Chapter 7. Multidimensional Data Structures

Chapter 3 was devoted to searching problems in one-dimensional space. In this
chapter we will reconsider these problems in higher dimensional space and also
treat a number of problems which only become interesting in higher dimensions.
Let U be some ordered set and let S C U¢? for some d. An element z € S is a d-tuple
(xg,...,24_1). The simplest searching problem is to specify a point y € U¢ and to
ask whether y € S; this is called an exact match query and can in principle be solved
by methods of Chapter 3. Order U¢ by lexicographic order and use a balanced search
tree. A very general form of query is to specify a region R C U? and to ask for
all points in RN S. General region queries can only be solved by exhaustive search
of set S. Special and more tractable cases are obtained by restricting the query
region R to some subclass of regions. Restricting R to polygons gives us polygon
searching, restricting it further to rectangles with sides parallel to the axis gives
us range searching, and finally restricting the class of rectangles even further gives
us partial match retrieval. In one-dimensional space balanced trees solve all these
problems efficiently. In higher dimensions we will need different data structures
for different types of queries; d-dimensional trees, range trees and polygon trees
are therefore treated in 7.2. There is one other major difference to one-dimensional
space. It seems to be very difficult to deal with insertions and deletions; i.e., the data
structures described in 7.2 are mainly useful for static sets. No efficient algorithms
are known as of today to balance these structures after insertions and deletions.
However, there is a general approach to dynamization which we treat in 7.1. It is
applicable to a wide class of problems and yields reasonably efficient dynamic data
structures.

In Section 7.2.3 we discuss lower bounds. We will first prove a lower bound
on the complexity of partial match retrieval where no redundancy in storage space
is allowed. The lower bound implies the optimality of d-dimensional trees. The
second lower bound relates the complexity of insertions, deletions and queries with
a combinatorial quantity. The spanning bound implies the optimality of range trees
and near-optimality of polygon trees.

Multidimensional searching problems appear in numerous applications, most
notably database systems. In these applications U is an arbitrary ordered set, e.g., a
set of names or a set of possible incomes. Region queries arise in these applications
in a natural way; e.g., in a database containing information about persons, say
name, income and number of children, we might ask for all persons with

# children = 3 , a partial match query;
# children = 3, 1000 <income < 2000 , a range query;
income = 1000 + 1000 - #children , a polygon query.
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7.1. A Black Box Approach to Data Structures

In Chapter 3 we designed clever data structures for variants of the dictionary prob-
lem. With a little bit of unfairness one might say that all we did in Chapter 3 is the
following: We started with binary search on sorted arrays and generalized it in two
directions. First we generalized to weighted static trees in order to cope with inser-
tions and deletions. Finally we combined both extensions and arrived at weighted
dynamic trees. Suppose now that we want to repeat the generalization process for
a different data structure, say interpolation search. Do we have to start all over
again or can we profit from the development of Chapter 37 In this section we will
describe some general techniques for generalization: dynamization and weighting.
We start out with a static solution for some searching problem, i.e., a solution
which only supports queries, but does support neither insertions and deletions nor
weighted data. Then dynamization is a method which allows us to also support
insertions and deletions, weighting is a method which allows us to support queries
to weighted data and finally weighted dynamization combines both extensions. Of
course, we cannot hope to arrive at the very best data structure by only applying
general principles. Nevertheless, the general principles can give us very quickly fully
dynamic solutions with reasonable running time. Also there are data structures,
e.g., d-dimensional trees, where all special purpose attempts of dynamization have
failed.

Binary search on sorted arrays will be our running example. Given a set of n
elements one can construct a sorted array in time O(nlogn) (preprocessing time
is O(nlogn)), we can search the array in time O(logn) (query time is O(logn)),
and the array consumes space O(n) (space requirement is O(n)). Dynamization
produces a solution for the dictionary problem (operations Insert, Delete, Member)
with running time O(log n) for Inserts and Deletes and O(log® n) for Member. Thus
Inserts and Deletes are as fast as in balanced trees but queries are less efficient.
Weighting produces weighted static dictionaries with access time O(log1/p) for an
element of probability p. This is the same order of magnitude as the special purpose
solution of Section 3.4, the factor of proportionality is much larger though. Finally
weighted dynamization produces a solution for the weighted, dynamic dictionary
problem with running time O((log1/p)?) for Member operations and running time
O(log1/p) for Insert, Delete, Promote and Demote operations. Note that only
access time is worse than what we obtained by dynamic weighted trees in 3.6.

Although sorted arrays are our main example, they are not an important ap-
plication of our general principles. The most important applications are data struc-
tures for higher dimensional searching problems described in this chapter. In many
of these cases only static solutions are known and all attempts to construct dynamic
or weighted solutions by special purpose methods have failed so far. The only dy-
namic or weighted solutions known today are obtained by applying the general
principles described in this section.
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7.1.1. Dynamization 3

7.1.1. Dynamization
We start with a definition of searching problem.

Definition: Let Ti, T3, T3 be sets. A searching problem @ of type Ti, Ty, T3 is a
function Q : Ty x 27> — Ts. ]

A searching problem takes a point in 7} and a subset of T5 and produces an answer
in T3. There are plenty of examples. In the member problem we have T7 = T,
T3 = {true, false} and Q(z,S) = “z € S”. In the nearest neighbor problem in the
plane we have Ty = T, = R?, T3 = R and Q(z,S) = §(z,y), where y € S and
d(z,y) < d(z,z) for all z € S. Here § is some metric. In the inside the convex hull
problem we have Ty = T, = R?, Ts = {true, false} and Q(z,S) = “is = inside the
convex hull of point set S”. In fact, our definition of searching problem is so general
that just about everything is a searching problem.

A static data structure S for a searching problem supports only query oper-
ation @, i.e., for every S C T3 one can build a static data structure S such that
function Q(z,S) : Ty — T3 can be computed efficiently. We deliberately use the
same name for set S and data structure S because the internal workings of struc-
ture S are of no concern in this section. We associate three measures of efficiency
with structure S, query time Qg, preprocessing time Pg and space requirement Sg.

Qs(n) = time for a query on a set of n points using data structure S.
Pg(n) = time to build S for a set of n points.

Ss(n) = space requirement of S for a set of n points.

We assume throughout that Qg(n), Ps(n)/n and Sg(n)/n are nondecreasing.

A semi-dynamic data structure D for a searching problem supports in addition
operation Insert, i.e., we cannot only query D but also insert new points into D.
A dynamic structure supports Insert and Delete. We use the following notation for
the resource requirements of D.

@Qp(n) = time for a query on a set of n points using structure D.
Sp(n) = space requirement of D for a set of n points.
Ip(n) = time for inserting a new point into a set of n points stored in D.

Ip(n) = amortized time for n-th insertion, i.e., (maximal total time spent on executing
insertions in any sequence of n operations starting with the empty set)/n.

Dp(n) = time for deleting a point from a set of n points stored in D.
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amortized time for n-th deletion, i.e., (maximal total time spent on executing
deletions in any sequence of n operations (insertions, deletions, queries)
starting with the empty set)/n.

We will next describe a general method for turning static data structures into semi-
dynamic data structures. This method is only applicable to a subclass of searching
problems, the decomposable searching problems.

Definition: A searching problem @ of type T1,75,T3 is decomposable if there
is a binary operation LI : T3 x T35 — T3 such that for all S C Ty and all partitions
A,Bof S,ie, S=AUB,ANB =0, and all z € T}:

Q(.’L‘, S) = Ll(Q(.’IJ, A)a Q("% B))

Moreover, Ll is computable in constant time. ]

In decomposable searching problems we can put together the answer to a query
with respect to set S from the answers with respect to pieces A and B of S using
operator L. We note as a consequence of the definition of decomposability that T35
with operation Ll is basically a commutative semigroup with unit element Q(z,0).
The member problem is decomposable with LI = or, the nearest neighbor problem
is decomposable with LI = min. However, the inside the convex hull problem is not
decomposable.

Theorem 1. Let S be a static data structure for a decomposable searching prob-
lem Q). Then there is a semi-dynamic solution D for Q with

Qp(n) = O(Qs(n) -logn),
Sp(n) = O(Ss(n)),

p(n) = O((Ps(n)/n) - logn).

Proof: The proof is based on a simple yet powerful idea. At any point of time the
dynamic structure consists of a collection of static data structures for parts of S,
i.e., set S is partioned into blocks S;. Queries are answered by querying the blocks
and composing the partial answers by LI. Insertions are dealt with by suitably
combining blocks.

The details are as follows. Let S be any set of n elements and let n = >_,_ a;2¢,
a; € {0,1}, be the binary representation of n. Let Sy, S1,... be any partition of S
with |S;| = a;2¢, 0 < i < logn. Then structure D is just a collection of static data
structures, one for each non-empty S;.

The space requirement of D is easily computed as

Sp(n) = Z Ss(a:2') = (Ss(a;2")/a;2) - a;2*

< Z(Ss(n)/n) - ;2" = Sg(n).
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7.1.1. Dynamization 5
The inequality follows from our basic assumption that Ss(n)/n is nondecreasing.

Next note that Q(z,S) = |y<;<10gn @(@; Si) and that there are never more
than log n non-empty S;’s. Hence a query can be answered in time

logn + 3, Qs(a:2') <logn- (1+Qs(n)) = Olog - Qs(n)).

Finally consider operation Insert(z,S). Let n + 1 = Y. 3;2¢ and let j be such that

a; = 0, Qi1 = Qj_2 = ... = Qp = 1. Then ,8_7' = ]_, ,8]'_1 = ... = ['-}0 = 0.
We process the (n + 1)-th insertion by taking the new point x and the 27 — 1 =
f;& 2¢ points stored in structures Sy, Sq, . .. ,8;j-1 and constructing a new static

data structure for {z}USoUS;U---US;_1. Thus the cost of the (n+1)-st insertion
is Pg(27). Next note that a cost of Ps(27) has to be paid after insertions 27+ (2-1+1),
1=0,1,2,..., and hence at most n/2’ times during the first n insertions. Thus the
total cost of the first n insertions is bounded by

[logn| [logn]
Z Ps(27) -n/2 <n- Z Ps(n)/n < Ps(n) - (|logn] + 1).
j=0 Jj=0

Hence Ip(n) = O((Ps(n)/n) - logn). 1

Let us apply Theorem 1 to binary search on sorted arrays. We have Sg(n) = n,
Qs(n) = logn and Pg(n) = nlogn. Hence we obtain a semi-dynamic solution for
the member problem with Sp(n) = O(n), Qp(n) = (logn)? and Ip(n) = (logn)2.
Actually, the bound on Ip(n) is overlay pessimistic. Note that we can merge two
sorted arrays in linear time. Hence we can construct a sorted array of size 2* out of
a point and sorted arrays of size 1,2,4,8,...,2%"1 in time O(2*) by first merging
the two arrays of length 1, obtaining an array of length 2, merging it with the array
of length 2, ... . Plugging this bound into the bound on Ip(n) derived above yields
Ip(n) = O(logn).

There are other situations where the bounds stated in Theorem 1 are overlay
pessimistic. If either Qg(n) or Ps(n)/n grow fast, i.e., is of order at least n¢ for
some € > 0, then better bounds hold. Suppose for example that Qg(n) = ©(n¢) for
some € > 0. Then (cf. the proof of Theorem 1)

Qp(n) = Z Qs(a;2)

[logn]
= @s(2lom) Y Qs(ai2)/Qs (205
=0
|log n |
= G(ne LD 2t ”“'f) = 0(n%) = ©(Qs(n)).

=0
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Thus if either Qs(n) or Ps(n)/n grows fast then the log n factor in the corresponding
bound on Qp(n) or Ip(n) can be dropped.

The bound on insertion time derived in Theorem 1 is amortized. In fact, the
time required to process insertions fluctuates widely. More precisely, the 2*-th
insertion takes time Ps(2*), a non-trivial amount of time indeed. Theorem 2 shows
that we can turn the amortized time bound into a worst case time bound without
increasing the order of query time and space requirement.

Theorem 2. Let S be a static data structure for a decomposable searching prob-
lem. Then there is a semi-dynamic data structure D with

Ia)
S
2
I
2
)
20
2
g
5]
2

Proof: The basic idea is to use the construction of Theorem 1, but to spread work
over time. More precisely, whenever a structure of size 2* has to be constructed we
will spread the work over the next 2% insertions. This will have two consequences.
First, the structure will be ready in time to process an overflow into a structure of
size 2¥*1 and second, the time required to process a single insertion is bounded by

[logn]

Y P(2%)/2¥ = O(P(n)/n - logn).

k=0

The details are as follows. The dynamic structure D consists of bags BAy, BA;,
... . Each bag BA; contains at most three blocks B¥[1], B¥[2] and B[3] of size 2
that are “in use” and at most one block B¢ of size 2¢ that is “under construction”.
More precisely, at any point of time blocks B}[j], i > 0, 1 < j < 3, form a partition
of set S, and static data structures are available for them. Furthermore, the static
data structure for block B{ is under construction. Block B is the union of two
blocks B ,[j]. We proceed as follows. As soon as two B’s are available, we start
building a Bf,, of size 2/** out of them. The work is spread over the next 2¢*!
insertions, each time doing Ps(2¢+1)/2i*! steps of the construction. When Bf,, is

finished it becomes a By, ; and the two B}'’s are discarded. We have to show that
there will be never more than three non-empty B;'’s.

Lemma 1. When we complete a B and turn it into a block in use there are at
most two non-empty B}'’s.

Proof: Consider how blocks in BA; develop. Consider the moment, say after the
t-th insertion, when BA; contains two B}'’s and we start building a B{,; out of

them. The construction will be finished 2¢*! insertions later. Observe that BA; got
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7.1.1. Dynamization 7

a second B} because the construction of Bf was completed after the ¢-th insertion
and hence B{ was turned into a Bj'. Thus B was empty after insertion ¢ and it
will take exactly 2¢ insertions until it is full again and hence gives rise to a third B
and it will take another 2¢ insertions until it gives rise to a fourth BY. Exactly at
this point of time the construction of B}’ ; is completed and hence two B}'’s are
discarded. Thus we can start a new cycle with just tow B}'’s completed. ]

It follows from Lemma 1 that there will be never more than three B}*’s and one B
for any 7. Hence

Sp(n) = O(Ss(n)),

Qp(n) = 0(Qs(n) -logn) and
|logn|
Ip(n) = Z O(Ps(2%)/2") = O(Ps(n)/n - logn). 1
=0

The remarks following Theorem 1 also apply to Theorem 2. The “logarithmic”
dynamization method described above has a large similarity to the binary number
system. The actions following the insertion of a point into a dynamic structure of n
elements are in complete analogy to adding a 1 to integer n written in binary. The
main difference is the cost of processing a carry. The cost is P(2*) for processing
a carry from the k-th position in logarithmic dynamization, whilst it is O(1) in
processing integers. The analogy between logarithmic dynamization and the binary
number system suggests that other number systems give rise to other dynamization
methods. This is indeed the case. For example, for every k one can uniquely write

every integer n as
k
a;
n _=
> (%)

i=1
with i —1 < @; and a; < az < --- < ap (Exercise 1). This representation gives
rise to k-binomial transformation. We represent a set S of n elements by k static
structures, the i-th structure holding (%) elements. Then Qp(n) = O(Qs(n) - k)

i

and Ip(n) = O(k - n'/* - Pg(n)/n) (Exercise 1). More generally we have

Theorem 3. Let S be any static data structure for a decomposable searching
problem and let k : N — IN be any “smooth” function. Then there is a semi-
dynamic data structure D such that

a) if k(n) = O(logn) then
Qp(n) = O(k(n) - Qs(n)),
Ip(n) = O(k(n) - n/*(™ . Pg(n)/n).
b) if k(n) = Q(logn) then
@p(n) = O(k(n) - Qs(n)),
Ip(n) = O(log n/ log(k(n)/ log n) - Ps(n)/n).
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Proof: The proof can be found in K. Mehlhorn, M.H. Overmars: “Optimal Dy-
namization of Decomposable Searching Problems”, IPL 12 (1981), 93-98. The
details on the definition of smoothness can be found there; functions like logn,
loglog n, logloglogn, n, (logn)? are smooth in the sense of Theorem 3. The proof
is outlined in Exercise 2. ]

Let us look at some examples. Taking k(n) = logn gives the logarithmic trans-
formation (note that n'/1°8™ = 2), k(n) = k yields an analogue to the k-binomial
transformation, k(n) = k - n'/* yields a transformation with Qp(n) = O(k - n'/* .
Qs(n)) and Ip(n) = O(kPs(n)/n), a dual to the k-binomial transformation, and
k(n) = (logn)? yields a transformation with Qp(n) = O((logn)? - Qs(n)) and
Ip(n) = O((logn/loglogn) - Ps(n)/n). Again it is possible to turn amortized time
bounds into worst case time bounds by the techniques used in the proof in Theo-
rem 2. The interesting fact about Theorem 3 is that it describes exactly how far
we can go by dynamization.

Theorem 4. Let h,k : N be functions. If there is a dynamization method which
turns every static data structure S for any decomposable searching problem into a
dynamic data structure D with Qp = k(n- K - Qs(n)) and Ip(n) = h(n) - P(n)/n
then h(n) = Q(OP(k)(n)) where

logn/log(k(n)/logn) ,if k(n - log n;
OP()(n) = { B P icEf K Tomm) ) = 2 e

Proof: The proof can be found in K. Mehlhorn: “Lower Bounds on the Efficiency
of Transforming Static Data Structures into Dynamic Data Structures”, Math. Sys-
tems Theory 15, 1-16 (1981). 1

Theorem 4 states that there is no way to considerably improve upon the results of
Theorem 3. There is no way to decrease the order of the query penalty factor (=
Qp(n)/Qs(n)) without simultaneously increasing the order of the update penalty
factor (= Ip(n) - n/Ps(n)) and vice versa. Thus all combinations of query and
update penalty factor described in Theorem 3 are optimal. Moreover, all optimal
transformations can be obtained by an application of Theorem 3.

