1000n, Tg(n) = 200nlogn, Tg(n) = 10n? and Tp(n) = 2"
milliseconds. Then D is fastest for 1 < n <9, C is fastest for 10 < n < 100 and
A is fastest for n > 101. Algorithm B is never the most efficient. How large is the
maximal problem instance which we can solve in one hour of computing time? The
answer is 3600 (1600, 600, 21) for algorithm A (B, C, D). If the maximal solvable
problem size is too small we can do either one of two things. Buy a larger machine
or switch to a more efficient algorithm. Assume first that we buy a machine which
is ten times as fast as the present one, or alternatively that we are willing to spend
10 hours of computing time. Then the maximal solvable problem size increases to
36000 (13500, 1900, 25) for algorithms A (B,C,D). We infer from this example
that buying a faster machine hardly helps if we use a very inefficient algorithm
(algorithm D) and that switching to a faster algorithm has a more drastic effect on
the maximally solvable problem size. More generally, we infer from this example
that asymptotic analysis is a useful concept and that special considerations are
required for small instances (cf. Sections 2.1.5 and 5.4).

So far, we discussed the complexity of algorithms, sometimes, we will also
talk about the complexity of problems. An upper bound on the complexity of a
problem is established by devising and analyzing an algorithm; i.e., a problem P has
complexity O(n?) if there is an algorithm for P whose running time is bounded by
a quadratic function. Lower bounds are more difficult to obtain. A problem P has
complexity Q(n?) if every algorithm for P has running time at least Q(n?). Lower
bound proofs require the discussion of an entire class of algorithms and are usually
very difficult to obtain. Lower bounds are only available in very rare circumstances
(cf. Sections 2.1.6, 2.3, 3.4 and 5.7).

We will next define running time and storage space in precise terms. To do so
we have to introduce a machine model. We want this machine model to abstract
the most important features of existing computers, so as to make our analysis
meaningful for every-day computing, and to make it simple enough, to make analysis
possible.

Version: 18.10.99 Time: 17:53 —-2-

1.1. Machine Models: RAM and RASP 3

1.1. Machine Models: RAM and RASP

A random access machine (RAM) consists of 4 registers, the accumulator «
and the index registers 71, ¥2, 3 (the choice of three index registers is arbitrary),
and an infinite set of storage locations numbered 0,1, 2, ..., cf. Figure 1.

o [accumulator | 0 []
71 | indexregister 1 | 1 []
v2 [indexregister2 | 2 []
vs [indexregister 3 | 3 []

Figure 1. A RAM

The instruction set of a RAM consists of the following list of one address
instructions. We use reg to denote an arbitrary register «, 1, v2, v3, ¢ to denote a
non-negative integer, op to denote an operand of the form i, p(i) or reg, and mop
to denote a modified operand of the form p(i + 7;). In applied position operand
i evaluates to number %, p(7) evaluates to the content of location i, reg evaluates
to the content of reg and p(i + 7;) evaluates to the content of location numbered
(¢ 4 content of ;). Modified operands are the only means of address calculation in
RAMs. We discuss other possibilities at the end of this section. The instruction set
consists of four groups:

Load and store instructions:

reg <« op , .8, 1~ p(2),
a + mop ,eg., a <« p(y2+3),
op « reg ,e.g., p(3) + aq,

mop + « ,e8, plr2+3) « «a

Jump instructions:

goto k , k € Ny,

if reg w 0 then goto k& , k € Ny,

where 7 € {=,#,<,<,>,>} is a comparison operator.

Arithmetic instructions:

a+arTop, Q< oTmop,
where 7 € {+,—,X%,div,mod} is an arithmetic operator.

Version: 18.10.99 Time: 17:53 -3-

Indexregister instructions:
’)/j<—’)/j:|:’i , 1<5<3 , ieNg.

A RAM program is a sequence of instructions numbered 0,1,2,.... Integer & in
jump instructions refers to this numbering. Flow of control runs through the pro-
gram according to this numbering except for jump instructions.

Example: Program 1 shows a RAM program for computing 2". We assume that
n is initially stored in location 0. The output is stored in location 1. The right
column shows the number of executions of each instruction on input n.]

71 < p(0)

a+1

if 1 = 0 then goto 6 n
a+—ax?2

Mmen—1

goto 2

p(l) < a

333 4+~ H

Program 1

In our RAMs there is only one data type: integer. It is straightforward to
extend RAMs to other data types such as boolean and reals; but no additional
insight is gained by doing so. Registers and locations can store arbitrary integers,
an unrealistic assumption. We balance this unrealistic assumption by a careful
definition of execution time. Execution time of an instruction consists of two parts:
storage access time and execution time of the instruction proper. We distinguish
two cost measures: unit cost and logarithmic cost.

In the unit cost measure we abstract from the size of the operands and
charge one time unit for each storage access and instruction execution. The unit
cost measure is reasonable whenever algorithms use only numbers which fit into
single locations of real computers. All algorithms in this book (except Chapter 6)
are of this kind for practical problem sizes and we will therefore always use the unit
cost measure outside Chapter 6. However, the reader should be warned. Whenever
he analyzes an algorithm in the unit cost measure, he should give careful thought
to the size of the operands involved.

In the logarithmic cost measure we explicitely account for the size of the
operands and calculate the costs according to their length L. If binary representa-

tion is used then ;
1 ifn=20;
L(n) = { [logn] +1 otherwise.
This explains the name “logarithmic cost measure”. The logarithmic cost measure

has to be used if the numbers involved do not fit into single storage locations

Version: 18.10.99 Time: 17:53 —4-

1.1. Machine Models: RAM and RASP 5

anymore. In the following table we use m to denote the number moved in load
and store instructions, and m; and msy to denote the numbers operated on in an
arithmetic instruction. The meaning of all other quantities is obvious from the
instruction format.

Costs for Storage Access:

Operand Unit Cost Logarithmic Cost

i 0 0
reg 0 0
p(4) 1 L(2)
pli +7;) 1 L(i) + L(v;)

Cost for Executing the Instruction Proper:

Unit Cost Logarithmic Cost

Load and Stores 1 1+ L(m)
Jumps 1 1+ L(k)
Arithmetic 1 1+ L(my) + L(ms)
Index 1 1+ L(v;) + L(3)

The cost of a conditional jump if reg 7 0 then goto k is independent of the content
of reg because all comparison operators require only that one checks some few bits
of the binary representation of reg.

Under the unit cost measure the cost of an instruction is 1 + # of storage ac-
cesses (we use the symbol # with the meaning of “number”), under the logarithmic
cost measure it is 14+ sum of the lengths of the addresses and numbers involved.
Thus the execution time of an instruction is independent of the data in the unit
cost measure, but it depends on the data in the logarithmic cost measure.

Example (continued): The instructions of program 1 have the following costs:

Instruction Unit Cost Logarithmic Cost

0 L(0) + 1 4+ L(p(0))
1+ L(1)

1+ L(6)

1+ L(a) + L(2)

1+ L(y1) + L(1)
1+ L(2)

L(1) + 1+ L(a)

We thus have total cost 4n + 6 under the unit cost measure and ©(n?) under the
logarithmic cost measure (compare Section 1.6 for a definition of ®). Note that the
cost of line 3 is Zi”:_Ol(l + L(2%)+ L(2)) = ©(n?). Note also, that one can reduce the
cost of computing 2" to ©(logn) under the unit cost measure and to ©(n) under
the logarithmic cost measure (cf. Exercise 1). 1

SO W N =
DN == = =N

Version: 18.10.99 Time: 17:53 —5—

We infer from this example that the cost of a program can differ drastically under
the two measures. It is therefore important to always check whether the unit cost
measure can be reasonably used. This will be the case in Chapters 2, 3, 4, 5, Tand 8.

