14

14.1
14.2
14.3
14.4
14.5

Contents

Manual Pages and Documentation
Lman and Fman

Manual Pages

Making a Manual: The Mkman Command
The Manual Directory in the LEDA System
Literate Programming and Documentation

Bibliography

Index

page2

23
24
25
31

32

14
Manual Pages and Documentation

This chapter is authored jointly with Evelyn Haak, Michaek§ and Christian Uhrig.
Software requires documentation. In this chapter we explai

e how to make LEDA-style manual pages,
e how to make a LEDA-style manual,

e and how to write documentations in the style of this book.

14.1 Lman and Fman

Lman and Fman are the LEDA tools for manual production andiguéference to manual
pages. We will discuss Fman at the end of the section. The @mm

Lman T[.lw|.nw|.h] options
searches for a file with name T.lw, T.nw, T.h, or T (in this o)digst in the current directory
and then in the directory LEDAROOT/incl/LEDA and producdssDA-style manual page
fromit. Thus

Lman sortseq

Lman myproject.lw
produce the manual page of sorted sequences and of myprejgoectively.

The extraction of the manual page is guided by the so-calbatlial comments contained
in the file-argument of Lman. A manual comment is any commétiteform

/*{\Mcommand ... arbitrary text ... }x/

14.1 Lman and Fman 3

/*#{\Manpage {stack} {E} {Stacks} {S}}*/

template<class E> class _CLASSTYPE stack : private SLIST

{

/*#{\Mdefinition

An instance |S| of the parameterized data type |\Mname| is a sequence of
elements of data type |El, called the element type of |S|. Insertions or
deletions of elements take place only at one end of the sequence, called
the top of |S|. The size of |S| is the length of the sequence, a stack
of size zero is called the empty stack.l}*/

void copy_el(GenPtr& x) const { x=Copy(ACCESS(E,x)); }
void clear_el(GenPtr& x) const { Clear (ACCESS(E,x)); }
public:

/*{\Mcreation}*/

stack() {3}
/*#{\Mcreate creates an instance |\Mvar| of type |\Mname| and initializes
it to the empty stack.}*/

stack(const stack<E>% S) : SLIST(S) {}
“stack() { clear(); }
stack<E>& operator=(const stack<E>& S)

{ return (stack<E>&)SLIST::operator=(S); }

/*{\Moperations 2.5 4}*/
E top() const { return ACCESS(E,SLIST::head());}
/*{\Mop returns the top element of |[\Mvar]|.\\

\precond S is not empty.}*/

void push(E x) { SLIST::push(Copy(x)); }

/*{\Mop adds x as new top element to |\Mvar|.}*/
E pop() { E x=top(); SLIST::pop(); return x; }
/*{\Mop deletes and returns the top element of |\Mvar]|.\\

\precond 3 is not empty.}*/

int empty() { return SLIST::empty(); }

/*{\Mop returns true if |\Mvar| is empty, false otherwise.}*/
}
*{\Mimplementation

Stacks are implemented by singly linked linear lists.
A1l operations take time $0(1)$. }*/

Figure 14.1 A file decorated by manual comments. The file is part of the defilé of the data
type stack. Figure 14.2 shows the manual page produced by.Lma

where Mcommand is one of so-called manual commands. Wes$isnanual commands
in Section 14.2.2. Every manual comment causes Lman toaéxheat of the manual.
Figures 14.1 and 14.2 show a file augmented by manual comraedtthe manual page
produced from it.

The layout of the manual page is fine-tuned by the optionaraegt of Lman. We will
discuss the available options in Section 14.2.8. Optiongalso be put in a configuration
file Lman.cfgin either the home directory or the working directory. Conmahdine options

4 Manual Pages and Documentation

Stacks (stack)

1. Definition

An instanceS of the parameterized data typaclkkE> is a sequence of ele-
ments of data typ&, called the element type &. Insertions or deletions of
elements take place only at one end of the sequence, calieédiiofS. The
size ofSis the length of the sequence, a stack of size zero is caléedripty
stack.

2. Creation

stackE> S creates an instanc®of type staclE> and initializes it
to the empty stack.

3. Operations

E Stop() returns the top element &f
Precondition Sis not empty.
void Spushg X) addsx as new top element t&

E Spop() deletes and returns the top elemert.of
Precondition Sis not empty.
int Sempty() returns true iSis empty, false otherwise.