Turning static into semi-dynamic data structures is completely solved by The-
orems 1 to 4. How about deletions? Let us consider the case of the sorted array
first. At first sight deletions from sorted arrays are very costly. After all, we might
have to shift a large part of the array after a deletion. However, we can do a “weak”
deletion very quickly. Just mark the deleted elements and search as usual. As long
as only a few, let’s say no more than 1/2 of the elements are deleted, search time is
still logarithmic in the number of remaining elements. This leads to the following
definition.
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7.1.1. Dynamization 9

Definition: A decomposable searching problem together with its static structure S
is deletion decomposable iff, whenever S contains n points, a point can be deleted
from S in time Dg(n) without increasing the query time, deletion time and storage
required for S. ]

We assume that Dg(n) is non-decreasing. The Member problem with static struc-
ture sorted array is deletion decomposable with Dg(n) = logn, i.e., we can delete
an arbitrary number of elements from a sorted array of length n and still keep query
and deletion time at logn. Of course, if we delete most elements then logn may be
arbitrarily large as a function of the actual number of elements stored.

Theorem 5. Let searching problem ) together with static structure S be deletion
decomposable. Then there is a dynamic structure D with

@p(n) = O(logn - Qs(8 - n)),
Sp(n) = O(S5(8 - n)),
(n) = O(logn - Ps(n)/n),
(n) = O(Ps(n)/n + Ds(n) + logn).

D\

Dn

Proof: The proof is a refinement of the construction used in the proof of Theorem 1.
Again we represent a set S of n elements by a partition By, By, Bs, .... We
somewhat relax the condition on the size of blocks B;; namely, a B; is either empty
or 2¢=3 < |B;| < 2°. Here |B;| denotes the actual number of elements in block B;.
B; may be stored in a static data structure which was originally constructed for
more points but never more than 2¢ points. In addition, we store all points of S in
a balanced tree T'. In this tree we store along with every element a pointer to the
block B; containing the element. This will be useful for deletions. We also link all
elements belonging to B;, ¢ > 0, in a linear list.

Since |B;| > 2¢=3 there are never more than logn + 3 non-empty blocks. Also
since the structure containing B; might have been constructed for a set eight times
the size we have

Qp(n) < Qs(8-n)- (logn +3) = O(Qs(8 - n)logn).

<ZSS - |Bi))
= ZSS “|Bi])/(8 - |Bil) - 8- |Bil

Also

< Ss(8-n)/8-n-Y 8B
= Ss(S-n).
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It remains to describe the algorithms for insertion and deletion. We need two
definitions first. A non-empty block B; is deletion-safe if |B;| > 2i=2 and it is safe
if 20=2 < |B;| < 2¢71.

Insertions are processed as follows. After an insertion of a new point z we
find the least k such that 1+ |Bg| + - -+ + |Bg| < 2F. We build a new static data
structure By for {z} U By U --- U By in time Ps(2*) and discard the structure
for blocks Bj,...,Bg. In addition we have to update the dictionary for a cost
of O(logn + 2*%), logn for inserting the new point and 2* for updating the new
information associated with the points in the new Bj. Note that time O(1) per
element suffices if we chain all elements which belong to the same block in a linked
list.

Lemma 2. Insertions build only deletion-safe structures.

Proof: This is obvious if k = 0. If k > 0 then 1+ |Bg| +--- +|Bg—_1| > 2F~1 by the
choice of k and hence the claim follows |

The algorithm for deletions is slightly more difficult. In order to delete = we
first use the dictionary to locate the block, say B;, which contains x. This takes
time O(logn). Next we delete z from B; in time Dg(2%). If |B;| > 2¢=2 or |B;| is
empty after the deletion then we are done. Otherwise, |B;| = 2¢=2 and we have to
“rebalance”. If |B;_1| > 2¢~2 then we interchange blocks B; and B;_ ;. This will
cost O(|B;| + |B;_1]|) = O(2%) steps for changing the dictionary; also B; and B;1
are safe after the interchange. If |[B;_1| < 2¢=2 then we join B;_; and B; —the
resulting set has size at least 2¢~3 and at most 2073 4 2¢=2 < 2i=1—and construct
either a new B;_1 (if |B;—1 U B;| < 2¢72) or a new B; (if |B;—1 U B;| > 2¢=2). This
will cost at most Pg(2¢) + O(2!) = O(Ps(s?)) time units; also B;_; and B; are safe
after the deletion.

Lemma 3. If a deletion from B; causes |B;| = 2¢~3 then B;_; and B; are safe after
restructuring.

Proof : Immediate from discussion above. ]

Lemma 4. Dp(n) = O(Ps(m)/m + Dg(m) + logm), here m is the maximal size
of set S during the first n updates.

Proof: By Lemmas 2 and 3 only deletion-safe blocks are built. Hence at least 2¢—3
points have to be deleted from a block B; before it causes restructuring after a
deletion. Hence the cost for restructuring is at most 8 - Pg(m)/m per deletion. In
addition, logm time units are required to update the dictionary and Dg(m) time
units to actually perform the deletion. ]
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7.1.1. Dynamization 11
Lemma 5. Ip(n) =4- Ps(m)/mlogm.

Proof: Consider any sequence of n insertions and deletions into an initially empty
set. Suppose that we build a new By after the ¢g-th update operation and that this
update is an insertion. Then By, Bi,...,Br—1 are empty after the ¢o-th update.
Suppose also that the next time a B;, [ > k, is constructed after an insertion
is after the t;-th update operation. Then immediately before the ¢;-th update
1+ |Bo| + .-+ |Bk_1| > k=1,

We will show that #; — o > 2¥~2. Assume otherwise. Then at most 2¥—2 — 1
points in By U --- U Bg_1 are points which were inserted after time ¢y,. Hence at
least 2¥~2 points must have moved from By, into By U --- U By_; by restructuring
after a deletion. However, the restructuring algorithm constructs only deletion-
safe structures and hence By can underflow (|By| = 2%¥73) at most once during a
sequence of 2¥=2 updates. Thus at most 2¥~% < 2F=2 points can move from Bj,
down to By U --- U Bg_1 between the ty-th and the ¢;-th update, a contradiction.
Thus t; — to > 2F2.

In particular, a new By, is constructed at most n/2¥~2 times after an insertion
during the first n updates. The construction of a new By has cost Ps(2F) for
building the By, O(2*) for updating the dictionary and logm for inserting the new
point into the dictionary. Hence

Ip(n)=0 ((Ome(PS(T“) nj282 42k . pj2F) logm> /n)

k=0
= O(logm - Pg(m)/m). i

In our example (binary search on sorted arrays) we have Qg(n) = Dg(n) = logn
and Ps(n) = n (cf. the remark following Theorem 1). Hence Qp(n) = O((logn)?)
and Ip(n) = Dp(n) = O(logn). There is something funny happening here. We
need balanced trees to dynamize sorted arrays. This is not a serious objection.
We could do away with balanced trees if we increase the time bound for deletes to
O((logn)?). Just use the Member instruction provided by the data structure itself
to process a Delete.

Theorem 5 can be generalized in several ways. Firstly, one can turn amortized
bounds into worst case bounds and secondly one can choose any of the transforma-
tions outlined in Theorem 3. This yields.

Theorem 6. Let searching problem @) together with static structure S be deletion-
decomposable, and let k(n) be any smooth function. Then there is a dynamic
structure D with

@p(n) = O(k(n) - Qs(n)),
Dp(n) = O(logn + Ps(n)/n + Dg(n)),

In(n) = O(logn/log(k(n)/logn) - Ps(n)/n, ,if k(n) = Q(logn);
b O(k(n) - n/*(®) . Pg(n)/n), Jif k(n) = O(logn).
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Proof: The proof combines all methods described in this section so far. It can
be found in M.H. Overmars/J.v. Leeuwen: “Worst Case Optimal Insertion and
Deletion Methods for Decomposable Searching Problems, IPL 12 (1981), 168-173.

|

7.1.2. Weighting and Weighted Dynamization

In this section we describe weighting and then combine it with dynamization de-
scribed in the previous section. This will give us dynamic weighted data structures
for a large class of searching problems.

Definition: A searching problem Q : T} x 27> — T3 is monotone decomposable
if there are functions ¢ : T5 — {true, false} and U : T3 x T3 — T3 such that for all
z € Ty, S CT» and all partitions A, B of S, ie., AUB=S,ANB={:

Q(z,S) =if ¢(Q(z, A)) then Q(z, A) else U (Q(z,A),Q(z,B)) fi 1

Again, there are plenty of examples. Member is monotone decomposable with ¢ the
identity and LI = or. e-diameter search, i.e., Q((z,¢€),S) = trueif Iy € S : é(z,y) <
€ is monotone decomposable with ¢ the identity and Ll = or. Also orthogonal range
searching is monotone decomposable. Here T» = R?, T} = all rectangles with sides
parallel to the axis and Q(R,S) = (|[RN S| > 1).

A query Q(z,S) is successful if there is a y € S such that ¢(Q(z, {y})). If
Q(z, S) is successful then any y € S with ¢(Q(z,{y})) is called a witness for
(with respect to S). If y is a witness for z then Q(z,S) = Q(z,{y} U (S —{y})) =
if q(Q(x’ {y})) then Q(.’L‘, {y}) else ... fi= Q(xa {y}>

Weighting is restricted to successful searches (but cf. Exercise 6). Let S =
{y1,.--,yn} C T and let u be a probability distribution on Suc = {z € T1; Q(z, S)
is successful}. We define a reordering 7 of S and a discrete probability distribution
P1,---,Pn o S as follows. Suppose that m(1),...,7(k — 1) and p1,...,pg_1, are
already defined. For y; € S — {yr@1), -, Un(k-1)} let p(y;) = u {z € Suc; y; is a
witness for z but none of y(1),...,Yr(k—1) is}. Define m(k) = j such that p(y;) is
maximal and let py = p(yx(x)).- Then p; > ps > -+ > p,. We assume from now on
that S is reordered such that 7 is the identity. Then pj is the probability that yg
is witness in a successful search but none of yq,...,yx—1 is.
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Theorem 7. Let Q be any monotone decomposable searching problem and suppose
that we have a static data structure with query time Qg(n), @s(n) non-decreasing,
for Q. Let S = {y1,...,Yn} C T2, and let p,p1,-..,pn be defined as above. Then
there is a weighted data structure W for () where the expected time of a successful
search is at most

4. Zpi -Qs(i) <4-p;i- Qs(1/py).

Proof: Define f : Ny — No by f(0) = 0 and Qs(f(i)) = 2% for i > 1. Then f(i)
is increasing. We divide set S into blocks By, By, ..., where B; = {y;; f(i—1) <
J < f(i)}. Then W consists of a collection of static data structures, one for each
B;. A query Q(z, S) is answered by the following algorithm.

1:=0;
repeat i := i + 1 until Q(z, B;) is successful od,
output Q(z, B;).

Program 1

The correctness of this algorithm is immediate from the definition of monotone
decomposability. It remains to compute the expected query time of a successful
query. Let Suc; = {x € Ti; y; is a witness for = but y;,...,y;—1 are not}. Then
pj = u(Suc;). The cost of a query Q(z, S) for z € Suc; and f(i — 1) < j < f(i) is

Y Qs(f(h) —f(h—1)) <) Qs(f(R)
h=1 h=1

i
Y.
h=1
S 4. 2i—1

=4-Qs(f(i—1))
<4-Qs(j)-

Thus the expected cost of a successful query is

4- ij Qs(j) <4- ij - Qs(1/p;)-

The last inequality follows from p; > ps > -+ and hence 1/p; > j. |
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It is worthwhile to go through our examples at this point. Let us look at the member
problem first. If we use sorted arrays and binary search then Qg(n) = logn and
hence the expected time for a successful search is

4-) pi-logi <4-) p;-logl/p;.
i i

This bound relates quite nicely with the bounds derived in Chapter 3.4 on weighted
trees. There we derived a bound of ), p; log 1/p; +1 on the expected search time in
weighted trees. Thus the bound derived by weighting is about four times the entire
truth. The bound of 4 - log: derived now on individual searches can sometimes be
considerably better than the bound of log 1/p; derived in 3.4 (cf. Exercise 3).

Binary search is not the only method for searching sorted arrays. If the keys
are drawn from a uniform distribution then interpolation search is a method with
O(loglogn) expected query time. If the weights of keys are independent of key
values then every block B; is a random sample drawn from a uniform distribution
and hence the expected time of a successful search is

O(Zpi -loglogi) = O(sz‘ -loglog 1/p;)

(cf. Exercise 4).

Let us finally look at orthogonal range searching in two-dimensional space. 2-
dimensional trees (cf. 7.2.1 below) are a solution with Qg(n) = y/n. The weighting
yields an expected search time of ), p; Vi.

The construction used in the proof of Theorem 7 is optimal among a large class
of algorithms, namely all algorithms which divide set S into blocks, construct static
data structures for each block, and search through these blocks sequentially in some
order independent of the according probability. If an element in the i-th block has
higher probability than an element in the (i — 1)-st block then interchanging the
elements will reduce average search time. Thus a search with witness y; (recall that
S is reordered such that p; > py > ---) must certainly have cost Qg(nq) +--- +
Qs(nk) where ny + - - - +ng > 1. If we assume that Qg(z+y) < Qs(z) + Qs(y) for
all z,y, i.e., @ is subadditive, then Q(n1)+--- Qgs(ng) > Qs(n1+---+ng) > Qs (7).
Hence a search with witness y; has cost at least Qg(7) under the modest assumption
of subadditivity of @s. Thus the construction used in the proof of Theorem 7 is
optimal because it achieves query time O(Qgs(7)) for a search with witness y; for
all 4.

We close this section by putting all concepts together. We start with a static
data structure for a monotone and deletion decomposable searching problem @ and
then use dynamization and weighting to produce a dynamic weighted data struc-
ture W for Q. W supports queries on a weighted set S, i.e., a set S = {y1,...,¥n}
and weight function w : S — N with query time depending on weight. It also
supports operations Promote(y,a) and Demote(y,a), y € T, a € N. Promote(y,a)
increases the weight of element y by a and Demote(y,a) decreases the weight of y
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by a. Insert and Delete are special cases of Promote and Demote (cf. 3.6 for the
special case: @ = Member).

We obtain W in a two step process. In the first step we use dynamization
and turn S into a dynamic data structure D with Qp(n) = Qs(n) - logn and
Up(n) = max(Ip(n),Dp(n)) = O(Ps(n)/nlogn+ Dg(n)) (cf. Theorem 6). Up(n)
is the time to perform an update (either Insert or Delete) on D. In the second
step we use weighting and turn D into a weighted structure W. More precisely, we
define f by Qp(f(n)) = 2" and store a set S = {y1, ..., yn} by cutting it into blocks
as described in Theorem 7, i.e., block B; contains all y; with f(i — 1) < j < f(3).
Here we assumed w.l.o.g. that w(y1) > w(y2) > -+ > w(y,). This suffices to
support queries. A query in W with witness y € S takes time O(Qp(w(S)/w(y)))
by Theorem 7. Here w(S) = > {w(y);y € S}

We need to add additional data structures in order to support Promote and
Demote. We store set S in a weighted dynamic tree (cf. 3.6) 7. Every element in
tree T points to the block B; containing the element. Furthermore, we keep for
every block B; the weights of the points in B; in a balanced tree. This allows us to
find the smallest and largest weight in a block fast.

We are now in a position to describe a realization of Promote(y,a). We first
use the weighted dynamic tree to find the block which contains y. This takes time
O(log w(S)/w(y)). Suppose that block B; contains y. We then run through the
following routine.

) delete y from block B;; h := i;
) while w(y) + a > maximal weight of any element in By,
) do delete the element with maximal weight from Bj_1 and insert it into By;
) h+h—-1;
od
(5) insert y into By,

Program 2

The algorithm above is quite simple. If the weight of y is increased it might
have to move to a block with smaller index. We make room by deleting it from the
old block and moving the element with minimal weight down one block for every
block. We obtain the following time bound for Promote(y,a):

O |log(w(S)/w(y)) + Y log(f(h)) + Un(f(h))|-
h=0

Here log w(S)/w(y) is the cost of searching for y in tree T and log f(h) + U(S(h))
is the cost of inserting and deleting an element from a structure of size h and
updating the balanced tree which holds the weights. Observing U(n) > logn for

all n, i < [f7H(w(S)/w(y))] and Up([f~H(w(S)/w(y))]) = Up(w(S)/w(y)) =
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logw(S)/w(y) this bound simplifies to

o(OShSH > un(),

~Hw(S)/w(y))]

The algorithm for Demote(y,a) is completely symmetric. The details are left for
the reader (Exercise 5). We obtain exactly the same running time as for Promote,
except for the fact that w(y) has to be replaced by the new weight w(y) — a.

Theorem 8. A static data structure with query time Qg, preprocessing time Pg,
and weak deletion time Dg for a monotone deletion decomposable searching problem
can be extended to a dynamic weighted data structure W such that:

a) A query in weighted set S (with weight function w : S — IN) with witness
y € S takes time O(Qp(w(S)/w(y))). Here Qp(n) = Qs(n) - logn.
b) Promote(y,a) takes time

o > )

0<h<[f~*(w(8)/w(y))]

¢) Demote(y,a) takes time

o( UD<f<h>>).
0<hL[f~2(w(S)/(w(y)—a))]

Proof : Immediate from the discussion above. ]

Let us look again at binary search in sorted arrays as a static data structure
for Member. Then Qs(n) = Dg(n) = O(logn) and Ps(n) = O(n) (cf. the re-
mark following Theorem 1). Hence Qp(n) = O((logn)?), Up(n) = O(logn), and
f(n) = 2V2". A query for y with weight w(y) takes time O((logw(S)/w(y)?), the
square of the search time in weighted dynamic trees. Also Promote(y,a) takes
time Up(f([f~(w(S)/w(y))])) = O(logw(S)/w(y)) and Demote(y,a) takes time
O(log w(S)/w(y) — a)). This is the same order as in weighted dynamic trees. Of
course, weighted dynamic trees are part of the data structure W considered here.
Again (cf. Theorem 5) this is not a serious objection. Since Member is the query
considered here we can replace the use of weighted dynamic trees by a use of the
data structure itself. This will square the time bounds for Promote and Demote.
Also binary search in sorted arrays is not a very important application of weighted
dynamization. In the important applications in this chapter the use of a weighted,
dynamic dictionary is negligible with respect to the complexity of the data structure
itself.
Dynamization and weighting are powerful techniques. They provide reasonably
efficient dynamic weighted data structures very quickly which can then be used as
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7.1.8. Order Decomposable Problems 17

a reference point for more special developments. Tuning to the special case under
consideration is always necessary, as weighting and dynamization tend to produce
somewhat clumsy solutions if applied blindly.