Analogously, we use unit and logarithmic cost measure for storage space also. In the
unit cost measure we count the number of storage locations and registers which are
used in the computation and forget about the actual contents, in the logarithmic
cost measure we sum the lengths of the binary representations of the contents of
registers and storage locations and maximize over time.

Example (continued): Program 1 for computing 2™ uses registers a and 7; and
locations 0 and 1. Hence its space complexity is 4 under the unit cost measure.
The content of all 4 cells is bounded by 27, two of them actually achieve that value.
Hence space complexity is ©(L(2")) = ©(n) under the logarithmic cost measure. I

Address modification by index registers is the only means of address modification
in RAMs. Most realistic computers allow two other techniques for address mod-
ification: general address substitution and direct address calculation. General
address substitution allows us to use any location as an index register, i.e., mod-
ified operands of the form p(i + p(j)) can be used also. The cost of fetching such
an operand is 2 in the unit cost and L(z) + L(j) + L(p(j)) in the logarithmic cost
measure. It is not too hard to simulate the enlarged instruction set by our original
instruction set with only a constant increase in cost. Let us for example consider
the instruction a < p(i + p(j)). It is simulated by

"M p(d)

o« p(i+m)
However, the content of 7; is destroyed by this piece of code. We therefore have
to save the content of 7; before executing it. Let us assume that location 0 is not
used (Exercise 2 discusses this assumption in detail) in the program which is to be
simulated. Then we only have to bracket the above piece of code by p(0) < =1 and
v1 < p(0). We obtain

New Instruction Unit Cost Logarithmic Cost
a p(i+ p(j)) 3 1+ L(i) + L(7) + L(p(5))+
L(p(i + p(3)))

Simulating Program

p(0) <7 8 6 + L(i) + L(j) + 2L(p(5))+
1 « p(j) L(p(i + p(4))) + 2L(11)

a <+ p(i+71)
71« p(0)

The cost of the simulating program is only larger by a constant factor in the unit
cost measure. We thus have

Version: 18.10.99 Time: 17:53 —6—

1.1. Machine Models: RAM and RASP 7

Lemma 1. General address substitution reduces the cost of RAM programs by
only a constant factor in the unit cost measure.]

The situation is slightly more complicated in the logarithmic cost measure. Factor
L(~y1) cannot be estimated in a simple way. We therefore change the simulation
method and arrive at a simple connection between the cost of the original program
and the cost of the simulating program. We want location 0 to always contain the
content of v1. We achieve this goal by inserting p(0) < 71 after every instruction
which modifies v; and by inserting v; < p(0) before every instruction which uses ;.
For example, we replace a < p(i+71) by 71 < p(0); a « p(i++1) and v; < p(i) by
v1 < p(2); p(0) < 1. This modification increases the cost only by a constant factor
under both measures. Finally, we replace the instructions using general address
substitution as described above, i.e., we replace, e.g., a + p(i + p(j)) by 11
p(7); a < p(i +~v1). Note that we do not have to include this piece of code into
brackets p(0) < 71 and 1 + p(0) as before because we took care of saving v,
elsewhere. We thus have (details are left to Exercise 2)

Theorem 1. General address substitution can reduce the time complexity of RAM
programs by at most a constant factor in both cost measures.]

Next we discuss direct address calculation. We extend the RAM model by a
program store PS and call the extended model RASP (Random Access Stored
Program Machine). The program store consists of infinitely many locations num-
bered 0,1,2,.... Each location has two parts. The first part contains the name of
the instruction (the opcode), the second part contains the operand, i.e., either an
address or the number of an instruction.

Example (continued): The RASP-version of our example program is shown in
Figure 2. We use the RAM-instruction as the opcode, data addresses are replaced
by symbol a and instruction addresses are replaced by k.]

Opcode Address
71 < pla) 0
a+a

if 74 =0 then goto &
a+axa

<N —a

goto k

pla) < a

DO W= O
DN = DN O =

Figure 2. A RASP program for computing 2"

The number of opcodes is finite because there are only four registers and only
a finite number of instructions. For the sequel, we assume a fixed bijection between
opcodes and some initial segment of the natural numbers. We use Num to denote
that bijection.

Version: 18.10.99 Time: 17:53 —7-

In addition to the RAM instruction set, the RASP instruction set contains so-called
m-instructions. m-instructions operate on the program store. They are

Oé(—ﬂ'h(i) i eN
. 0,
a — i+ ;) he(12)
mh(i) + o
j€41,2,3}.

7rh(i+’7j) —

Instruction « < 7, (2) loads the h-th component of location ¢ of PS into the accu-
mulator . If h = 1 then mapping Num is applied additionally. The semantics of
all other instructions is defined similarly.

Execution times of RASP instructions are defined as in the RAM case except
one change. RASP programs can grow during execution and therefore the time
required to modify the instruction counter cannot be neglected any longer. We
therefore add L(k) to the cost of an instruction stored in cell k in the logarithmic
cost measure. We have the following relations in both cost measures.

Theorem 2. Executing a RAM program of time complexity T'(n) on a RASP takes
< ¢-T(n) time units, where ¢ € R is a constant depending on the RAM program
but not on the input.]

Theorem 3. There is a ¢ > 0 such that every RASP program of time complexity
T(n) can be simulated in < ¢-T'(n) time units on a RAM. 1

Theorem 2 follows immediately from the observation, that a RAM program uses
only a fixed number of storage locations of the program store and that therefore the
additive factor L(k) (k being the content of the program counter) can be bounded
by a constant which is independent of the particular input. Thus the “RASP cost”
of a RAM instruction is at most ¢ times the “RAM cost” where ¢ = 1 + L(length
of RAM program to be executed on a RASP).

Theorem 3 is more difficult to prove. One has to write a RAM program which
interprets RASP programs. Data store, program store and registers of the RASP
are stored in the data store of the RAM, more precisely, we use location 1 for the
accumulator, locations 2, 3 and 4 for the index registers, locations 5, 8, 11, 14, ...
for the data store, and locations 6, 7, 9, 10, 12, 13, 15, 16, ... for the program
store. Two adjacent cells are used to hold the two components of a location of the
program store of the RASP. Location 0 is used as an instruction counter; it always
contains the number of the RASP instruction to be executed next. The interpreter
has the following structure:

Version: 18.10.99 Time: 17:53 —8—

1.2. Randomized Computations 9

(1) loop: load the opcode of the RASP-instruction to be executed into the

accumulator;

(2) decode the opcode and transfer control to a modul which simulates
the instruction;

(3) simulate the instruction and change the instruction counter.

(4) goto loop.

We leave the details to the reader (Exercise 3). According to Theorems 2 and 3,
time complexities on RAMs and RASPs differ only by a constant factor. Since
we will neglect constant factors anyway in most of what follows, the choice of the
machine model is not crucial. We prefer the RAM model because of its simplicity.
So far, RAMs (and RASPs) have no ability to interact with their environment,
i.e., there are no I/O-facilities. The details of the I/O-facilities are not important
except for Chapter 6 and we therefore always assume that the input (and output) is
stored in the memory in some natural way. For Chapter VI on NP-completeness we
have to be more careful. We equip our machines with two semi-infinite tapes, a read
only input tape and a write only output tape. The input tape contains a sequence
of integers. There is one head on the input tape which is positioned initially on
the first element of the input sequence. Execution of the instruction a <+ Input
transfers the integer under the input head into the accumulator and advances the
input head by one position. The cost of instruction a < Input is 1 in the unit
cost measure and 1 + L(n) in the logarithmic cost measure where n is the integer
to be read in. Similarly, the statement Output < « transfers the content of «
onto the output tape. Whenever a RAM attempts to read from the input tape and
there is left no element on the input tape, the computation blocks. We will then
say that the output is undefined and that the time complexity of that particular
computation is the number of time units consumed until blocking occurred.

