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Chapter 2. Sorting

Sorting a set with respect to some ordering is a very frequently occuring problem.
IBM estimates that about 25% of total computing time are spent on sorting in
commercial computing centers. The most important applications are (according to
Knuth (73)):

a) Collecting related things: In an airline reservation system one has to manip-
ulate a set of pairs consisting of passenger name and flight number. Suppose
that we keep that set in order of passenger name. Sorting according to flight
number then gives us a list of passengers for each flight.

b) Finding duplicates: Suppose that we are given a list of 1000 persons and are
asked to find out which of them are present in a group of 100 persons. An
efficient solution is to create a list of the persons in the group, sort both lists
and then compare them in a sequential scan through both lists.

¢) Sorting simplifies searching as we will see in Chapter 3.

We next give a formal definition of the sorting problem. Given is a set of n objects
Ry,...,R,. Each object R; consists of a key (name) S; and some information
associated with that name. For example, the objects might be entries in a German-
English dictionary, the keys are Germans words, and the information part is gender,
English translation, ... . An important fact is that the keys are drawn from some
linearly ordered universe U; we use < to denote the linear order. In our example the
ordering relation is the alphabetic order of words. We want to find a rearrangement
R;,,R;,,...,R;, of the objects such that

Sip <5i, <0 <5,
Apparently, the information associated with the keys does not play any role in the
sorting process. We will therefore never mention it in our algorithms. One further
remark should be added. Frequently, the information associated with the keys is
much larger than the keys themselves. It is then very costly to move an object.
Therefore it is better to replace the objects by records consisting of the key and a
pointer to the object and to sort the set of records obtained in this way. Sometimes
it will also suffice to only compute the permutation 44,72, ..., %, instead of actually
rearranging the set of objects. All algorithms described below are easily adapted
to this modified sorting problem.

Let us reconsider example a) above. Suppose that we want for each flight the
list of passengers in alphabetic order. Note that we start with a list of pairs sorted
by passenger name. It would then be very nice if the sorting algorithm would not
distroy that order when it rearranges the pairs according to flight number because
then the passenger lists would be in alphabetic order automatically. More formally,
we call a sorting algorithm stable if it produces a rearrangement R;,,..., R; such
that S;, = S;,,, implies 4; < 4,41 for all [. Note that we can always produce a stable
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34  Chapter 2. Sorting

rearrangemant by extending the keys to pairs (S;, ) and by using the lexicographic
ordering on these pairs as the linear order.

Sorting algorithms can be divided into two large groups: the algorithms of
the first group are comparison-based, i.e., they make only use of the fact that
the universe is linearly ordered. In these algorithms the only operation applied to
elements of U is the comparison between elements. We will discuss four algorithms
of the first kind: Heapsort which always runs in time O(nlogn), Quicksort which
runs in time O(n logn) on the average and is the algorithm with the smallest average
running time, Mergesort which also runs in time O(n log n) and uses only sequential
access and finally A-sort (Section 3.5.3.2) which works particularly well on almost
sorted inputs. The algorithms of the first group are also called general sorting
algorithms because they do not impose any additional restriction on the universe.
We will also see that general sorting algorithms require Q(n logn) comparisons in
the worst case as well as in the average case. Thus all algorithms mentioned above
are optimal up to constant factors.

The algorithms of the second group only work for keys in a restricted domain.
We treat sorting reals and sorting words according to lexicographic order.

Remark: For this chapter we extend our machine model by two instructions, which
are very helpful for sorting algorithms. One instruction exchanges the contents of
the accumulator and some storage cell.

a < op and a <> mop.

The second instruction addresses a second general purpose register, which we denote
by a. a entspricht etwa dem Multiplikandenregister. We allow loads and stores from
@ and simple arithmetic operations, which leave their result in ¢, e.g.,

a+—a—op and a +— a — mop.

Instructions of the second type allow us to make comparisons with @ without de-
stroying its content. Both type of instructions are available on many machines.
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2.1. General Sorting Methods

2.1.1. Sorting by Selection, a First Attempt

We begin with a very simple sorting method. Select the largest element from the
input sequence, delete it and add it to the front of the output sequence. The
output sequence is empty initially. Repeat this process until the input sequence is
exhausted.

We formulate the complete algorithm in our high level programming language
first and then translate it into machine code. Suppose that the input sequence is
given by array S[1..n].

(1) jn
(2) while j > 1
do co S[j + 1..n] contains the output in increasing order,
S[1..j] contains the remainder of the input sequence;
(3) k + j; max < j; S« S[jl;
(4 while k> 1
do co we search for the maximal element of S[1.. j],
S = S[maz] is always the largest element of S[k.. j] oc
(5) k< k-1,
(6) if S[k] > S
(7) then max < k; S « S[k] fi
od;
(8) S[maz] < S[j]; S[j] < S;
(9  jej-1
od.

Program 8

Next we translate into machine code. We use the following storage assignment.
Index register v; holds 7 — 1, 2 holds £ — 1 and index register 3 holds maz — 1.
n is stored in location 0, S is stored in @ and array S[1..n] is stored in locations
m+1,...,m+n. We assume that n > 1 and that the keys are integers. In the
right column of Program 9 the number of executions of each instruction is given.

Lines 5, 6, 7, 10 are executed for j = n,...,2 and k = j —1,...,1. Hence
A = n(n — 1)/2. Furthermore B < A. Thus the running time of Program 9
<3:-1+10(n—1)+5A+3B =25n2+7.5n — 7+ 3B < 4n? + 6n — 7 time units
in the unit cost measure.

Average case running time is slightly better. We compute it on the assumption
that the keys are pairwise different and that all n! permutations of keys Sq,...,S,
are equally likely. The first assumption is not crucial but simplifies calculations.

At each execution of the body of the outer loop we interchange Sy,,, with S;.
Since there are j different possibilities for max, this step transforms j possible
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36 Chapter 2. Sorting

0: ~1 < p(0) jn 1

1. m1m—1 7 1

2: v m k + 7 n—1

3 y3m max < j n—1

4: a <+ p(m+ys+1) S + S[max] n—1

5: 272 —1 k—k—-1 A

6: a+—a—pm+vy+1) line (6) A

7: if a > 0 then goto 10 ” A

8 vz 72 maz — k B

9: a+ pm+ys+1) S < S[max] B
10: if 2 > 0 then goto 5 line (4) A
11: a4+ p(m+y +1) line (8) n—1
12: pm+7y3+1) @ ? n—1
13: ym 7 —1 je—g—1 n—1
14: if v3 > 0 then goto 2 line (2) n—1

Program 9

arrangements of keys Sq,...,S; into one arrangement. Hence after the exchange
all possible permutations of keys S1, ..., S;_1 are equally likely. Therefore we always
have a random permutation of keys Si,...,S; during the sorting process.

Sequence Si,...,S; is scanned from right to left. Instruction 8 of the RAM
program is executed whenever a new maximum is found. For example, if4 5 3 1 2
is sequence {Si,...,S5;} (we assume w.lo.g. that {Si,...,5;} = {1,...,j}; this
convention facilitates the discussion), then the maximum changes twice: from 2
to 3 and then to 5. Key S; is equal to i, 1 <14 < j, with probability 1/j. If S; = j
then the maximum is found. If S; = ¢ < j then we may delete elements 1,...,i—1
from the sequence. They certainly do not change the maximum. Thus we are left
with j —1— (i —1) = j — i keys out of Sy,...,S;_1.

The maximum changes once plus the times it will change in the remaining
sequence. This is a random permutation of the elements i +1,...,j.

This gives the following recursion for a;, the expected number of changes of
the maximum.

a1 =0 and
142
a; = ; Z(l-l—aj_i) for j > 1.
i=1

Multiplying by j gives
j—1
jrai=0G -1+ a
i=1
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2.1.2. Sorting by Selection: Heapsort 37

and similarly for j + 1
J
G+Daj=j+) a
i=1

Subtraction yields
(j—|—1)a]‘+1 —j~a]- = 1+a]~.

or
aj+1=a; +1/(j +1).
Thus
j
aj =Y 1/i=H;—1,

=2

where H; = E{Zl 1/i is the j-th harmonic number (cf. Appendix). We have thus
shown that instructions 8 and 9 are executed aj, times on the average when the
outer loop is executed with j = jo. Hence

B = Zaj = ZHj —n=(n+1)H, —2n (cf. Appendix)
i=2 j=1

<(n+1)lnn—(n—-1). (H, <1+In n, cf. Appendix)

Average case running time of our algorithm is 2.5n2+3(n+1)lnn+4.5n—4 = O(n?)
Worst case and average running times are quadratic. It is also easy to see that the
algorithm uses exactly n(n — 1)/2 comparisons between keys.

2.1.2. Sorting by Selection: Heapsort

Is the algorithm described in the preceding section good? Can we improve upon
the method for finding the maximum? The answer to the second question is no, in
any case if we confine ourselves to comparison-based algorithms. In comparison-
based algorithms there is no operation other than the comparison of two elements
which is applicable to elements of the universe from which the keys are drawn.

Theorem 1. Any comparison-based algorithm needs at least n — 1 comparisons to
find the maximum of n elements.

Proof : Interpret a comparison S; < S; 7 as a match between S; and S;. If §; < S
then S; is the winner and if S; > S; then S; is the winner. If an algorithm uses less
than n — 1 matches (comparisons) then there is at least two players (keys) which
are unbeaten at the end of the tournament. Both players could still be best (the
maximum), contradiction. 1
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38 Chapter 2. Sorting

Theorem 1 implies that we have to look for a different sorting method if we want
to improve upon the quadratic running time of the naive algorithm. Consider that
algorithm on input 4 5 3 1 2. We compare 2 with 1, 2 with 3, 3 with 5 and
finally 5 with 4. We can summarize our knowlegde at the end of the first maximum
selection in Figure 11.

Figure 11. Known size relations

A parent-child relation represents the “greater than” relation on the labels of
the nodes. Next we exchange 5 and 2 and obtain 4 2 3 1. At the second iteration
we compare 1 with 3, 3 with 2, 3 with 4 and obtain Figure 12.

4

/N
1 2
Figure 12. After the second iteration

Two of these comparisons were unnecessary. We knew already from the first
iteration that 3 is larger than 1 and 2. Let us take a more global look: At the
end of the first iteration we have a tree-like structure with the following property:
Whenever one considers a path through that tree then the labels along the path
are monotonically decreasing. This is also called the heap property.

From Figure 11 after removing the 5 we obtain Figure 13.

4 3

AN

2

\

1
Figure 13. After removal of the 5

It suffices now to compare 4 and 3. This gives that 4 is larger than 3 and the
second selection of a maximum is completed.

Version: 19.10.99 Time: 18:42 -38—



2.1.2. Sorting by Selection: Heapsort 39

PZAN

Figure 14. New example after the first iteration

Let us consider another example, the sequence 1 2 3 4 5. We obtain Figure 14
at the end of the first iteration.

After removing 5 we have 4 uncorrelated elements, i.e., we have not saved any
information from the first iteration to the second. We can see from these examples
that the trees we build should have small fan-out. In this way only little information
is lost when a maximum is removed. Let us consider one more example, the sequence

2103517964 8. The “ideal” tree has the form from Figure 15.

/ \ / N\,
/ \ /
6 48
Figure 15. Ideal tree for the third example

Unfortunately, the labelling does not satisfy the heap property yet. We can
install the heap property in a bottom-up process. In the tree shown in Figure 16
the three bottom levels of the tree already satisfy the heap property but the root
label does not satisfy it yet.

/ \ / \,
/ \ /
4 51
Figure 16. Only the root violates the heap property

We sink the 2 to its proper position by interchanging it with the larger of its
children and obtain Figure 17.

In this tree the 2 is still not larger than its two children and so we have to
interchange it again with the larger of its children (the 8).

We obtain in Figure 18 a tree having the heap property. So the maximum is
the root label. We remove it and obtain Figure 19.

How should we restore the heap property? We might compare the 8 with the 9
and move up the 9. Next we compare the 7 with the 3 and obtain Figure 20.
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AN
2 9
/N N\
6 8 7 3
/N
4 51
Figure 17. The root is greater than both children
BN
8 9
/N N\
6 2 7 3
/N
4 51
Figure 18. Whole tree satisfies the heap property
/.
8 \9
/N N\
6 2 7 3
/N
4 51

Figure 19. After removal of the root

9
8/ \7
/N, N\
6 2 3
A

4 51
Figure 20. Heap is restored

We can now remove the 9 and repeat the process. This gives us Figure 21.

Although this approach leads to an O(nlogn) sorting method we face one
problem. After a few iterations the tree looses its perfect shape. There is another
approach which avoids this problem. After removal of the 10 we take the 1, the
label of the rightmost leaf on the bottom level, and move it to the root. Next we
sink the 1 as described above. This method produces the sequence of trees shown
in Figure 22.

In this way we always keep the tree as an almost complete binary tree. All
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8
6/ \7
/N, N\
57 2 3

/o /

4 1
Figure 21. After removal of the 9

leaves are on two adjacent levels, all levels except the bottom level are complete,
and the leaves on the bottom level are as far to the left as possible. Trees of this
form can be stored in very compact form: Number the nodes starting at the root
(with number 1) according to increasing depth and for fixed depth from left to right.
Then the children of node k are numbered 2k and 2k + 1 and the parent of node k
is numbered |k/2] (|z] is the largest integer < x). Thus we can store the tree in a
single array and save the space for pointers.