7.1.3. Order Decomposable Problems

In Sections 1 and 2 we developed the theory of dynamization and weighting for
decomposable searching problems and subclasses thereof. Although a large number
of problems are decomposable searching problems, not all problems are. An example
is provided by the inside the convex hull problem. Here we are given a set s C R?
and a point z € R? and are asked to decide whether # € CH(S) (= the convex
hull of S). In general, there is no relation between CH(S) and CH(A), CH(B) for
arbitrary partitions A, B of S. However, if we choose the partition intelligently then
there is a relation. Suppose that we order the points in S according to z-coordinate
and split into sets A and B such that the z-coordinate of any point in A is no
larger than the z-coordinate of any point in B. Then the convex hull of S can be
constructed from CH(A) and CH(B) by adding a “low” and the “high” tangent.

Figure 1. Convex hull of S

These tangents can be constructed in time O(logn) given suitable represen-
tations of CH(A) and CH(B). The details are spelled out in 8.2 and are of
no importance here. We infer two things from this observation. First, if we
choose A and B such that |A] = |B| = |S|/2 and apply the same splitting
process recursively to A and B then we can construct the convex hull in time
T(n) =2-T(n/2) + O(logn) = O(n). This does not include the time for sorting S
according to z-coordinate. The details are described in Theorem 9. Second, convex
hulls can be maintained efficiently. If we actually keep around the recursion tree
used in the construction of CH(S) then we can insert a new point in S by going
down a single path in this tree and redoing the construction along this path only.
Since the path has length O(logn) and we spent time O(logn) in every node for
merging convex hulls this will consume O((logn)?) time units per insertion and
deletion of a new point. The details are described in Theorem 10 below.

Definition: Let T; and T, be sets and let P : 27t — T, be a set problem. P is
order decomposable if there is a linear order < on 7} and an operator Ll :
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Ty x Ty — T4 such that for every S C Ty, S ={a1 <az <--- < ap} and every i

P{{a1,.-.,an}) =U(P{a1,--.,a:i}), P{ait1,---,an})).
Moreover, Ll is computable in time C(n) in this situation. 1

We assume throughout that C(n) is non-decreasing. In the convex hull example we
have Ty = R?, T, = the set of convex polygons in R?, LI merges two convex hulls,
and C(n) = O(logn). We outlined above that convex hulls can be constructed
efficiently by divide and conquer. This is true in general for order decomposable
problems.

Theorem 9. Let P be order decomposable. Then P(S), S C T; can be computed
in time Sort(|S|) + T(|S|) where Sort(n) is the time required to sort a set of n
elements according to <, and T'(n) = T(|n/2]) + T([n/2]) + O(C(n)) for n > 1
and T(1) = ¢ for some constant C.

Proof: The proof is a straightforward application of divide and conquer. We first
sort S in time Sort(|S|) and store S in sorted order in an array. This will allow
us to split S in constant time. Next we either compute P(S) directly in constant
time if |S| = 1 or we split S into sets A and B of size [n/2] and [n/2] respectively
in constant time (if S = {a; < a2 < -+ < an} then A = {ay,...,a|n/2/} and
b= {a|n/2+1]>---,an}, compute P(A) and P(B) in time T(|n/2]) and T([n/2])
respectively by applying the algorithm recursively, and then compute P(S) =
U(P(A), P(B)) in time C(n). Hence T'(n) = T(|n/2]) +T([n/2]) + O(1) + C(n) =
T(|n/2]) +T([n/2]) + O(C(n)). "

Recurrence T'(n) = T(|n/2])+T([n/2])+C(n) is easily solved for most C (cf. 2.1.3).
In particular, T'(n) = O(n) if C(n) = O(n®) for some € < 1, T(n) = O(C(n)) if
C(n) = O(n'*¢) for some ¢ > 0, and T(n) = O(C(n) - (logn)k*!) if C(n) =
O(n - (logn)*) for some k > 0.

The proof of Theorem 9 reflects the close relation between order decomposable
problems and divide and conquer. A non-recursive view of divide and conquer is to
take any binary tree with |S| leaves, to write the elements of S into the leaves (in
sorted order), to solve the basic problems in the leaves and then to use operator U
to compute P for larger subsets of S. What tree should we use? A complete binary
tree will give us the most efficient algorithm, but any reasonably weight-balanced
tree will not be much worse. If we want to support insertions and deletions this is
exactly what we should do. So let D be a BB[a]-tree with |S| leaves for some a.
(Exercise 9 shows that we cannot obtain the same efficiency by using (a, b)-trees,
or AVL-trees, or ...). We store the elements of S in sorted order (according to <)
in the leaves of D and use D as a search tree for S. What should we store in the
internal nodes of D beside the search tree information? A first idea is to store
P(S(v)) in node v where S(v) is the set stored in the leaves below v. P(S(v)) is
easily computed bottom-up starting at the leaves and working towards the root.

Version: 19.10.99 Time: 11:39 -18-



7.1.8. Order Decomposable Problems 19

Not quite, if v has sons, z,y and we compute P(S(v)) = U(P(S(z)), P(S(y))) then
application of LI will in general destroy (the representation of) P(S(z)) and P(S(y))-
Making a copy of P(S(z)) and P(S(y)) before applying LI might cost a lot more
than C(]S(v)|) and is therefore excluded. A different strategy is called for.

We store P(S(r)) only in the root 7. In internal nodes v # r we store two things.
First, the sequence a(v) of actions executed to compute LI applied to P(S(z)) and
P(S(y)). This sequence has length O(C(n)). Second, the piece P*(S(v)) which is
left over from P(S(v)) when P(S(father(v))) is computed by applying LI to P(S(v))
and P(S(brother(v)). We call tree D augmented by this additional information an
augmented tree.

Lemma 6. An augmented tree D for set S has space requirement T'(|S|) and can
be constructed in time Sort(|S|) + T'(|S|) where

T(n) = max [T(B-n)+T({1-p) n)+0(C(n))]

Proof: The recursion for T'(n) follows from the fact that a < |S(z)|/|S(v)| <1-—«
for any node v with sons z, y in a BB[a]-tree D. The space bound follows since at
most t storage cells can be used in ¢ time units for any ¢. ]

The remark following Theorem 9 also applies to Lemma 6. In particular, T'(n) =
O(n) if C(n) = O(n®) for some € < 1, and ... . The space bound stated in Lemma 6
is usually overlay pessimistic. One does not use a new storage cell every time unit
in general.

We will next describe how to insert into and delete from an augmented tree.
We describe insertion in detail and leave deletion for the reader, deletion being very
similar to insertion. Let a be a new point which we want to insert in S. Let D be
an augmented tree for S. We first use D as a search tree. This will outline a path p
down tree D. Let p = vy, v1,..., v with vy being the root. We walk down this path
and reconstruct the P(S(v;))’s as we walk down. More precisely, we start in root vg
with P(S(vp)) in our hands and use the sequences of actions a(vg) stored in vy and
the leftover pieces P*(S(v1)) and P*(S(brother(vy))) stored in v, and its brother
to reconstruct P(S(v1)) and P(S(brother(vy))) by running a(vg) backwards. This
will take time O(C(|S(vo)|)). Next we repeat this process with vq,...,v;. At the
end we have reconstructed P(S(brother(v;))), 1 <i <k, and P(S(vg)).

Lemma 7. Let D be an augmented tree for S, |S| = n and let p = vy, ...,v; be a
path from the root vy to a leaf. Then P(S(brother(v;))), 1 <i < k, and P(S(vg))
can be reconstructed in time O(C(n) - logn).

Proof: The algorithm outlined above has running time
> C(S(w))) < ZC (1-a)f) <Y C(n)=0(C(n)-logn)
since the depth of the tree is O(logn) and |S(v;)] < n- (1 — ). 1
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If C(n) = ©(n¢) for some € > 0 then Y, C(n-(1—a)f) =n¢->_,(1—a)" = O(nf) =
O(C(n)). In (a,b)-trees this improved claim is not true in general, i.e., there are
(@, b)-trees where reconstruction along a path has cost O(n¢-logn) if C(n) = 0(n®)
(cf. Exercise 9).

The remainder of the insertion algorithm is now almost routine. We insert the
new point a, walk back to the root and merge the P’s as we go along. More precisely,
we first compute P(a), then merge it with P(S(vg)), then with P(S(brother(vg))),
... . The time bound derived in Lemma 2 applies again except that we forgot about
rotations and double rotations.

Rotation

Figure 2.

Suppose that we have to rotate at node v; and assume that v; is the root of
subtree D;. As we walk back to the root we have already computed P(S(v;4+1))-
Also P(S(brother(v;+1))) is available from the top-down pass. We reverse the con-
struction at brother(v;y+1) and thus compute P for the relevant nodes after the
rotation. Double rotations are treated similarly, the details are left to the reader.
Also it is obvious that the time bound derived in Lemma 2 does still apply, because
rotations and double rotations at most require to extend the reconstruction process
to a constant vicinity of the path of search. We summarize in:

Theorem 10. Let P be an order decomposable problem with merging operator
LI computable in time C(n). Then P can be dynamized such that insertions and
deletions take time O(C(n)) if C(n) = O(n¢) for € > 0 and time O(C(n) - logn)
otherwise.

Proof: By the discussion above. The time bound follows from Lemma 2 and the
remark following it. ]

In the convex hull problem we have C(n) = O(logn). Thus we can maintain convex

hulls under insertions and deletions with time bound O((logn)?) per update. More
examples of order decomposable problems are discussed in Exercises 10-20.
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7.2. Multi-dimensional Searching Problems

This section is devoted to searching problems in multi-dimensional space. Let U;,
0 < i < d, be an ordered set and let U = Uy X Uy X --+ X Ug_1. An elment x =
(zo,...,24-1) € U is also called point or record or d-tuple; it is customary to talk
about points in geometric applications and about records in database applications.
No such distinction is made here. Components z; are also called coordinates or
attributes.

A region searching problem is specified by a set I' C 2V of regions in U. The
problem is then to organize a static set S C U such that the queries of the form
“list all elements in S N R” or “count the number of points in S N R” can be
answered efficiently for arbitrary R € I'. We note that region searching problems
are decomposable searching problems and hence the machinery developed in 7.1.1
and 7.1.2 applies to them. Thus we automatically have dynamic solutions for region
searching problems once a static solution is found. We address four types of region
queries.

a) Orthogonal Range Queries: Here T' is the set of hypercubes in U, i.e.,

FOR = {R, R = [lo,h()] X [ll,hl] X eee X [ld—lghd—l] where
liyhi € U; and I; < hz}

b) Partial Match Queries: Here I' is the set of degenerated hypercubes where
every side is either a single point or all of U;, i.e.,

FPM = {R; R = [lo,ho] X [ll,hl] XX [ld—lghd—l] where
l;, h; € U; and either [; = h; or
l; = —o0 and h; = +o0o for every i}.

if [; = h; then the i-th coordinate is specified, otherwise it is unspecified.

c) Exact Match Queries: Here I is the set of singletons, i.e.,
Tem = {R; R = {z} for some z € U}.
d) Polygon Queries: Polygon queries are only defined for U = R2. We have
I'p = {R; R is a simple polygonal region in R?}.
Exact match queries are not really a new challenge; however the three other types
of problems are. There seems to be no single data structure doing well on all of
them and we therefore describe three data structures: d-dimensional trees, polygon
trees and range trees. d-dimensional trees and polygon trees use linear space and
solve partial match queries and polygon queries in time O(n¢) where € depends on

the type of the problem. Range trees allow us to solve orthogonal range queries
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in time O((logn)?) but they use non-linear space O(n - (logn)?~!). In fact they
exhibit a tradeoff between speed and space.

In view of Chapter 3 these results are disappointing. In one-dimensional space
we could solve a large number of problems in linear space and logarithmic time, in
higher dimensions all data structures mentioned above either use non-linear space
or use “rootic” time O(n¢) for some ¢, 0 < € < 1. Section 7.2.3 is devoted to
lower bounds and explains this behavior. We show that partial match requires
rootic time when space is restricted to its minimum and that orthogonal range
queries and polygon queries either require large query or large update time. Large
update time usually points to large space requirement, although it is not conclusive
evidence.

7.2.1. D-dimensional Trees and Polygon Trees

We start with d-dimensional trees and show that they support partial match re-
trieval and orthogonal range querieswith rootic search time. However, they do not
do well for arbitrary polygon queries. A discussion of why they fail for polygon
retrieval leads to polygon trees.

d-dimensional trees are a straightforward, yet powerful extension of one-dimen-
sional trees. At every level of a dd-tree we split the set according to one of the
coordinates. Fairness demands that we use the different coordinates with the same
frequency; this is most easily achieved if we go through the coordinates in cyclic
order.

Definition: Let S C Uy x --- x Uj_1, |S| = n. A dd-tree for S (starting at
coordinate 7) is defined as follows
1) If d = n = 1 then it consists of a single leaf labeled by the unique element
zeSs.
2) If d > 1 or n > 1 then it consists of a root labeled by some element d; € U;
and three subtrees T, T and 7. Here T is a dd-tree starting at coordinate
(¢ + 1) modd for set S« = {z € S; v = (®o,...,24-1) and z; < d;}, T
is a dd-tree starting at coordinate (¢ + 1) mod d for set S5 = {z € S; =z =

(zo,...,24-1) and x; > d;} and T is a (d — 1)-dimensional tree starting at
coordinate ¢ mod (d — 1) for set S— = {(zo,.--,%i—1,Tit1,---,Td-1); T =
(zo,--+sTi1,di; Tit1,. .., Ta—1) € S}. 1

Figure 3 shows a 2d-tree for set S = {(1,II), (1,III), (2,1), (2, I1I), (3, 1), (3, II) } start-
ing at coordinate 0. Here Uy = Uy = {1,2,3}. Arabic and roman numerals are used
to distinguish coordinates.

It is very helpful to visualize 2d-trees as subdivisions of the plane. The root
node splits the plane by vertical line zg = 2 into three parts: left halfplane, right
halfplane and the line itself. The left son of the root then splits the left halfplane
by horizontal line z; =2, ... .
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Figure 3.
(1,III)
. (2, 111)
x, =11 - (3,1I)
(1,1I)
(2, I) 1 = 1
(3,1)
g = 2
Figure 4.

The three sons of a node v in a dd-tree do not all have the same quality. The
root of 7_ (the son via the =-pointer) represents a set of one smaller dimension. In
general we will not be able to bound the size of this set. The roots of T« and T
(the sons via the <-pointer and the >-pointer) represent sets of the same dimension
but generally smaller size. Thus every edge of a dd-tree reduces the complexity of
the set represented: either in dimension or in size. In 1d-trees, i.e., ordinary search
trees, only reductions in size are required.

It is clear how to perform exact match queriesin dd-trees. Start at the root,
compare the search key with the value stored in the node and follow the correct
pointer. Running time is proportional to the height of the tree. Our first task is
therefore to derive bounds on the height of dd-trees.

Definition:

a) Let T be a dd-tree and let v be a node of T. Then S(v) is the set of leaves in
the subtree with root v, d(v) is the depth of node v, and sd(v), the number of
<-pointers and >-pointers on the path from the root to v, is the strong depth
of v. Node z is a proper son of node v if it is a son via a <- or >-pointer.

b) A dd-tree is ideal if |S(z)| < |S(v)|/2 for every node v and all proper sons z
of v. 1

Ideal dd-trees are a generalization of perfectly balanced 1d-trees.
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Lemma 1. Let T be an ideal dd-tree for set S, |S| = n.
a) d(v) < d+logn for every node v of T
b) sd(v) <logn for every node v of T'.

Proof: a) follows from b) and the fact that at most d =-pointers can be on the path
to any node v. Part b) is immediate from the definition of ideal tree. 1

Theorem 1. Let SCU =Uy x -+ X Ug_1, |S] =n.
a) An exact match query in an ideal dd-tree for S takes time O(d + logn).
b) An ideal dd-tree for S can be constructed in time O(n - (d + logn)).

Proof: a) Immediate from Lemma 1, a).

b) We describe a procedure which constructs ideal dd-trees in time O(n-(d+logn)).
Let So = {zo; (z0,.-.,24-1) € S} be the multi-set of 0-th coordinates of S. We
use the linear time median algorithm of 2.4 to find the median dy of Sp. dy will
be the label of the root. then clearly |S<| < |S|/2 and |Ss| < |S|/2 where Sc =
{r € S; zg < do} and S5 = {& € S; z¢9 > dp}. We use the same algorithm
recursively to construct dd-tree for S and S5 (starting at coordinate 1) and a
(d — 1)-dimensional tree for S—. This algorithm will clearly construct an ideal dd-
tree T for S. The bound on the running time can be seen as follows. In every
node v of T we spend O(|S(v)|) steps to compute the median of a set of size |S(v)].
Furthermore, S(v) N S(w) = 0 if v and w are nodes on the same depth and hence

Y IS)<n

d(v)=k

for every k, 0 < k < d + logn. Thus the running time is bounded by

> ogswh=o( ¥ ¥ Ise))

v node of T' 0<k<d+logn d(v)=k

=O0(n- (d+ logn)). |

Insertions into dd-trees are a non-trivial problem. A first idea is to use an analogue
to the naive insertion algorithm into one-dimensional trees. If x is to be inserted
into tree T', search for x in T" until a leaf is reached and replace that leaf by a small
subtree with two leaves. Of course, the tree will not be ideal after the insertion
in general. We might define weight-balanced dd-trees to remedy the situation, i.e.,
we choose some parameter «, say o = 1/4, and require that |S(z)| < (1 — a)|S(v)|
for every node v and all proper sons = of v. This is a generalization of BB[a]-
trees. Two problems arise. Both problems illustrate a major difference between
one-dimensional and multi-dimensional searching.
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The first problem is that although Theorem 1 is true for weight-balanced dd-
trees, Theorem 2 and 3 below are false, i.e., query time in near-ideal dd-trees may
have a different order than query time in ideal trees. More precisely, partial match
in ideal 2d-trees has running time O(,/n) but it has running time Q(n'/1088/3) =
Q(n®7°8) in weight-balanced dd-trees, o = 1/4 (Exercise 14). Thus weight balanced
dd-trees are only useful for exact match queries.