1.2. Randomized Computations

There are two important extensions of RAMs which we have to discuss: randomized
RAMs and nondeterministic RAMs. We discuss randomized RAMs now and put
off the discussion of nondeterministic RAMs to Chapter 6.

A randomized RAM (RRAM) has the ability to toss a perfect coin and to
make further computation dependent on the outcome of the coin toss, i.e., there is
an additional instruction

o + random

which assigns to a either 0 or 1 with probability 1/2 each. The cost of this in-
struction is 1 in both measures. We illustrate this new concept by a very simple
example, an RRAM which computes constant 0.

1: o + random
2: if @ # 0 then goto 1

Version: 18.10.99 Time: 17:53 -9-

10

Apparently, the content of & is 0 when the program stops. However, the running
time of the algorithm depends on the outcome of the coin tosses. More precisely,
if the random choice comes out 0 at the k-th toss for the first time, £ > 1, then
the running time is 2k in the unit cost measure. Since the coin is assumed to be
fair, the probability of this case is 27* and therefore the average running time is
Y ks127F -2k =4 (cf. appendix, formula S1). Note that the average running time
is small, although there is a chance that the program never halts.

The notion of RRAM is most easily made precise by reducing it to ordinary
RAMs with two input facilities. The first input facility records the actual input
p for the randomized computation (as above, we leave the exact nature of that
input facility unspecified), the second input facility is a read only input tape which
contains a sequence of 0’s and 1’s. Execution of a < random reads the next element
(if there is one) from the input tape and transfers it into the accumulator a.

Let A be a RAM program. For s a sequence of 0’s and 1’s it thus makes sense
to talk about A(p, s), the output of A on input p and sequence s of coin tosses, and
Ta(p, s), the running time of A on input p and sequence s of coin tosses. Again,
we leave it unspecified, whether the output is written into the memory or onto an
output tape. The expected running time of randomized algorithm A on input p is
then defined by

Ta(p) = lim 27y Ta(p,s).
s€{0,1}*

Ta(p) is well defined because of

Lemma 1. For all k and p:

27F N" Tu(ps) < 27RO YT Talpt).

s€{0,1}* te{0,1}k+1

Proof: Let s € {0,1}*, and let ¢t = s0 or ¢ = s1. If the computation of A on input p
and sequence s of coin tosses stops regularly, i.e., is not blocked because sequence s
is exhausted, then T4(p,s) = Ta(p,t). If it is not blocked but never halts then
Ta(p,s) = oo = Ta(p,t). If it is blocked then T4 (p,s) < Ta(p,t). 1

We can now define T4 (n) and T$"(n) as described above. Of course T'3”(n) is only
defined with respect to a probability distribution on the inputs.

What do we understand by saying that a randomized algorithm A computes a
function f : P +— Y 7 The answer to this question is not evident since the output of
A can depend on the particular sequence s of coin tosses used in the computation.

Definition: Let f : P — Y and € : N — R be functions. The randomized
algorithm A computes f with error probability at most ¢ if for all p € P

o 5 € 10,1345 £0) = Alp,)}
k—o0 2k

Z 1- €(g(P)),

Version: 18.10.99 Time: 17:53 -10-

1.2. Randomized Computations 11

where g(p) is the size of input p. 1

An argument similar to the one used in Lemma 1 shows that the limit in the
definition above always exists. Of course, only the case ¢(n) < 1/2 is interesting.
Then A gives the desired output with probability larger than 1/2. A randomized
algorithm A is called Las Vegas algorithm for function f if it computes f with
error probability 0 of error, i.e., ¢(n) = 0 in the above definition. In particular,
whenever A(p, s) stops and is defined then A(p,s) = f(p). Las Vegas algorithms
are a particularly suitable class of randomized algorithms because the output is
completely reliable. We will see examples of Las Vegas algorithms in Sections 2.1.3
and 3.1.2.

Of course, we want the error probability as small as possible. Suppose, that we
have a randomized algorithm A which computes f : P — Y with error probability
at most £(n). If (n) is too large we might just run A several times on the same
input and then determine the output by a majority vote. This should strengthen
our confidence in the output.

Lemma 2. Let § > 0. If the randomized algorithm A computes f : P — Y with
error probability at most e(n) = € < % in time Ta(n) and if T4 o g is computable in
time O(T4) then there is a randomized algorithm B which computes f with error
probability at most § in time c-m- (3 —€)~!-T4(n). Here m = 2[(log)/ log(1— (3 —
€)?)] and c is a constant. Moreover, B always halts withinc-m- (3 —€)™! - Ta(n)
time units.

Proof: Consider any p € P. Let n = g(p), T = [(4/(1 — 2¢)) - Ta(n)] and m =
2[(log)/ log(1—(2—¢)?)]. Oninput p, B computes T', chooses m random sequences
81,82, --.,8m of length T each, and simulates A on inputs (p, s1), ..., (p, $m) for up
to T time units each. It then outputs whatever the majority of the simulated runs of
A outputs. Apparently B runs for at most O((1+m)-T) = O(m- (3 —€)~-Ta(n))
time units. Moreover, f(p) # B(p, s1,---,8m) iff A(p,s;) # f(p) for at least m/2
distinct #’s. Next note that

[{s € {0,137 f(p) # Alp, 5)}|
2T

o W€ (0,115 1) # Al) | s € (0,1)7; Tup,) > T
k—o0 ok 2T

IN

since A computes f with error at most e (and therefore the first term is bounded

Version: 18.10.99 Time: 17:53 -11-

12

by €) and since for p € P with g(p) = n we have
Ta(n) > Ta(p)

>y {Ta(p,s); s€{0,1}7}

2T

> Z {Ta(p,s); se€{0, 1;;’: and Ty(p,s) > T}|

{s €{0,1}7; Ta(p,s) > T}

g e o

and therefore the second term is bounded by Ta(n)/T < (1 — 2¢)/4. Let v =
111 _¢). Then

2 2\2
‘{31 ©8m € {Ovl}Tm’ B(pasla"' 7sm) 7é f(p)}|
9T-m

< Em: (?)vi(l—v)m‘i

i=m/2

m

< > () (since < 1/2)

i=m/2
< 2m,ym/2(1 o 7)m/2

= (4y(1 =)™/
< 4. (by definition of m) 1

It is worth illustrating Lemma 2 by an example. Assume that ¢ = 0.49 and § = 0.03.
Then m = 2[(log §/) log(1 — (3 — €)?)] = 2[log 0.03/1og 0.9999] = 70128. Thus we
have to repeat a computation which gives the corrct answer with probability 0.51
about 70000 times in order to raise the level of confidence to 0.97 . If we start with a
more reliable machine, say € = 0.25, then m reduces to 2[log 0.03/log 0.9375] = 110.
By this example we see that bringing the error down from 0.49 to 0.25 is the difficult
part, increasing the level of confidence further is easy.

Randomized algorithms have a fair coin available and deterministic algorithms
have not. It is therefore important to know how well a randomized algorithm can be
simulated by a deterministic algorithm. We approach this problem from two sides.
First we show that for fixed problem size one can always replace the fair coin by a
fized sequence of 0’s and 1’s of reasonable length (Theorem 1), and then we show
how to use good pseudo-random number generators in randomized computations.