Definition: An array S[1..n] satisfies the heap property, if
S(lk/2]] > S[k] for2<k<n.
The array is a heap starting at [, 1 <[ < n, if
S[lk/2]] > S[k] forl< |k/2] <k <n. |

Notice that every array S[1..n]is a heap starting at [n/2]+1. The tree in Figure 23
corresponds to array 2 10 958 73 6 4 1 and is a heap starting at position 2.

N
10 9
/N N\
5 8 7 3
/N
6 41
Figure 23. Tree with sequence 21095873641

Next we give the complete implementation for Heapsort; we assume n > 2 in
Program 10;

Line (10) is executed at each iteration of the inner loop and the inner loop is
entered at least once at each iteration of the outer loop. Hence total running time
is proportional to the number of comparisons in line (10). We count the number of
comparisons. For simplicity, let n = 2% — 1 for some & > 1.
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AN

8 7
/N /N
6 2 1 3

/\
£ 5

Removal
of 8
=

Removal
of 6
SN

Removal
of 4
=

Removal
of 2
—

7

/N

VANVAN
5 2 1 3

/N

AN

Figure 22.

A\,

Removal of 9,
Moving up the 5 and
Restoring the
heap property

—

Removal
of 7
—

Removal
of 5
SN

Removal
of 3
=

Selection phases

6/ \7
VANVAN

/N

/NS
3 2 1

/

Build-up Phase : The tree has 2 nodes of depth i, 0 < i < k. In the build-up phase
we add the nodes of depth £ — 2 to the heap, then the nodes of depth k& — 3,... .
When we add a node at level ¢ then it can sink down to level £ — 1 for a cost of 2
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2.1.2. Sorting by Selection: Heapsort 43

(1) I+ |n/2]+1;r+mn
(2) while r > 2
do co either » = n and then S[1..n] is a heap
starting at [ (build up phase) or
! =1 and the n — r largest elements are stored in increasing
order in S[r +1],...,S[n] (selection phase) oc
(3) ifi>1
then co we are building the heap and
add the element S[l — 1] oc
(4) l—1-1;j«1
else co we are in the selection phase. S[1] is the maximum of
S[1],...,S[r]. We exchange S[1] and S[r] and have to
restore the heap property on S[1..r — 1] oc
(5) exchange S[1] and S[r]; r«r—1;j+1
fi;
(6) S « S[jl;
(7 while 25 <r
do co we sink S[j] by interchanging it
repeatedly with the larger of its children.oc

(8) k <+ 2j;
(9) if Kk <r and S[k] < S[k + 1] then k + k + 1 fi;
(10) if S < S[k]
(11) then S[j] < S[k]; j < k
(12) else goto E fi
od;
(13) E: S[j] « S;

od.
Program 10

comparisons per level. Thus the total cost of the build-up phase is bounded by
k—2
D 2k —1—14)28 =21 —2(k +1). (cf. Appendix, Formula S1)
i=0
Selection phase : In the selection phase we repeatedly remove the root and move
up element S[r]. This element can sink down all the way to the bottom level of the
tree. More precisely, if an element of depth 7 is moved up then restoring the heap
property can cost us up to 2¢ comparisons. Thus the total number of comparisons
in the selection phase is at most

k-1
2 Z i-28=2(k—2)2F + 4. (cf. Appendix, Formula S1)
i=0

Altogether, Heapsort uses at most 2k(2%¥ — 1) — 2(2¥ — 1) = 2nlog(n + 1) — 2n
comparisons. For n # 2F — 1 counting is slightly more complicated.
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Theorem 2. Heapsort sorts n elements in at most 2nlog(n + 1) — 2n comparisons
and time O(nlogn). 1

By analogy to sorting by selection from 2.1.1, compiling into RAM code gives us
a running time of < 20nlog(n + 1) — n — 7 time units in the worst case. Average
running time of Heapsort is only slightly better because of the following two reasons.
We put new elements into the root and sink them to their proper position. Since
most nodes of a binary tree are close to the leaves most elements will sink almost
down to the leaves. Furthermore, in the selection phase we sink elements which we
get from a leaf and which hence tend to be small. A complete average case analysis
of Heapsort still needs to be done.

2.1.3. Sorting by Partitioning: Quicksort

Quicksort is an example of a very powerful problem solving method: divide and
conquer. A problem is split into several smaller parts (divide) which are then
solved using the same algorithm recursively (conquer). Finally the answer is put
together from the answers to the subproblems.

In the case of Quicksort this means: Choose an element from sequence
S1,...,8,, say S1, and partition the sequence into two parts. The first subse-
quence consists of all S; with S; < S; and and no §; with S; > S; and the second
subsequence consists of all S; with S; > S; and and no S; mit S; < S;. The
partitioning algorithm stores the first sequence in positions 1 through k¥ — 1 of an
array, Sp in position k, and the second sequence in positions k+1,...,n. Then the
same algorithm is applied recursively to the two subsequences. Putting the sorted
subsequences and the partitioning element S7 together to a single sorted sequence
is trivial. Nothing has to be done. One could think of splitting the sequence into
three parts; the third part consisting of all S; = S;. In general, this is not worth
the additional effort (cf. Exercise 8).

Next we take a closer look at the partitioning phase. A good solution encloses
array S[1..n] with two additional elements S[0] und S[n+1] such that S[0] < S[i] <
S[n+ 1] for all ¢ and uses two pointers with starting values 1 and n + 1. Pointers
i and k have the following meaning: the first subproblem consists of S[2],..., S|,
the second subproblem consists of S[k], ..., S[n], and elements S[i +1],...,S[k —1]
still have to be distributed. We increase ¢ until we find S[¢] > S[1] and we decrease
k until S[k] < S[1]. Note that no test for “index out of bounds” is required because
of the addition of elements S[0] and S[n + 1]. Two cases can arise. If £ > 7, then
we exchange S[k] and S[i] and repeat the process. If k < ¢, we are done. It is easy
to see that either k =i (if S[i] = S[1]) or k = ¢ — 1 (if S[¢] # S[1]). Interchanging
S[k] and S[1] completes partitioning. Program 11 uses this idea.

A remark on the correctness of the algorithm should be made. In line (3) and
(4) we assume the existence of keys S[l—1] and S[r+1] with S[I—1] < S[i] < S[r+1]
for all ¢ with I <14 < r. Existence of these keys is ensured for call Quicksort(1,n) by
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procedure Quicksort(l,r);
co Quicksort(l,r) sorts the subarray S[l]...S[r]
into increasing order oc
(1) begini<l;k«r+1; 5« S[;
(2) while i <k
(3) do repeat i < i+ 1 until S[i] > S;
(4) repeat k < k — 1 until S[k] < S
(5) if £ > i then exchange S[k| and S[i] fi
od;
(6) exchange S[l] and S[k];
(7) if I < k—1 then Quicksort(l,k — 1) fi;
(8) if k+1 < r then Quicksort(k+ 1,r) fi
end.

Program 11

adding S[0] and S[n+1] with the required properties, for recursive calls it is obvious
from the description of the algorithm. Since we only have S[l — 1] < S[i] < S[r +1]
we have to test for > and < in lines (3) and (4) in order to save the test for index
out of bounds.

Worst case behavior of Quicksort is easily determined. Consider lines (1)
through (6) for fixed values of [ and 7, say [ = 1 und r = n. In line (3) we
compare and increase %, in line (4) we compare and decrease k. Before entering the
loop in line (2) we have k —i = r — [ 4+ 1 = n, after termination of the loop we have
k—i=0or k—i=—1. Hence k and ¢ are changed for a total of n or (n + 1)-times
and n or n + 1 comparisons are made. Actual running time of lines (2) to (5) is
O(number of comparisons) = O(n). The cost of lines (1) and (6)—(8) is O(1) per
call of Quicksort. Since there are < n — 1 calls altogether including the call in the
main program (cf. Exercise 6) the total cost of lines (1) and (6)—(8) summed over
all calls is O(n).

Let us return to the maximal number QS(n) of key comparisons which are
needed on an array of n elements. We have

QS(0)=QS(1)=0 and
QS(n) <n+1+ 1I<n,?2<n{QS(k —1)+QS(n—k)} forn>2.

It is easy to show by induction that @S(n) < (n+1)(n+2)/2 — 3 for n > 0. This
bound is sharp as can be seen from the example 1,2,... ,n. Here the partitioning
phase splits off exactly one element and therefore subproblems of size n,n — 1,n —
2,...,2 have to be solved. This requires (n+1)+n+(n—1)+--+ 3 comparisons
which sums exactly to the bound given above. Quicksort’s worst case behavior is
quadratic.

Average case behavior is much better. We analyze it on the assumption that
keys are pairwise distinct and that all permutations of the keys are equally likely.
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We may then assume w.l.o.g. that the keys are the integers 1,...,n. Key S; is equal
to k with probability 1/n, 1 < k < n. Then subproblems of size k — 1 and n — k
have to be solved recursively and these subproblems are again random sequences,
i.e., they satisfy the probability assumption postulated above. This can be seen as
follows. If Sy = k then array S is as follows just prior to execution of line (6):

kiyi ... tg—1 Jrt1 Jr+2 -+ Jn-
Here i1,...,ix—1 is a permutation of integers 1,...,k — 1 and jg+1,...,Jn IS &
permutation of integers £+ 1,...,n.

What did the array look like before the partitioning step? If [ interchanges
occur in line (5) then there are [ positions in the left subproblem, i.e., among array
indices 2,...,k, and ! positions in the right subproblem, i.e., among k£ + 1,...,n,
such that the entries in these positions were interchanged pairwise, namely the
leftmost selected entry in the left subproblem with the rightmost selected in the
right subproblem, ... . Thus there are exactly

()0

arrays before partitioning which produce the array by the partitioning process. The
important fact to observe is that this expression only depends on k& but not on the
particular permutations ¢i,...,%—1 and jg4+1,...,J,. Thus all permutations are
equally likely, and hence the subproblems of size £k — 1 and n — k are again random.
Let @S,,(n) be the expected number of comparisons on an input of size n. Then

QSCL’U(O) = QSO,’U(]') = O

and
n

QSa(m) = =S (0 14 QS (k—1) + @S, (n — k)

k=1
2n—1
— 1+ — k f > 2.
n+ +nk§QSav() or n >

We solve this recurrence by the method already used in 2.1.1. Multiplication by n

gives us
n—1

nQS,(m)=nn+1)+2> QS,, (k) forn>2.
k=0

Subtracting from the equality for n + 1 instead of n, yields

n+2
n—+1

QSav(n+1) =2+ : Q‘Sav(n)‘
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This recurrence is of the form
a; = b1
Ap41 = bn-l-l + Cpt1an

with by =0, b; =2 and ¢; = (i + 1) /i for ¢ > 1 and has solution

n+1 n+1
An+1 = Z ( H Cj) bi,

i=1 Nj=i+1
as is easily verified by induction. Thus

n

QSan(n) =

= 2En +1)(Hpyr — 3/2)
<2(n+1) In(n+1),

7.z+1'2
1+ 1

where H, 1 is the (n 4+ 1)-th harmonic number (cf. Appendix). Let us return to
running time. We argued above, that the running time of the partitioning phase
is proportional to the number of comparisons and that the total cost of all other
operations is O(n). Thus

Theorem 3. Quicksort sorts n elements with at most (n? + 3n — 4)/2 key com-
parisons and running time O(n?) in the worst case. It uses < 2(n + 1)In(n + 1)
comparisons and time O(nlogn) on the average. ]

Translation in RAM code as described in 1.5 produces a program which sorts n
numbers in expected time < 13(n +1)In(n+ 1) +29n — 33 = 9(n+ 1) log(n + 1) +
29n — 33 (cf. Exercise 7).

Quicksort has quadratic worst case behavior; the worst case behavior occurs
on the completely sorted sequence. Also almost sorted sequences, which occur
frequently in practice, are unsuited for Quicksort. There is an interesting way out
of this dilemma: randomized Quicksort. We change the algorithm by replacing line
(1) by

(1a) begin ¢ «+ l; k + r+ 1;

(1b) j + random element of [0,...,r —];
(1c) interchange S[I] and S|l + j];
(1d) S« S[i];

What does that do for us? Let II be any permutation of numbers 1,...,n and let
@S, ., (IT) be the expected number of comparisons in randomized Quicksort applied
to sequence II(1),11(2),...,II(n). In lines (1a)-(1d) we choose a random element
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of IT as the partitioning element, i.e., S = S[h] with probability 1/n for 1 < h < mn.
Then subproblems II; and II; of size S[h] — 1 and n — S[h| respectively have to be
solved recursively. Of course, II; and II, depend on IT and h (=1 + j). We write
IT;(I1, h) and II5(I1, h) in order to make the dependence explicit. Then

n

@5,00(T) = = 3" (0 + 1+ @84, (M (T, 1)) + QS ., (Mo (11, 1))

h=1

It is now trivial to prove that @S,,,(II) = @S,,(n) where n is the number of
elements in permutation IT (use induction on n). Hence QS,.,,(II) < 2(n+1)In(n+
1) for any permutation II of n elements, i.e., randomized Quicksort sorts any fized
sequence in expected time O(nlogn).

The reader should for a moment think about the meaning of this sentence.
Standard Quicksort has average running time O(nlogn). When deriving this result
we postulated a distribution on the set of inputs, and the user of Quicksort has
to behave according to that postulate if he wants to observe small running times.
If the user mostly deals with nearly sorted sequences he should better keep away
from standard Quicksort. Not so for randomized Quicksort. Expected running
time is O(nlogn) on every single problem instance (and worst case running time is
O(n?) on every single problem instance). There are no bad inputs for randomized
Quicksort, randomized Quicksort behaves the same on all input sequences.