A second problem is that weight-balanced dd-trees are hard to rebalance. Ro-
tations are of no use since splitting is done with respect to different coordinates on
different levels. Thus it is impossible to change the depth of a node as rotations do.
There is a way out. Suppose that we followed path p = vg, v1,... to insert point z.
Let ¢ be minimal such that v; goes out of balance by the insertion. Then rebalance
the tree by replacing the subtree rooted at v; by an ideal tree for set S(v;). This
ideal tree can be constructed in time O(m - (d + logm)) where m = |S(v;)|. Thus
rebalancing is apparently not as simple and cheap as in one-dimensional trees. The
worst case cost for rebalancing after an insertion is clearly O(n - (d + logn)) since
we might have to rebuild the entire tree. However, amortized time bounds are
much better as we will sketch. We use techniques developed in 3.5.1 (in particular
in the proof of Theorem 4). We showed there (Lemmas 2 and 3 in the proof of
Theorem 4), that the total number of rebalancing operations caused by nodes v
with 1/(1 — @)t < |S(v)| < 1/(1 — @)*! during the first n insertions (and dele-
tions) is O(n - (1 — a)). A rebalancing operation caused by such a node has cost
O((1 —a)~%-(d+ 1)) in weight-balanced dd-trees. Hence the total cost of restruc-
turing a weight-balanced dd-tree during a sequence of n insertions and deletions
is

Y Om-(1-a)f-(1-a) (d+1))=0(n-logn- (d+Ilogn)).
0<i<O(logn)

Thus the amortized cost of an insertion or deletion is O(logn - (d + logn)). The
details of this argument are left for Exercise 13.

Dynamization (cf. 7.1) also gives us dynamic dd-trees with O((d+logn)-logn)
insertion and deletion time. Query time for exact match queriesis O((d+logn)-logn)
which is not quite as good as for weight-balanced dd-trees. However, dynamization
has one major advantage. The time bounds for partial match and orthogonal range
queries(Theorem 2, 3 and 4 below) stay true for dynamic dd-trees.

It is about time that we move to partial match queries. Let R = [lg, ho] X
o+ X [lg—1, hg—1] with [; = h; or [; = —oc0, h; = 400 be a partial match query. If
l; = h; then the i-th coordinate is called specified. We use s to denote the number
of specified coordinates. The algorithm for partial match queriesis an extension
of the exact match algorithm. As always we start searching in the root. Suppose
that the search reached node v. Suppose further that we split according to the i-th
coordinate in v and that key d; is stored in v. If the i-th coordinate is specified in
query R, then the search proceeds to exactly one son of v, namely the son via the
<-pointer if [; = h; < d;, the son via the =-pointer if I; = h; = d;, and ... . If the
i-th coordinate is unspecified in query R then the search proceeds to all three sons
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of v. Once we reach a leaf, we return it if it belongs to region R. The correctness
of this algorithm heavily depends on set S. We treat a favourable special case first:
invertible sets.

Definition: S C U = UyxU; X---xUy_1 is invertible if for all z = (zq,...,z4-1) €}}
S,y = (yo0,---,Yd—1) € S: x; = y; for some ¢ implies x = y. 1

A set is invertible if all projection functions are injective when restricted to S.

Theorem 2. Let T be an ideal dd-tree for invertible set S CU = Uy x Uy X - -+ X
Ug_1. Then a partial match query with s < d specified components takes time

8

O(d - 2475 - npl=1d).

Proof: Let T' be the subtree of T' consisting of all nodes visited by the search. It
suffices to show that the number of nodes of T” is bounded by O(d-29~*.n1=%/). A
node of 7" is called branching if it has a proper son and non-branching otherwise.
Since S is invertible all descendants of non-branching nodes are non-branching.
Hence all branching nodes can be reached by following <- and >-pointers only. A
branching node of 7" is a proper branching node if it has two proper sons.

We claim that there are at most 208 )/d1-(d=3) proper branching nodes in 7".
This follows from the fact that at most d — s out of any d consecutive nodes on any
path through 7" are proper branching nodes, because only d — s out of d consecutive
nodes split according to unspecified components. Also d(v) = sd(v) < logn for all
branching nodes. Hence there are at most [(logn)/d] - (d — s) proper branching
nodes on any path through 7" and thus the bound follows. It remains to count the
improper branching nodes and the non-branching nodes in 7”. Again consider any
path through 7’. Then there can be at most d consecutive nodes which are not
proper branching nodes and hence the total number of nodes of 7" is

O(d - 2I*5"1-@=9)) = O(d - 29=* . n“T")
= 0O(d-2%% . nl74). 1

The behavior of the partial match algorithm on general sets is harder to analyze.
Let us look at an example first. Let U; = R, 0 < i < d, and let § = {0}* x
{0,...,m — 1}4=* for some m and k. Then |S| = m9~*. Consider first partial
match query R; which specifies the first s = k coordinates as being 0 and leaves the
remaining coordinates unspecified. Then the answer to the query is the entire set S
and hence the running time of any algorithm must be at least linear. Consider next
partial match query Ry which specifies the first s = k + 1 coordinates as being 0
and leaves the remaining coordinates unspecified. Then the query is “equivalent”
to a partial match query in a d — k = d — s + 1 dimensional set with one specified
coordinate. In view of Theorem 2 we therefore cannot hope to do better than
O(n'~1/(d=s+1)) time units. This is indeed the bound.
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Theorem 3. Let T be an ideal dd-tree for S, |S| = n. Then a partial match query
with s specified components takes time

O(f(d,d — s) - n™®G1=a=71) 4 (d + 1) - |A]).

Here A is the set of answers to the query and f(d,d— s) is some function increasing
in both arguments. f is independent of T and S.

Proof: Let T' be the subtree of T' consisting of all nodes visited in the search. We
split the set of nodes of 7" into three classes which we count separately. A node is
a tertiary node (belongs to the third class) if all descendants of v belong to A4, i.e.,
if S(v) C A. The number of tertiary nodes is clearly bounded by (d + 1) - |[A]. A
non-tertiary node is a primary node if it is reachable without using an =-pointer.
All other nodes of 7" are secondary nodes. We will show that the number of primary
and secondary nodes is bounded by

f(d’d_s)'nmax(%’l_d,;m)

for some suitable function f. The proof is by induction on d — s and for fixed d — s
by induction on s and n.

If d = s then partial match is equivalent to exact match and the claim follows
from Theorem 1, a). So let us assume d > s. If s = 0 then all the nodes are tertiary
and the claim is trivial. This leaves the case d > s > 1. If n is small then the claim
is certainly true by suitable choice of f(d,d — s).

The primary nodes are easy to count. We have shown in the proof of Theorem 2
that their number is O(d - 2¢7* - n!~*/4). It remains to count the secondary nodes.

We group the secondary nodes into maximal subtrees. If v is the root of such
a subtree then v is reached via an =-pointer and there is no other =-pointer on the
path to v. Thus sd(v) = d(v) — 1 and |S(v)| < n/2%¢() < 2.7/24)  Also there
can be at most 2/7/41"(4=%) such nodes v with d(v) = j. This follows from the fact
that all nodes on the path to v are primary nodes and hence at most [j/d] - (d — s)
of these nodes can be proper branching nodes; cf. the proof of Theorem 2.

In the subtree with root v we have to compute a partial match query on a
(d — 1)-dimensional set with s’ specified components. Here s’ = s or s’ = s — 1.
Also, s’ > 1. Note that v and all its descendants are tertiary nodes if s’ = 0. By
induction hypothesis there are at most

Fld—1,d—1— ) m™*E1- =)

non-tertiary nodes visited in the subtree with root v where m = |S(v)|. For the
reminder of the argument we have to distinguish two cases, s =1 and s > 2.

Case 1: s> 2.
Since d—1—s' < d—s, f is increasing, and d — s > 1 we conclude that the number
of non-tertiary nodes below v is bounded by f(d—1,d—s)-m'~1/(4=s+1) We finish
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the proof by summing this bound for all roots of maximal subtrees of secondary
nodes. Let RT be the set of such roots. Then

Y. fld—Ld—s)- ST

vERT
<fd=1,d—s)- 3 oMM (2p/27) 1
i>1
< (2n)1_d+s+1 . f(d . ].,d _ S) . 2(d—s) . Z[2(d—s)/d—1+1/(d—s+1)]j

j21

< (f(d,d—s) —d-297%) ! T

for suitable choice of f(d,d — s). Note that (d —s)/d—1+1/(d—s+1)=—s/d+
1/(d—s+1) <0 for 2 <s < d. Adding the bound for the number of primary nodes
proves the theorem.

Case 2: s = 1. Define RT as in Case 1. Since s > s’ > 1 we have s’ = 1. Consider
the case d = 2 first. Then the query below v degenerates to an exact match query
in a one-dimensional set, and hence there are at most d + log|S(v)| non-tertiary
nodes below v. Summing this bound for all nodes in RT we obtain

Y (d+1log|S(v)])

vERT
d+[log n
< ) 2l (4 log(2n/27))
j=1
[logn]—1
< old=s) Z o(llognl=k)/d (g 4 1 4 k)
k=—d

where we used the substitution k = [logn]| — j

[log n]
< 9d—s+1 nl/d . Z (d‘|‘ 14+ k)/2k/d
k=—d

S (f(2, ]_) —d- 2d—5) . nmax(%71_d+s+1)

by suitable choice of f(2,1); recall that d = 2 and s = 1. Adding the bound for the
number of primary nodes proves the theorem.

It remains to consider the case d > 3. We infer from the induction hypothesis that
the number of non-tertiary nodes below v € RT is bounded by f(d — 1,d — 2) -
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|S(v)[*=1/(4=1) in this case. Summing this bound for all v € RT we obtain

3 fd—1,d-2)-|S()| "7

fERT
d-+[log n] 1
< 3 fd—1,d—2)-20/EN (2n/29) -
=1
. d+[log n] e .
<@n)'mTT.f(d—1,d—2)-2¢1. Z (4T +atT -1y
j=1

<(2n)"TT . f(d—1,d—2)-c- (2n) @ D4
where c is a constant depending on d
<(f(d,d—1)—d-297%).nl"7

by suitable choice of f(d,d—1). Adding the bound for the number of primary nodes
proves the theorem. 1

Theorem 3 shows that d-dimensional trees support partial match querieswith rootic
running time. In particular if d = 2 and s = 1 then the running time is O(y/n+|A4|)
even in the case of general sets. We will see in Section 7.4.1 that this cannot be
improved without increasing storage. However it is trivial to improve upon this
result by using O(d! - n) storage.

Let S CU = Uy X --- x Ug_y. For any of the d! possible orderings of the
attributes build a search tree as follows: Order S lexicographically and build a
standard one-dimensional search tree for S. A partial match query with s speci-
fied components is then easily answered in time O(d - logn + |A]). Assume w.l.o.g.
that the first s attributes are specified, i.e., R = [lp, ho] X --- X [lg—1, hq—1] with
l; = h;for 0 < i< sandl; = —o0, hy = +o0 for s < i < d. Search for
key (lo,...,ls—1,—00,...,—00) in tree T corresponding to the natural order of at-
tributes. This takes time O(d - logn). The answer to the query will then consist of
the next |A| leaves of T' in increasing order. Thus logarithmic search time can be
obtained at the expense of increased storage requirement. For small d, say d = 2,
this approach is feasible and in fact we use it daily. After all, there is a German-
English and an English-German dictionary and no one ever complained about the
redundancy in storage.

Another remark about Theorem 3 is also in order at this place. The running
time stated in Theorem 3 is for the enumerative version of partial match retrieval:
“Enumerate all points in SN R”. A simpler version is to count only |S N R|. If we
store in every node v of a dd-tree the cardinality |S(v)| of S(v) then the counting
version of partial match retrieval has running time O(f(d,d — s) -nmax(%’l_d—;wl));
cf. Exercise 15.

The next harder type of queries are orthogonal range queries. Let R = [lg, ho| X
«++X[lg—1,hq—1] be a hypercube in Uy X - - - X Uj_1. Before we can explain the search
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algorithm we need to introduce one more concept; the range of a node. We can
associate a hypercube Reg(v) with every node of a dd-tree in a natural way, namely
Reg(v) = {z € Up x --- x Uy_1; an exact match query of z goes through v}. Reg(v)
is easily determined recursively. If v is the root then Reg(v) = Up X -+ X Ug_1.
If v is a son of w, say via the <-pointer, and w is labeled with d € U; then
Reg(v) = Reg(w) N {(zo,-..x4-1); x; < d}.

We are now in a position to describe the search algorithm for orthogonal range
query. Let R be the query hypercube. As always we start the search in the root r.
Then RN Reg(r) # 0. Assume for the inductive step that the search has reached
node v with RN Reg(z) # 0. There is at least one such son and all sons with that
property can be found in time O(1). Finally, if v is a leaf then we output the leaf
ifveR.

We analyze the running time of this algorithm only in two dimensions and leave
the higher-dimensional case to the reader. The proof for the higher-dimensional case
is completely analogous but somewhat more tedious.

Theorem 4. Let T be an ideal 2d-tree for S C Uy x Uy, |S| = n. Then an
orthogonal range query takes time

O(d-4%-n'"7 +d-|A|)
where A is the set of answers.

Proof: Let R = [ly, ho] x [l1, h1] be a rectangle in Uy x Uy and let 7" be the subtree
of all nodes visited when answering query R. Observe first that Reg(v) N R # 0 iff
v is visited in the search. Observe next that Reg(v) C R implies S(v) C A. Hence
the number of nodes v of T' with Reg(v) C R is certainly bounded by d - |A|. Tt
remains to count the number of nodes v with Reg(v) N R # () and Reg(v) — R # 0.
Let N be the set of such nodes. If v € N then there must be one of the four
bounding line segments of R which intersects Reg(v) but does not contain Reg(v).
Thus |N| < 4-t where t is the maximal number of nodes such that Reg(v) intersects
with but is not contained in any fixed horizontal or vertical line segment.

Claim: Let T be an ideal 2d-tree with n leaves and let L = {(z,y) € Uy x Uy; = =
lo,l1 <y < h1} be a vertical line segment. Then the number of nodes v such that
Reg(v) intersects L but is not contained in L is O(/n).

Proof: A node v of T is called a primary node if there is no =-pointer on the path
form the root to v. Let Py be the number of primary nodes v of depth k such that
Reg(v) intersects L (but is not contained in L). Then Py < P; < 2 and Pgyo < 2- Py
follows from the observation that a vertical line can intersect at most two of the
four Regions R;, Ry, R3, R4 associated with the proper grandsons of any node v.
This fact is illustrated in Figure 5. From Py < P; < 2 and Pj41 < 2 - Py, we infer
P, <2.2k/2

Next consider any primary node v of depth k such that Reg(v) intersects L.
Let z be the son of v via the =-pointer. Then S(z) C S(v) and hence |S(z)| <
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Ry !

Ry

Ry

Figure 5.

|S(v)] < n/2F. Also there are at most 2 - log S(z) descendants w of x such that
Reg(w) intersects L but is not contained in L. This can be seen as follows.

The tree with root s is a one-dimensional search tree for a set of nodes which
lie either on a horizontal or a vertical line. If they lie on a horizontal line then the
search below z follows exactly one path down the tree. If they lie on a vertical
line (which then must be the line z = ly) then Reg(w) intersects L but is not
contained in L iff either [; € Reg(w) or h; € Reg(w). The set of nodes w with
l1 € Reg(w) (hy € Reg(w)) form a path in the tree with root . Thus there are
at most 2 - log |S(z)| descendants w of = such that Reg(w) intersects L but is not
contained in L.

Putting everything together we have shown that the number of nodes v in T
such that Reg(v) intersects L but is not contained in L is at most

Yo 2.2¥2.2.10gn/2 =4-yn. > 20TlEM/2 (logn — k)

0<k<logn 0<k<logn
— O(v/n).

This proves the claim and the theorem. it

So in two dimensions (d = 2) 2d-trees support even orthogonal range queries with
running time O(y/n). Can we stretch the use of dd-trees even further? If we want to
talk about more complicated queries we have to make some additional assumptions
about the U;’s. Let us assume for the sequel that d = 2 and Uy = U; = R. It is
then natural to generalize orthogonal range queries to arbitrary polygon queries.
In a database which contains persons stored by income and number of children we
might ask for all persons where the income exceeds $1000 plus $200 for every child.
This query describes a triangle in two-space. Do 2d-trees support efficient polygon
searching? The answer is no (cf. Exercise 18) and the reason for this can be seen
clearly in the proof of Theorem 4. A line segment in arbitrary position can intersect
the regions associated with all four proper grandsons of a node v and in fact can
intersect the regions of all nodes of a 2d-tree. What can we do to overcome this
difficulty? First, every node v of the tree should define a subdivision of Reg(v)
such that any line segment can intersect only a proper subset of the regions in the
subdivision. One possible way of achieving this is to divide Reg(v) into four regions
by two straight lines.

Version: 19.10.99 Time: 11:39 -31-



32

Reg(v)

L,

Figure 6.

Then any straight line can intersect at most three of the four regions Ry, R», R3,
R4 plus a number of the “one-dimensional” regions defined by the lines themselves.
With the notation of the claim in the proof of Theorem 4 we would obtain Pyyq <
3. P, and hence could hope for a search time of 31087/ 1og4 — plog3/log4 < 0.8 Note
that the depth of the tree will be logn/log4 because we divide into four pieces in
every step. However, we have to be careful. The arrangement above is only correct
if the depth of the tree is indeed logn/log4, i.e., if the tree is ideal. Thus lines L,
and L, above have to be chosen such that |R; N S(v)| < [|S(v)|/4] for 1 < i < 4.
The following lemma, shows that this is always possible.