Theorem 1. Let n € N, N = |{p € P; g(p) < n}|, § = 1/(N + 1) and let A,
B, € and f be defined as in Lemma 2. Then there is a sequence so € {0,1}T™,

Version: 18.10.99 Time: 17:53 -12—

1.2. Randomized Computations 13

m and T as in the proof of Lemma 2 (under the additional assumption that T4 is
non-decreasing), such that f(p) = B(p, sg) for all p € P,.

Proof: B computes f with error probability at most . Let P, = {p € P; g(p) < n}.
Then for all p € P,

[{s € {0,137™; B(p,s) # f(0)}| < ¢&-2"™ = 2T™/(N+1),

and therefore

Z Z if B(p,s) # f(p) then 1 else 0

s€{0,1}T'm pEP,

=> > if B(p,s) # f(p) then 1 else 0

pEP, s€{0,1}T'm
< N-2T'™ /(N +1)
< 2T'm,

Thus there is at least one so € {0,1}7"™ such that

) if B(p,s0) # f(p) then 1 else 0 < 27™/2T™ = 1.
pEP,

Hence B(p, so) = f(p) for all p € P,. |

We illustrate Theorem 1 by an example. Assume P = {0,1}* and g(p) = |p|,
the length of bit string p. Then |P,| < 2"*!. Assume also that we start with
a randomized machine A with ¢ = 1/4 and running time T4(n) = n* for some k.
Taking 6 = 1/(2"*!+1), Lemma 2 yields a machine B with worst case running time
Tg(n) = O((—logé)-Ta(n)) = O(n**1!) and error probability at most §. Moreover,
by Theorem 1, there is a fixed 0-1 sequence sq of length O(n**1) which can be
used by B instead of a true random number generator. Unfortunately, the proof of
Theorem 1 does not suggest an efficient method for finding a suitable sq.

The question now arises whether we can use a pseudo-random number genera-
tor (say built-in procedure Random on your favorite computer) to generate coin toss
sequences for randomized algorithms. A typical pseudo-random number generator
works as follows. It consists of a function 7' : {0,1}™ — {0,1}™ which is designed
such that there is no “obvious” connection between argument x and value T'(z).
The most popular choice of function T is

T(z) = (a -z + c) mod 2™
where the argument z is interpreted as a number between 0 and 2™ — 1, and
the numbers a and ¢ are of the same range. The result is finally truncated to

the last m bits. A user of a pseudo-random number generator provides a “seed”

Version: 18.10.99 Time: 17:53 -13-

14

zo € {0,1}™ and uses the transformation 7' to generate a sequence x1,s, ..., Tk
with z; 1 = T(z;). Thus a pseudo-random number generator takes a bit sequence zg
of length m and produces a bit sequence (take the concatenation of z1,...,z) of
length %k - m for some k.

We can therefore define a pseudo-random number generator as a mapping p :
{0,1}™ = {0,1}F(™) where E(m) > m. Tt takes a seed « € {0,1}™ and produces
a sequence p(z) of length E(m).

The choice of the seed is left to the user and we will not discuss it any further.
He might use a physical device or actually toss a coin. However, we will discuss
the desirable properties of mapping p in more detail. The mapping p takes a bit
string of length m and produces a bit string of length E(m). If E(m) > m then
p(z) is certainly not a random string (in the sense that all strings of length E(m)
are equally likely) even if x is a random string of length m. After all, only 2™ out
of the 2E(™) possible strings of length E(m) are in the range of p.

Suppose now we can generate random strings x of length m, is it then safe to
use the pseudo-random strings p(z) of length E(m) in a randomized algorithm? At
first glance the answer seems “No” because pseudo-random strings are not random
strings. However, they might be “random enough” to be used anyway instead of
a true random sequence. In order to make this precise we need to introduce a
measure of quality for pseudo-random number generators. We do so by introducing
the concept of a statistical test.

Consider for example the function h : {0,1}* — {0,1} which yields one if
the number of zeroes and ones in the argument differs by at most 10%. Then h
applied to a random bit string yields one with very high probability and we might
require the same for a random element in the range of p. If this were the case then
the statistical test A cannot distinguish between true random sequences and the
sequences obtained by applying p to shorter random sequences. If this were true
for all statistical tests (a notion which still needs to be defined) then the sequences
generated by p are rightly called pseudo-random.

In general, we define a statistical test to be any function h : {0,1}* — {0,1}
which yields a one for at least half of the arguments of any fixed length.

A randomized algorithm A can easily be turned into a statistical test hs. The
test h4 calls a sequence s € {0,1}* “good” (i.e., yields a one) if the running time
of algorithm A when using sequence s of coin tosses does not exceed its expected
running time by more than a factor of, say, two. Then most random sequences of
any fixed length are good, i.e., h4 is a statistical test and has polynomial running
time if A has (we restrict our attention to polynomial time bounded algorithms
because we saw in the beginning of this chapter that algorithms with exponential
running time are hopelessly inefficient).

We say that a pseudo-random number generator p passes test h if “many” (a
precise definition is given below) sequences in the range of p are good.

Suppose now that p passes all statistical tests of polynomial time complexity.
Then p passes also test h4 if A is a polynomial time bounded algorithm and hence
we can hope to use the pseudo-random sequences generated by p instead of true

Version: 18.10.99 Time: 17:53 -14-

1.2. Randomized Computations 15

random sequences for operating algorithm A.

We will now make these concepts precise. Part c¢) of the definition below
defines in precise terms what we mean by the phrase that the mapping p passes the
statistical test h. We give two variants of the definition which are geared towards the
two applications of pseudo-random number generators to be described later: fast
simulation of randomized algorithms by deterministic algorithms and reduction of
the number of coin tosses in randomized computations.

Definition:

a) A function h : {0,1}* — {0,1} is polynomial time computable if there is
a deterministic algorithm computing h whose running time is bounded by a
polynomial.

b) A statistical test is a function h : {0,1}* — {0,1} with
{z € {0,1}%; h(z) =1} > 2F=! forall k.

c) Let E : N — N be a function, let p : {0,1}* — {0,1}* be such that | p(z)| =
E(m) for || = m and let my : N — N be a function. Let h be a statistical
test and let A be computable in time ¢ - n? for some ¢ where n is the size of the
input. Then p passes test h if for all m > mg(?)

{z €{0,1}F(™); g € range(p) and h(z) =1} # 0.
Furthermore, p passes test h well if for all m > mq(t)
[{z € {0,1}7(™); & € range(p) and h(z) = 1}| > 2™/8.

Remark: If p passes test h well then a random element in the range of p satisfies h
with probability exceeding 1/8 while a true random element of {0, 1}¥(™) satisfies h
with probability exceeding 1/2. The choice of cut-points a; = 1/2 and ay = 1/8 is
arbitrary; however 0 < as < a; is essential.

d) A mapping p is a good (very good) pseudo-random number generator if
it passes all polynomial time computable statistical tests (well). |

The reader should pause at this point and should try to grasp the intuition behind
this definition. We defined a statistical test to be any predicate on bit strings which
at least half of the strings of any fixed length satisfy (part b)). Furthermore, we
restrict our attention to simple (= polynomial time computable) predicates (part
a) and c)). A pseudo-random number generator p passes all statistical tests if the
range of p has no simple structure, i.e., if there is no large and computationally
simple subset of {0,1}(™) namely a set {z € {0,1}¥(™); h(z) = 1} for some
statistical test h, which p either misses completely or does not hit with sufficiently
high probability. In other words, the properties of a random element in range(p) are

Version: 18.10.99 Time: 17:53 -15—

16

difficult to predict, and hence the elements produced by p are rightly called pseudo-
random sequences. Note that “being random” is the same as “being difficult to
predict”.