At this point it is worthwhile to consider divide and conquer strategies in more
detail. Let us assume, that a problem of size n > b~1(1) is split into a(n) problems
of size b(n) and that the cost of dividing into subproblems and pasting together the
answers is f(n). Probleme der Grofe n < b~!(1) losen wir direkt ohne rekursive
Aufrufe und bezeichnen mit f(n) die Kosten des direkten Losens. Then we obtain
the following recurrence for T'(n), the running time on a problem of size n.

_J f(n) for 1 <n < b71(1);
T(n) = {a(n) T(b(n)) + f(n) for n > b-1(1).

We solve the recurrence for T'(n) in a two-step process. As a first step we solve the
“simpler” homogeneous recurrence

S for 1 <n < b=*(1);
h(n) {a(n) ~h(b(n)) for n >b71(1).

In all our applications the solution of the homogeneous recurrence will be easily
obtained explicitly. Setting R(n) = T'(n)/h(n) the recurrence for R(n) transforms

into
o) — 4 f(n) for 1 <n < b1(1);
Rin) {R(b(n)) +f(n)/h(n) forn>b71(1).

Thus R(n) can be computed by a simple summation. With g(n) = f(n)/h(n) we
have R(n) = g(n) + g(b(n)) +---
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Theorem 4. Leta, b, f : [1,00] — Ry, b strictly increasing and b(n) < n for all n.
Then the recurrence

_Jf(n) for 1 <n < b 1(1);
T(n) = {a(n) T(b(n)) + f(n) forn > b-1(1)

has solution

rd(n)
T(n) = h(n) Y g(6*)(n))
i=0
where
rd(n) = min{d; b¥(n) <b"1(1)},
1 for1 <n < b 1(1);
hln) = {a(n) ~h(b(n)) forn >b"1(1),
and
g9(n) = f(n)/h(n).
Proof: By the discussion above. ]

Theorem 4 can be visualized as follows. Define the notion of a recurrence tree by
induction on n. If n < b7!(1) then the recurrence tree consists of a single leaf
labelled f(n). If n > b~1(1) then the tree for n consists of a root labelled f(n) and
a(n) subtrees, each being a recurrence tree for b(n). Then rd(n) is the depth of this
tree and h(n) is the number of leaves of this trees.

More generally, the number of leaves below a node of depth d is h(b{®(n)).
T(n) is the sum of the labels of all nodes and leaves of the tree. We can determine
T(n) by summing the labels by depth. A node of depth d has label f(b(¥)(n)). If we
distribute that label over all leaves below the node then each leaf receives a portion

F O () /(B () = (6 (m)). Thus
T(n) = h(n) 3 9(b®(n)).

We can now classify the solutions of the recurrence according to the growth of
function g.

Corollary 1. On the assumptions of Theorem 4 we have

a) T(n)=O0(h(n)), if g(n) = O(q~"4™) for some q > 1;
b) T(n) = O(h(n)), if g(n) = O(rd(n)?) for some p < —1;
c¢) T(n) =O0(h(n)-logrd(n)), ifg(n)=0(1/rd(n));

d) T(n) = O(h(n) - (rd(n))P*!), if g(n) = O(rd(n)?) for some p > —1;
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e) T(n)=Q(h(n)- g 4™), if g(n) = Q(¢"¥™)) for some q > 1;
f) T(n)=06(f(n)), if g(n) = ©(g"¥™)) for some g > 1.

Proof: Let ng = b("¥")(n). Then we can rewrite the conclusion of Theorem 4 as

rd(n)

T(n) = h(n) ) g(6®(n))

1=0
rd(n)

= h(n) 3 g+ (ng)

=0
rd(n)

=h(n) Y g(6""(ng)).

i=0
a) From g(n) = O(¢g~"%™) and hence g(b{~%(ng)) = O(¢~*) we conclude

rd(n)

T(n) =0 (h(n) D q—i) — O(h(n)).

i=0
b-d) From g(n) = O(rd(n)P) and hence g(b{~% (ng)) = O(i?) we conclude

rd(n)

T(n) = O (h(n) 3 i”)

=0

{ O(h(n)) ifp<—1;

O(h(n) -logrd(n)) ifp=—1,
O(h(n) - rd(n)P*1) if p > —1.

e) From g(n) = Q(¢"%™)) and hence g(b(~%)(ng)) = Q(¢*) we conclude

rd(n)
T(n) = Q(h(n) Z ') = Q(h(n)g"¥™)

=0
f) As in part e) we conclude
rd(n)
T(n) =O(h(n) ) 4')
=0
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Again it is very helpful to visualize Corollary 1 in terms of recurrence trees. In
cases a) and b) of Corollary 1 the cost of the leaves dominates, in case f) the cost
of the root dominates and in case d), p = 0 the cost is the same on all levels of the
tree.

We end with a brief discussion of a frequently occuring special case: a(n) = a
and b(n) = n/b for all n.

Corollary 2. Let a and b€ R4, b> 1, and let f : [1,00] — R4. Then recurrence

| f(n) ifl1<n<b
T(n) = {a~T(n/b) +f(n) ifn>b

has solution

llog, m ] . )
T(n)= ) d' f(n/t).
i=0
In particular,
O(nlos ) if f(n) = O(n?) with
p < log, a;
O(n'°8s 4 . (log, n)P*1)  if f(n) = O(n'°%0* . (log, n)?) and
p>-1;
log, a . _ log, a .
T(n) = < O(nl°8+»@ . log log n) pr{(g)—_l .O(n & - (logy n)?) and
O(nlOgba) lff(n) = O(nlogba . (logb n)p) and
p<-L
o) if f(n) = ©(n?) with
{ p > log, a.

Proof: Using the notation of Theorem 4 and Corollary 1 we have a(n) = a, b(n) =
n/b, rd(n) = |logyn| and h(n) = all°8:? = O(al°8sm) = O(2(egn)(loga)/logh) —
O(n'°®5 ). Thus

[log, 7]

T(n) — a'.logb nj Z f(n/bi)/a[logb n—i|

=0
llog, n) |
= Z a'- f(n/b").
=0
Next note that f(n) = O(nP) for some p < log, a implies g(n) = O(g~"4™) for
some ¢ > 1 and hence T(n) = O(h(n)). Also, if f(n) = ©(n!°8 2 . (log, n)?) then
g(n) = O((log,n)?) = O(rd(n)P). Thus T(n) is as given by Corollary 1, cases
b)—d). Finally case f) handles f(n) = ©(n?) with p > log, a. 1
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2.1.4. Sorting by Merging

Quicksort’s bad worst case behavior stems from the fact that the size of the subprob-
lems created by partitioning is badly controlled. Corollary 6 tells us that a = b = 2
would produce an efficient method. How can we achieve the splitting into two sub-
problems of size n/2 each? There is a simple answer: Take the first half of the
input sequence and sort it, take the second half of the input sequence and sort
it. Then merge the two sorted subsequences to a single sorted sequence. These
considerations lead to Program 12.

procedure Mergesort(S);

begin let n = |S|;
split S into two subsequences S; and S of length [n/2] and |n/2]
respectively;
Mergesort(S1);
Mergesort(Ss);
suppose that the first recursive call produces sequence
z1 < x2 < -0 < gy 2);
the second recursive call produces y1 < y2 <+ < Y|p/2);
merge the two sequences into a single sorted sequence
21 <2< - < 2y

end.

Program 12

Let us take a closer look at the merge algorithm. An obvious approach is to
repeatedly compare the front elements of the x-sequence and the y-sequence, to
remove the smaller one and add it to the end of the z-sequence. In Program 13 this
is implemented in our programming language.

1L i+ 1Lk« 1;
while i < [n/2] and j < |n/2]
do ifxi<yj
then zp x5t i+ 1Lk« k+1
else zp«y;;j«Jj+L k< k+1
fi
od;
if i < [n/2]
then while ¢ < [n/2] do zx < z;;i+ i+ 1; k< k+1 od,;
else while j < [n/2| do 2z +vy;;j < j+ 1Lk« k+1od
fi;

Program 13
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This algorithm merges two sequences with at most < [n/2]+ [n/2]—-1=n—1
comparisons and total running time ©(n). Note that at least one element is added
to the z-sequence without a comparison. This is optimal as we show in

Theorem 5. Every comparison-based algorithm for merging two sorted sequences
r1 < x2 < ... < Ty 2 and y1 < yz < ... < Yln/2) into a single sorted sequence
21 < z2<...< 2z, needs n — 1 comparisons in the worst case.

Proof: We choose the - and y-sequence such that the elements are pairwise differ-
ent and such that the following relations among the elements hold: z1 < y3 < z3 <
Yo < < Tnj2) < Yns2) (< T[nj2)). Element x, /51 only exists if n is odd. Let
us assume that some algorithm produces the correct z-sequence and does so in less
than n — 1 comparisons. Then it has not compared a pair x;, y; or y;, Ti+1.

Let us assume the former case, i.e., it has not compared z; with y; for some i,
1 < ¢ < n/2. Then let us consider the algorithm on an input where the following
relations hold: z1 < y1 <Xy < -+ <Y1 < Y; < &; < Xip1 < --- . All comparisons
which are made by the algorithm have the same outcome on the original and the
modified input and hence the algorithm produces the same z-sequence on both
inputs, contradiction. ]

We will next compute the exact number of comparisons which Mergesort uses on
an input of length n in the worst case. We use M(n) to denote that number.
Apparently

M(1)=0 and
M(n)=n—-1+M([n/2]) + M(|n/2]) ifn>1.

We use induction on n to show
M(n) = nflogn] — 2M°en1 4 1.

This is correct for n = 1. So let n > 1.
Case 1: n # 2% 4+ 1.
Then [log|n/2]] = [log[n/2]] = [logn] — 1, and therefore
M(n) =n—1+ [n/2] - [log[n/2]] — 2MosMm/21T 4 1
+ |n/2] - [log|n/2]] — 2Mesln/2]T 1 1
=n+n([logn] —1) — 2M°sn1 41
= n[logn] — 2Menl 11,
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Case 2: n=2F + 1.
Then [log|n/2]] = [log[n/2]] — 1 = [logn] — 2, and therefore

M(n) =n—1+ [n/2] - ([logn] — 1) —2Ms»1-1 41
+|n/2] - ([logn] —2) — 2Meem1=2 4 1
= n[logn] — |n/2) —2Mesn] 4 2Megnl=2 4 3
= n[logn] —2M°s" 4 1.

We introduced Mergesort by way of a recursive program. It is easy to replace
recursion by iteration in the case of Mergesort. Split the input sequence into n
sequences of length 1. A sequence of length 1 is sorted. Then we pair the sequences
of length 1 and merge them. This gives us |n/2] sorted sequences of length 2 and
maybe one sequence of length 1. Then we merge the sequences of length 2 into
sequences of length 4, and so on. It is clear that the running time of this algorithm
is proportional to the number of comparisons.

Theorem 6. Mergesort sorts n elements with at most n[logn] — 2M°8"1 41 com-
parisons and running time ©(nlogn). 1

Translation into RAM code results in a running time of 12n log n+40n+97 log n+29
in the worst case (Exercise 10).

Sorting by merging accesses data in a purely sequential manner. Hence it is
very appropriate for sorting with secondary memory, such as disks and tapes. In
this context the following problem is of interest. Very often we do not start with
sorted sequences of length one but we are given n sorted sequences Si,...,S, of
length w1, . .., w,, respectively. The problem is to find the optimal order of merging
these sequences into a single sequence. Here we assume that it costs x+y time units
to merge a sequence of length  with a sequence of length y. Any merging pattern
can be represented as a binary tree with n leaves. The n leaves represent the n
initial sequences and the n — 1 internal nodes represent the sequences obtained by
merging. Tree from Figure 24 represents the merging pattern:

Sﬁ — Merge(Sl, 53);
S7 — Merge(Sa, 54);
Sg < Merge(S2, Ss);

( )

Sg — Merge S7, 58 .

Definition: Let T be a binary tree with n leaves vq,...,v,, let CONT : leaves of
T +— {ws,...,w,} CR be a bijection and let d; be the depth of leaf v;. Then

Cost(T) = Z d; - CONT(v;)
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Figure 24. A merging pattern
is called the cost of tree T with respect to labelling CONT. ]

This definition requires a little bit of explanation: Tree T is a merging pattern, the
leaves of T' are labelled by the n initial sequences, their lengths (weights) respec-
tively. What is the cost of merging the n sequences according to pattern T'7 Note
that in our example above sequence S; is merged three times into larger sequences,
namely first with Ss3, then as a part of Sg with S4 and then as a part of S7; with
Ss. Also, three is the depth of the leaf labelled S;. In general, a leaf v of depth d
is merged d-times into larger sequences for a total cost of d - CONT(v). Thus the
cost of a merging pattern T is as given in the definition above. We want to find the
merging pattern of minimal cost.

Definition: Tree T with labelling CONT is optimal if
Cost(T) < Cost(T') for any other tree 7" and labelling CONT". 1

Theorem 7. If 0 < w; < wy < --- < w, then an optimal tree T and labelling
CONT can be found in linear time.

Proof: We construct tree T in a bottom-up fashion. We start with a set V =
{v1,...,v,} of n leaves and labelling CONT(v;) = w; for 1 < i < n and an empty
set I of internal nodes and set k to zero; k counts the number of internal nodes so
far constructed.

while k. <n —1

do select x1, xo € I UV with the smallest values of CONT;
co ties are broken arbitrarily; oc
construct a new node x with

CONT(z) = CONT(z1) + CONT(z2)

and add z to I;

k+—k+1;

delete 1 and 2z from TUV
od.
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Before we proof correctness and analyze running time we illustrate the algorithm
on an example. Let n =5 and {wy,...,ws} = {1,2,4,4,4}. We start with 5 leaves
of weight 1,2,4,4,4. As a first step we combine the leaves of weight 1 and 2 and
obtain a node with weight (content) 3, ... (cf. Fig. 25).