Lemma 2. Let S C R?, |S| = n and let nq,no,ns,ng be such that ny + na + n3 +
n4 < n. If Ly is a line such that ni +ns points of S are on one side of Ly and n3z+n4
points of S are on the other side of L, then there is a line L, such that the four
open regions Ry, Rs, R3 and R4 defined by L1 and Ly contain at most ny,ng, ns, Ny
points of S respectively. Also Ly can be computed in time O(n?).

Ry
Rz P R3
Ry

Ll L2

Figure 7.

Proof: For any point P on L; let f(P) be the minimum angle a between L; and Lo
such that regions R;, Ry contain at most n1,ny points respectively. Then f(P) is
a continuous function of P. Also limp_, o f(P) = 0 and limp_, o f(P) = .
Similarly define g(P) be the minimum angle o between lines L; and Ls such that
regions Rs, R4 contain at most ng and n4 points respectively. Then ¢(P) is a
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continuos function of P and limp_,_o, g(P) = 7 and limp_, {o, g(P) = 0. Hence
there is a point P such that f(P) = g(P). Then P and f(P) define line Ly, with
the desired property. This shows the existence of line Ly. It also shows that line L,

can be assumed to go through two points of S. Thus there are only n? candidates
for Lz.

L,

Figure 8.

Let Kq,...,Ky, k = n-(n — 1)/2 be the lines defined by all pairs of points
of S ordered according to their intersection point with L;. Let P; be the point of
intersection of K; and L;. Consider any fixed P;. Express all points of S in polar
coordinates with respect to P; and find among the n; + no points “above” Ly two
points which define the n;-th and (n; + 1)-th largest angle between line L; and the
line defined by P; and the point. This can be done in time O(n; + ny) by the linear
time selection algorithm 2.4. In this way we have computed a sector S; through
which line Ly must go if it were to intersect L; in P;. In a similar way we compute
sector S2 based on the points “below” L. If there is a line which goes through
sectors S; and S5 the we are done and have found line L. If sectors S; and Sy
do not have a line in common (as it is the case in Figure 8) then we can restrict
the search to one of the halflines defined by L; and P;. In Figure 8 this halfline is
shown bold. We summarize. In time O(n) we can either determine that L, goes
through P; or exclude one of the halflines defined by Ly and P;.

This suggests that we can use binary search to find line L,. We first compute
in time O(n?) lines Ky,..., K} and points Pi,...,Py. Next we find the median
point of Pi,..., P, in time O(n2?). Then we are either done or can restrict the
search to k/2 points. This decision takes time O(n). Thus line Ly can be found
in O(logn?) iterations and the cost of the i-th iteration is O(k/2¢ + n). Total cost
is thus O(n?). 1

Lemma 2 and the preceding discussion lead to:

Definition:

a) A 4-way polygon tree T for set S C R?, |S| = n is defined as follows: If set S
is collinear then T is an ordinary one-dimensional search tree for S. If set S
is not collinear then T' consists of a root r and six subtrees. There are two
lines L; and L, associated with r and there is one subtree for each of the six
sets SN Ry, SNRy, SNR3, SNRy, SN Ly, SN Ly. Here Ry, Ry, R3, Ry are
the four open regions defined by lines L; and Ls.
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b) A 4-way polygon tree T is ideal if for every node v of T and son  of v: If S(v)
is collinear then |S(x)| < [|S(v)|/2] and if S(v) is not collinear and z is one of
the four sons corresponding to regions Ry, ..., R4 then |S(x)| < [|S(v)|/4].

Theorem 5. Let S C R?, |S| = n.
a) An ideal 4-way polygon tree for set S can be constructed in time O(n?).

b) If T is an ideal 4-way polygon tree for S and R is a polygonal region with s
sides then A = RN S can be computed in time O(s - n'°83/1984 1 | A)).

Proof: a) If S is collinear then an ideal tree can be constructed in time O(n-logn),
the time required to sort S. If S is not collinear then lines L1, Ly dividing the plane
into four open regions containing at most [n/4] points of S each can be computed
in time O(n?) by Lemma 2. Hence T'(n), the time required to build a 4-way polygon
tree for n points, satisfies the recurrence

T(n) < O(n®+n-logn) +4-T([n/4]).

Thus T'(n) = O(n?) by Theorem 2.1.3.4.

b) Let R be a polygonal region with s sides. We triangulate R (cf. Section 8.4.2) and
compute R' NS separately for each of the s — 1 triangles R’ in the triangulation. It
therefore suffices to show that A’ = R’ NS can be computed in time O(n1°83/1084 1
|A’]) for a triangle R’. This shows that we may assume w.l.o.g. that R is a triangle.

We describe the search algorithm next. The search reaches only nodes v of
the polygon tree 7" with Reg(v) N R # (. Let us assume inductively that when
the search reaches node v we have determined Reg(v) Ne;, 1 < i < 3, for each of
the three sides of triangle R. Note that Reg(v) is convex and hence Reg(v) Ne; is
a line segment. Also note that Reg(v) C R iff Reg(v) Ne; =0 for 1 <3 < 3 or
Reg(v) C e; for some i (recall that we assume Reg(v) N R # 0). If Reg(v) C R
then the search proceeds to all six (two, if Reg(v) is one-dimensional) sons of v and
clearly Reg(w) C R for all sons w of v.

The case Reg(v) R is slightly more complicated. Let w be a son of v. Then
Reg(w) = Reg(v) N C where C is either a line or a cone-shaped region, as indicated
in Figure 8. Then e; N Reg(w) = (e; N Reg(v)) N (e; N C) and hence e; N Reg(w)
is readily computed for 1 < i < 3. If ¢; N Reg(w) # () for some 7 then certainly
RN Reg(w) # 0 and hence the search proceeds to node w. If ;N Reg(w) = () for all ¢
then the search proceeds to node w iff ¢ € R where ¢ = L1 N Lo is the intersection
of the two lines which are associated with node v. Note that Reg(w) C Rifc € R
and that Reg(w) NR=0ifc ¢ R.

It remains to estimate the complexity of this algorithm. Let 7" be the subtree
of all nodes visited in the search. It suffices to bound the number of nodes of 7".
If v € T' then Reg(v) N R # 0 and hence either Reg(v) C R or Reg(v) N R # 0
and Reg(v) — R # 0. In the former case we have S(v) C A and hence the number
of nodes with Reg(v) C R is O(|A|). In the latter case there must be an edge e of
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region R such that Reg(v) Ne # 0 but Reg(v) is not contained in e. It therefore
suffices to bound ¢ where ¢ is the maximal number of nodes v such that Reg(v)
intersects but is not contained in any fixed line segment L.

Claim: t < O(nlo83/log4),

Proof: Let L be any line segment. Let P, be the number of primary nodes v, i.e.,
Reg(v) is not a line segment, of depth k such that Reg(v)NL # (). Then P; =1 and
Py < 3 Py since L can intersect at most 3 of the four open regions associated
with the sons of any primary node. Thus P, < 3*.

Let v be a primary node of depth k. Then v has two sons z and y which are
not primary nodes. We have S(z) U S(y) C S(v) and |S(v)| < [n/4*] since T is an
ideal 4-way tree. The argument used in the proof of Theorem 4 shows that there
are at most 2 - log S(z) descendants w of x such that Reg(w) intersects L but is
not contained in L. The analogous claim holds true for y. Putting both bounds
together we conclude that

t< Y 4P -log[n/4M]

0<k<logn/log 4
< 3logn/log4 Z 8. 3k-logn/logd (logp 2. k)
0<k<logn/log 4
— O(3'°8 n/log4) _ O(nlog3/10g4) -

Can we improve upon 4-way polygon trees? Exercise 19 shows that one can always
cut any set of n non-collinear points into 2j open regions such that any straight line
will intersect at most j + 1 out of these regions and such that no region contains
more than [n/2j] points. Here j > 2 is any integer. Polygon trees based on
subdivisions of this form allow us to do polygon retrieval in time O(n!o8(i+1)/log 2y,
The exponent is minimized for 7 = 3 and is 0.77 in this case.
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7.2.2. Range Trees and Multidimensional Divide and Conquer

D-dimensional trees support orthogonal range queries with linear space O(n) and
rootic time O(n'~'/?). Range trees will allow us to trade space for time. More
specifically, we can obtain polylogarithmic query time at the expense of non-linear
storage or rootic query time O(n?¢ and space O((1/¢)?% - n) for any ¢ > 0. Also
range trees support insertions and deletions in a natural way.

Orthogonal range queries in one-dimensional space are particularly simple. If
S C Uy then any ordinary balanced tree will do. We can compute S N [lo, ko] by
running down two paths in the tree (the search path according to Iy and the search
path according to hg) and then listing all leaves between those paths. The query
time is O(logn + |A|) and space requirement is O(n). The counting version, i.e.,
to compute |S N [lg, ho]|, only takes time O(logn) if we store in every node the
number of leaf descendants. This comes from the fact that we have to add up
at most O(logn) counts to get the final answer, namely the counts of all nodes
which are sons of a node on one of the two paths and which lie between the two
paths. It is very helpful at this point to interpret search trees geometrically. We
can view a search tree as a hierarchical decomposition of S into intervals, namely
sets Reg(v) N S. The decomposition process is balanced, i.e., we try to split set S
evenly at every step, and it is continued to the level of singleton sets. The important
fact is that for every conceivable interval [ly, ho] we can decompose S N [ly, ho] into
only O(logn) pieces from the decomposition. Hence the O(logn) query time for
counting S N [lo, ho)-

This idea readily generalizes into two-dimensional (and d-dimensional space).
Let S C Uy x Uy. We first project S onto Uy and build a balanced decomposition
of the projection as described above. Suppose now that we have to compute S N
([0, ho] x [l1, h1]). We can first decompose [ly, hg] into O(logn) intervals. For each
of these intervals we only have to solve a one-dimensional problem. This we can
do efficiently if we also have data structures for al these one-dimensional problems
around. Each one-dimensional problem will cost O(logn) steps and so total run
time is O((logn)?). However, space requirement goes up to O(n - logn) because
every point has to be stored in logn data structures for one-dimensional problems.
The details are as follows.

Definition: Let S C Uy x Uy X+--xUy_q and let P = {iy,...,ix} € {0,...,d—1}.
Then p(S, P) = {(xi,,--.,%;,); * € S} is the projection of S onto coordinates P.
If P = {i} then we also write p;(S) instead of p(S, {i}). 1

Definition: Let m € N and let o € (1/4,1 —+/2/s). m is a slack parameter and
a is a weight-balancing parameter. A d-fold range tree for multiset S C Uy x Uy X
-+ X Ug_1, |S| = n is defined as follows. If d = 1 then T is any BB[a]-tree for S.
If d > 1 then T consists of a BB[a]-tree Ty for po(S). Tp is called the primary tree.
Furthermore, for every node v of Ty with depth(v) € m - Z there is an auxiliary
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tree T, (v). T,(v) is a (d — 1)-fold tree for set p(S(v),{1,...,d — 1}). Here S(v) is
the set of ¢ = (xg,...,24-1) € S such that leaf z( is descendant of v in Tj. |

The precise definition of range trees differs in two respects from the informal dis-
cussion. First, we do not insist on perfect balance. This will slightly degrade query
time but will allow us to support insertions and deletions directly. Also we intro-
duce slack parameter m which we can use to control space requirement and query
time.

Lemma 3. Let S,,(d,n) be the space requirement of a d-fold tree with slack pa-
rameter m for a set of n elements. Then S,,(d,n) = O(n - (c - logn/m)4~1) where

c=1/log(1/(1 - a)).

Proof: Note first that the depth of a BB[a]-tree with n leaves is at most ¢ - logn.
Thus every point z € S is stored in the primary tree, in at most c¢-log n/m primary
trees of auxiliary trees, in at most (c-logn/m)? primary trees of auxiliary-auxiliary
trees, ... . Thus the total number of nodes (counting duplicates) stored in all trees
and hence space requirement is

O(n- Y ((c-logn)/m)’) = O(n((c-logn)/m)*~"). "
n<i<d—1
We will use two examples to illustrate the results about range trees: m = 1 and
m = elogn for some ¢ > 0. If m = 1 then S,,(d,n) = O(n - (clogn)?~1) and if
m = elogn then S,, = O((c/€)?~! - n).

Lemma 4. Ideal d-fold range trees, i.e., |S(z)| < [S(v)/2] for all nodes v (primary
or otherwise) and sons x of v, can be constructed in time O(d - n -logn + n -
((logn)/m)4=1). Here m is the slack parameter.

Proof: We start by sorting S d-times, once according to the 0-th coordinate, once
according to the first coordinate, ... . This will take time O(d-nlogn). Let T,,(d, n)
be the time required to build an ideal d-fold tree for a set of n elements if S is sorted
according to every coordinate. We will show that Ty, (d,n) = O(n-((log n)/m)¢~1).
This is clearly true for d = 1 since O(n) time suffices to build an ideal BB[a]-tree
from a sorted list. For d > 1 we construct the primary tree in time O(n) and we have
to construct auxiliary trees of sizes ny,...,n;. We have ny+---+n; < n-(logn)/m
since every point is stored in (logn)/m auxiliary trees. Note that the primary tree
has depth logn since it is ideal. Hence

Trn(d,n) = O(n) + > Tr(d — 1,m;)

= O(n) +0(3_ i - (log n/m)*?)

= O(n - (logn/m)?=1). 1
If m = 1 then ideal d-fold trees can be constructed in time O(n - (log n)™ax(1,d-1))

and ifm = elogn they can be constructed in time O(d - n - log n).
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Lemma 5. Let Qp,(d,n) be the time required to answer a range query in a d-fold
tree for a set of n elements. Then @Q.,,(d,n) = O(logn-(c-(2™/m)-logn)?=1 +|A|).
Here ¢ and m are as in Lemma 3.

Proof: The claim is obvious for d = 1. So let d > 1 and let R = [lp, ho] X -+ X
[l4g—1,h4—1] be an orthogonal range query. We search for [y and hg in the primary
tree Tp. his will define two paths of length at most ¢ - logn in Ty. Consider one
of these paths. There are at most clogn nodes v such that v is a son of one of
the nodes on the paths and v is between two paths. Every such node represents
a subset of points of S whose 0-th coordinate is contained in [ly, ho]. We have to
solve (d — 1)-dimensional problems on these subsets. Let v be any such node and
let vy,...,v; be the closest descendants of v such that m divides depth(v;). Then
t < 2™~ 1 and auxiliary trees exist for all v;’s. Also we can compute S N R by
forming the union of S(v;) N ([l1,h1] X -+ X [lg—1, hq—1]) over all v;’s. Since the
number of v;’s is bounded by 2 - ¢ - ((logn)/m) - 2™~1 we have:

Qm(dan) <c: (2m/m) ’ logn : Qm(d -1 TL) + |A|
This proves Lemma 5. ]

If m = 1 then Q,,(d,n) = O(logn - (2 c-logn)4~! + |A|) and if m = elogn then
Qm(d,n) = O(logn - (c/€)*~! - n=9).

We close our discussion of range trees by discussing insertion and deletion al-
gorithms. We will show that the amortized cost of an insertion or deletion is poly-
logarithmic. Suppose that point z = (zg, 21, -+, Z4_1) has to be inserted (deleted).
We search for z in the primary tree and insert or delete it whatever is appropriate.
This has cost O(logn). Furthermore, we have to insert « into (delete z from) at
most (c-logn)/m auxiliary trees, ((c-logn)/m)? auxiliary-auxiliary trees, ... . Thus
the total cost of an insertion or deletion is O(logn - (clogn/m)4~1) not counting
the cost for rebalancing. Rebalancing is done as follows. For every (primary or
auxiliary or auxiliary-auxiliary or ... ) tree into which z is insert (from which z is
deleted) we find a node v of minimal depth which goes out of balance. We replace
the subtree rooted at v by an ideal d’-fold tree for the set S(v) of descendants of v.
Here d' = d if v is a node of the primary tree of an auxiliary tree, ... ; d—d’ is called
the level of node v. This will take time O(d' -q-log ¢+¢- (log g/m)? ~!) by Lemma 4
where ¢ = |S(v)|. Rebalancing on the last level (d’ = 1) is done differently. On
level 1 we use the standard algorithm for rebalancing BB[a/]-trees.

Worst case insertion/deletion cost is now easily computed. It is O(d? - n -
logn + n - (logn/m)?~1), essentially the cost of constructing a new d-fold tree
from scratch. Amortized insertion/deletion cost is much smaller as we demonstrate
next. We use Theorem II1.5.1.4 to obtain a polylogarithmic bound on amortized
insertion/deletion cost.

Note first that a point x is inserted into (deleted from) at most ((c-log n)/m)
trees of level 1 for a (worst case) cost of O(logn) each. Thus total rebalancing cost
on level 1 is O(logn - (c - logn/m)4~1).

d—1
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We next consider levels I, 2 < [ led. We showed (Lemmas 2 and 3 in the
proof of Theorem I11.5.1.4) that the total number of rebalancing operations caused
by nodes v at level [ with 1/(1 — a)* < |S(v)| < 1/(1 — @)'*! during the first
n insertions/deletions is O(T'4;; - (1 — «)*), where TA;; is the total number of
transactions which go through nodes v at level [ with 1/(1 —a)® < |S(v)| < 1/(1 —
a)i*tl; here 0 < i < c-logn. The cost of a rebalancing operation caused by
such node v is O(l - (1 — &)=+ . (5 + 1) + ((i + 1)/m)'~') by Lemma 2. Also
TA;; <n-((c-logn)/m)¢=! by a simple induction on ! starting with | = d. Thus
total rebalancing cost at levels [ > 2 is at most

Yo Y nlelogn)*(1-a) - (1—a) Y i+ 1+ ((+1)/m)' )

2<1<d 0<i<c-logn

=0( Y n-((c-logn)?™"-1-((clogn)® + (c-logn/m)' - (m/l))
2<1<d

=0(n-(m*+m-d)-((c-logn)/m)?).

We summarize in

Lemma 6. Amortized insertion/deletion cost in d-fold range trees with slack pa-
rameter m is O((m2? + m - d) - ((c - logn)/m)?).

