The Cost of Address Translation

Tomasz Jurkiewicz Kurt Mehlhorn Pat Nicholson

Max Planck Institute for Informatics

full version of paper by TJ and KM available at arXiv
preliminary version presented at ALENEX 2013
full version to appear in Journal of Experimental Algorithms
follow-up paper by TJ, KM, and PN available at arXiv
Outline

- The Role of Models of Computation in Algorithmics
- Seven Simple Experiments
- Virtual Memory and Address Translation: The VAT Model
- Analysis of Some Algorithms
- Cache Replacement Strategies
- EM-Algorithms in the VAT Model
- Conclusions and Remarks
Properties of Good Models

Simplicity: It will not be used otherwise.

Predictive Power: Otherwise, analysis of algos has no practical meaning

Popular Models:
- Random Access Machine (RAM) Model
- External Memory (EM) Model
The RAM Model

```
sum = 0; i = 0;
while (i < n)
    sum = sum + A[i];
    i = i + 1;
```

Scanning an array of length n takes $3n + O(1)$ time units.
The External Memory (EM) Model

Accesses to Fast Memory and CPU–OPS take constant time; data is moved in blocks of size B between slow and fast memory; takes cB time units. c is a small constant, about 4.

```
sum = 0; i = 0;
while (i < n)
    sum = sum + A[i];
    i = i + 1;
```

Scanning an array of length n takes

$$(3 + c)n + O(1)$$

time units since we move n/B blocks of data for a cost of $$(n/B) \cdot cB = cn.$$
The Experiments

Let A be an array of size n

- **permute**: for $j \in [1..n-1]$ do: $i := \text{random}(0..j)$; $\text{swap}(A[i], A[j])$
- **random scan**: $\pi := \text{random permutation}$; for i from 0 to $n-1$ do: $S := S + A[\pi(i)]$
- **n binary searches** for random positions in sorted array A
- **heapify**
- **heapsort**
- **quicksort** (STL introsort)
- **sequential scan**
Machine Models
Seven Simple Experiments
Virtual Memory and Alg Analysis
Implications
External Memory Algs
Comments and Conclusions

- Running time/RAM complexity
- Logarithmic growth for consistent across machines and operating systems
Machine Models
Seven Simple Experiments
Virtual Memory and Alg Analysis
Implications
External Memory Algs
Comments

running time/RAM complexity

log(input size)
Straight line indicates logarithmic growth!
Straight line indicates logarithmic growth!

consistent across machines and operating systems
Two Kinds of Programs

<table>
<thead>
<tr>
<th>extra logarithmic factor</th>
<th>no extra factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>permute</td>
<td>heapify</td>
</tr>
<tr>
<td>random access</td>
<td>quicksort</td>
</tr>
<tr>
<td>binsearches</td>
<td>sequential access</td>
</tr>
<tr>
<td>heapsort</td>
<td></td>
</tr>
</tbody>
</table>
Two Kinds of Programs

<table>
<thead>
<tr>
<th>extra logarithmic factor</th>
<th>no extra factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>permute</td>
<td>heapify</td>
</tr>
<tr>
<td>random access</td>
<td>quicksort</td>
</tr>
<tr>
<td>binsearches</td>
<td>sequential access</td>
</tr>
<tr>
<td>heapsort</td>
<td></td>
</tr>
<tr>
<td>lots of random access</td>
<td>little random access</td>
</tr>
<tr>
<td>low locality</td>
<td>high locality</td>
</tr>
</tbody>
</table>
Two Kinds of Programs

<table>
<thead>
<tr>
<th>extra logarithmic factor</th>
<th>no extra factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>permute</td>
<td>heapify</td>
</tr>
<tr>
<td>random access</td>
<td>quicksort</td>
</tr>
<tr>
<td>binsearches</td>
<td>sequential access</td>
</tr>
<tr>
<td>heapsort</td>
<td></td>
</tr>
<tr>
<td>lots of random access</td>
<td>little random access</td>
</tr>
<tr>
<td>low locality</td>
<td>high locality</td>
</tr>
</tbody>
</table>

Isn’t it just the memory hierarchy?
Memory Hierarchy is not the Explanation

- in the EM-model, linear scan with step size larger than block size has the same cost as random scan.
- but measurements show that the running time of the former program is linear and that the second program suffers under a logarithmic slowdown.
- argument is due to Jirki Katajanen; our argument was more complex
What is the Explanation?

![Graph showing running time/RAM complexity vs log(input size)]

- permute
- random access
- binsearch
- heapsort
- heapify
- introsort
- sequential access

log(input size)
Virtual Memory

- Our programs do not run on a naked machine, but under an OS
- Every program has its own (virtual) address space $0, \ldots$
- OS maps them to a single (real) address space in RAM.