Figure 25. Optimal tree for weights 1244 4

The proof of the theorem will be completed by the next 4 lemmata. Let Tpp
with labelling CONT,,: be an optimal tree. Let {y1,...,yn} be the set of leaves of
Topt- Assume w.lo.g. that CONTopt(y;) = w; for 1 < i < n. Let d** be the depth
of leaf y; in tree Tpp.

Lemma 1. If w; < w; then di** > d5** for all i, j.

Proof: (by contradiction). Assume otherwise, say w; < w; and d** < dz’ * for some
i and j. If we interchange the labels of leaves y; and y; then we obtain a tree with

Version: 19.10.99 Time: 18:42 —-56—



2.1.4. Sorting by Merging 57

cost Cost(Topt) — diP w; + d;ptwi - d;ptwj + dfP'w;
= Cost(Topt) — (wj — wi)(d5F" — &™)
< Cost(Topt),
a contradiction. ]

Lemma 2. There is an optimal tree in which the leaves with content w; and ws
are brothers.

Proof: Let y be a node of maximal depth in T,,; and let y; and y; be its children.
Then y; and y; are leaves. Assume w.lo.g. that CONT,,:(y;) < CONT,pt(y;)-
From Lemma 1 we infer that either CONT(y;) = w; or d; < d; and hence d; = d;
by the choice of y. In either case we may exchange leaves y; and y; without affecting
cost. This shows that there is an optimal tree such that y; is a child of y. Similarly,
we infer from Lemma 1 that either CONT(y;) = ws or d; < d2 and hence d; = ds.
In either case we may exchange leaves y, and y; without affecting cost. In this way
we obtain an optimal tree in which y; and ys are brothers. ]

Lemma 3. The algorithm above constructs an optimal tree.

Proof: (by induction on n). The claim is obvious for n < 2. So let us assume
n > 3 and let T,;4 be the tree constructed by our algorithm for weights w; < wy <
-++ < wy. The algorithm combines weights w; and ws first and constructs a node
of weight (content) w1 + wa. Let T,  be the tree constructed by our algorithm for
set {w; + wy, w3, wy, ..., w,} of weights. Then

Cost(Tay) = Cost(T,,) + w1 + wz,

because Ty can be obtained from 77, g by replacing a leaf of weight w; + wy by a
node with two leaf children of weight wy and ws, respectively. Also, T, o 1s optimal
for the set of n — 1 weights wy + wa, ws, ..., w, by induction hypothesis.

Let T,,: be an optimal tree satisfying Lemma 2, i.e., the leaves with content
wy and wo are brothers in T,,;. Let T” be the tree obtained from T,,; by replacing
leaves w; and ws and their parent by a single leaf of weight w; + ws. Then

Cost(Topt) = Cost(T') + w1 + wo
> Cost(T,,) + w1 + w2
= Cost(Tyy),

since Cost(T") > Cost(T,;,) by induction hypothesis. 1
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It remains to analyze the running time of the algorithm. The crucial observation
is:

Lemma 4. Let z1,22,...,2n—1 be the nodes created by the algorithm in order.
Then CONT(z1) < CONT(z3) < --- < CONT(z,—1). Furthermore, we have V =
{vi,...,von}, I ={zj,..., 2} for somei <n+1, j < k+1<n when entering the
body of the loop.

Proof: (by induction on k). The claim is certainly true when k¥ = 0. At each
iteration of the loop we increase k by 1 and i + j by 2. Also CONT(zx41) >
CONT(zy) is immediately obvious from the construction. 1

Lemma 4 suggests a linear time implementation. We keep the elements of V' and I
in two separate sets, both ordered according to CONT. Since w; < --- < w, a
queue will do for V' and since CONT(z;) < --- < CONT(z,—1) a queue will do
for I. It is then easy to select x1,22 € I UV with the two smallest values of
CONT by comparing the front elements of the queues. Also x1,z5 can be deleted
in time O(1) and the newly created node can be added to the I-queue in constant
time. 1

Theorem 7 can be generalized to non-binary trees.

2.1.5. Comparing Different Algorithms

We considered four sorting methods so far: maximum selection, Heapsort, Quicksort
and Mergesort. We see one more in Section 3.5.3.2: A-Sort. Figure 26 summarizes
our knowledge. Here ¢ denotes a constant and F' denotes the number of inversions
in the input sequence; 0 < F < n(n —1)/2 (cf. 3.5.3.2 for details).

Access: Heapsort, Quicksort and A-Sort require random access, Mergesort accesses
the keys in a purely sequential manner. Therefore Mergesort is well suited for use in
connection with secondary storage which allows only sequential access (e.g., tapes).

Storage Requirement: Heapsort needs space for a few pointer on top of the storage
required for the input sequence. Quicksort also needs space for a pushdown store
which holds the arguments of pending recursive calls. Maximal stack height is
n/2, namely if k¥ = r — 2 always and therefore the size of the subproblem which
has to be solved in line (7) is only by two smaller than the size of the original
problem. Maximal stack height can be kept to logn by a slight modification of the
program: always solve the smaller subproblem first, i.e., replace lines (7) and (8)
by Program 14.

This modification has the following effect. The size of the subproblem which
is solved first has at most 1/2 the size of the original problem. Therefore there are
never more than logn recursive calls pending.
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Heapsort Quicksort Mergesort

# of comparisons

worst case 2nlogn n?/2 nlogn

average case ~ 2nlogn 1.44nlogn nlogn

running time

worst case 20nlogn O(n?) 12nlogn

average case < 20nlogn 9nlogn 12nlogn

storage requirement n+c n+logn+c¢ 2n+c

access random random sequential

stable no no yes

Single maximum selection A-Sort

# of comparisons
worst case n2/2 O(nlog F/n)
average case n?/2 O(nlog F/n)
running time
worst case 2.5n2 O(nlog F/n)
average case 2.5n? O(nlog F/n)
storage requirement n+c 5n
access random random
stable no yes

Figure 26. Overview table

ifk<(l+r)/2

then if [ < k — 1 then Quicksort(l,
if £+ 1 < rthen Quicksort(k

else if k+ 1 < rthen Quicksort(k
if | <k —1 then Quicksort(l,

fi;

Program 14

Mergesort requires two arrays of length n and space for some additional point-
ers. A-sort is based on (a, b)-trees (cf. 3.5.2 and 3.5.3). For a = 2 and b = 3 a node
of an (a, b)-tree requires 5 storage locations and may contain only one key. Hence
A-sort requires up to 5n storage locations.

Average asymptotic running time: The table contains the dominating terms of
the bounds on running time derived above. The relation of the running times of
Quicksort : Mergesort : Heapsort is 1 : 1.33 : 2.2, which is typical of many computers,
not only of the treated RAM. Note however, that the worst case running time of
Mergesort and Heapsort is not much larger than their expected running time. The
relative efficiency of Quicksort is based on the following facts: All comparisons in the
partitioning phase are made with the same element and therefore this element can
Version: 19.10.99
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be kept in a special register. Also, an exchange of keys is required only after every
fourth comparison on the average (Exercise 6), after every second in Heapsort and
after every comparison in Mergesort. However, Heapsort compares twice as often
as Mergesort.

For small n, the relations somewhat change. Simple maximum selection is
better than Quicksort for n < 22. Therefore Quicksort may be improved by termi-
nating recursion for some ny and by switching to maximum selection for smaller n
(Exercise 11).

A-sort is inferior to all other methods with respect to average and worst case
running time. However, A-sort has one major advantage. It runs fast on nearly
sorted inputs, i.e., if F is small, say F = O(nlogn), then A-sort runs in time
O(nloglogn). This is in marked contrast to the other methods. Heapsort’s and
Mergesort’s behavior hardly depends on the statistical properties of the input and
Quicksort even runs slower on nearly sorted inputs.

2.1.6. Lower Bounds

In this section we prove a lower bound on the number of comparisons required
for sorting and related problems. We will first show an Q(nlogn) lower bound on
the average and worst case complexity of general sorting algorithms. We will then
extend this lower bound to randomized general sorting problems and to decision
tree algorithms allowing comparisons of rational functions of the inputs.

General sorting algorithms are comparison based, i.e., the only operation
applicable to elements of the universe from which the keys are drawn is the com-
parison between two elements with outcome < or >. In particular, the pair of keys
compared at any moment of time depends only on the outcome of previous com-
parisons and on nothing else. For purposes of illustration let us consider sorting by
simple maximum selection on sequence S1, S, S3. The first comparison is S : Ss.
If S5 > S5 then S3 is compared with S; next, if S3 < S5 then S5 is compared with
S1 next, ... . We can illustrate the complete sorting algorithm by a tree, a decision
tree (cf. Fig. 27).

Node ¢ : j denotes a comparison between S; and S;. The edge to the right
child corresponds to S; > S;, the edge to the left corresponds to S; < S;.

Definition: A decision tree is a binary tree whose nodes have labels of the form
S; + S;. The two outgoing edges are labelled < and >. ]

Let Si,...,S5, elements of the universe U. The computation of decision tree T
on input Si,...,S5, is defined in a natural way. We start in the root of the tree.
Suppose now that we reached node v which is labelled S; : S;. We then compare
S; with S; and proceed to one of the children of v depending on whether S; < S
or S; > S;. The leaves of a decision tree represent the different outcomes of the
algorithm.

Version: 19.10.99 Time: 18:42 —-60—



2.1.6. Lower Bounds 61

321 312 132 231 213 123

Figure 27. Decision tree for sorting 3 objects

Definition: Let T be a decision tree. T solves the sorting problem of size n
if there is a labelling of the leaves of T' by permutations of {1,...,n} such that
for every input Si,...,S, € U: with S; # S; for all i # j: if the leaf reached on
S1,---,8y is labelled by 7 then Sr1) < Sr2) < -+ < Sx(n)- |

We can now define the worst case and average case complexity of the sorting prob-
lem. For a decision tree T and permutation 7 let IZ be the depth of the leaf which
is reached on input Sy,...,S, with S;1) <--- < Sr(n). Define

S(n) = n%nmax 1T and
1 T
A(n) = n&gnaZlﬂ,

where T' ranges over all decision trees for sorting n elements and 7 ranges over all
permutations of n elements. [I is the number of comparisons used on input 7 by
decision tree 7. Thus S(n) is the minimal worst case complexity of any algorithm
and A(n) is the minimal average case complexity of any algorithm. We prove lower
bounds on S(n) and A(n).

Suppose S(n) < k. A binary tree of depth < k has at most 2* leaves. A
decision tree for sorting n elements has at least n! leaves. Thus

25(n) > or

S5(n) = [lognl!],

since S(n) is an integer. Stirling’s approximation for n! gives us

1 n
n! = n-+ = oen——+0
logn! ( 2>1g In2 (1)

=nlogn — 1.44n + O(log n).
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An upper bound for S(n) is derived from the analysis of sorting algorithms. In
particular, we infer from the analysis of Mergesort

S(n) < n[logn] — 2Me8n 4 1,
and hence

im 2™ _

n—oo nlogn

We have thus determined the exact asymptotic worst case complexity of sorting.
The result derived above is often called the information-theoretic bound. Any
sorting algorithm has to distinguish n! possibilities, and thus has to gain log n! bits
of information. One comparison gives at most 1 bit of information. The bound
follows.

We turn to A(n). We give a different interpretation of (1/n!) Y. 1T first. Let
b1, ba, ... be the leaves of T'. Define

o — { 1/n! if leaf b; is reached on some input sequence;
’ 0 otherwise.

Then (1/n!)Y° 1T = Y. a; - depth(b;) and hence (1/n!)>°_IT is equal to the
weighted path length of tree T' with respect to distribution aq, as,... (cf. 3.4 for
a detailed discussion of weighted path length). We show in 3.4 in a more general
context (Use Theorem 5 from 3.4.1 with B = 0 und lassen Sie d gegen oo gehen.
This implies H < P), that

1 1 1
T

>~ ZH(EE)

s
1

= E —'lognlzlogn!
n!
s

for any tree T'. Here H is the entropy of the distribution (cf. 3.4.1). We summarize
in

Theorem 8. Any decision tree algorithm for sorting n elements needs > [logn!|
comparisons in the worst case and > logn! comparisons on the average. ]

Theorem 8 can be used to prove lower bounds on the other problems besides sort-
ing. The element uniqueness problem is defined as follows. Given n elements

S1,...,8p in U one has to decide whether S; # .S; for ¢ # j.

Theorem 9. Every decision tree algorithm for the element uniqueness problem of
size n needs at least logn! comparisons in the worst case.

Proof: Let T be a decision tree for the element uniqueness problem of size n, i.e.,
the nodes of T are labelled by comparisons S; : S; and the leaves are labelled yes
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or no. On input (Si,...,S,) € U™ a leaf labelled yes is reached <= S; # S; for
i # j. We will show that one can use T for sorting.

For permutation 7 of n elements let v(7) the leaf reached on an input (Sy,...,S5,) €
U™ with Sr1) < Sr2) < --* < Sg(n)- Note that this leaf is well-defined because the
computation on any input (S1,...,8,)€ U™ with Sy(1) < Sr2) < -+ < Sr(n) will
end in the same leaf.