It is not known whether (very) good random number generators in the sense
of this definition exist. However, it can be shown that very good random number
generators with E(m) = m* for any k computable in polynomial time exist if any
one of the following number theoretic problems is hard: the discrete logarithm
problem or the problem of factoring integers. We have to refer the reader to the
literature for a discussion of these results (cf. A.C. Yao: “Theory and Applications
of Trapdoor Functions”, IEEE FOCS 1982, 80-91).

We proceed on the assumption that a (very) good polynomial time computable
pseudo-random number generator p exists with, say, F(m) = m2. We show that
good pseudo-random number generators can be used to speed up the simulation of
randomized algorithms by deterministic algorithms and that very good generators
can be used to reduce the required number of true random choices. The latter
consequence is important if generation of truely random bits ever became possible,
yet would be expensive.

For concreteness and simplicity, let A be a Las Vegas algorithm with polynomial
running time, i.e., Ta(n) < t - n' for some ¢t € N and let p be a good pseudo-
random number generator with E(m) = m2. Let p € P, n = g(p), be such that
V2t -nt > mg(t). Then hy, : {0,1}* — {0,1} with

h (5) — 1 ifTA(p,S) SZtnt,
P 0 otherwise

is computable in time O(t - n*) and we have h,(s) = 1 for at least fifty percent of
the bit strings of length 2¢ - nt. This follows from the fact that the running time of
T4 on p and s can exceed twice the expected value for at most half of the sequences
of coin tosses. Hence for all m > /2t - nt

{s € {0,1}P(™); s c range(p) and h,(s) =1} # 0

or
{s €{0,1}™); 5 ¢ range (p) und T4 (p,s) < 2t-nt} # 0.

This relationship directly leads to a deterministic simulation of probabilistic ma-
chines which is more efficient than the naive one. Let p € P, g(p) = n and let
m = V2t - nt. Consider Program 2.

Since A is a Las Vegas algorithm and since there is an s € p({0,1}™) with
Ta(p,s) < 2t-nt, the simulation always produce the correct answer. Also the
running time of the simulation is O(2V2™ (¢ - nt + ¢(m))), where ¢ is the poly-
nomial bound on the time needed for computing p. Thus the existence of good
pseudo-random number generators leads to more efficient simulations of probabilis-
tic machines by deterministic machines. Note that the naive simulation has running
time O(28™ - ¢ - nt).

Version: 18.10.99 Time: 17:53 -16—

1.2. Randomized Computations 17

for all z € {0,1}™

do s+ p(z);
run A on p and s for up to 2t - nt steps;
if A halts within that number of steps
then output, whatever A outputs and halt
fi

od.

Program 2

Assume now that p is a very good pseudo-random number generator. Then
g
‘{s € {0,1}E(™); s ¢ range (p) and Ta(p,s) < 2t - nt}| > 2™M/8,

where m, n and p are defined as above. In other words, a random z € {0,1}™
produces an s = p(z) such that Ta(p, s) < 2t-nt with probability at least 1/8. This
observation leads to the following implementation of algorithm A in Program 3
which uses fewer coin tosses than A.

repeat generate a random sequence of m bits and call it x;
s + p()

until A on p and s halts within 2¢ - n? steps ;

output, whatever A outputs on p and s.

Program 3

Since a random z € {0,1}™ produces an s = p(z) € {0,1}F(™) with T4(p, s) <
2t - n® having probability at least 1/8 only 8 iterations of the loop are required on
the average. Hence the algorithm above simulates A in time O(T4(n)) = O(n') and
uses only O(\/r?) random bits. Thus if true random choices are possible but costly,
this is a very significant improvement. This completes our discussion on the use of
(very) good pseudo-random number generators in randomized computations.

We end this section with a remark on the relation between the expected time
complexity of deterministic algorithms and the running time of probabilistic algo-
rithms.

Let A be a Las Vegas algorithm which computes function f : P — Y. Let us
assume for simplicity that A makes at most a(n) coin tosses for every n € N on any
input p € P with g(p) = n. Then

Talp) = Y, Talp,s)/2°™.
se{0,1}a(n)

Suppose also that we are given a probability distribution x4 on the set P of problem
instances. Let B be a deterministic algorithm for f, whose expected running time

Version: 18.10.99 Time: 17:53 -17-

18

on inputs of size n is minimal (B is certain to exist if P,, the set of problem instances
of size n is finite), i.e., for all deterministic algorithms C

E({Tp(p); p € P and g(p) =n}) < E({Tc(p); p € P and g(p) = n}),

where expectations are calculated with respect to probability distribution u. For ev-
ery fixed s € {0, 1}a(“) algorithm A with sequence s of coin tosses is a deterministic
algorithm and hence

>) -Telp) < D w(p) Talp,s).

pEP, pEP,

Since this inequality holds for every s we have

doup)-Telp) < Y >) Talp,s)/22™

pEP, s€{0,1}a(n) pEP,

<> ulp) DY Talp,s)/2e™

pEP, s€{0,1}a(n)

< > ulp) - Talp).

pEP,

Thus the expected running time of Las Vegas algorithm A on inputs of size n can
not be better than the expected running time of the best deterministic algorithm.
We will use this fact to derive lower bounds on the randomized complexity of some
sorting problems in Chapter 2. For sorting and some related problems we will
derive Q(nlogn) lower bounds on the expected running time of a large class of
deterministic algorithms in Chapter 2. The inequality derived above immediately
extends that lower bound to the corresponding class of Las Vegas algorithms.

1.3. A High Level Programming Language

Only a few algorithms in this book are formulated in RAM code, most algorithms
are formulated in a high level ALGOL-like programming language. We feel free
to introduce additional statements into the language, whenever the need arises
and whenever translation into RAM code is obvious. Also we make frequent use
of complex data structures such as lists, stacks, queues, trees and graphs. We
choose this very high level description for many algorithms because it allows us
to emphasize the principles more clearly. Most statements of our programming
language are known from ALGOL-like languages. In particular, we use

Version: 18.10.99 Time: 17:53 -18-

1.8. A High Level Programming Language 19

the conditional statement:
if (condition) then (statement) else (statement) fi;

the iterative statement:

while (condition) do (statement) od;

the for-loop:

for i from (expression) step (expression) to (expression)
do (statement) od

If the step size is unspecified then it is 1 by default. We also use a second form of
the for-loop:

for i € (set) do (statement) od

with the following semantics. The statement is executed |(set)|-times; i runs
through the members of the set in some unspecified order. Assignments are written
in the form (variable) < (expression). Translation of all statements above into
RAM code is simple. We describe the translation in the case of a while-statement

while B do S od.

Let P; be a RAM program for B, i.e., P; evaluates expression B and leaves a 0 (1)
in the accumulator, if B evaluates to false (true). Let P, be a RAM program for S.
Then the RAM code of Program 4 realizes the while-loop.

Py

if a = 0 then goto exit;

P,

goto first instruction of Py;
exit:

Program 4

Program 4 also defines the complexity of the while-loop; it is the sum of the
time units spent on the repeated testing of the condition and the execution of the
body.

Variables in our programs contain unstructered elementary values or structured
values. The elementary data types are integer, real, boolean, pointer and
an additional unspecified data type. We use this additional data type in sorting
algorithms; the data to be sorted will be of the unspecified type. The operations
defined on this additional data type are given on a case by case basis. Structured
data types are strings over some alphabet, records, arrays, lists, stacks, queues,
trees and graphs. Strings are treated in 2.2, graphs in 4.1, all other structured types
are treated in 1.4. The type of a variable will be obvious from the context in most
cases; in this case we will not declare variables explicitely.