- Maintaining this layer of abstraction comes at a cost.
- VM is not paging! (although paging is a related subject)
Virtual Memory

- Our programs do not run on a naked machine, but under an OS
- Every program has its own (virtual) address space 0, \ldots
- OS maps them to a single (real) address space in RAM.

- Maintaining this layer of abstraction comes at a cost.

- VM is not paging! (although paging is a related subject)
Virtual Memory

- Our programs do not run on a naked machine, but under an OS.
- Every program has its own (virtual) address space $0, \ldots$
- OS maps them to a single (real) address space in RAM.

- Maintaining this layer of abstraction comes at a cost.

- VM is not paging! (although paging is a related subject)
Address Translation

Virtual address (say 64 bit) consists of an offset (12 bits) and chunks l_1 to l_d of fixed size (9 bits each).

Virtual address = 16 Bits $l_1\ l_2\ l_3\ l_4$ Offset

Translation from virtual to physical address

= tree walk in the translation tree.

Translation tree is a tree of depth d ($d = 4$ in 64-bit machines). One starts in the root, goes to child l_1, then to child l_2 of child, ..., then to child l_4 of

Now one is in a page containing data. The offset selects the byte in the data page.
Address Translation

Translation tree has fan-out K and depth d; here $K = 2$ and $d = 3$. Translation path for the virtual index 100 is shown. The offset y selects a cell in the physical page with virtual index 100.

Nodes and data pages are stored in memory. Only nodes and data pages in fast memory can be accessed directly. Otherwise, fetch from slow memory. Each such fetch is a cache fault.

EM-model only counts cache faults for data pages; VAT-model counts also cache faults for nodes.
Address Translation

Translation tree has fan-out K and depth d; here $K = 2$ and $d = 3$. Translation path for the virtual index 100 is shown. The offset y selects a cell in the physical page with virtual index 100.

Nodes and data pages are stored in memory. Only nodes and data pages in fast memory can be accessed directly. Otherwise, fetch from slow memory. Each such fetch is a cache fault.

EM-model only counts cache faults for data pages; VAT-model counts also cache faults for nodes.
Address Translation

Translation tree has fan-out K and depth d; here $K = 2$ and $d = 3$. Translation path for the virtual index 100 is shown. The offset y selects a cell in the physical page with virtual index 100.

Nodes and data pages are stored in memory. Only nodes and data pages in fast memory can be accessed directly. Otherwise, fetch from slow memory. Each such fetch is a cache fault.

EM-model only counts cache faults for data pages; VAT-model counts also cache faults for nodes.
The VAT Model
(Virtual Address Translation)

- Computations are performed by a RAM machine.
- All used addresses are automatically translated.
- Translation is logically transparent for a program.
- Translation is performed on a machine with translation cache (TC). Misses of the TC constitute the cost.
- Translation cache has a fixed size, say W nodes.
- EM-model counts only cache misses at the leaf level of the translation tree.
The VAT Model
(Virtual Address Translation)

- Computations are performed by a RAM machine.
- All used addresses are automatically translated.
- Translation is logically transparent for a program.
- Translation is performed on a machine with translation cache (TC). Misses of the TC constitute the cost.
- Translation cache has a fixed size, say W nodes.
- EM-model counts only cache misses at the leaf level of the translation tree.

We analysed the algorithms from the experimental study and several others in the model. Proved (almost) matching upper and lower bounds. Bounds are in good agreement with the measurements.
Analysis of Algorithms: Cheap Cases

- **Sequential Access**
 - Translation path rarely changes.
 - When it changes, it doesn’t change much.
 - With LRU strategy TC misses are rare, and their cost insignificant.

- **Quicksort: partition is essentially a sequential scan**

- **Heapify**
 - Consecutive accesses may have substantially different translation paths.
 - Careful analysis shows that with LRU strategy TC misses are rather rare.
 - $\log n$ parallel linear scans, one starting at n and one starting at $n/2$, one starting at $n/4$, on starting at $n/8$, . . . , and all going backwards.
Analysis of Algorithms: Expensive Cases

- Random Access
 - Consecutive accesses have substantially different translation paths (a.a.s.).
 - Almost every access has TC misses on a constant fraction of the path.
 - Each access has logarithmic cost.

- Heapsort
A Technical Remark: Normal Form for TC Content

- for lower bounds it is convenient to assume a normal form content of the translation cache, namely
 - TC-cache always contains an initial segment of the tree, i.e., if a node is cached, its parent is also cached.
- for OPT and LRU this can be enforced at no cost (no additional cache misses) by increasing cache by d nodes
- $d = \text{depth of translation tree}$
- normal form simplifies lower bound arguments
Implications?