Figure 14.2 The manual page produced from the file in Figure 14.1.

take precedence over options in the working directory wimicturn take precedence over
options in the home directory.

Fman is our tool for quick reference to manual pages. The camam
Fman T[.lw|.nw|.h] filter

searches for a file with name T.lw, T.nw, T.h, or T (in this add&st in the current directory
and then in the directory LEDAROOQOT/incl/LEDA and extractamual information from it.
The information is displayed in ASCII-format. For example,

Fman sortseq insert
Fman sortseq creation

give information about operation insert of type sortseq ahdut the different ways of
creating a sorted sequence, respectively.

Fman
gives information about Fman and the available filters.
Fman uses Perl [WS90] and Lman uses P&l [Lam86], and xdvi.

14.2 Manual Pages 5

Please try out Lman and Fman before proceeding. If they devadk, the error is very
likely to be one of the following (if not, you should refer ot LEDA installation guide):

e One of the required systems Pefl[gX, and xdvi is not installed.

e The environment variable LEDAROOT is not set to the rootdivey of the LEDA
system.

e LEDAROOT/Manual/cmd is not part of your PATH.
e LEDAROOT/Manual/tex is not part of your TEXINPUTS.

14.2 Manual Pages

Figure 14.2 shows a typical LEDA manual page. It is produaedhfthe file in Fig-
ure 14.1 by a call of the Lman utility. Observe that the file teams comments starting
with /x{\M. .. and ending with}*/. They are callednanual commentsThey start with
a so-called manual command, eMdefinition or Mop and control the extraction of the
manual page from the header file. There are about twentyreliffenanual commands.
We will discuss them in turn in this section. Before doing s, justify our decision to
incorporate all manual information into the header fileshef tEDA system.

In the early years of the LEDA project we kept the manual pdgedata type separate
from its implementation. The manual was contained in a texafind the implementation
was contained in an h-file and a c-file. Updates of a data typeallysequired changes to
all three files and this led to a consistency problem betwieethree files. The consistency
between h-file and c-file is a minor issue since every compilerchecks it. However, we
found it almost impossible to keep the manual pages consisti¢h the implementation.
The inconsistencies between manual and implementatiotwadauses:

e Clerical errors: Frequently, things that were supposedttmbntical were different,
e.g., atype was spellesbrt_seq in the manual andortseq in the implementation,
or the parameters of a function were permuted.

e Lack of discipline: We frequently forgot to make changes thukack of time or other
reasons. We were quite creative in this respect.

In 1994 we decided to end the separation between implen@m&td manual. We incor-
porated the manual into the h-files in the form of so-callechuad comments and wrote

a tool calledLmanthat extracts the tex-file for the manual page automatidatign the
h-file. Every manual comment produces part of the manual,page the manual com-
ment starting with\Mdef inition produces the definition section of the manual page, and
a comment starting witRMop produces an entry for an operation of the data type. Such
an entry consists of the return type, an invocation of theatmm, and a definition of the

6 Manual Pages and Documentation

semantics in the form of a text. Only the latter piece of infation is explicitly contained
in the Mop-comment, the other two pieces are generated atikaily from the G+-text in
the header file. Experience shows that our decision to ircatp manual pages into header
files greatly alleviates the consistency problem:

e Clerical errors are reduced because things that shouldeip¢iddl are usually only
typed once. For example, the fact that ther@ext in the manual is automatically
generated from the €3-text in the header file guarantees the consistency betieen t
two.

e Lack of discipline became a lesser issue since the facthledi¢ader file of the
implementation and the tex-file for the manual page are ittlee same file makes it a
lot easier to be disciplined.

Lman produces manual pages in a two-step process. It firstatxta EX-file from the
header file and then appli¢dEX. The first step is directed by the manual commands in the
header file and the second step uses a specially developefig& macros. We discuss
the manual commands in Section 14.2.2 and tiémacros in Section 14.2.5.

The first phase is realized by a Perl-progriaxtractthat reads the file-argument and the
options and produces a (temporargXTfile of the form:
\documentclass[adpaper,size pt]l{article}
\usepackage{Lweb}
\begin{document}

output of lextract
\end{document}

The program lextract is defined in the fégt.nwin LEDAROOT/Manual/noweb.