Version: 18.10.99 Time: 17:53 -19-

20

Procedures play a major role in our programs. Parameters are restricted to
elementary types. Then parameter passing takes constant time (cf. Section I.5).
Non-recursive procedures are easily reduced to RAM code; one only has to substi-
tute the procedure body at the place of the call. The situation is more complicated
for recursive procedures. We treat recursive procedures in 1.5.

Comments are bracketed by co and oc.

1.4. Structured Data Types

Records and arrays are the most simple ways of structuring data.

An array A of n elements consists of n variables A[l],..., A[n] of the same
type. An array is stored in n consecutive storage locations, e.g., in locations BA+1,
BA+2,...,.BA+n. Here BA stands for base address. If x is a variable stored in
location ¢ then accessing array element A[z] is realized by means of index registers.
The following piece of code

M + p(i);
o< p(BA+)

loads A[z] into the accumulator for a cost of 4 in the unit cost measure and 2+ L(7)+
L(BA) + 2L(z) + L(A[z]) in the logarithmic cost measure. Again the logarithmic
cost measure is proportional to the length of the numbers involved.

Records are fixed size collections of variables of different type, e.g.,

record age : integer; income : real end.

A variable z of this record type is easily simulated by two simple variables, a variable
x.age of type integer and a variable x.income of type real.

Queues, stacks, lists and trees are treated in the sections below. They are all
reduced to arrays.

1.4.1. Queues and Stacks

Queues and stacks are used to represent sequences of elements which can be modified
by insertions and deletions. In the case of queues insertions are restricted to the
end of the sequence and deletions are restricted to the front of the sequence. A
typical example is a waiting line in a student cafeteria. Queues are also known
under the name FIFO store (first in - first out). In the case of stacks, insertions
and deletions are restricted to the end of the sequence: LIFO store (last in - first
out). Very often, the names Push and Pop are used instead of insertion into and
deletion from a stack.

A stack K is most easily realized by an infinite array K[1], K[2], ... and an
index Top of type integer. The stack consists of elements K[1],...,K[Top]; K|[Top]
is the top element of the stack. The following piece of code realizes operation
Push(K, a)

Version: 18.10.99 Time: 17:53 -20-

1.4.2. Lists 21

Top < Top + 1;
K[Top] + a.

The next piece of code deletes an element from the stack and assigns it to variable z,
i.e., it realizes x < Pop(K)

if Top = 0 then error fi;
z + K[Top);
Top < Top — 1.

Of course, infinite arrays are rarely available. Instead we have to use a finite array
of, say, n elements. In this case a push-operation should also check whether overflow
occurs. In either case the stack operations Push and Pop take constant time in the
unit cost measure.

A queue S is also realized by an array. We immediately treat the case of a
finite array S[1..n]. We conceptually think of array S as a closed line, i.e., S[1]
follows S[n], and use two indices Front and End to denote the borders of the queue.
More precisely, if Front < End then the queue consists of S[Front],...,S[End—1],
if Front > End then the queue consists of S[Front],...,S[N],S[1],...,S[End — 1],
and if Front = End then the queue is empty. Then deleting an element from S and
assigning it to x is realized by

if Front = End then error fi;
x « S|[Front];
Front < 1+ (Front mod n)

and inserting an element a into the queue is realized by

S[End] + a;
End < 1+ (End mod n);
if Front = End then error fi.

Insertions into and deletions from queues take constant time in the unit cost mea-
sure.

1.4.2. Lists

Linear lists are used to represent sequences which can be modified anywhere. In
linear lists the elements of a sequence are not stored in consecutive storage locations,
rather each element explicitly points to its successor (cf. Fig. 3).

. element element element element | _|
Head: B—> 1 D) 3 4 _“'

Figure 3. A linear list

Version: 18.10.99 Time: 17:53 -21-

22

There are many versions of linear lists: singly linked, doubly linked, circular,
etc. We discuss singly linked lists here and leave the others for the exercises. In
singly linked linear lists each element points to its successor. There are two realiza-
tions of linear lists: one by records and one by arrays. We discuss both, although
internally the record representation boils down to the array representation. We use
both representations throughout the book and always choose the one which is more
convenient.

In the record representation an element of a linear list is a record of

type element = record cont : real; next : Telement end

and Head is a variable of type felement. Head always points to the first element of
the list. The pictorial representation is as given in Figure 3.

The realization by two arrays is closer to RAM code. Real array Content[1..n]
contains the contents of the elements and integer array nezt[l..n| contains the
pointers. Head is an integer variable. Our example list can be stored as shown in
Figure 4.

Head = 2 Content next
1 element 4 0
2 element 1 4
3 element 3 1
4 element 2 3

Figure 4. Realization by arrays

Here Head = 2 means that row 2 of the array contains the first element of the
list, the second element is stored in row 4, etc. The last element of the list is stored
in row 1; next[1] = 0 indicates that this element has no successor.

We describe now insertion into, deletion from and creation of linear lists. We
give two versions of each program, one using records and one using arrays. In either
case we assume that there is a supply of unused elements and that a call of procedure
Newr(var p :Telement) resp. Newa(var p : integer) takes a node from the supply
and makes p point to it in the record (array) version and that a call of procedure
Disposer(var p :felement) resp. Disposea(var p : integer)) takes the node pointed
to by p and returns it to the supply. Suffixes r and a distinguish between the
representations. We discuss later how the supply of elements is implemented. In
our example a call Newa(p) might assign 5 to p because the fifth row is unused and
a call Newr(p) results in the situation depicted in Figure 5.

P [T
Figure 5. After call of Newr

Procedure Create takes one parameter and makes it the head of an empty list.
Again we use suffixes r and a to distinguish the record and the array version.

Version: 18.10.99 Time: 17:53 -22—

1.4.2. Lists 23

procedure Createa(var Head :
integer);

procedure Creater(var Head :

telement);
Head < 0
end.

Head <+ nil
end.

Procedure Insert takes two parameters, a pointer to the element after which we
want to insert and the content of the new element.

procedure Inserta(p:integer, a:real);
var ¢ : integer;

procedure Insertr(p telement, a:real);
var ¢ : Telement;

Newr(q); Newa(q);

qf.cont <+ a; Content[q] + a;
gt.next < pt.next; nezt[q] + next[p);
pT.next < q nezt[p] < q

end. end.

This procedure fails for empty lists. (The following procedure Delete fails already
for lists consisting of only one element.) A real implementation must take this into
account and add tests for special cases. In general, the descriptions of our algorithms
skip sometimes such special cases to enhance the readability of the book. Figure 6
illustrates one call of Insertr(p, a).

Procedure Delete takes one parameter, a pointer to the element which precedes
the element we want to delete.

procedure Deletea(p : integer);
var q : integer;

procedure Deleter(p :telement);
var ¢ :felement;

q < pt.next; q < nezt[pl;
pl.next < gf.next; next[p] < next|q];
Disposer(q) Disposea(q)

end. end.

Finally, we have a function to test whether a list is empty.

function Emptyr(Head : telement);
Emptyr < (Head = nil)
end.

function Emptya(Head : integer);
Emptya + (Head = 0)
end.

It remains to discuss the supply of unused nodes in more detail. Supply is again a
linear list with head Free. We will only describe the array version of procedures New
and Dispose because these procedures are usually built-in functions in programming
languages which contain records. Internally, records are always realized by arrays
and therefore Newr and Disposer are identical to Newa and Disposea. A supply of
n elements is created by

Version: 18.10.99

Time: 17:53 -23-

24

| —

before the call

after executing (1)

[+
|4 [—
|

[

q:
after executing (2) and (3)
q:

d

F

) | Q after executing (4)

Figure 6. Snapshots during execution of Insertr(p, a)

o
o
o
o

procedure Inita(n : integer);
var i : integer;

Free + 1;

for i from 1ton—1

do next[i] < i+ 1 od;
nezxt[n] < 0

end.