Proof: By preceding discussion. ]

Theorem 6. d-fold range trees with slack parameter m > 1 and balance parameter
a € (1/4,1—+/2/2) for a set of n elements take space O(n((c-logn)/m)41), support
orthogonal range queries with time bound O(logn - (c - (2™/m) - logn)4=1 + |A|),
and have amortized insertion/deletion cost O((m? +m - d) - ((c-logn)/m)?). Here
c=1/log(1/(1 — «)). In particular, we have:

slack space query time insertion/deletion time

1 n-(c-logn)? ! |logn-(2-c-logn)i! d- (c-logn)?

e-logn n - (c/e)d1 (c/e) 1. n=d . logn | (c/e)?-((e-logn)?+d-e-logn)

Proof: Immediate from Lemmas 1 to 6. ]

Search trees are always examples for divide and conquer. Range trees and dd-
trees exemplify a variant of divide and conquer which is particularly useful for
multidimensional problems: multidimensional divide and conquer. A problem of
size n in d-space is solved by reducing it to two problems of size at most n/2 in
d-space and one problem of size at most n in (d — 1)-dimensional space. Range
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trees (with slack parameter m = 1) fit well into this paradigm. A set of size n is
split into two subsets of size n/2 each at the root. In addition, an auxiliary tree is
associated with the root which solves the (d — 1)-dimensional range query problem
for the entire set. Other applications of multidimensional divide and conquer are
dd-trees and polygon trees, domination problems (Exercises 22, 23) and closest
point problem (Exercise 24, 25).

In fixed radius near neighbors problem we are given a set § C R? and a real
e > 0 and are asked to compute the set of all pairs (z,y) € S x S such that
dista(z,y) < e. Here distz(x,y) = (D g<icq(®i — :)2)'/2 is the Euclidian or Lo-
norm, but similar approaches work for other norms. We denote the set of such pairs
by eNN(S). Of course, e NN(S) might be as large as n?, n = | S|, if the points of S
lie very dense. In most applications dense sets do not arise. We therefore restrict
our considerations to sparse sets.

Definition: Let ¢ > 0, ¢ > 0. Set S C R? is (¢, c)-sparse if for every z € R? we
have [{y € S; dist2(z,y) < €}| < ¢, i.e., any sphere of radius e contains at most ¢
points of S. ]

If S is (e, c)-sparse then |eNN(S)| < c- n, i.e., the size of the output is at most
linear. We apply the paradigm of multidimensional divide and conquer to solve the
fixed radius near neighbors problem.

If d = 1 then a simple method will do. Sort set S in time O(n - logn) and
then make one linear scan through (the sorted version of) S. For every point € S
look at the ¢ preceding points in the linear order and find out which of them have
distance at most € from z. In this way, we can produce e NN (S) in time O(c-n) from
the sorted list. Altogether we have an O(n-logn+c-n) algorithm in one-dimensional
space.

if d > 2 then we project S onto the 0-th coordinate and find the median
of the multiset po(S) of projected points. Let that median be m. We split S
into two sets A and B of n/2 points each, namely A contains only points ¢ € S
with o < m and B contains only points x € S with g > m. We apply the
algorithm recursively to d-dimensional point sets A and B. This will compute
all pairs (z,y) € eNN(S) where both points are in either A or B. It remains to
compute pairs (z,y) € eNN(S) withz € Aandy € B. If z € A, y € B and
(z,y) € eNN(S) then z and y both belong to the slab SL of width 2 - € around
hyperplane zo = m, i.e., SL = {z = (xq,...,24-1) € S; |zo — m| < €}. So all we
have to do is to solve e NN on point set SL. SL is not quite (d — 1)-dimensional.
We make it (d — 1)-dimensional by projecting the points in SL onto hyperplane
zg = m, i.e., we compute S’ = {z'; there is z = (zg,...,24-1) € SL such that
z' = (#1,...,24-1)}. The crucial observation is that S’ is still sparse,and that
eNN(S’") “contains” eNN(SL).

Lemma 7.

a) If S is (e, c)-sparse then S' is (¢, (1 + 2¢) - ¢)-sparse.
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b) Ifz,y € SL and dista(x,y) < € then dista(z',y') < e.

Proof: a) Consider any point ' = (m,z1,...,24—1) on hyperplane o = m.
We have to compute a bound on the number of points in the “strange” sphere
SSPH(z') ={y € S; lyo —m| < eand (D ;< cqlxi — y:)>)'/? < €} with center z'
because exactly the projections of the points in SSPH (z') have distance at most €
from 2’ in (d — 1)-dimensional set S’. It is easy to see (cf. Figure 10 for an il-
lustration in 2-space) that SSPH(z') can be covered with (1 + 2¢) d-dimensional
spheres of radius €. Any such sphere can contain at most ¢ points of S and hence
|SSPH (z')| < (1 + 2%) - c. This shows that S’ is (e, (1 + 2¢) - ¢) sparse.

g —=—m

Figure 10. Tllustration in 2-space.
b) obvious. 1

Lemma 7 holds true for other norms as well; however, factor (1+ 2¢) in 7a) depends
on the norm. We infer from Lemma 7 that we can compute e NN(SL) by solving
the (d — 1)-dimensional problem on S’ and then going through list e NN(S’) and
throwing out some pairs. This leads to

Theorem 7. Let d be fixed and let S CR? be (e, c)-sparse. Then eNN(S) can be
computed in time

O(n - (logn)¢/d! + (1 +¢&) -n- (logn)?'/(d —2)!),
where ¢ = [[oc;c4(1+ 2t) . c and n = |S|.

Proof: We will first derive a recurrence on T'(4,n), the time to compute e NN (S)
for any (e, c)-sparse set S, |S| =n and s CR’, i < d. We have

T(i,n) <2-T(i,n/2) +T(i—1,n) + O(n)
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since in order to solve an i-dimensional problem on n points we spend O(n) time
on computing the median and splitting the set and then solve two i-dimensional
problems on n/2 points each and one (i — 1)-dimensional problem on at most n
points. Also

T(:,1) =0

since subproblems of size 1 are trivial and
T(1,n) =0O(n-logn+¢é-n)

since all one-dimensional problems generated are (e, c)-sparse by Lemma 7a) and
therefore can be solved in time O(n - logn + é-n). It is not too hard to verify by
induction on n and-i that T'(i,n) = O(n- (logn)t/i'+ (1+¢é)-n- (logn)*=1/(i —1)!).
We leave this for Exercise 25. We will rather show how one arrives at the bound
for T'(i,n).

Observe first that it suffices to study recurrence

U(i,n)=2-U(i,n/2)+U@E—1,n)+n fori>2,n>2
U@i,1) =0 for i > 1
U(l,n)=n-logn+é-n for n > 2

because we have T'(i,n) = O(U(i,n)). We solve this recurrence for n a power of
two. Let F(i,k) = U(i,2*)/2%. By substitution we obtain

V(i k) =V(@E,k-1)+V(i—1k)+1 fori>2k>1
V(i,0) =0 for i > 1
V(,k)=k+é for k >1

This further simplified by setting V' (i, k) = W(i,k) — 1. Then
Wi, k)y=W(,k—1)+W(E—1,k) fori>2k>1
W (i,0) = 1 for i > 1
W(Lk)=k+1+é for k > 1

If the boundary conditions were simpler, namely all equal to one, then this recursion
has a simple combinatoric interpretation. It counts a set of paths. More precisely,
if

X(i,k) = X(6,k— 1) + X(i — 1, k) for i > 1,k > 1
X(i,0) = X(0,k) =1 for i,k >0

then X (i, k) is exactly the set of paths from the origin (0,0) to point (i, k) where
the set of edges consists of unit length horizontal and vertical lines.

Every path from (0,0) to (4, k) has length Scnumber of edges) i+ k and contains
exactly ¢ horizontal edges. Hence X (i, k) = (*£"). In particular, X(1,k) = k+1. It
is now easy to express W in terms of X. Write W (i, k) = W1(3, k) + W2 (i, k) where

Wi k) = W,(i — 1,k) + W;(i,k—1) j=1,24i>2k>1
Wi (LE) =k +1 Wa(lk)=eé for k > 1
Wi(,0) =1 Ws(i,0) =0 fori>1
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k
1 ) 1 )

3 1—-4-10—-20—
0 ) 0 )

2 1-3—-6—-10—~
1 ) 1 )

1 1-2—-3—-4~—
0 ) 0 )

0 1-1—-1-1—
0 1 2 3 i

Figure 11. korrigiert,

Then W1(i,k) = X(i,k) and Ws(i, k) = é- X(i — 1,k — 1) and therefore W (i, k) =
X(i,k) 4+ é- X(i — 1,k — 1). Reversing all substitutions we obtain

T(i’n):()(n_ [(i+liogn> e (i—l%i—ioi;n—l)] _n>

for n a power of two. Finally using the approximation

a+b b pa-1
(27) = +e (@)
for a fixed and b growing we have
T(d,n) = O(n - (logn)?/d! + (1 4 &) - n - (logn)*~1/(d — 2)!),

for n a power of two. It is now tedious but straight forward to verify by induction
that this formula holds for all n (Exercise 25). 1

We will next describe two improvements upon the basic algorithm for the fixed
radius near neighbors problem. Presorting, the first improvement, is of general
interest and was used already in the proof of Lemma 2; the strategy of finding good
dividing lines, the second improvement, helps only in a few situations.

We observed already that the one-dimensional problem can be solved in linear
time if set S is sorted, but that it takes time O(nlogn) for general inputs. When
we solve a two-dimensional problem we reduce it to a collection of one-dimensional
problems of total size O(nlogn). (The recurrence for the total size S(n) of all
one-dimensional problems generated from a two-dimensional problem is S(n) =
n+2-S(n/2) which solves for S(n) = (n-logn).) We have to sort all these problem
instances for a total cost of O(n - (logn)?). A better strategy is to sort all of S
according to y-coordinate once and then to pull out only sorted subproblems in
the divide-step. If we proceed according to this strategy then all one-dimensional
problem instances generated are sorted and hence can be solved in linear time. Thus
two-dimensional problems can be sorted in time O(n - logn). This generalizes to
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Theorem 8. Let d > 2 be fixed and let S C R? be €, c)-sparse. Then eNN(S)
can be computed in time O((1 + ¢) - n - (logn)*~'/(d — 2)!) where n = |S| and
¢=cJlocica(l+2%).

Proof: We sort S once according to the last coordinate in time O(nlogn). Then
we proceed as described above. With a little care all subproblems generated are
also sorted. Hence we obtain the same recurrence as in the proof of Theorem 7 with
the only change that T'(1,n) = O(n + ¢- n) now. This will save one factor of logn
throughout. ]

Theorems 7 and 8 derive upper bounds on the performance of a multi dimensional
divide and conquer algorithm for the fixed radius near neighbor problem. Are there
any sets S C R? where this upper bound is actually achieved? Let us look at
the two-dimensional case. If the points of S crowd into a very narrow, say width
< €, vertical slab then all subproblems generated will have indeed maximal size
and so our algorithm will run very long. A similar observation holds true in higher
dimensional space. however, this observation also suggests a major improvement
upon the basic algorithm. There is no a-priori reason for only looking at vertical
dividing lines, we can also look for horizontal dividing lines and choose whatever
is better. A “good” dividing line is a line which divides set S into (nearly) equal
parts, defines a small (size O(n)) lower dimensional subproblem which is easy to
find. Good dividing lines always exist. We content ourselves to a discussion in the
two-dimensional space and leave the general case to the reader.

Lemma 8. Let S C R?, |S| = n, be (¢,c)-sparse. Then there exists a line L
orthogonal to one of the axes such that

1) no half-space defined by L contains more than 4 - n/5 points of S;
2) the slab of width 2 - € around L contains at most /36 - ¢-n/5 points of S.

Proof: For i, ¢ = 0,1, let I; = min{a; x; < a for at least n/5 points of S} and
h; = min{a; x; < a for at least 4-n/5 points of S}. Next consider lines L;; = {y €
R? y; =0+ (2-5+1)-€,0<j<(hi—1;)/2-€—1, and the slabs of width 2 - ¢
around them, i.e., SL;; = {y € R% ;+2-j-e<y;<li+2-(j+1)- €}.

| slab |
 Skia
——1" Y dh y—
€ 2t € 2t €
l; Ly L L; h;

Figure 12.
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Claim:
a) For every i and j: No half-space defined by L;; contains more than 4 - n/5
points of S.
b) For everyi: If (h;—1;)/2-€ > 1/n/(20 - c) then there is a j such that |SNSL;;| <
36 -c-n/b.

c) There is an ¢ such that (h; —1;)/2-€ > 1/n/(20 - ¢).

Proof : a) Since there are n/5 points z of S with z; < I; there are clearly that many
points with z; <1I; 4+ (2-j+ 1) - e. Also here are less than 4-n/5 points z € S with
z; < h; and hence less than 4-n/5 points z € S with z; <[; + (2-j+ 1) - € < h;.
This proves a).

b) Slabs SL;;, j > 0, are pairwise disjoint and contain at most 3 - n/5 points of
S together. If (h; — 1;)/2 - € > 1/(1/20 - ¢) - n then there must be one j such that

|Sﬂ SLij| < 4/36 -c-n/5.

h1

Iy
Ry

lo ho

Figure 13. Illustration of part c).,

c) Assume otherwise. Then (h; — ;) < e-+/n/5-cfor ¢ =0,1. Let R; = {y €
R? I; < y; < h;} and let C = R; N Ry. Furthermore, let f = |C N S| and
n; = |[(Ri—C)NS|. Then f+n; > 3-n/5since |[R;NS| > 3-n/5and ng+ni1+f <n
since sets Ry — C, Ry — C, C are pairwise disjoint. Thus n > ng +ny + f =
(no+f)+(mi+f)—f>6-n/5—for f >n/5. C isarectangle whose sides have
length at most €-4/n/5 - ¢ and is hence easily covered by n/5 - ¢ circles of radius e.
Since S is (e, c)-sparse any such circle contains at most ¢ points of S and hence
f<(n/5-¢)-c=mn/5, a contradiction. 1

Note that Lemma 8 also suggests a linear algorithm for finding a good dividing line.
Compute lg, ho, 1, k1 in linear time using the linear median algorithm (Section 2.4).
Let us assume w.l.o.g. that (hg —lp) > €-4/n/5 - c. The proof of Lemma 8 shows

that one of the slabs SL; ;, 0 < j < 4/n/20 - ¢ contains at most /36 - ¢ - n/5 points

of S. The number of points in these slabs can be determined in linear time by
bucket sort (Section 2.2.2). Thus a good dividing line can be determined in linear
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time. We obtain the following recurrence for 7'(2,n), the time to compute e NN (S)
for an (e, ¢)-sparse set S CR?, |S| = n.

T(2,n) = n/5§1£a3X4-n/5 T(2,n1) +T(2,n—nq)+T(1,4/36 - c-n/5) + O(n).

Since T'(1,n) = O(nlogn) we conclude

T(2 = T(2 T2,n — .
@)= max (T(2m)+T(2n—m)+O0(n)

Theorem 9. The good dividing line approach to the fixed radius near neighbor
problem leads to an O(nlogn) algorithm in 2-dimensional space.

Proof: In Section 3.5.1 Theorem 2a) we showed that the recurrence above has
solution T'(2,n) = O(nlogn). 1

Theorem 9 also holds true in higher-dimensional space. In d-space one can always
find a dividing hyperplane which splits S into nearly equal parts (1/5 to 4/5 at the
worst) and such that the slab around this hyperplane contains at most O(n!~1/9)
points. This leads directly to an O(nlogn) algorithm in d-space (Exercise 26).

7.2.3. Lower Bounds

This section is devoted to lower bounds. We cover two approaches. The first
approach deals with partial match retrieval in minimum space and shows that rootic
search time is the best we can hope for. In particular, we show that dd-trees are
an optimal data structure. The second, more general approach deals with a wide
class of dynamic multi-dimensional region searching problems. A region searching
problem (cf. introduction to 7.2) over universe U is specified by a class I' C 2Y
of regions. We show that the cost of insert, delete and query operations can be
bounded from below by a combinatorial quantity, the spanning bound of class T
The spanning bound is readily computed for polygon and orthogonal range queries
and can be used to show that polygon trees and range trees are nearly optimal.

7.2.3.1. Partial Match Retrieval in Minimum Space

dd-trees are a solution for the partial match retrieval problem with rootic search
time and linear space. In fact, dd-trees are a minimum space solution because
dd-trees are easily stored as linear arrays. The Figure 14 shows an ideal dd-tree
for (invertible) set S = {(1,II),(2,IV), (3,11I), (4, V), (5,I)} and its representation
as an array. The correspondence between tree and array is the same as for binary
search (cf. Section 3.3.1).
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1 11

2 v

3 11T

5 I

4 VvV
[(1,1D) | {(2,1V)) | (5,1 |[(4,V)]

Figure 14. An ideal dd-tree.

The aim of this section is to show that dd-trees are an optimum minimum space
solution for the partial match retrieval problem; more precisely, we show Q(nl_l/ d)
is a lower bound on the time complexity of partial match retrieval in d-dimensional
space with one specified component in a decision tree model of computation. The
exact model of computation is as follows.

Let Sy, be the set of permutations of elements 0,1,...,n—1. ForIly,...,IIz_1 €
Sy let A(IIy,...,Pig—1) = {(4,1(3),...,14-1(¢)); 0 < i < n} and let I, =
{A(My, ..., My_y); My,...,Tz_1 € S,}. Then |I,| = (n!)4"1. I, is the class of
invertible d-dimensional sets of cardinality n with components drawn from the
range 0,1,...,n — 1. We restrict ourselves to this range because in the decision
tree model of computation only the relative size of elements is relevant. A decision
tree algorithm for the partial match retrieval problem of size n consists of

1) a storage assignment SA which specifies for every A € I, the way of stor-
ing A in a table M[0..n —1,0..d — 1] with n rows and d columns, i.e., SA :
(Sp)4! — S, with the following interpretation. For allIIy, ... ,II;_; € S, and
II = SA(Hl, . ,Hd—l): ’I‘uple (i,Hl (l), . ,Hd_l(’i)) of set A(Hl, e ,Hd—l) is
stored in row II(7) of table M, ie., M[II(3),j] = II;(i) for 0 < j < d — 1,
0 < ¢ < n. Here Il is the identity permutation.