Claim: v(w) # v(p) if m # p (7, p permutations)

Proof: (by contradiction). Assume otherwise, i.e., there are permutations 7 and p
such that v(m) = v(p). Note that leaf v(w) is labelled yes. We will now construct
an input (Sy,...,Sy,) such that the computation on input (Si,...,S,) ends in leaf
v(m), yet S; = S; for some i # j. This is a contradiction.

(S1,--.,S,) is constructed as follows. Let wy,...,w; be the nodes on the path
to leaf v(w). Consider partial order P(v(w)) on (Si,...,S,) which is defined as
follows: For k, 1 < k < t: if wy is labelled S; : S; and the <-edge (>-edge) is
taken from wy to wg4+1 then S; < S; (S; > S;) in partial order P(v(w)). Then
P(v(m)) is the smallest partial order (with respect to set inclusion) satisfying these
constraints. The following two observations are important:

1) If (Ry,...,R,) € U™ satisfies the partial order P(v(7)) then the computation
on input (Ry,...,R,) ends in leaf v(7).

2) If (Ry,...,R,) € U™ is such that R7r(1) << Rﬂ.(n) or Rp(l) << Rp(n)
then (R, ..., R,) satisfies partial order P(v(w)). Since m # p, P(v(n)) is not
a linear order.

Since P(v(w)) is not a linear order there are a and b, a # b, such that S, and
Sp are not related in partial order P(v(w)). Let (Si,...,Sn) € U™ be such that
(S1,...,Sy) satisfies partial order P(v(7)) and S, = Sp. Then the computation on
input (Si,...,S,) ends in leaf v(7), and hence the result is “Yes”, contradiction. I

With the above follows that T has at least n! leaves and thereby depth at least
log n!. ]

Can a randomized sorting algorithm, i.e., an algorithm which uses random choices
in order to determine which comparisons to make next, be any faster? After all,
we saw that Quicksort’s quadratic worst case behavior disappears when we switch
to randomized Quicksort. The answer is “No”. A randomized comparison-based
algorithm can be represented by a random decision tree.

In a random decision tree there are two types of nodes. The first type of
node is the ordinary comparison node; the second type is a coin tossing node. It
has two outgoing edges labelled 0 and 1 which are taken with probability % each.
For the sake of simplicity we restrict our attention to finite random decision trees,
i.e., we assume that the number of coin tosses on inputs of size n is bounded by

The notion “a random decision tree solves the sorting problem of size n” is
defined exactly as above. Note however, that the leaf reached not only depend on
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the input but also on the sequence s € {0, 1}’“(“) of outcomes of coin tosses. For any
permutation 7 and sequence s € {0,1}*(") let IZ | be the depth of the leaf reached
on sequence s of coin tosses and input sequence Sy, ..., S, where S;(1) < Sr2) <
+++ < Sr(n)- Define

. 1 T
Sran(n) = minmax k() Z s

T T
s€{0,1}k(n)
and . .
— min - T
Aran(n) = mj}n ! Z (2k(n) Z lrr,s)’
™ s€{0,1}k(n)

where T ranges over all random decision trees which solve the sorting problem of
size n and 7 ranges over all permutations of n elements. A,,, (Syqn) is the min-
imal average (worst) case complexity of any randomized comparison-based sorting
algorithm. We can now use the argumentation outlined at the end of Section 1.2
to show that randomization cannot improve the complexity of sorting below log n!.

We have
Sran(n) Z Aran(n)

1 1 r
= in > ok(n) Do
T s€{0,1}k(n)

. 1 1
ijgnm Z p Zl;‘f’s

s€{0,1}k(n) " w

. 1
> min k() Z A(n)
5€{0,1}5(n)

> A(n).

The next to last inequality holds since for every fixed sequence s of coin tosses
random decision tree T defines an ordinary decision tree and hence (1/n!) Y- 1T >
A(n) for every fixed sequence s. Thus randomization cannot improve expected
running time below log n!.

We will next strengthen our basic lower bound in a different direction. Sup-
pose that the inputs are not taken from an arbitrary ordered universe but from
the set of real numbers. Reals cannot only be compared but can also be added,

multiplied, ... . This leads to the concept of rational decision trees.

Definition: A rational decision tree for inputs S1,..., .S, is a binary tree whose
nodes are labelled by expressions p(Si,...,S,) : ¢(S1,...,S,) where p and ¢ are
rational functions, whose edges are labelled by < and >, and whose leaves are
labelled by rational functions r(Sy,...,Sy) of S1,...,Sy. |

Rational decision trees compute functions f : R"™ — R in an obvious way. Let
(S1,...,5,) € R". Computation starts in the root. Suppose that computation
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has reached node v which is labelled p(Si,...,Sn) : q(S1,-..,5,). We evaluate
rational functions p and ¢ and proceed to the appropriate child of v depending on
the outcome of the comparison. If the computation reaches a leaf labelled by a
rational function r(Si,...,Sy) then r is evaluated and the value of r is the result
of the computation.

Theorem 10. Let f : R"™ — R be a function and let T be a rational decision tree
which computes f. Let Wy,...,W, be pairwise disjoint subsets of R of non-zero
measure and let rq,...,r, be pairwise different rational functions. If f|w, = r; for
1 < i < g then rational decision tree T has depth at least loggq.
Proof: Let T be a rational decision tree which computes f. For v, a leaf of T let
D, ={(S1,...,5,) € R"; the computation on input (Si,...,S,) ends in leaf v}.
Then {D,; v leaf of T'} is a partition of R" and hence

wi= |J @D.nwi) foralli, 1<i<gq.

v leaf of T

Since W; has non-zero measure there must be a leaf v(i) such that D,y N W; has
non-zero measure. Note that 7 has a finite number of leaves. Let r(v(7)) be the
rational function which labels leaf v(7). Then functions r(v(7)) and r; agree on set
D, N W;. Since D,;) N W; has non-zero measure we must have that functions
r(v(7)) and r; are identical. Hence v(%) # v(j) for ¢ # j and T' must have at least ¢
leaves. Thus the depth of T is at least log g. ]

We give two applications of Theorem 10. The first application is sorting. For
(z1,...,2,) € R™ define
@1,y @a) = @ Ty 4ol

where r; = [{j; z; < x;}| is the rank of z;. We call f the rank function. For ,
a permutation of n elements let

Wr ={(x1,...,22) €ER"; (1) < Tr(2) <+ < Tr(n)}-

Then W has non-zero measure, f|w, is a polynomial and f|w, # f|lw, for = # p.
We conclude

Theorem 11. Any decision tree for the rank function of n arguments has depth
at least logn!. ]

The second application is searching. For (y,z1,...,z,) € R*"" define
We call f the searching function. For &k, 0 < k < n, let
Wi = {(y,z1,-..,2,) € R"; exactly k x;’s are smaller than y}.

Then W), has non-zero measure and f|w, = k. Thus f|w, is a rational function
and f|w, # flw, for k # 1. We have

Version: 19.10.99 Time: 18:42 —65—



1.D.mehr

66 Chapter 2. Sorting

Theorem 12. Any rational decision tree for the searching function of size n has
depth at least log(n + 1). |

We will see in Chapter 3 that log(n + 1) is also an upper bound for the complexity
of the searching function. Further applications of Theorem 10 can be found in exer-
cises. Unfortunately, Theorem 10 is not strong enough for the element uniqueness
problem. Note that there is a rational decision tree of depth one which decides the
element uniqueness problem, namely

H (CL‘z—CE]):O?

1<i<j<n

Man beachte, daBl es einen rationalen Entscheidungsbaum der Tiefe zwei gibt, der
das Elementeindeutigkeitsproblem entscheidet, namlich wenn

H (.’E,'—.’Ej)ZO?

1<i<j<n

der Inhalt der Wurzel ist, und der Pfad zu dem mit “Ja” beschrifteten Blatt zweimal
dem <-Zeiger folgt und der dazwischenliegende Knoten den gleichen Test wie die
Wurzel macht, wobei aber die 0 links vom Gleichheitszeichen steht. This shows
that there are problems which are difficult to handle in the restricted model of
decision trees but become simple if tests between rational functions are allowed and
if no charge is made for computing those functions. Note however, that the best
algorithm known for computing the product [],; ;< (i —z;) requires Q(nlogn)
multiplications and divisions. Hence, if we charge for test and algebraic operations
then an Q(nlogn) lower bound for the element uniqueness problem is conceivable.
We will use the remainder of the section to prove such a lower bound. We start by
fixing the model of computation.

Definition: An algebraic computation tree for inputs S;...,S, is a tree T of
degree < 2 with a function that assigns

a) to each leaf an output “Yes” or “No”

b) to each vertex v with exactly one child ( = simple node) an assignment
(statement) of the form
Y (v) + Y (v1) op Y (v2),
Y(v) < cop Y(vz) or
Y (v) + /Y (v1)
where op € {+, —, X, /}, v; is a simple node and a proper ancestor of v in tree
T or Y(v;) € {S1,..., S} and ce R
¢) to each vertex v with exactly two children ( = branching node) a comparison
of the form

Y(’Ul) Z 0,
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Y(Ul) >0 or
Y(Ul) =0
where v; is a simple node and a proper ancestor of v or Y (v1) € {S1,...,Sp} 1

Algebraic computation trees compute functions f : R" — {“Yes”,“No”} in an
obvious way. Given an input S = (S1,...,S5,) € R" the program traverses a path
P(S) in the tree. In simple nodes an arithmetical operation is performed and the
value of the operation is assigned to the variable associated with the simple node.
In branching nodes the value of a variable is tested and the computation proceeds
to the appropriate child. We require that no computation leads to a division by
zero or to taking the square root of a negative number.

The cost of an algebraic computation tree is its depth, the complexity of (the
membership problem of) a set V' C R" is the minimum cost of any algebraic compu-
tation tree which computes the characteristic function of V. The lower bounds on
the costs of algebraic computation trees are based on the following fact of algebraic
topology.

Fact 1. Let qi,...,qy be polynomials in N variables of degree at most d. Let
V CRY be defined by

g1(xz1,...,zn) =0, ... Jqu(x1,...,2zNn)=0.

Then the number of components of V is at most d - (2d — 1)N~1.

Remark: a proof of this can be found in J. Milnor: “On the betti numbers of real
algebraic varieties”, Proc. AMS 15 (1964), 275-280, and is far beyond the scope of
this book. We confine ourselves to a short informal discussion. Two points  and
z' of V belong to the same component if there is a running line inside V' connecting
them, i.e., if there is a continous function b : [0, 1] — V with h(0) = z and h(1) = 2'.
The components of V' are the equivalence classes under this relation.

The fact above becomes particularly simple if NV = 1. In this case it is equiva-
lent to the fact that a polynomial of degree d in one variable has at most d real roots.
Consider the case N = 2 and d = 2 next. Then g;(z1,22) = 0 defines an ellipse
(parabola, or hyperbola) and so do g2, 4¢3, . ... The crucial observation is now that
the equations g;(z1,z2) = 0, g2(z1,z2) = 0 define a set of at most 6 points, i.e., six
zero-dimensional sets. All further equations g3(z1,z2) = 0,...,qm(z1,22) = 0 can
only weed out some of these points and cannot increase the number of components.

By analogy the truth of the fact is now conceivable for larger degree and larger
number of variables as well. The set defined by ¢;(z1,...,2x) = 0 has at most
d components, each of which has dimension N — 1. Intersecting this set with the
set ga(z1,...,2n) = 0 yields at most d - (2d — 1) components, each of which has
dimension N — 2.

Iterating in this way we arrive at d - (2d — 1)V =1 components of dimension 0
each defined by polynomials qq,...,qy. Considering more polynomials weeds out
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some of these points but does not increase the number of components. We end by
giving the warning that the argument above is at most a hint at a proof. ]

We are now ready for the lower bound. We use #V to denote the number of
components of set V.

Theorem 13. Let T be an algebraic computation for inputs Si,...,S, which
decides the membership problem for V CR", and Ilet h be the depth of T. Then
a) max(#V,#(R" —V)) < 2hgh*n;

log max(#V, #(R" —V)) —nlog3
log 6 )

b) h>

Proof: Part b) follows from part a) by taking logarithms. We still have to prove
part a). Since tree T has depth h it has at most 2" leaves. If w is a leaf of T let
D(w) C R" be the set of inputs S for which the computation ends in leaf w. We
claim that #D(w) < 3"*™._ Note first that this claim implies part a) since there
are at most 2" leaves w and each leaf satisfies #D(w) < 3P+". Thus #V < 2kgh+n
and similarly #(R" — V) < 2h3h+n,

#D(w) < 3™ remains to be proved for every leaf w. In order to do so we
characterize D(w) by a set of polynomial equations and inequalities of degree at
most 2. Let P be the path from the root to leaf w. We traverse the path P and set
up a system I' of equalities and inequalities as follows. Let v be a node on path P.

If v is a simple node then we add for its operation the given equality to I':

operation equation

Y(v) « Y(v1) £ Y(v2) Y(v) =Y (v1) £ Y (v2)
Y (v) < Y(v1) X Y(v2) Y(v) =Y (v1) X Y(v2)
Y(v) < Y(v1)/Y (v2) Y(v1) =Y (v)/Y (va
Y(v) + /Y (v1) Y(v1) =Y (v)?

and if v is a branching node with a test

Y(v1) >0 Y(v1) >0 Y(v1) =0,
then we add this (in-)equality to I" if the positive outcome is taken on path P
and we add

—Y(v1) >0 —-Y(v1)>0 Y@®)Y(v1)—1=0

otherwise.