Newa and Disposea are realized by

Version: 18.10.99 Time: 17:53 -24-

1.4.8. Trees 25

procedure Newa(q : integer);

q < Free;

if Free = 0 then supply exhausted fi;
Free < next[Free|;

nezxt[q] < 0

end.

and
procedure Disposea(var q : integer);
nezt(q] < Free;
Free < ¢;
g+ 0
end.

We summarize in

Theorem 1. Creating a supply of n nodes takes time O(n) in the unit cost measure,
creation of an empty list, insertion into, deletion from a linear list given that the
positions of insertion or deletion is known and testing for emptiness take time O(1)
in the unit cost measure.]

One often uses linear lists to realize stacks and queues. In particular, several stacks
and queues may share the same supply of unused nodes. This will guarantee high
storage utilization if we have knowlegde of the total length of all stacks and queues
but no knowlegde of individual length. Typical examples can be found in Chapter 6.
We store a graph by listing the set of its successors for each node. In a graph of n
nodes and m edges these lists have total length m, but nothing is known in advance
about the length of individual lists.

1.4.3. Trees

Trees consist of nodes (branching points) and leaves. Let V = {v1,vs,...} be an
infinite set of nodes and let B = {b1,ba,bs,...} be an infinite set of leaves. We
define the set of trees over V' and B inductively.

Definition:

a) Each element b; € B is a tree. Then b; is also the root of the tree.

b) If Ty,...,T, (m > 1) are trees with pairwise disjoint sets of nodes and leaves
and v € V is a new node then the (m + 1)-tuple T = (v,Ty,...,T},) is a
tree. Node v is the root of the tree, p(v) = m is its degree and T; is the i-th
subtree of T'. 1

In the graph-theoretic literature trees as defined above are usually called ordered
rooted trees. We always draw trees with the root at the top and the leaves at the

Version: 18.10.99 Time: 17:53 —25—

26

bottom. As shown in the example tree of Figure 7 nodes are drawn as circles and
leaves are drawn as rectangles.

Figure 7. Tree T, with nodes and leaves

We use the following terms when we talk about trees. Let T be a tree with
root v and subtrees T;, 1 < i < m. Let w; = root(T;). Then w; is the i-th son of v
and v is the father of w;. Descendant (ancestor) denotes the reflexive, transitive
closure of relation son (father). w; is brother of w;, j # i. In the tree of Figure 7
b, and vy are brothers, v; is father of v3 and b5 is descendant of vs.

Definition (depth): Let v be a node or leaf of tree T. If v is the root of T then
depth(v,T) = 0. If v is not the root of T then v belongs to T; for some i. Then
depth(v,T) = 1 + depth(v, T;). We mostly drop the second argument of depth if it
is clear from the context.]

Definition (height of a tree): Let T be a tree. Then

height(T") = max{depth(b,T'); b is leaf of T'}. 1

In Figure 7 we have depth(vs) = 1, depth(vs) = 2 and height(Tg,) = 3.
Definition: Tree T is a binary tree if all nodes of 7" have degree exactly 2.]

Our example tree T, is a binary tree. A binary tree with n nodes has n+ 1 leaves.
The 1st (2nd) subtree is also called left (right) subtree.

Information can be stored in the leaves and nodes of a tree. In some applications
we use only one possibility. A binary tree is realized by three arrays Lson, Rson
and Content or equivalently by records with three fields. Figure 8 gives the storage
representation of our example tree Tg,.

We have associated rows with nodes and leaves in some arbitrary way. If
information is only stored in the nodes and not in the leaves then leaves do not
have to be stored explicitly. All rows corresponding to leaves can be deleted and
pointers pointing to leaves are set to 0. A O-pointer then represents a subtree

Version: 18.10.99 Time: 17:53 —26—

root =5

Figure 8.

© 00 O O W =

1.4.83. Trees 27

Content

Lson

Rson

Content of vy
Content of v,
Content of by
Content of by
Content of v,
Content of b,
Content of vs
Content of by
Content of b3

SO O N O WO

4

SO LVCWCO OO

Realization of Tg, by arrays

consisting of a single leaf. In the diagrams we will not draw leaves in this case (cf.

Figures 9 and 10).

root = 3

Figure 10.

Figure 9. Tg, without leaves
Content Lson Rson
1 Content of vs 0 4
2 Content of v 0 0
3 Content of v, 1 2
4 Content of vy 0 0

Realization of Tg, without leaves by arrays

Systematic exploration of a tree is needed frequently. A binary tree consists of
three components: a root, a left subtree and a right subtree. Thus three methods
of tree traversal come to mind naturally:

Preorder traversal: visit the root, traverse the left subtree, traverse the right

subtree: root, L, R.

Postorder traversal: traverse the left subtree, traverse the right subtree, visit the

root: L, R, root.

Symmetric traversal: traverse the left subtree, visit the root, traverse the right

subtree: L, root, R.

Version: 18.10.99 Time: 17:53

—27—

28

Symmetrical variants are obtained by interchanging L. and R. Procedure Symord of
Program 5 traverses a tree in symmetrical order and prints the content of all nodes
and leaves.

procedure Symord(v);

if v is leaf

then print(Content[v])

else Symord(Lson[v]);
print(Content[v]);
Symord(Rson|v])

fi

end.

Program 5

1.5. Recursion

Recursive procedure Symord traverses a binary tree in symmetrical order. Before
we can estimate time and space complexity of Symord we need to take a look at
the implementation of recursive procedures in RAM or RASP code. Recursive pro-
cedures are realized by means of a stack. We associate with each call (incarnation,
activation) of a procedure an element of the stack, called activation record. The
activation record contains complete information about the call, i.e.,

a) the values of the actual parameters,
b) the return address,
c) the local variables.

If a procedure has n parameters and m local variables then the activation record
consists of n + 1 + m storage locations. The ¢-th cell, 1 < i < n, contains the value
of the i-th actual parameter, the (n+ 1)-st cell contains the return address, i.e., the
address of the instruction which follows the procedure call in the calling program,
and the (n + 1 + j)-th cell contains the j-th local variable. Parameters and local
variables are addressed indirectly via the activation record. More precisely, if Top is
the address of the storage location immediately preceding the activation record then
location Top ++¢ contains the i-th actual parameter and cell Top +n+ 1+ j contains
the j-th local variable. Top is best stored in an index register. After completion of
the procedure call control is transfered to the address stored in location Top +n+ 1.
Also Top is reduced after completion, i.e., the activation record is deleted from the
stack. Parameters and return address are computed by the calling program, i.e.,
the first n 4 1 cells of an activation record are initialized by the calling program.
We are now ready to give the non-recursive version of Symord by Program 6. Array
KJ[1..00] is used as the stack.

Version: 18.10.99 Time: 17:53 —28—

1.5. Recursion 29

(1) begin co the main program calls Symord(root) oc
(2%) Top < 0;
(3") K[1] < root;
(4) K[2] + “HP”;
(5%) goto Symord;
(6%) HP : Halt;
(7) Symord: co here comes the code for Symord;
node v is stored in K[Top + 1],
and return address is stored in K[Top + 2] oc
(8”) if Lson[K|[Top + 1]] = Rson[K[Top +1]] =0
then co K[Top + 1] is a leaf oc
(97) print(Content[K[Top+1]));
(10") goto Finish
else co call Symord(Lson|v]) oc
1) Top < Top + 2;
2’) K[Top + 1] < Lson[K[Top — 1]];
3’) K[Top + 2] + “M1”;
4) goto Symord;
5) M1 : Top + Top — 2;
6’) print(Content[K[Top + 1]));
co call Symord(Rson[v]) oc
Top < Top + 2;
K[Top + 1] < Rson[K[Top — 1]];
K[Top + 2] « “M2”;
goto Symord;
M2 : Top < Top — 2;
goto Finish
fi;
(23’) Finish: goto K[Top + 2]
end.