- Penalty for random accesses is even higher than EM-model predicts; avoid under all circumstances.
- There is an extensive literature on good algorithms for the EM-model. Are these algorithms any good for the VAT-model or do we have to redo the theory?
 - Some are, e.g., linear scan and merge sort and quicksort.
 - The fact that nobody noticed the VAT-penalty before us suggests that the first alternative holds.
 - Tomasz and I could not prove a general positive theorem.
 - Together with Pat Nicholson, we recently obtained a general positive result.
Implications?

- Penalty for random accesses is even higher than EM-model predicts; avoid under all circumstances.
- There is an extensive literature on good algorithms for the EM-model. Are these algorithms any good for the VAT-model or do we have to redo the theory?
 - Some are, e.g., linear scan and merge sort and quicksort.
 - The fact that nobody noticed the VAT-penalty before us suggests that the first alternative holds.
 - Tomasz and I could not prove a general positive theorem.
 - Together with Pat Nicholson, we recently obtained a general positive result.
EM Algs: A Typical Result

Funnel sort (Frigo et al)

On an EM-machine with cache size \tilde{M} and block size \tilde{B}, it sorts n items with $O\left(\frac{n}{\tilde{B}} \left\lfloor \frac{\log n/\tilde{M}}{\log \tilde{M}/\tilde{B}} \right\rfloor \right)$ cache faults provided that $\tilde{M} \geq \tilde{B}^2$.

Data is moved in blocks of size B.

Fast memory has size M.

Programs are aware of B and M.

Analysis typically requires $M \geq g(B)$.
and its Transfer to VAT

Funnel sort (Frigo et al): On an EM-machine with cache size \tilde{M} and block size \tilde{B}, it sorts n items with $O\left(\frac{n}{B} \left\lfloor \frac{\log n/\tilde{M}}{\log \tilde{M}/\tilde{B}} \right\rfloor \right)$ cache faults provided that $\tilde{M} \geq \tilde{B}^2$.

Theorem

On a VAT-machine with cache size M and block size B, Funnel sort sorts n items with at most

$$O\left(\frac{4n}{B} \left\lfloor \frac{\log 4n/M}{\log M/(4dB)} \right\rfloor \right)$$

*cache faults. This assumes $(B \log_K (2n/B))^2 \leq M/4$.

Note $M/(4dB) \geq (M/B)^{1/2}$ for realistic values of M, B, K, and n.
Theorem

Consider an EM-algorithm with $C(\tilde{M}, \tilde{B}, n)$ cache faults provided that $\tilde{M} \geq g(\tilde{B})$. Let $d = \log_K(n/B)$. The program can be made to run on a VAT-machine with cache size M and page size B with at most $4dC(M/4, dB, n)$ cache faults provided that $M \geq 4g(dB)$.

We execute EM-algorithm with $\tilde{M} = M/4$ and $\tilde{B} = dB$ on a VAT-machine with block size B and cache size M. Use $M/4$ cells for data and $3M/4$ for nodes. Since

$$\tilde{M} = M/4 \geq g(dB) = g(\tilde{B}),$$

the number of EM-cache faults is at most $C(\tilde{M}, \tilde{B}, n)$.

Whenever, the EM-alg moves a block, the VAT-machine moves the corresponding d data blocks and all internal nodes of the translation paths to these d data pages. Number of internal nodes is bounded by $2d + \sum_{i \geq 1} d/K^i \leq 2d + d/(K - 1) \leq 3d$. Thus a translation cache of size $3M/4$ suffices. For every cache fault of the EM-model, the VAT-machine incurs $4d$ cache faults.
Comments and Objections

- translation occurs twice in case of the virtual machines.
- translation cost can be reduced by enlarging the offset, operating systems offer this choice (somewhat inconveniently), however it is rarely used.
- The translation tree has limited height (= 4) and hence . . .
 - true, but we need models that allow us to understand measurements
 - the VAT-model explains the measurements (to a large extent)
 - true, but $\log_{M/B} n/B$ is EM-model is never more than 4
Summary

- Locality is crucial for big data. VAT-model makes this even more evident than EM-model.

- Very non-local programs suffer a logarithmic penalty in VAT-model; this factor shows in the measurements.

- Transfer theorem shows that good EM-algorithms are usually also good in VAT-model
 - No need to redo the theory.
 - Maybe explains, why nobody discovered the effect before.

- suggest to spend 60 minutes on the effect of virtual memory in algorithm engineering class

Thank You!