Note that in the last case Y (v) is a new variable which is not used in any assignment.
Also note that the equation Y (v)Y (v;) —1 = 0 has a solution <= Y (v;) # 0.
The system I' involves variables Sq,...,S,,Y (v1),...,Y (v.) for some integer
r’. Also I' contains exactly r equalities and some number s of inequalities, where
r > r'. Clearly r + s < h, since each node on P adds one equality or inequality.
Let W CR™" be the set of solutions to the system T. Then the projection of W
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onto the first n coordinates is D(w). Since the projection function is continous we
conclude that #D(w) < #W and it therefore suffices to show #W < 3h+n,

What do we have obtained at this point? The set W is defined by a set of r
equalities and s inequalities. Each equality or inequality is given by a polynomial
degree at most 2 in n + r variables which we call zy,...,z,4, for simplicity now
on, i.e., we have a system

pl(xl;---axn—{-r) =0, ... 7pr(x17---7xn+r) =0,
(II(wla-"axn+7‘)>0a aqm(xla---axn+7‘)>0;
qm+1(m1""’xn+7‘) >0, ... 7q8(x1a'--7xn+r)20a

where each p;, g; has degree at most 2.

In order to apply the fact above we transform this system into a set of equalities
in a higher dimensional space. Let ¢ = #W (Milnor proves that ¢ is finite) and let
P, ..., P; be points in the different components of W. Let

e =min{g;(P); 1<j <m, 1<i <t}

Then is € > 0. Let W, be defined by the system

pl(xla---axn+r) =0, ... 7pr(x17---7xn+r) =0,
ql(xla"'axn+7‘)267 7Qm(x17---7$n+r) > €,
Qm+1(x1a---axn+7‘)20a ;QS(wla---;xn+r)ZO-

Then is W, C W and P; € W, for all i. Hence #W < #W.. It therefore suffices to
show #W, < 3"th Let Z CR™""T* be defined by the system

p1(Z1,- s Tnyr) =0, coo 5 Pr(T1, - Tyy) =0,

a1 (@1, Tpgr) = T2 pig + 6 e qm(®1, - Tpgr) = T2y 6

Im+1(T15 - Tngr) = x121+r+m+17 e 4s(@1y e Bgr) = xi‘*"“"‘s’
where Ty4p41,--.,Zn+rt+s are new variables. Then W, is the projection of Z onto

the first n 4+ r coordinates and hence #W, < #Z. Furthermore, Z is defined by a
system of polynomial equations of degree at most two in n+r+s < n+ h variables.

Hence
#Z < 2_(4_1)n+h—1 < 3n+h

by the fact above. ]
We end this section with three applications of Theorem 13.

Theorem 14. The complexity of the element uniqueness problem in the algebraic
computation is (nlogn).

Proof: Let V. C R" be defined by IIi<;<j<n(zi — x;) # 0. Then #V > n! as we
will now argue. For ¢ = (z1,...,2,) € R", z; # z; for i # j, let o be the order
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type of z, i.e., o is a permutation with z,(1) < Z,(2) <+ < T;(n)- Then it is easy
to see that if z,z’ € R"™ have different order types then any line connecting them
must go through a point having two equal coordinates, i.e., a point outside V', and
hence z and z’ belong to different components of V. This proves #V > n!. Since
logn! = Q(nlogn) the proof is completed by an application of Theorem 13. 1

Our second application is the convex hull problem (cf. Chapter 8): Given n points
in the plane, does their convex hull have n vertices?

Theorem 15. The complexity of the convex hull problem in the model of algebraic
computation trees is Q(nlogn).

Proof: Let

V={(z1,y1,---,Zn,Yn); the convex hull of point set
{(zi,v:); 1 <i < n} has n vertices}
g [R2n‘

As in the proof of Theorem 14 we assign an order type to every element of V. Let
(1,Y1,---Zn,Yn) € V and let p be any point in the interior of the convex hull of
point set {(z;,¥;); 1 < i < n}. Then the order type of this tuple is the circular
ordering of the points around p.

Note that there are (n — 1)! different order types and that any line in R*" con-
necting tuples of different order types must go through a point outside V. Hence

#V > (n — 1)! and the theorem follows from Theorem 13. 1
Our last application is the computation of the elementary symmetric functions:
Given x4, ..., ¢, € R, compute the elementary symmetric functions po(z1,...,Z,),
pi(T1,- -y &n)y. -, P(X1,...,2,). Here
p](mla’xn):(_l)] Z LiyTiy * " Ly
11<i2< <1y

It is a well-known fact in the algebra that the elementary symmetric functions are
the coeflicients of the interpolation polynomial through points

(21,0),...,(2n,0),(0,(—1)"@1 - - ) -

Theorem 16. The complexity of computing the elementary symmetric functions
is Q(nlogn) in the model of algebraic computation trees.

Proof: Let a; = p;(1,2,...,n), 1 <i<n. An algorithm that computes p;(z1,...,
Zp)y .-y Pn(Z1,-..,2,) can be used to test a; = p;i(z1,...,2,), 1 < i < m, inn
more steps. Since this is true <= {z1,...,z,} = {1,...,n} (This is a direct
consequence of the uniqueness of the interpolation polynomial) it suffices to show
that #V = n! where V = {(xl,...,xn); {z1,...,20} = {1,...,n}}. The proof
that #V = n! can be given along the lines of the proof of Theorem 14. ]
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Theorems 14, 15 and 16 show the strength of Theorem 13. It can be used to prove
lower bounds for a great variety of algorithmic problems. We should also note that
Theorem 13 is not strong enough to imply lower bounds on the complexity of RAM
computations because indirect addressing is a “non-algebraic” operation (a lower
bound on the complexity of RAM computation will be shown in Section 2.3) and
that is not strong enough to imply lower bounds for computations over the integers
when integer division belongs to the instruction repertoire.

2.2. Sorting by Distribution

2.2.1. Sorting Words by Distribution

Let ¥ be a finite alphabet of size m and let < be a linear order on ¥.. We may assume
w.lo.g. that ¥ = {1,2,...,m} with the usual ordering relation. The ordering on ¥
is extended to an ordering on the words over X as usual.

Definition: Let ¢ = z;...x; and y = y; ...y; be words over 3, ie., z;,y; € 2.
Then is ¢ smaller than y in the algebraic ordering (denoted = < y) if there is an ¢,
0 <i<k,suchthat ; = y; for 1 < j <i¢andeitheri =k <lori<k,i<Iland
Tit1 < Yit1- ]

The definition of alphabetic ordering conforms to everyday usage, e.g., we have
x = ABC < AD = y because x1 = y; and z2 < ys-

We treat the following problem in this section: Given n words z!,z2,..., 2"
over alphabet ¥ = {1,...,m} sort them according to alphabetic order.

There are many different ways of storing words. One popular method stores
all words in a common storage area called string space. The characters of any word
are stored in consecutive storage locations. Each string variable then consists of
a pointer into the string space and a location containing the current length of the
word. Figure 28 shows an example for 2! = ABD, > = DBA und z° = Q.

Figure 28. Storing 3 words
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The basic idea of bucketsort is most easily explained when we consider a
special case first: all words z!,..., 2" have length 1, i.e., the input consists of n
numbers between 1 and m. Bucketsort starts with m empty buckets. Then we
process number by number, throwing z¢ into the z’-th bucket. Finally, we step
through the buckets in order and collect the elements in sorted order.

This description of Bucketsort is fairly poetic in style; let us fill in some im-
plementation details next. Buckets are linear lists, the heads of the lists are stored
in array K[1..m]. Initially we have to create m empty lists. This is easily done in
time O(m) by initializing array K. In order to process ' we have to access K|[z’]
and to insert z¢ into the list with head K[z?]. This can be done in time O(1) if we
insert ¢ at the front end of the list or at the back end of the list. In the latter case
K[z%] must also contain a pointer to the end of the list. Thus we can distribute n
words in time O(n). Finally we have to collect the buckets. We step through array
K[1..m] and concatenate the front of the (j + 1)-st list with the end of the j-th
list. This takes time O(m), if array K also contains pointers to the back ends of the
lists, and time O(n + m) otherwise. Note that the total length of all m lists is n.
In either case total running time is O(n + m). We have to discuss one more detail
before we proceed. Should we add z* to the front or to the rear end of the z-th
list? If we always add to the rear, then the order of elements z*, 27 with 2! = z7 is
unchanged, i.e., bucketsort is stable. This will be important for what follows.

We proceed to a slightly more difficult case next. The zf, 1 < i < n, are
proper words and all of them have equal length |2!| = k for 1 < i < n. Then
gt = zizh .. 2! with :c; € Y. There are two ways of extending our basic algorithm
to the more general case.

In the first approach we sort according to the first letter first. This divides our
set of words into m groups, some of which may be empty. Then we sort each group
separately according to the second character, ... until each group consists of a single
word only. This approach has a serious disadvantage. Groups become smaller and
smaller, but the complexity of bucketsort is at least the size of the alphabet, i.e.,
the overhead may be large for small group size. It is shown in Exercise 18 that total
running time of this approach may be as large as Q(n - k- m).

In the second approach one sorts according to the last (k-th) letter first. After
having done so we sort the entire list of n words, which is sorted according to the
last letter, according to the next to last letter. The crucial observation is: The
words are sorted to the last two letters now, because bucketsort is stable. Next we
sort according to the (k — 2)-th letter, and so on. The second approach requires
k passes over the set of n words, each pass having a cost of O(n + m) time units.
Thus total running time is O(k - (n + m)).

Can we improve this? Let us consider an example with m = 4, n = 5 and
k = 3. The 5 words are 123, 124, 223, 324, 321. The first pass yields:

bucket one : 321
bucket two :

bucket three: 123, 223
bucket four : 124, 324
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And hence the input sequence for the second pass is 321, 123, 223, 124, 324. The
second pass yields:

bucket one :
bucket two : 321, 123, 223, 124, 324
bucket three:
bucket four :

And hence the input sequence for the third is 321, 123, 223, 124, 324. The third
pass yields:

bucket one : 123, 124
bucket two : 223
bucket three: 321, 324
bucket four :

And hence the final result sequence is 123, 124, 223, 321, 324.

Note that we collected a total of 3 -4 = 12 buckets, but only 7 buckets were
non-empty altogether. It would improve running time if we knew ahead of time
which buckets to collect in each pass. Let us assume that s; buckets are non-empty
in the j-th pass, 1 < j < k. If we could avoid considering empty buckets then the
cost of the j-th pass would be O(n + s;), since s; < n, the cost of a pass would be
only O(n) instead of O(n + m).

There is a very simple method for determining which buckets are non-empty in
the j-th pass, i.e., which letters occur in the j-th position. Create set {(7, xf), 1<
j <k, 1<i<mn}ofsize n-k and sort it by bucketsort according to the second
component and then according to the first. Then the j-th bucket contains all
characters which appear in the j-th position in sorted order. The cost of the first
pass is O(n - k + m), the cost of the second is O(n - k + k). Total cost is thus
O(n -k +m).

Before we give a complete algorithm for bucketsort we discuss the extension
to words of arbitrary length. Let 2! = z¢ ... mfi, 1 < ¢ < mn;l; is the length of z;.
We basically proceed as above, however we have to make sure that x; has to be
considered for the first time when we sort according to the /;-th letter. So we sort
the words according to their length first. This leads to the following algorithm. Let

1) Determine the length of z¢, 1 < i < n, and create pairs ( [;, pointer to z).
This takes time O(L).

2) Sort the pairs ( /;, pointer to z*) by bucketsort according to the first component.
Then the k-th bucket contains all z* with I; = k, i.e., all these strings are
contained in linear list. Call this list length[k]. The cost of step 2) is O(n + L)
because L buckets certainly suffice.

3) Create L pairs (j,z3), 1 <i <n, 1< j <, and sort them according to the
second and then according to the first component. Let Nonempty[j], 1 < j <
lmaz = max(ly,...,l,) be the j-th bucket after the second pass. Nonempty|j]
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contains all letters in {1,...,m} which appear in the j-th position in sorted
order. Delete all duplicates from Nonempty|[j]. The cost of step 3) is O(L +
m) + O(L + lyaz) = O(L + m).

4) We finally sort words z* by distribution. All lists in Program 15 are used as
queues; the head of each list contains a pointer to the last element. Also, x is
a string variable and z; is the j-th letter of string x.

(1) W <« empty queue;
(2) for k from 1 to m do S[k] + empty queue od;
(3) for j from I, to 1
(4) do add length[j] to the front of W and call the new queue W;
(5)  while W #0
(6) do let = be the first element of W, delete z from W;
(7) add z to the end of S|z;]
od;

(8) while Nonempty[j] # 0

(9) do let k be the first element of Nonempty|j];
(10) delete k from Nonempty|j];

(11) add S[k] to the end of W;

(12) set S[k] to the empty queue

(13) od

(14) od.

Program 15

Correctness of this algorithm is obvious from the preceding discussion. Line (2)
costs O(m) time units, single execution of any other line has a cost of O(1). Note
that only a pointer to string = is moved in line (7). Lines (3) and (4) are executed
lmaz times. In lines (5)-(7) we operate exactly I; times on string x!. Hence the
total cost of these lines is O(L). We associate the cost of a single execution of lines
(9)—-(12) with the first element of S[k]; k as in line (9). In this way we associate at
most O(l;) time units with z¢, 1 <4 < n, and hence the total cost of lines (8)—(12)
is O(L). Altogether we have shown that the total cost of step (4)—(12) is O(m+ L).

Theorem 1. Bucketsort sorts n words of total length L over an alphabet of size m
in time O(m + L). 1

2.2.2. Sorting Reals by Distribution

We briefly describe distribution sort applied to real numbers. For simplicity, we
assume that we are given a sequence z;, 1 <i < n, of reals from the interval (0, 1].
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We use the following very simple algorithm, called Hybridsort. « is some fixed
real and k is equal to « - n.