14.2.1 The Structure of Manual Pages

All manual pages of the LEDA system are organized in one ofWags depending whether
the page defines a data type or a collection of functions.eSimeznual pages are extracted
from header files, the corresponding header files are orgadrszcordingly. Examples of
header files for data types are stack.h, sortseq.h, artg bstd examples of header files for
collections of functions are plareg.h, planegraphalg.h, and manatching.h.

All header files for classdsllow the format shown in Figure 14.3. Theeader files for
collections of functionkave no particular structure.

14.2.2 The Manual Commands
We discuss the manual commands in the order in which theypieatly used in the header
file of a class.

The Manpage Command: A manual comment of the form
/*{\Manpage {type} {parlist} {title} {varnamel}}x*/
produces the header line of the manual page fgre. The argumenparlist is the list of

14.2 Manual Pages 7

/*{\Manpage Comment }*/
class DT {
/*{\Mdefinition comment }*/
/*{\Mtypes comment }*/
// type definitions
private:
// private data and functions
public:
/*{\Mcreation comment }*/
// constructors and destructors and their manual entries
/*{\Moperations comment }*/
// operations and their manual entries
3
// friends and their manual entries
/*{\Mimplementation comment }*/
/*{\Mexample comment }*/

Figure 14.3 The generic structure of a header file for a class. Any of thtspaay be omitted.

type parameters of the typeitle is the title of the manual page, and the optional argu-
mentvarname is used in the manual page as the name of a canonical objéa tyffe. The
argumentparlist is empty if the type has no type parameters. The following roemts
produce the header lines for character strings, lineas, letd sorted sequences, respec-
tively.

/*{\Manpage {string} {} {Character Strings} {s}}*/

/*{\Manpage {list} {E} {Linear Lists} {L} }x/

/*{\Manpage {sortseq} {K,I} {Sorted Sequences} {S} }*/

The Manpage command produces the header line for the maagalgnd defines place-
holders\Mtype, \Mname, and\Mvar. The first placeholder stands fegpe, the second
placeholder stands for eithegype or type<parlist> depending on whethgfarlist

is empty or not, and the third placeholder standswarname. In the last example the
placeholderaMtype, \Mname, and\Mvar have valuesortseq, sortseq<k,I>, ands,
respectively.

The placeholders can be used instead of their values imteteual comments. This helps
to maintain consistency. The placeholders are also usdtkigeneration of the manual
entries for the constructors and member functions, e.g-ignre 14.2 all operations are
applied to the canonical stack varial8e

What does lextract do when it encounters a Manpage-commaretrds the values of
all placeholders and outputs
\section*{title (type’)}

wheretype’ is obtained frontype by quoting all occurrences of the underscore character
(i.e., replacing_ by _). When BETIpX executes this line it will produce the header line of
the manual page. If a manual page is to be included into arld@miment, it is convenient

to number the manual pages. The optimmbered=yes causes the preprocessor to output

8 Manual Pages and Documentation

\section{title (type’)} \label{titlel}\label{typel}
The labels can be used to refer to the data type in other plaits @nclosing document.

The manual page of a class consists of sectioefinition Types Creation Opera-
tions Implementationand Example any of the sections may be omitted. Accordingly,
we have the manual comman¥édefinition, \Mypes, \Mcreation, \Moperations,
\Mimplementation, and\Mexample.

The Mdefinition Command: A manual command of the form
/*{\Mdefinition body }*/
produces the definition part of a manual page. For example,

template <class E>

class list {

/*{\Mdefinition

An instance [[\Mvar]] of class |\Mname| is a ...

I/

produces

1. Definition

An instancelL of classlist<E> is a ...

The body of a definition comment (and of any of the other contsém come) is an
arbitrary ETEX text. As suggested by the literate programming tools CWEB93] and
noweb [Ram94] we added the possibility of quoting cof@ioted codds given special
typographic treatment. There are two ways of quoting code:

e By enclosing it between verticals bais (. |), or
e By enclosing it between double square brackéfs (.11).

Quoted code is typeset according to the following rulest §iloccurrences of the place-
holders\Mtype, \Mname, and\Mvar are replaced by their values. We call this spégce-
holder substitutionin the example above this step yields
template <class E>
class list {

/*{\Mdefinition
An instance [[L]] of class |list<E>| is a ...