Program 6

Call Symord(Lson[v]) (line (3) of the recursive program) is simulated by lines
(11’)—(15’) of the non-recursive program. In (11’) storage space for the activation
record is reserved. The activation record is initialized at lines (12’) and (13’);

t (12’) the value of the actual parameter and at (13’) the return address “M1”
is stored. At line (14’) control is transfered to Symord and the recursive call is
started. Upon completion of the call control is transfered to label M1 (line (15’)).
The space for the activation record is released and execution of Symord is resumed.
Analogously, one can associate the other instructions of the non-recursive program
with the instructions of the recursive program.

Program 6 is practically a RASP program. Line (23’) uses a w-instruction. It
can be turned into a RAM program either by the method described in the proof of

Version: 18.10.99 Time: 17:53 —-29—

30

Theorem 3 of Section 1 or more simply by replacing line (23’) by Program 7.

if K[Top + 2] = “M1”
then goto M1;

if K[Top + 2] = “M2”
then goto M2;

goto HP

Program 7

We have described a simplified method for translating recursive programs into
non-recursive ones. The method suffices if global variables can only come out of
the main program. This will be the case throughout this book. In the general case
a single register Top does not suffice; one has to replace it by a set of registers, one
for each activation record which can contain global variables. We refer the reader
to a book on compiler construction for details, e.g., Gries (71)).

We are now ready to analyze the time complexity of recursive procedures in
the unit cost measure. A constant number of instructions is required to set up a
recursive call, namely to increase Top, to store the n actual parameters and the
return address. Note that n is fixed and in dependent of the input; n can be
infered from the program text. Also, we allow only elementary types in parameter
position and hence a single parameter can be passed in constant time. Upon return
from a recursive procedure Top has to be decreased. Altogether, the administrative
overhead for a procedure call is bounded by a constant.

The following method for computing the time complexity of recursive proce-
dures is often useful. We associate with every procedure call the cost of executing
the procedure body, including the administrative cost for initiating further recur-
sive calls but excluding the time spent inside recursive calls. Then we sum over all
calls and obtain the total cost in this way. We illustrate this method on procedure
Symord. Each line in the body of Symord takes constant time. Recall that we
only count the time required to set up the recursive calls at lines (3) and (5) of
Program 5 but that we do not count the time needed to execute the recursive calls.
Symord is called once for each leaf and node of a binary tree. Thus the total cost
of Symord is O(n) where n is the number of leaves and nodes of the binary tree.

The summation over all calls of a procedure can be done more formally by
means of recursion equations. Let T'(v) be the running time of call Symord(v).
Then

T(v) = c1 if v is a leaf;
YT e+ T(Lson[v]) + T (Rson[v]) otherwise

for suitable constants ¢; and cz. We can now show by induction on the height of v
(the tree with root v) that T'(v) = c2 - # nodes in the tree with root v+ ¢; - # leaves
in the tree with root v. Although the induction proof is very simple we include it
for didactic purposes.

Version: 18.10.99 Time: 17:53 -30-

1.6. Order of Growth 31

Height(v) = 0: Then v is a leaf and we have T'(v) = ¢3.
Height(v) > 0: Then v is a node and we have
T(v) = ca + T(Lson[v]) + T(Rson[v])
= cg + c2 - # nodes(Lson[v]) + ¢1 - # leaves(Lson|v])
+ ca - # nodes(Rson[v]) + c1 - # leaves(Rson[v])
= ¢y - # nodes(v) + ¢ - # leaves(v).

A more detailed discussion of recursion equations can be found in Section 2.1.3.

1.6. Order of Growth

In most cases we will not be able to derive exact expressions for the running time
of algorithms; rather we have to be content with order of growth analysis. We use
the following notation.

Definition: Let f : Np — Ny be a function. Then O(f), Q(f) and ©(f) denote
the following sets of functions

O(f) ={9 :Ng = No; 3¢ >0 3ng:g(n) <c- f(n)
for all n > ngp}

Q(f) = {g : Ng = Nog; 3¢ >0 Ing : g(n) >c- f(n)
for all n > no}

O(f) ={9:Ng =+ Np; I¢>03Ing:(1/c) - f(n) <g(n) <ec- f(n)
for all n > ng} |

We use the O-notation in proofs of upper bounds, the Q-notation in proofs of lower
bounds and the ©-notation whenever we can determine the order of growth exactly.

It is customary to use the notations above together with the equality sign
instead of the symbols €, C for the relations ‘element of’ and ‘subset of’, i.e., we
write n? 4+ 5n = n% + O(n) = O(n?) instead of n? + 5n € n% + O(n) C O(n?).
More precisely, if o is an n-ary operation on functions and A;,..., A, are sets of
functions, then o(A4y, ..., A,) denotes the natural extension to sets of functions, e.g.,
A1+ Az = {a1 + az; a1 € Ay and ay € Ay}. Singleton sets are denoted by their
single member. Then expressions a and § which contain O-expressions denote sets
of functions and a = stands for a C 3. Equalities containing O-expressions can
only be read from left to right. The terms of sequence A; = Ay = A3 =--- = Ay
represent larger and larger sets of functions; the bounds become coarser and coarser
from left to right.

Version: 18.10.99 Time: 17:53 -31-

32

1.7. Secondary Storage

On a few occasions we consider algorithms which use secondary storage. We make
the following assumption. Data is transported in blocks (pages) between main and
secondary memory. A page consists of a fixed (say 2!° = 1024) number of storage
locations. It takes 5000 time units to transport a page from one memory to the
other. This assumption approximates the behavior of modern disk memory.

1.8. Exercises

1) Develop a RAM program for computing 2™ which runs in O(logn) time units
in the unit cost measure and O(n) time units in the logarithm-cost measure. [Hint:

Let n = Ef:o a; - 2¢, a; € {0,1}, be the binary representation of n. Note that
2m = (- ((29%)2 . 2%_1)2 ... 201)2 - 290]

2) Give a detailed proof of Theorem 1 of Section 1.1. In particular, discuss the
assumption that a RAM program does not use cell 0. Show that one can add 1 to
all addresses dynamically and hence free cell 0.

3) Give a detailed proof of Theorem 3 of Section 1.1.
4) Show how to translate conditional and iterative statements into RAM code.

5) In doubly linked lists every list element points to its successor and its predeces-
sor. Do Section 1.4.2. for doubly linked lists.

6) A tree is k-ary if every node has exactly k sons. Show that a k-ary tree with n
nodes has exactly k + (k — 1)(n — 1) leaves.

7) Prove
f(n) =0(f(n)
O(f(n)) + O(f(n)) = O(f(n))
c-O(f(n)) = O(f(n))
O(f(n)) - O(g(n)) = O(f(n) - g(n))

)
(

1.9. Bibliographic Notes

RAMs and RASPs were introduced by Shepherdson/Sturgis (63) and Elgot/Robin-
son (64). Our notation follows Hotz (72). The theorems in Section 1.1. are taken
over from Cook/Reckhow (73). The discussion of randomized algorithms is based
on Adleman (78), Reif (82), Yao (77) und Yao (82). A more detailed account of
linear lists can be found in Maurer (74) and Knuth (68). For a detailed discussion
of the implementation of recursive procedures we recommend Gries (71).

Version: 18.10.99 Time: 17:53 -32—