1) Create k empty buckets. Put z; into bucket [k - z;] for 1 < i < n.
2) Apply Heapsort to every bucket and concatenate the buckets.

The correctness of this algorithm is obvious.

Theorem 2. a) Worst case running time of Hybridsort is O(nlogn).

b) If the x;’s are drawn independently from a uniform distribution over the interval
(0,1], then Hybridsort has expected running time O(n).

Proof: a) Running time of the first phase is clearly O(n). Let us assume that ¢;
elements end up in the i-th bucket, 1 < ¢ < k. Then the cost of the second phase
is O(>_; tilogt;), where 0log0 =0 and ) . t; =n. But ) t;logt; < >, t;logn =
nlogn.

b) Let B; be the random variable representing the number of elements in the i-th
bucket after pass 1. Then the probability that B; = h is defined by

=) (3 (-3

since any single z; is in the i-th bucket with probability 1/k. Expected running
time of phase 2 is

= 0(n)
The next to last equation holds since h2(}) = (h(h — 1)+ h)(}) = n(n—1)(}Z g) +
n(z:}) and the last one since k = a - n. |
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2.3. Lower Bounds on Sorting, Revisited

In Section 2.1.6 we proved an Q(nlogn) lower bound on the average and worst
case complexity of sorting. However, in 2.2 we showed an O(n) upper bound on
the average case complexity of sorting reals. What went wrong? An upper bound
which is smaller than the corresponding lower bound? The answer is that we have
to keep the models of computation in mind for which we proved the bounds.

The lower bound of 2.1.6 was shown for rational decision trees. In rational
decision trees we can compare rational functions of the inputs at every step. Hy-
bridsort uses a larger set of primitives; in particular it uses division, rounding and
indirect addressing. Note that indices into arrays are computed as functions of the
inputs. Also, the upper bound on running time is expected case and not worst case.
It is still an open problem whether any variant of Hybridsort can sort real numbers
in linear worst time.

However, it can be shown that any RAM (in the sense of 1.1) which operates on
natural numbers and has basic operations +, & (subtraction in Ny), X in addition
to the comparison operator < requires time 2(nlogn) in the unit cost measure for
sorting in the worst case. This is even true for coin tossing RAMs (in the sense
of 1.2). It is still an open problem whether the result holds true if division is also
a basic operation.

Before we state the precise result we briefly recall the RRAM model. It is con-
venient to use indirect addressing instead of index registers as a means for address
calculations. We saw in 1.1 that this does not affect the running time by more
than a constant; however it makes the proof more legible. The basic operations are
(’i, k,ki,ky € [N0>:

a+i, a<p@), a+p(p(i)),
p(i) < a,  p(pi)) « «,

a < a op p(i), where op € {+, X, 6},

goto k,

if p(i) > a then goto k; else goto k; fi,

o < random

Here

Jrz—y x>y
xey—{o if z <y,

and o < random assigns 0 or 1 to a with probability 1/2, each. A RRAM
program is a sequence of numbered instructions starting at 0. The labels in the
goto instructions refer to this numbering.
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Definition: Let A be a RRAM. A solves the sorting problem of size n if for
all z = (z1,...,2,) € R" with x; # x;, for ¢ # j: if A is started with z; in location
i, 1 < i < n, and 0 in the accumulator and all locations j, j > n, and if 7 is a
permutation such that z,(1) < zr@2) < -*+ < Tx(n) then A stops and z,(;) is in
location i, 1 < i < n, when A stops. ]

Theorem 1. Let A be any RRAM which solves the sorting problem of size n.
Then there is an x € R™ such that the expected running time of A on x is at least
logn!, i.e., the worst case running time of A is at least logn!.

Proof: Let A be a RRAM which solves the sorting problem of size n and stops on
all inputs z € R™ and all sequences of coin tosses in at most ¢ steps. Here ¢ is some
integer. The proof is by reduction to the decision tree model studied in Section
2.1.6. The first step is to replace all instructions of the form a + a © p(i) by the
equivalent sequence

if p(i) > a then a <+ 0 else a + a — p(i) fi.

After the modification A uses only true subtractions.

As a second step we associate with program A a (maybe infinite) decision
tree T(A) by unfolding. T(A) is a tree of degree < 2 whose nodes are labelled
by instructions and tests and some of whose edges are labelled by 0 or 1. More
precisely, let A consists of m instructions. Then T;(A4), 1 < j < m+ 1 is defined by

(1) T,,+1(A) is a single leaf

(2) ifline j of A is instruction a < %, a < p(i), a < p(p(7)), p(i) < a, p(p(7)) + a
or o <— a op p(%) then T;(A) consists of a root labelled by that instruction with
a single child. The single subtree is T)j11(A).

(3) if line j is goto k then T}(A) is equal Ty (A).

(4) if line j is if p(Z) > a then goto k; else goto ks fi, then

T;(A) =
Coti > >

Ty, (4) Ty, (A)
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(5) if line j is a + random then
T;(4) =

Tj41(A) Tj41(A)

Finally T'(A) = T1(4A).

Tree T'(A) simulates RRAM A in an obvious way; in coin tossing nodes the
two outgoing edges are taken with equal probability. Tree T'(A) might be infinite
but because A stops on every input z € R" within ¢ steps no node of depth > 2t is
ever reached in any computation. Therefore we may prune T'(A) at depth 2.

As a third step we associate with every edge e of the decision tree a set {p.;; i €
No} of polynomials in indeterminates X1,..., X,. The intended meaning of p ; is
the content of location i (the accumulator for ¢ = 0) if the input is ¢ € R™ and
control has reached edge e. Polynomials p.; will not have the intended meaning
for all inputs & but only for a sufficiently large set of nice inputs as made precise
below. If p and ¢ are polynomials we write p = g to denote the fact that p and ¢
define the same rational function. The inductive definition is started by:

If e is the (conceptual) edge entering the root then

p .:{Xi if1 <i<mny
et 0 otherwise.

For the induction step let e be an edge leaving node v, let d be the edge into v and
let ins(v) be the label of node v.

(1) if ins(v) is p(¢) > a or coin toss then p. ; = pq,; for all i > 0.
(2) if ins(v) is a + a op p(i), op € {+,—, x} then

~_ Jpaooppai ifj=0;
Pe,j = Pd,j otherwise.

(3) if ins(v) is a < 7 then

e if =0
Pe.j = p4,; Otherwise.

(4) if ins(v) is o < p(i) or a « p(p(k)) and pgr =i for some i € Ny then
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[ pai ifj=0;
Pej = p4,; otherwise.

(5) if ins(v) is a < p(p(k)) and pq # ¢ for all i € Ny then let w be the closest
ancestor (i.e., an ancestor of maximal depth) of v such that the label of w is
p(p(l)) < o for some | € N and py; = pg,r, where f is the edge entering w. If
w does exist then

| pso ifj=0;
Pej = p4,; otherwise,

and if w does not exist then

_Jo if j = 0;
Pej = p4,; otherwise.

(6) if ins(v) is p(i) < a or p(p(k)) < a and pgyx =i for some i € Ny then

[ pao ij=1
Pej = p4,; otherwise.

(7) if ins(v) is p(p(k)) < a and pq # ¢ for all i € Ny, then p, ; = pq ; for all j.

We will next derive a sufficient condition for the “correctness” of the intended
meaning of polynomials p. ;. Let

I={1,...,n}
U {j € N; there is some instruction with address j in T(A)

or p.; = j for some edge e and i € Ny}.

Note that I is finite since for every edge e there are only finitely many (at most
n + depth of e) ¢’s with p, ; # 0. This is easily seen by induction on the depth of e.
Let Q4, a set of polynomials, be defined by

Qa =1U{pe,; eisedge of T(A) and ¢ > 0}.

Q 4 is a finite set of polynomials by the remark above. A point z € R" is admissible
if p(z) # g(z) for any p,q € Q4 with p # ¢.

Lemma 1. If x € R" is admissible for Qa then all p. ;’s have their intended
meaning for all edges e and all j € I, i.e., p. () is the content of location j if the

input is x and control reaches e for all j € 1.

Proof: The proof is by induction on the depth of e. The claim is clearly true for the
edge entering the root. So let us consider the case that edge e emanates from node v.
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Let d be the edge entering v. The induction step is by case analysis paralleling the
definition of p. ;. The induction step is easy in cases (1), (2), (3), (4) and (6) and
therefore left to the reader. The two remaining cases are cases (5) and (7).

(5): Let w, f and I be defined as above. Let us consider the case that w exists first.
Let h = pyi(x) = pgr(x). Then pso(x) was stored in location h by instruction
ins(w). It remains to be shown that location h was not written into on the path
from w to v. Let z be any node on that path excluding v and w. If ins(z) is not a
store instruction then there is nothing to show.

So let us assume that ins(z) is either p(i) < a or p(p(i)) < a. In the former
case we have i # h = pg x(z) since i € I C Q4, z is admissible for Q 4, and pq j is
not constant, in the latter case we have pg;(x) # h = py,(z), where g is the edge
entering z, since py; € Q4 and z is admissible for Q4. In either case ins(z) does
not write into location z.

If w does not exist then one proves in the same way that nothing was ever
written into location h = p, i (z) before control reaches edge e.

(7): Since ins(v) is p(p(k)) < o and par, # i for all i € Ny. Hence pg r(z) & I since
x is admissible for Q4 and I C Q4. Thus the content of locations with addresses
in I is not changed by ins(v). 1

Let m be a permutation of {1,2,...,n}. € R" is of order type 7 if z,(1) < Zr(2) <
c < Tr(n)- Let

P = |{m; there is a z € R" of order type m which is admissible for @ 4}|.

We show below that P = nl. Let z(w) be admissible for Q4 of order type .
Execution of T'(A) on input z(7) ends in some leaf with ingoing edge e; of course,
the leaf depends on sequences s € {0,1}? of coin tosses used in the computation.
We have pe ;(2(7)) = zr;)(m) for all i € {1,...,n}. Since Xi,...,X, € Q4 and
x(m) is admissible for Q4 this is only possible if p.; = X, ;) for alli € {1,...,n}.
Thus for every sequence s € {0,1}2! of coin tosses at least n! different leaves are
reachable, one for each order type. Let d(m, s) be the number of nodes of outdegree 2
on the path from the root to the leaf which is reached on input z(7) when sequence s
of coin tosses is used. Then

1
] Z d(m,s) > logn!
(compare the proof of 2.1.6, Theorem 8) for every s € {0,1}?¢ and hence

1 1
oo Z o Zd(ﬁ,s) > logn!

s€{0,1}2¢

or

1 1
Ezﬁ Z d(m,s) > logn!.

se{0,1}2¢
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Thus there must be some 7 such that

1
ot Z d(m,s) > logn!,
s€{0,1}2¢t

i.e., the expected running time of A on input z(7) is at least logn! > nlogn — 2n.
It remains to prove that P =n!. Q4 is a finite set of polynomials. x is admissible
for Q4 if p(x) # q(x) for any pair p,q € Q4 with p Z gq, i.e., if Ra(z) # 0 where

Ra=][{r—a p.acQa p#q}
R4 is a single polynomial. It therefore suffices to prove Lemma, 2.

Lemma 2. Let R # 0 be a polynomial of degree m in variables {X1,...,X,} and
let w be any permutation of {1,...,n}. Then there is an z € {1,...,n + m}" of
order type m with R(x) # 0.

Proof: Since R(Xy(1),---,Xr(n)) is again a polynomial of degree m it suffices to
prove the claim for the case that m is the identity permutation. This is done
by induction on n. For n = 1 the claim follows from the fact that a univariate
polynomial of degree m has at most m zeroes. For the induction step let

R(X)=> Ri(X1,...,Xn1)X}
1=0

where R, # 0. Let r be the degree of R,. Then r+ s < m. By induction hypothesis
there is some z € {1,...,r +n—1}""1 z; < 23 < --+ < z,_1 with Ry(x) # 0.
Choose z, € {r +n,...,n+r + s} such that the s-th degree polynomial

s
Z Ri(xla L. axn—l)X;
=0

in X, is non-zero. il

Similar lower bounds can be shown for related problems, e.g., the nearest neighbour
problem (Exercise 20) and the problem of searching an ordered table (Exercise 21).
It is open whether Theorem 1 still holds true if integer division is added as an
additional primitive operation. It should be noted however that one can sort in
linear time (in the unit cost model) if bitwise boolean operations (componentwise
negation and componentwise AND of register contents, which are imagined to be
binary representations of numbers) and integer division are additional primitives.

Version: 19.10.99 Time: 18:42 -81-



82 Chapter 2. Sorting

Theorem 2. RAMs with integer division and bitwise boolean operations can sort
n numbers in time O(n) in the unit cost model.

Proof: The idea of the proofis to exploit the parallelism provided by bitwise boolean
operations and to use integer division for cutting large numbers into pieces. The
details are as follows.