2) d decision trees Tp,...,Tq—1. Trees T are ternary trees. The internal nodes
of tree T are labelled by expressions of the form X 7 M[i, j] where 0 < ¢ < n.
The three edges out of a node are labelled <, = and >. Leaves are labelled yes
or no.

A decision tree algorithm is used as follows. Let A € I,,, let y € R and let j €
[0..d —1]. In order to decide whether there is x = (zg,z1,...,24-1) € A with
z; = y we store A in table M as specified by SA and then use decision tree T} to
decide the question, i.e., we compare y with elements in the j-th column of M as
prescribed by T;.

Theorem 10. If SA,Ty,...,Ty_1 solves the partial match retrieval problem of
size n in d-space then there is a j such that depth(T;) = Q(n'~/9), i.e., the worst
case time complexity of a decision tree algorithm for the partial match retrieval
problem is Q(n'~1/4).
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Proof: The proof consists of two parts. In the first part we reformulate the problem
as a membership problem and in the second part we actually derive a lower bound.

Consider tree T}. It decides whether there is an tuple z = (zo,...,24-1) € 4
with z; = y, i.e., it decides membership of y in the projection of A onto the j-th
coordinate. It does so by searching in an array, namely the j-the column of table M.
The j-th column of table M contains n distinct elements, here integers 0,...,n—1.
The crucial observation is that these n different elements appear in many different
orderings. This observation leads to the following definitions.

For 0 < j < d letOT(j) be the set of order types occurring in the j-th column,
ie.,

OT(j) = {o € Sp; there are Ily,...,II;_1 € S, such that

g = SA(Hl, .. ,Hd_l) OH]-_I}.

This definition needs some explanation. Let I1q,...,II; ;1 € Sy, let IT = SA(II4, ...,
Iy_1), and let A = A(IIq,...,II;_1). When set S is stored in table M then tuple
(¢,I14(2), ..., IIg_1(3)) is stored in row II(Z) of table M, i.e., M[II(3),j] = I1;(¢). In
other words, M[H(Hj_l(l),j] contains integer [, 0 <[ < n, i.e.,, ITo Hj_1 is one of
order types occurring in the j-th column.

Lemma 9. There is a j such that |OT(jj)| > (n!)'~1/4.

Proof: The discussion following the definition of OT(j) shows that the mapping
(ILy, ..., Mg—1) = (00,...,04-1) where o; = SA(ILy,...,II4_1) 0 Hj_1 is injective.
Hence [[o<;<q-1 10T ()| > (n!)d-1, 1

Next, we describe precisely the computational power of decision trees 7;. Let
IT1 C S, be a set of permutations. A decision tree T solves problem SST(II) —
searching semi-sorted tables — if for every B = {29 < 1 < --- < zp_1}, every
¢ and every o € II: If B is stored in linear array M[0..n — 1] according to order
type o, i.e., M[o(l)] = z; for 0 <1 < n — 1, then T correctly decides = € B.

Lemma 10. T} solves SST(OT(j)) for 0 < j <d—1.

Proof: Note first that T} solves SST(OT(j)) for every B = {zg < z1 <+ < Tp_1}
if it does so for B = {0,1,...,n — 1}. Next let 0 € OT(j). Then there must be
I,,...,II;_; such that o = SA(II;,...,IIz_1) o H]-_l. In particular, if our partial
match retrieval algorithm is applied to set A = A(II;,...,II;_;) then A is stored in
table M[0..n—1,0..d—1] such that M[o(l),j] =1 for all {; i.e., B={0,...,n—1}
is stored in the j-th column of M according to order type o. Thus T} solves
SST(OT(35)). 1

Lemma 9 and 10 reduce the partial match retrieval problem to the searching semi-
sorted tables problem. Lemma 11 gives a lower bound on the complexity of the

latter problem.
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Lemma 11. Let IT C S, and let decision tree T solve SST(II).

a) For every injective mapping o : [0..k — 1] — [L..n]: [{II(k); II € II and
I(7) = o(i) for 0 < i < k}| < depth(T).

b) || < depth(T)".

Proof: b) Is a simple consequence of part a). Namely, let II, = {O|jo..k—1p; T € II
Then |[Tp| = 1 and |[Ix4q| < depth(T) - |II;| by part a). Hence [II| = |II,,|
depth(T)™.
a) Let o : [0..k — 1] — [1..7n] be injective, let IT € IT and let B = {zy < &1 <
+++ < Tp_1} be stored in table M[0..n — 1] according to II. Consider a search for
x, Tx_1 < ¢ < k. It defines a path in tree T leading to a leaf which is labelled
“no”. On this path z is compared with at most depth(T') distinct table positions,
say M[i1],..., M[ip], h < depth(T). We claim II(k) = ¢; for some [, 1 <1 < h.
Assume otherwise. Then T'[i;] # zj, for all [. Consider a search for x = .
it will lead to exactly the same leaf because the outcome of all comparisons is
unchanged. hence T' decides that xj does not belong to B, a contradiction. We
have thus shown that II(k) = ¢; for some [, 1 <1 < h < depth(T). 1

).
<

Theorem 10 is now an immediate consequence of Lemmas 1, 2 and 3. By Lemma 1,
there is a j with [OT(j)| > (n!)}~¥/4. By Lemma 2, T} solves SST(OT(j)) and
hence has depth |OT(5)|/™ by Lemma 3. Finally, |OT(5)[*/™ > ((n!)'~Y/4)1/" =
((n)¥/m)1=1/d = Q(n'=1/4) since n! ~ /2 - - n-(n/e)™ by Stirling’s approximation.
|

It is open whether Theorem 1 is also valid for more general models of computation.
In particular, it is not known whether the lower bound is valid in a more general
decision tree model where comparisons of the form T'[i, j] ? T'[h, j] are also allowed.
It is conceivable, that comparisons of this form can speed up searches considerably,
because they can be used to infer information about the storage assignment. This
point is followed up in Exercise 29. We should also emphasize at this point that the
restriction to minimum space solutions which is captured in the definition of storage
assignment is essential for the argument. After all, range trees provide us with
polylogarithmic search time if we are willing to use non-linear space. Exercises 30—
32 discuss various extensions.

7.2.3.2. The Spanning Bound

We introduce the spanning bound and use it to prove lower bounds on the com-
plexity of polygon retrieval and orthogonal range queries.

We will first define the region searching problem in an abstract setting. Let U
be the key space, let M be a commutative monoid (i.e., a set M with a commutative,
associative operation + : M x M — M and an element 0 € M such that z + 0=z
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for all z € M) and let I C 2V be a set of regions U. The I'-region searching problem
is to (efficiently) maintain a partial function S : U — M under the operations

Insert(z,m): precondition: z € dom S,z € U, m € M
: effect: S« SU{(z,m)}

Delete(z): precondition: x € dom S, z € U

: effect: dom S < dom S — {z}

Query(R): precondition: R € T’

: effect: output Y prgom s S(@)

This is in complete agreement to our previous discussion of searching problems. U
is the key space. The problem is to maintain a set of pairs (x,m), where x € U,
m € M; m is the “information” associated with key x. Insert and Delete add and
delete pairs and Query sums the information over a region R.

Next we fix the model of computation. There is an infinite supply vg, v1, v2, - . -
of variables which take values in M. Initially, O is stored in every variable. The
instruction repertoire consists v; < v; + v, v; < Input, Output < v;, 3,5,k >
0. Exercise 33 discusses a larger instruction repertoire. A program is given by
an (infinite) state space Z, an initial state zy inZ corresponding to the empty
function S, and three functions fr, fp, fg. Here fr : U X M x Z — Z x Ins”,
fp :UXZ — ZxIns" and fg : ' Xx Z — Z x Ins™ where Ins* is the set of
all sequences of instructions from the repertoire. Function f; has the following
semantics. If the algorithm is in state z € Z, operation Insert(x,m) is to be
executed, and fr(z,m,z) = (z',0) then 2’ is the new state and sequence o € Ins*
is to be executed. The first instruction of o is of the form v; + Input and places
m into register v;. The remaining instructions of o are of the form v; + v; + vy.
The semantics of fp and fg are defined similarly, i.e., after a deletion a sequence
of additions is executed and after a query a sequence of additions followed by an
output instruction is executed.

A program Z, zy, f1, fp, fq is correct if it is correct for all choices of monoid M.
It is correct for a particular choice of M if the answers to all queries are computed
correctly.

The cost of inserting(z, y) in control state z is the number of instructions in o,
where (2/,0) = fr(xz, m, z). The cost of a sequence of operations is the sum of the
costs of the operations in the sequence. We use C,, to denote the maximal cost of
any sequence of n insertions, deletions and query operations (starting with empty
function S).

Example 1 (One-dimensional range trees): Let U =R, M = (Ny, +,0), and
let T be the set of intervals. The set Z of control states is the set of all BB[a]-
trees T for finite subsets of R, zp is the empty tree. Let T be a BB[a]-tree. With
every node of T we associate a variable v which contains the weight (= number of
leaves) in the subtree rooted at that node. An insert or delete requires the update
of O(log n) variables; the update requires only additions if we start updating at the
leaves. Also a query can be answered by summing O(logn) variables. ]
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The basic idea for the lower bound argument is as follows. It is intuitively clear and
will be made precise below that every variable contains the sum of S(x) over some
subsets of U. A query for region R is then answered by summing some variables, i.e.,
by assembling R N dom S from smaller pieces. If all queries are “easy” to answer,
then set R N dom.S can be assembled from only a few pieces for every R € T
This implies that we need to store information about some z € dom S in many (the
precise number depends on the structure of I') different places. If we delete z at this
point then a lot of variables become useless and must be recomputed after inserting
x with a different monoid value m. This argument suggests that updates are costly
if queries are cheap. The lower bound is then obtained by balancing the cost of the
two operations. more generally it suggests that there is a trade-off between query
and update cost. In the case of range trees we have seen such a trade-off (as an
upper bound) in Section 7.2.2.

Definition:

a) Let X C U, X finite and let R1, Rs,...,R; be all sets of the form X N R,
R eT. Then F = {Y1,..., Y}, 0 #Y; C X, is a spanning family for X
(with respect to I') if

1) every R; is the disjoint union of some Y;’s and
2) every Y; which is not a singleton is the disjoint union of some Y; and Y.

b) For F = {Yy,...Y,,} a spanning family define

t(F) = maxmin{t; there is a representation of R; by ¢ disjoint Y}’s in F'}
?

and
p(F)0 meeg)(({d; z is contained in d Y;’s}.

¢) For X C U, X finite, let
B(X) = min{max(¢(F'), p(F)); F is a spanning family for X'}

and
B, =max{B(X); X CU,|X| <n}. 1

We can now state the main theorem of this section.
Theorem 11. For every program Z, zy, f1, fp, fg : Crn > |n/16]B,.

Proof: We construct a sequence of operations Op,, Op,,..., Op, of total cost at
least [n/16]. The construction is in three steps. in step one we show that we
can restrict attention to normal form programs, in step two we associate the cost
of normal form programs with the spanning bound and in step three we finally
construct a hard sequence of operations.
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Definition: A program Z, zo, f1, fp, fg is in normal form if no variable is assigned
to twice.

Lemma 12. For every program there is a normal form program of the same cost.

Proof: Lemma 12 states that space can be used intentionally wasteful and we all are
experts in that. A formal argument goes as follows. Let the normal form program
have variables vy, v1,... and control set Z' = Z x W where W is the set of finite,
injective mappings from V = {vg,v1,...} to V' = {vg,v},...}. Any sequence o
of instructions is replaced by a sequence of instructions which assigns to unused
variables only. Association w € W is updated accordingly. ]

We open step two by fixing monoid M. Let M be the set of multi-subsets of U x N
with operation union. We will only consider sequences of operations Op,,..., Op,
where each Insert is of the form Insert(z,(x,t)). In addition, ¢ counts the number
of times = was inserted so far. Moreover, x was deleted exactly (¢ — 1)-times before
it is inseted before the ¢-th time. Let v be any variable. Then val(v), the value
stored in v, is a multi subset of U x N. set(v) is the projection of val(v) on U.

Let Opq, Op,, ... be a sequence of Inserts, Deletes and Queries. Let Sy, denote
function S after execution of Op,,... Op,. Then S38z) = (z,t) for some t for every
z € dom Sy t is the number of insertions Insert(z, ) in Op,, ..., Op,. We say that
variable v is useless at h iff val(v) Z Range(Sp). If v is not useless at h then v is
useful at h.

Lemma 13.
a) Ifv is useless at h then v is useless at h' for all h' > h.

b) For every h : F = {set(v); v is useful at h and set(v) # 0} is a spanning family
for dom Sj,.

Proof: a) If v is useless at h then val(v) Z Range(Sp), ie., there is a pair (z,t) €
val(v) — Range(Sy). Since (z,t) € val(v) and val(v) must be a sum of some of
the monoid elements assigned to variables after insertions,  was inserted at least ¢
times during Opy, ..., Op,. Since (z,t) ¢ Range(Sy) it was also deleted at least ¢
times. Hence (z,t) ¢ Range(Sy) for all b’ > h by our choice of Op,, Op,, . ... Since
val(v) will never change we infer that v is useless at all A’ > h.

b) We have to verify properties 1) and 2) of a spanning family. Let us verify
property 2) first. If v was assigned by v < Input, then set(v) is a singleton.
Hence if set(v) is not a singleton then v was assigned by v « u + w and hence
val(v) = val(u) + val(w). Since v is useful at h and hence val(v) C Range(Sy) we
conclude that set(v) = set(u) U set(w) and that set(u) = set(v) N set(w) = 0 (For
this inference it is important that we take the monoid of multi-sets and not the
monoid of subsets under union). This proves property 2).
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Property 1) can be seen as follows. let R € I" and suppose (for the moment) that
Opp41 = Query(R). The answer to this query, ie., > {S(z); * € RNdom Sy} is
computed as a sum of some variables. Call the set of these variables A. No variables
v € A can be useless at h since val(v) € Range(Sy) implies > {wal(v); v € A} €
Range(Sy). Also sets set(v), v € A must be pairwise disjoint by the argument used
to prove property 2). ]

We are now ready to construct sequence Opy, ... Op,, of cost at least |n/16] - B,.
Let m = [n/2] and let X = {z1,...,zx} C U, |X| < m be such that B(X) = B,,.
The following program defines Op4,..., Op,.
a) Let Op; = Insert(z;,(z;,k1))) for 1 <i <k
b) do |n/4] times
co at this point F' = {set(v); set(v) # 0 and v useful} is a spanning family
for X and hence B,, = B(X) < max{p(F),¢(F)} oc

Case 1: t(F) > By,:

Then there is R € T" such that at least B,, elements of F' are needed to span
RNdomS = RN X. We let the next operation be Query(R). Answering this
query requires to sum at least B,, variables.

Case 2: p(F) > By,:

Then there is x € X such that x is contained in at least B,, elements of F. Let the
next two operations be Delete(x), Insert(z,(z,t)) for the appropriate ¢. his
will make all variables v with (z,¢ — 1) € val(v) and set(v) € F useless. There
are at least B, such variables.

It remains to estimate the complexity of sequence Op,, Op,,..., Op,, defined
above. Let a (b) be the number of times case 1 (2) was executed. Then a+b > |n/4].
Also the total cost of Case 1 is at least a - B,,. In case 2 at least b - B,, variables
are made useless. hence at least that many variables must be assigned to. Thus

Cn, > min max{a-By,,b- By}
a+b=|n/4]

> [n/8] - By > |n/16] - By

where the last inequality follows from

Lemma 14.
a) B,, < B, form <n.
b) Bytn < By, + By, for all m and n.

Proof: a) Immediate from the definition.

b) Let X C U, |X| = m + n, be such that B(X) = Bj+n- Let X;,X5 be a
partition of X with |X;| < m, |X2| < n. Then there are spanning families F;
and Fy for X; and X, respectively with max(¢(F;), p(F;)) < B(X;) for i = 1,2.
F = Fy U F> is a spanning family for X = X3 U X, with ¢(F) = ¢(Fy) + t(F2) and
p(F) = max(p(F1), p(F2)). Thus Bpim = B(X) < maz(t(F),p(F)) < B(X1) +
B(X5) < By + Bp. 1)
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The significance of Theorem 11 lies in the fact that it relates the complexity of an
algorithm, a quantity which involves time and is therefore difficult to handle, with
a purely combinatorial quantity, which is much easier to deal with. Before we apply
the spanning bound to orthogonal range queries and polygon retrieval it is helpful
to visualize spanning families in terms of graphs.

Let T C 2V be a set of regions and let X = {z,...,2z,} C U. Let
Ri,R,,...,R, be all sets of the form X N R, R € T' (We may assume w.l.o.g.
that the number of sets is equal to the number of points because we can always add
either fictious points or regions). Furthermore, let F' = {Y3,...,Y;,} be a spanning
family. Let us construct a bipartite graph G with node set {z1,...,2,, R1,..., Ry}
and edge set E = {(z;, R;); z; € R;}. For every region R; let S; C {1,...,m} be
such that R; is the disjoint union of ¥;, [l € S;.

o1 contains

Z2

Tn Rn

Figure 15.

We can now “factor” graph G into disjoint complete bipartite graphs as follows.
For every Y; consider the complete bipartite graph with nodes {z;; z; € Y;} on the
X-side and {Rj; | € S} on the R-side.

Lemma 15. E is the disjoint union of the sets {(z;,r;); =; € Y; and |l € S;},
1<i<m.

Proof: Let (z;,R;) € E, i.e., ; € R;. then there is exactly one [/ such that z; € Y]
and | € S;. ]

For z; (R;) let deg(z;) (deg(R;)) be the degree of z; (R;) in the factored graph, i.e.,
deg(z;) = |{l; z; € V1}| and deg(R;) = |{l; | € S;}|. Then t(F) = max; deg(R;)
and p(F) = max; deg(z;). We want to derive lower bounds on max(t(F'), p(F)) =
max; ;(deg(R;),deg(x;)) which is certainly no smaller than

[Z deg(z) + Y deg(Rn] /2= [Z(u«eg(m + rdeg(¥))] /2 m

l

Here ldeg(Y;) = |Yi| and rdeg(Y;) = |{j; ! € S;}|- It thus suffices to prove lower
bounds on the total degree of sets Y7, 1 <1 < m.
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Application 1: Polygon Retrieval

We consider a special case of polygon retrieval: line retrieval. More precisely, we
assume U = R? and I the set of all lines in R?, i.e., T’ = {{(z0,z1) € R?; azg+br, =
c}; a,b,c €R,a # 0 or b # 0}.

