Exercise Sheet

Kurt Mehlhorn

January 10, 2018

Exercise 1 Let V be a finite set, let $s \in V$ be an element of V, and let $f : V \mapsto V$ be a function from V to V. We want to certify that f encodes a tree rooted as s. The assumption is that edges are oriented towards s and we have a self-loop at s, i.e., f(s) = s.

- 1. Design an algorithm for certifying that f encodes a tree with root s.
- 2. What piece of additional information would simplify the task?

Exercise 2 Let G = (V, E) be a directed graph and $s \in V$ be a vertex. Let ℓ be an edge labeling with positive reals. We assume that all vertices are reachable from s. Let d map the vertices into reals satisfying

$$d(s) = 0 \text{ and } d(v) = \min_{e=(u,v)} d(u) + \ell(u,v) \text{ for } v \neq s$$

- *1. Prove that d are the shortest path distances from s.*
- 2. Is this still true if we only request that edge length are non-negative? If your answer is YES, make sure that your proof for part 1) still works. If your answer is NO, give a counter example and point out, where your proof for the first part breaks down.

Exercise 3 Consider any algorithm you have studied so far in your education. Make it certifying.

Exercise 4 We start with a list of length n and repeatedly split lists into two until all lists have length one. The cost of splitting a list of length n into sublists of length n_1 and n_2 , where $n = n_1 + n_2$ and $n_1, n_2 < n$ is $f(n_1, n_2)$. You are not allowed to make any additional assumptions about n_1 and n_2 . IN particular, you cannot guarantee that the split is balanced. What is the total cost of splitting?

- 1. $f(n_1, n_2) = n$: Show that the cost is $O(n^2)$ and that this can be attained.
- 2. $f(n_1,n_2) = \min(n_1,n_2)$. Show that the cost is $O(n\log n)$ and that this can be attained. In class, I showed you an amortization argument. Give an inductive proof, i.e., study the recurrence

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ \max_{1 \le n_1 \le n/2} T(n_1) + T(n - n_1) + n_1 & \text{if } n > 1 \end{cases}$$

3. $f(n_1, n_2) = \log \min(n_1, n_2)$. Show that the cost is O(n) and that this can be attained. Hint: Set up a recurrence and use the induction hyptothesis $T(n) \le cn - 2\log dn$ for suitable constants c and d.

Exercise 5 We consider a market with two buyers and two sellers. The utilitities are $u_1 = (u_{11}, u_{12}) = (5, 1)$ and $u_2 = (u_{21}, u_{22}) = (1, 2)$.

- 1. First consider the Fisher market where the budgets of the buyers are $m_1 = 10$ and $m_2 = 5$. What are the equilibrium prices?
- 2. Then consider the Arrow-Debreu market, where buyer 1 owns good 1 and buyer 2 owns good 2, i.e., $m_1 = p_1$ and $m_2 = p_2$. Determine non-zero equilibrium prices.