Let z4,...,x, be integers. We first find the maximum, say z,,, compute z,, V
T, (bitwise) and add 1. This produces 10 where k is the length of the binary
representation of z,,. Note that 10* is the binary representation of 2¥*!. We shall
compute the rank of every z;, i.e., compare each z; with all z; and count how
many z; are smaller than x;. Note that if we have

indicator

in registers A and B, with z; and z; in matching positions, then regardless of
the rest of registers A and B, C = A — B will contain a 1 at the indicated
position (indicator bit) <= x; > z;. So, for sorting, we obtain in a sin-
gle register n copies of lx,11x, 111z, _5...1x;1 concatenate to each other, and
(02,0)"(0x,,—10)™...(0210)™ in another with the length of all z;’s padded out
to k with leading zeroes. This can be done in time O(n) as follows. We show
the construction for (0z,0)"(0x,-10)"...(0z10)". Note first that we have 2¢+!
available and therefore can compute a « 22" in time O(n). Next note that
b=Y1, x;2(+2n—1+1 has hinary representation

0...0z,0 0...0x,-10 0...0z:0
N—— S——— N——r
(k + 2)n bits (k + 2)n bits (k + 2)n bits
and can be computed in time O(n) given a, zi,...,z,. Finally observe, that

S0 b - 252 s the desired result.

At this point, a single subtraction yields all comparisons. An AND with bit
string (10¥+1)"* which can be computed in time O(n), retrieves all the indicator
bits. More precisely, we have a bitstring of length (k + 2)n? such that bit (k +
2)n(j—1)+ (k+2)i is one <= x; > x; and all other bits are zero. We cut this bit
string into pieces of length (k 4 2)n by repeatedly dividing it by 2(*+2)" and sum
all the pieces. This yields

rank(z,) ... 0... Oria,’nk(xg)J 0... Orink(xll 0...0
(k + 2) bits (k + 2) bits (k + 1) bits
The ranks are now easily retrieved and the sort is completed in time O(n). 1
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2.4. The Linear Median Algorithm

Selection is a problem which is related to sorting but which is simpler. We are
given a sequence Sy, . .., S, of pairwise distinct elements and an integer ¢, 1 < i < n,
and want to find the i-th smallest element of the sequence, i.e., an S; such that there
are i —1 keys S; with S; < S; and n —i keys S; with S; > S;. For i = |[n/2] such a
key is called median. Of course, selection can be reduced to sorting. We might first
sort sequence S1,...,S, and then find the i-th smallest element by a single scan of
the sorted sequence. This results in an O(nlogn) algorithm. However, there is a
linear time solution. We describe a simple, linear expected time solution (procedure
Find) first and then extend it to a linear worst case time solution (procedure Select).
Procedure Find in Program 16 is based on the partitioning algorithm used in
Quicksort. We choose some element of the sequence, say S, as partitioning element
and then divide the sequence into the elements smaller than S; and the elements
larger than S;. We then call Find recursively on the appropriate subsequence.

procedure Find(M,1);
co finds the i-th smallest element of set M oc
begin
S < some element of M;
My +— {m e M; m < S};
My + {m € M; m > S};
case |M;| of
=¢—1: return S;
>i—1: Find(My,1)
esac
end.

=~ NSNS S S S
O © 00O UL W N =
N N N N e e N S N

—

Program 16

When set M is stored in an array then lines (2)—(4) of Find are best im-
plemented by lines (2)—(6) of Quicksort. Then a call of Find has cost O(|M| +
the time spent in the recursive call). The worst case running time of Find is clearly
O(n?). Consider the case i = 1 and |M;| = |M| — 1 always.

Expected running time of algorithm Find is linear as we show next. We use
the same randomness assumption as for the analysis of Quicksort, i.e., the elements
of M are pairwise distinct and each permutation of the elements is equally likely.
In particular, this implies that the element S chosen in line (2) is the k-th largest
element of M with probability 1/|M|. It also implies that both subproblems M;
and M, again satisfy the randomness assumption (cf. the analysis of Quicksort).

Let T'(n,7) be the expected running time of Find(M, i), where |M| = n and let
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T(n) = maxT'(n,i). We have T'(1) = ¢ for some constant ¢ and
(2

. 1
T(n,i) <c-n+ —
n

S:T(n—k,z'—k)+ Zn: T(k—l,i)],

k=1 k=i+1

since the partitioning process takes time ¢ - n and the recursive call takes expected
time T'(n — k,i — k) if k = |[M1|+ 1 < ¢ and time T(k — 1,¢) if k = |My|+1 > 4.
Thus

i—1 n—1
1
T(n) <c¢-n+ —max E T(n—k)+g T(k)
n 1
k=1 k=i

We show T'(n) < 4c¢-n by induction on n. This is clearly true for n = 1. For n > 1
we have

T(n)<c-n+— max[ Z dc- k—l—z4ck

k=n—i+1

Sc-n#—%miax [n(n—1) — (n—d)(n —i+1)/2 —i(i — 1)/2]

<4c-n,

since the expression in square brackets is maximal for i = [(n + 1)/2] (note that
the expression is symmetric in ¢ and n — ¢ + 1) and then has value n(n — 1) — (n +
1)(n —1)/4 < 3n2%/4. We have thus shown:

Theorem 1. Algorithm Find has linear expected running time. ]

The expected linearity of Find stems from the fact that the expected size of the
subproblem to be solved is only a fraction of the size of the original problem.
However, the worst case running time of Find is quadratic because the size of the
subproblem might only be smaller by one than the size of the original problem. If
one wants a linear worst case algorithm one has to choose the partitioning element
more carefully.

A first approach is to take a reasonable size sample of M, say of size |M|/5,
and to take the median of the sample as partitioning element. However, this idea
is not good enough yet because the sample might consist of small elements only.
A better way of choosing the sample is to divide M into small groups of say 5
elements each and to make the sample the set of medians of the groups. Then it is
guaranteed that a fair fraction of elements is smaller (larger) than the partitioning
element. This leads to Program 17.

It is very helpful to illustrate algorithm Select pictorially. For simplicity we
assume that 10 divides n. In line (4) M is divided into groups of 5 elements each
and the median of each group is determined in lines (5) and (6). At this point we
have [n/5] linear orders of 5 elements each. Next we find 7, the median of the
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procedure Select(M,1);
co finds the i-th smallest element of set M oc
(1) begin
(2) n< M)
(3) if n <100
then sorts M and find the i-th smallest element directly
(4) else divide M in [n/5] subsets My, ..., M[, /51 of 5 elements each;
co the last subset may contain less than 5 elements oc

(5) sort M;; 1 <j <[n/5];
(6) let m; be the median of Mj;
(7) call Select({mz,...,m[n/51}, [[n/5]/2]) and

determine m, the median of the medians;
let My ={m € M; m <m} and My = {m € M; m < m};
if ¢ < |M;|
) then Select(M;,1)
) else Select(Ma,i — | M)
) fi
)
)

fi
end
Program 17
medians. Assume w.l.o.g. that my,...,my/10 < M and M < My 1041, - Ma/s5-

This may be represented by Figure 29, where each of the groups is represented by a
vertical line of 5 elements, the largest element at the top. Note that all elements in
the solid rectangle are smaller than 7 and hence belong to M; and that all points
in the dashed rectangle are at least as large as m and hence belong to M,. Each
rectangle contains 3n/10 points.
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Figure 29. Partitioning of a set by Select
Lemma 1. |M;|,|M;| < 8n/11.

Proof: Almost obvious from the discussion above. Note that |Mi|+ |M2| = n and
that |M;|,|Mz| > 3n/10 if 10 divides n. If 10 does not divide n then |M;|,|Ma| >
3n/11 for n > 100. Details are left to the reader. ]

Let T'(n) be the maximal running time of algorithm Select on any set M of n
elements and any 3.
Lemma 2. There are constants a, b such that

T(n) < a-n for n < 100;
"= T(21n/100) + T(8n/11) + b-n  for n > 100.

Proof: The claim is obvious for n < 100. So let us assume n > 100. Select is called
twice within the body of Select, once for a set of [n/5] < 21n/100 elements and
once for a set of size at most 8n/11. Furthermore, the total cost of Select outside
recursive calls is clearly O(n). 1

Theorem 2. Algorithm Select works in linear time.

Proof: We show T'(n) < ¢-n where ¢ = max(a,11005/69) by induction on n. For
n < 100 there is nothing to show. For n > 100 we have
T(n) < T(21n/100) + T(8n/11) + b n
<c¢-2In/100+c-8n/11+b-n
<c-n

by definition of c. ]
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2.5. Exercises

1) Let S[1..n] and P[1..n] be two arrays. Let P[1],..., P[n] be a permutation of
the integers 1,...,n. Describe an algorithm which rearranges S as given by P, i.e.,
Safter [7'] = Sbefore[P[i]]-

2) Write a RAM program for Heapsort and analyze it.

3) Is there a sequence of n numbers which forces Heapsort to use 2n-(log(n+1)—1)
comparisons?

4) When discussing Heapsort we first derived a method which does not keep the
heap balanced. Analyze this variant of Heapsort. In particular, treat the following
questions. Is it possible to store the tree without explicit parent-child pointers?
Storage requirement of the method? Number of comparisons? Running time on a
RAM?

5) Discuss Heapsort based on ternary trees.

6) Prove that Procedure Quicksort is called at most n — 1 times on a problem of
size n (use induction). Conclude, that the expected number of calls in lines (7)
and (8) is & — 1 each. Also show that line (5) is executed at most % times on the
average.

7) Translate Quicksort into RAM code and analyze it (use Exercise 6).

8) Do you recommend to modify Quicksort such that a separate list is built for the
elements S; with S; = S17 Assume that every element S; occurs exactly k times
in the initial sequence. At what value of k£ does it pay off to partition into three

sequences?

9) Solve the following recurrences:

a) T(n) = n3/? . logn for 1 <n < 10;
vn-T(y/n) +n*?logn for n > 10.
| f(n) for 1 < n < 100;
b) T(n) = {2 “T(n/2) + f(n) for n > 100.

Use f(n) =n, f(n) = nlogn, f(n) = n%?2.

for 1 <n < 10:
T(n) =1 VP < :
¢) T(n) {10gn -T(loglogn) 4+ v/n for n > 10.
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10) Write a RASP program for Mergesort and analyze it.

11) Modify Quicksort so that sequences of length at most M are sorted by repeat-
edly searching for the maximum. What is the best value for M? (Compare the
proof of Theorem 2 of Section 5.4). Running time?

12) Would you recommend to use the linear median algorithm of Section 2.4 in
the partitioning phase of Quicksort?

13) Prove Theorem 7 of Section 2.1.4 for ternary trees.

14) Let T be any binary tree with n leaves. Interpret the tree as a merging pat-
tern and assume that all initial sequences have length 1. In Section 3.5.3.3, Theo-
rem 15, we give an algorithm which merges two sequences of length z and y in time

O(log (m;’y)) Show that the total cost of merge pattern 7" is O(nlogn).

15) Does Theorem 10 of Section 2.1.6 hold true if we allow exponentiation as an
additional operation?

16) For (z1,...,zn) € R" let f(z1,...,2z,) = min{i; x; > z; for all j} be the
maximum function. Use Theorem 10 of Section 2.1.6 to prove a logn lower bound
on the depth of rational decision trees for the maximum function. Can you achieve

depth O(logn)?

17) Forn € N, z € R let

0 ifz<0;
flz)=19 |z] f0<z<m
n ife>n

be the floor-function restricted to interval [0..n]. Use Theorem 10 of Section 2.1.6
to prove a lower bound on the complexity of the floor-function. Does Theorem 10
hold true if the floor-function is added as an additional operation?

18) Let 2%, 1 < i < n, be words of length k over alphabet & = {1,...,m}. Discuss
the following variant of bucketsort. In Phase 1) the input set is divided into m
groups according to the first letter. Then the algorithm is applied recursively to
each group. Show that the worst case running time of this method is Q(n - m - k).
Why does the German postal service use this method to distribute the letters?

19) Use Bucketsort to sort n integers in the range [0..n"]
case time O(n). Stellen Sie dazu die Zahlen zur Basis n dar.

, k fixed, in the worst
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20) A program solves the nearest neighbour problem of size n if for all inputs
(1,---3%n,Y1,---,Yn) the first n outputs produced by the program are (z;,,...,
z;,) where for all I: ¢ € {¢; |z; —yi| < |z; —y for all j}. Show an nlogn lower
bound for the nearest neighbour problem in the RRAM model of Section 2.1.6.
[Hint: for 7 a permutation of {1,...,n} say that {z1,...,Zn,y1,...,Yn} is of order
type = if for all 4,j: |xxu) — vi| < |r; — yi|- Modify Lemma 1 in the proof of
Theorem 1.]

21) A program solves the searching problem of size n if for all inputs {z1,...,Zn,y}
with 1 < 2 < --- < @, it computes the rank of y, i.e., it outputs |{i; z; < y}|-
Prove an Q(logn) lower bound for the RRAM model of Section 2.1.6.

2.6. Bibliographic Notes

Heapsort is by Williams (64) and Floyd (64). Hoare (62) developed Quicksort and
procedure Find. Sorting by merging and distribution was already known to von
Neumann and dates back to methods used on mechanical sorters. Bucketsort as de-
scribed here is due to Aho/Hopcroft/Ullman (74). Hybridsort is by Meijer/Ak] (80).
The treatment of recurrences is based on Bentley /Haken/Saxe (80). Theorem 7 (of
Section 2.1) is by Huffmann (52), the linear time implementation was described by
van Leeuwen (76). The sections on lower bounds are based on A. Schmidt (82)
(Theorems 10-12 of 2.1.6) and Hong (79) (Theorem 10-12 of 2.1.6 and Theorem 1
of 2.3), Paul/Simon (80) (Theorems 1 and 2 of 2.3), and Ben-Or (83) (Theorems
13-16 of 2.1.6). Weaker versions of Theorems 15-16 were obtained previously by
Yao (81) and Strassen (73) respectively. Finally, the linear time median algorithm
is taken over from Blum/Floyd/Pratt/Rivest/Tarjan (72).
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