Lemma 16. Let S = {y1,ys,...,yn} CR? and let Ly, ..., L, be a set of n. pairwise
distinct lines. Let r; = |L; N S| be the number of points of S on line L; and let
F ={Y3,...,Y,,} be a spanning family for S with respect to I". Then

max(t(F), p(F)) > Zri/2 - n.

Proof: Consider any Y;. We claim that min(ldeg(Y;), rdeg(Y;)) < 1. Assume
ldeg(Y;) > 2, i.e., there are points yj,yn, j # h, such that {y;,yn} C Y¥;. Since
two points determine a line there is at most one line Ly such that Y; C Li. Thus
rdeg(Yi) < 1.

Next observe that

|E| = Z ldeg(Y)) - rdeg(Y7) [by Lemma 15]
!

< D (ldeg(Y7) + rdegi¥g)inin(ldeg (Y)), rdeg (V1)) < 1]
1
< 2 - n - max(t(Flhydistussion following Lemma 15.]
Thus max(¢t(F), p(F)) > |E|/2-n= 1" 1:i/2 n. 1

We can now prove a lower bound on the complexity of line retrieval by exhibiting
a set of lines of large total rank.

Theorem 12. The complexity of line retrieval is Q(n*/?), i.e., there is a sequence
of n insertions, deletions and line retrievals of total cost Q(n*/3).

Proof: In view of Lemma 16 and Theorem 11 it suffices to construct a set of n
points and n lines such that most lines contain many points.
let A= |y/n] andlet S=[1..A] x [1..A]. For integers i, j,a,b let L(i, j, a,b)

be the line through points (7,j) and (¢ + a,j + b). We consider the set L of such
lines given by 1 < a < A/3,1<j < A/2,1<b< a, gcd(a,b)) = 1.
Claim:

a) If (i,j,a,b) # (i',j',a’,b") then lines L(3, j,a,b), L(i',j',a’,b') are distinct.

b) The number N of lines in L satisfies A2 > N = Q(A?).
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c¢) The total number of points from S on lines in L is Q(n*/3).

Proof: a) Assume that the two lines are identical. Then they must have identical
slopes and hence b/a = b'/a’. Since gecd(a,b) = ged(a’,b’) = 1 we conclude a = o
and b = bV'. Next, from (i,5) € L(¢',j',a,b) we conclude (3,5) = (¢',5') + = - (a,b)
for some z € R. Since gcd(a,b) = 1 we must have z € N and hence ¢ = i’ mod a.
From 1 < 4,4 < a we infer 7 = ¢’ and hence j = j'.

b) The number N of lines is certainly no larger than A/2 - (A/3)% = 42/2. Also it
is at least

AL/
A/2- Z a- |{b; gcd(a,b) =1 and b < a}|
a=1
AL/
> AY3 /2. Z |{b; gcd(a,b) =1 and b < a}|
a=A1/3/2

— Q(A4/3 . (A1/3)2) _ Q(A2)

since Y o, |{b; ged(a,b) =1 and b < a}| = (3/7%)-m?+O(m-logn) (cf. G. Hardy,
E. Wright: The theory of Numbers, Fourth Edition, Oxford University Press, 1965,
p. 265).

c) Every line in L contains at least (4/2)/AY/% = A?/3/2 points of S. Thus the
total number of points from S on lines in L is Q(A%/3) by part b) which in turn
is Q(n?/3). 1

Similar arguments can be used to show lower bounds of the same order for half-
space retrieval and circular queries (Exercises 34, 35). The best upper bound n% 7"
on polygon retrieval is by polygon trees. There is still a gap to close.

Application 2: Orthogonal Range Queries

The lower bound for orthogonal range queries is somewhat harder to obtain. How-
ever, there is a merit to that. It agrees with the upper bound.

Theorem 13. The complexity of orthogonal range queries in R? is Q(n - (logn)4),
i.e., for every n there is a sequence of n insertions, deletions and orthogonal range
queries of cost at least Q(n - (logn)?).

Proof: We will prove a lower bound of order (logn)? on the spanning bound. Let
A= [n'4] let X =[1..A]% Then |U| = A%. Also we consider the following class
of A% “one-sided” range queries. For y € X let R, = {x € U; z < y}, where z < y
if x; <y; for 0 <7 <d.

Let F = {Y1,...,Y,,} be a spanning family for X. As above consider the
complete bipartite graph associated with Y; (cf. discusion following proof of Theo-
rem 11), i.e., let In(Y;) = {z € X; =z € V}} and let Out(Y;) = {Ry; Y; is used to
represent R,,y € X}. Then Y, contributes all of In(Y;) x Out(Y;) to the bipartite
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graph G with edge set {(z, Ry); « < y} associated with the orthogonal range query
problem.

The idea for the proof is now as follows. If Y; contributes many edges to
graph G then most edges (z, R,) contributed by Y¥; must have z < y. This suggests
to weight the edges (z, R,) of G such that the weight is a decreasing function of
y — x. We can then hope to bound the weight of the edges covered by any Y;
from above and the weight of all edges from below. This would give the bound.
What weight function should we choose? It should be symmetric with respect to th
coordinates. About the simplest decreasing function with this property is to assign
weight

w(z,y) = ((Yo— o+ 1)(y1 — 1+ 1)+ (yg—1 — T4—1 + 1))}

to edge (z, Ry) for z < y.
Lemma 17. For every Y; € F':

Y wlzy) < @-mt (X)) +|0ut(V)))
z€In(Y))
R, €0ut(Y;)

Proof: Let m; = max{z;; (zo,Z1,...24-1) € In(¥})} and let B = {(mo—=xo, ..., ma—1—J
z4-1); (%o,---24-1) € In(V))}, C = {(yo — mo,---,Ya-1 — ma-1); (Yo,---Ya—1) €
Out(Y;)}. Then all elements of B and C are non-negative. This is obvious for B

and follows for C' from the fact that = € In(Y;), R, € Out(Y;) implies 2 € R, and
hence z < y. We have

Z w(x,y)sz(m—u,m—l—v)

z€In(Y;) u€B
Ry €0ut(Y;) vel
= > ((wo+wvo+1)(uge1+va1 +1)7"
u€B,weC

< Z ((wo +vo + 1)+ (ug—1 +va1 +1)) 7
u€BUC,ve BUC

Foriozo, i120,...,id_1201et

Qigiq...

. 1, if(io,il,...,id_l)EBUC;
'4-1 771 0, otherwise.
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Then
Qigiy.ig_1 * Vjojrefa—1
w(z,y) < —— . .
:EEIZTL;H) ’ 7:0>07--2-7i:d—1>0 (10 + Jo + 1) o (Zd—l + Jd—1 + ]-)
R,€0ut(Y;) §0>0,..05a—1>0

d
<(2-m)*- Z al i o

io,-.-,id,120
=(2-m)* [BUC]
<(2-m)* (1Bl +]C]) = (2- 1) - ([In(¥)] + | Out(Y1))])
Here the next to last inequality follows from the following fact.

Fact: Let a;y. i, ,,j,0j...j._, = 0 be d-fold subscripted variables. Then

Z Qigiy.ig_q1 ° a/j()jl--'jd—l < (2 . 7T)d . Z 0,2 ] )
7 ] 1) (25— ) 1) — 20%1...0d—1
020,130 (0t o+ 1) (fa-1 +jaa +1) 0 i1 20

J020,...,54—12>0

Proof: Case d =1 is implied by Hilbert’s inequality
Y aivai/i+i+1) <[> dd,
4,520 120

cf. G. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge University Press,
1967, p. 235. The general case can be shown along similar lines. A complete proof
can be found in M.L. Fredman, A Lower Bound on the Complexity of Orthogonal
Range Queries, JACM 28 (1981), 696-705. il

Lemma 18. For alln > 1, A= |n'/¢]
Y w(my) = A(A-log A = n - (logn)?)

(1771)Sw§yS(A7,A)

Proof: We have

> w(z,y)

(1"“71)SmSyS(A7""A)

Y

Z (o—2o+1)-- (Ya—1 —Ta—1+ 1))~
(1,001 <2< (4/2)
(0,...,0)<y—z<(A/2,...,A/2)

—apt (X 1wt 1))d

0<yo—z0<A/2

=Q((A-log A)?) = Q(n - (logn)?) |
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The proof of Theorem 13 is now easily completed. We have

max(p(F), () = (32 |m(xi) + |0ut(i)]) /2 n
!

[by the discussion following Lemma 15]

2; > w(zy)/((2-m?-2-n)

z€In(y;)
Ry€Out(y;)

[by Lemma 17]
= > w(z,y)/((2-m)*2-n)

(1,...,1)<zx<y<(4,...,A)
= Q((logn)?)
[by Lemma 18]

We have thus shown an Q((logn)?) lower bound on the spanning bound of orthog-
onal range queries. An application of Theorem 2 finishes the proof. ]

Theorem 13 shows that range trees are optimal. They allow to process n
insertions, deletions and queries in time O(n - (logn)?¢) and no data structure can
do better.

7.3. Exercises

1) Show that every integer n can be uniquely written as n = Zf:o (“1’) where

i—1<a; and a1 < az < ---ag. [Hint: Use the identity Zf:o (Tj’) = (T:Tl'l) -]

Analyze the k-binomial transformation based on this representation.

2) Let f :IN — IN be any non-decreasing function with f(i) > 2 for all i. Let S be
any set with n elements. Let i = |logn| and let n —2' = } .5 ;a;b’ where b= f(i)
and aj € Ng and 0 < a; < b. -

a) Design a dynamization method based on the following representation of set S.

S is represented by a large block Sj,rge containing 2¢ points and structures S IR
J > 0. S; contains exactly a; - &’ points of S.

b) Design a dynamization method based on the following representation of S. S
is represented by a large block Sj,r4. containing 2* points and structures Sj ;,
J>0,1<1<a;. A structure S;; contains exactly b’ points of S.

Determine Qp(n) and Ip(n) in both cases. Reformulate your answers and prove
Theorem 3.
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3) Reconsider weighted trees as investigated in Section 3.4. Let (31,...,08, be a
probability distribution and let rank(i) = |{j; B; > Bi}|- Is the depth of node 7 in
a weighted tree bounded by O(rank(i))?

4) Work out weighted interpolation search in detail. In particular, state precisely
under what assumption the O(loglogn) bound on search time applies to all blocks
constructed by weighting.

5) Describe algorithm Demote(y, a) in a weighted dynamic data structure in detail.
Analyze its running time.

6) Use weighting to turn sorted arrays + binary search into weighted dictionar-
ies. Do not only support successful but also unsuccessful searches. There are
probabilities associated with unsuccessful searches as well, i.e., start with a distri-
bution (e, B1, - - -, Bn, @y ) as in Section 3.4. [Hint: Define distribution vy, ...,7, by

i := Bi+ (ai—1+a;)/2 and use ideas similar to the ones used to prove Theorem 7.]

7) Do Exercise 6) for interpolation search.

8) Develop self-organizing (cf. 3.7) data structures for monotone decomposable
searching problems. [Hint: Use algorithm Promote of Theorem 8 to implement a
“Move to first group” or “Move up one group” heuristic. Choose the elements which
move down carefully (randomly!).]

9) Let T be an (a,b)-tree (cf. 3.5.2) with n leaves. For a node v let w(v) be the
number of leaves in the subtree with root v and let d(v) be the depth of v. Is there
a constant ¢ > 1 such that w(v) < n/c¥®) for all v and T? If not, what does this
mean for the dynamization of order decomposable problem based on (a, b)-trees. In
particular, is the remark following Lemma 2 valid?

10) Let VD(S) be the Voronoi diagram (cf. 8.3) of point set S C R®. Show that
Voronoi diagrams can be maintained in time O(n) per insertion and deletion. [Hint:
Use order decomposability.|

11) A half-space in R? is a set {(z,y) € R,az + by < ¢} for some a,b,c € R.
Show that the intersection of n halfspaces can be computed in time O(nlogn)
and that the intersection can be maintained under insertions and deletions in time
O((logn)?) per update. [Hint: The intersection is always a convex polygon. Use
order decomposability and the results of Section 8.1.]

12) For (z1,y1), (#2,y2) € R? let (z1,71) < (22,92) if 1 < x5 and y; < yo).
Show that the maximal elements of a set S C R?, |S| = n, can be computed in
time O(nlogn) and that it can be maintained in time O((logn)?) per insertion and
deletion.
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13) Define weight-balanced dd-trees (as outlined in the remarks following 7.2.1,
Theorem 2). Rebalance a weight-balanced dd-tree after an insertion/deletion by
replacing the largest subtree which went out of balance by an ideal dd-tree. Show
that the amortized cost of an insertion/deletion is O(8d + logn) - logn).

14) Are Theorems 2, 3 and 4 true for weight-balanced dd-trees? [Hint: Consider
weight-balanced 2d-trees with a = 1/4. Take a tree where every node of even depth
has balance 1/4 and every node of odd depth has balance 1/2. Consider a partial
match query with specified 0-th coordinate. This coordinate is chosen such that
the search is always directed into the heavier subtree.]

ub 15 Show that the counting version of partial match retrieval has time complexity
O(n'~1/(d=s+1)) in ideal dd-trees.

16) Compute function f(d,d— s) of Theorem 3 explicitely. Can you improve upon
the argument used to prove Theorem 3 in order to get a better bound on f(d,d—s)?

17) Prove Theorem 2.1.4 for arbitrary d.

18) Show that an arbitrary polygon query may have linear running time in an ideal
2d-tree.

19) A j-way subdivision of the plane consists of two infinite parallel lines Ly, Lo
and half-lines L3, Ly,...,L; such that the starting point of L; lies on L;_;, L;
intersects Ly and is fully to the right of L;_;. A j-way subdivision divides the
plane into 2 - j open regions and j one dimensional regions. Show that for every
set S CR, |S| = n, not all points of S collinear, there is a j-way subdivision such
that |S N R;| < [n/27] for any of the open regions R;. Discuss polygon trees based
on j-way subdivisions and show that they yield O(s - nl°8(+1)/10827) retrieval time.
Here s is the number of sides of the polygon.

20) Design a static data structure for orthogonal range queries which uses space
O(n'*¢) for some € > 0 and has query time O(d - logn). [Hint: Find a hierarchical
decomposition of set S into contiguous subsets such that every contiguous subset
of S can be found by using only a few pieces.]

21) Base range trees on (a,b)-trees (cf. Section 3.5.2). Reprove some or all of
Lemmas 1-4 in Section 2.2.

22) For z = (zg,...,24-1) and y = (yo, - - .,Yd—1) define z < y iff z; < y; for all 7.
For S CUyx---xUg—1 and z € S let rank(z) = |{y € S; y < z}| be the number of
points less than z. rank is also called the empirical cumulative distribution function.
Show that rank(z), z € S can be computed in time O(n - (log n)™2*(1:4=1)) " [Hint:
Use range trees.|
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23) Let S C Up x --- x Ug—1 and let C be defined as in Exercise 22). Show how
to compute the set of maxima of S in time O(n - (logn)™2*(1:4=2)) [Hint: Use
multi-dimensional divide-and-conquer.]

24) Design an algorithm for the fixed radius near neighbors problem with respect
to the Ly-Norm, p > 0. We have dist,(7,y) = (X gcicq|®i — yi\p)l/p. Casesp=1
and p = oo are particularly interesting. Here disto(z,y) = max; |z; — y;| is the
city-block metric.

25) Complete the proof of Theorem 7 of Section 7.2.2.

26) Extend Lemma 6 of Section 7.2.2 to d-space, d > 3. Use the extension to
generalize Theorem 9 to d-space.

27) Study the average case complexity of the e-nearest neighbor problem under the
following assumption. S is drawn from [0, 1]¢ according to the uniform distribution.

28) (Closest Pair). given S C R?, find z,y € S such that dist(z,y) < dist(z',y’)
for all 2’,y’ € S, ¢’ # y'. [Hint: Extend the algorithm for the e-nearest neighbor
problem.

29) (Searching semi-sorted tables): Let II = {m; there is a j € [0..n — 1] such
that m(i) = (¢ + j) mod n for all i}. Show a linear lower bound for SST(II) in the
decision tree model considered in Section 7.2.2.1. Show that O(logn) comparisons
suffice if comparisons of the form T'[h] 7 T'[k] are permitted! [Hint: use the proof
technique of Lemma 3 to prove the lower bound, use comparisons T'[h] ? T[k] to
find j for the upper bound.]

30) Extend Section 7.2.3.1, Theorem 1 to an average case lower bound.

31) Let SA,Ty,...,T4—1 be a solution for the partial match retrieval problem in the
sense of Section 7.2.3.1. Show [], ., ., depth(T;) = Q(n?~"), in particular depth(T)-
depth(T1) = Q(n) for d = 2. Modify dd-trees such that a query with specified 0-th
coordinate takes time O(n®) and a query with specified 1-th coordinate takes time
O(n'=%). Here 0 < a < 1.

32) Show that a partial match query with s specified components takes time
Q(n*~*/9) in the worst case in the decision tree model.

33) Show that Section 7.2.3, Theorem 2 stays true if additional instructions v; <
c vy, if v; =v; then ..., 4,57 >0, c €N, are allowed.

34) Show an n*/3 lower bound on the complexity of half-space queries. A half-space
in R? is of the form {(z0,z1); azg + bxy < ¢} for some a,b,c € R.
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35) Show an n*/3 lower bound on the complexity of circular queries, i.e., queries
of the form {(zg,z1); (zo —a)?+ (z1 — b)? < c}.

36) Let I' C 2™ be a set of regions and let B : N — IN be the spanning bound
with respect to I'. Show: there is an algorithm in the sense of Section 7.2.3.2 with
C, = O(B,logn). [Hint: Use Section 7.1, Theorem 5 on deletion decomposable
searching problems; show that there is a data structure S which supports deletions
in time B,, i.e., D4(n) = B,, and which can be built in time n - B,, i.e., Py(n) =
n- By
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