Ix/

In a second step we apply what we daH+ to BIgX conversiorio quoted code. For code
quoted by double square brackets this means using typevaitefor the quoted code and
for code quoted by vertical bars this produces a math-likeamnce, e.g., all identifiers
1 We assume that the Mdefinition command is executed in the xiooftthe Manpage comment for lists given

above, i.e.L is the name of the canonical list ahst(E) is the type of the list. We make the analogous
assumption for all examples to follow.

14.2 Manual Pages 9

are put into math-italics ande= is typeset as<. All code in this book is typeset using one
of the two quoting mechanisms.

We give some examples of the quoting mechanisms. Be awarputtang an identifier
between vertical bars is different from putting it betweetiat signs except for identifiers
consisting of a single character.

|diff| produces diff
$diff$ produces diff
Ix1] produces x1
$x1$ produces x1

x produces X

x| produces X
[[diff]] produces diff

Sometimes, one wants to produce vertical bars and/or degjplare brackets in the out-
put. We provide TeX-macros to this effect. The mactbsert, \DLK and\DRK expand to
|, L[, and1], respectively. The TeX-macNLabs{. . .} puts its argument between vertical
bars, Lvert and Labs can only be used in math-mode.

We close this paragraph withvearning The quoting mechanism by vertical bars is not
perfect. In principle one can put any piece of text betweeticad bars. The preprocessor
attempts to understand the-€structure of the text and generates output accordinglgeSin
the preprocessor has only limited knowledge of the synt&«af it succeeds only in simple
cases:

|diff| produces diff

|diff + x1| produces diff + x1
Idiff+x1| produces diff +x1
list_item| produces listitem

| GRAPH<POINT,int>| produces GRAPHPOINT, int>
Imark[v] <= cur_mark| produces markfv] < curmark
$|sourcel(e_0)$ produces sourceep)

The Mtypes and Mtypemember Commands: A manual command of the form
/*{\Mtypes w}x/

produces the header line of the type part of the manual. Tdeneentw is optional. The
argumentw governs the layout of the entries for the local types of tha dgpe. We will
discuss it below. The manual entries for the local types aveyrced by Mtypemember
commands. We give an example which is taken from the headédofithe LEDA extension
package for higher-dimensional geometry.

/*{\Mtypes 4}x/

typedef ch_Simplex<CHTRAITS,POINT,PLANE>* ch_simplex;
/*{\Mtypemember the item type for simplices of the complex.l}*/

typedef ch_Simplex<CHTRAITS,POINT,PLANE>* ch_facet;
/*{\Mtypemember the item type for facets of the complex.}*/

10 Manual Pages and Documentation

typedef rc_Vertex<CHTRAITS,POINT>=* ch_vertex;
/*{\Mtypemember the item type for vertices of the complex.}*/
produces

2. Types

chsimplex the item type for simplices of the complex.
chfacet the item type for facets of the complex.
chvertex the item type for vertices of the complex.

Each Mtypemember command produces a manual entry for atigeal Each manual entry
is typeset on a line of its own and a two-column layout is fokd. There is a column of
width w containing the name of the local type and a column contaitiiagext explaining
the local type. The name of the type is extracted automatié@m the type definition
preceding the manual comment.

The Mcreation and Mcreate Commands: A manual command of the form
/*{\Mcreation name w}*/

produces the header line of the creation part of the mantme.afgumentaame andw are
optional. If name is present, itis used as the value of thegblaldeAMvar. We recommend
that you defin@Mvar already in the Manpage command and keep the possibilityfioedié
in the Mcreation command for reasons of backward compayibithe argumentv governs
the layout of the entries for the constructors of the dat& ty{e will discuss it below.
The manual entries for the constructors are produced by dferommands. We give an
example.

/*{\Mcreation}*/
vector();

/*{\Mcreate creates an instance |\Mvar| of type |\Mnamel|;
[\Mvar| is initialized to the zero-dimensional vector.}*/

vector(int d);
/*{\Mcreate creates an instance |\Mvar| of type |\Mnamel|;
[\Mvar| is initialized to the zero vector of dimension d.}x*/

produces (assuming that Mvar stands for v and Mname stangedtor)

3. Creation

vector v creates an instance of type vector, v is initialized to the zero-
dimensional vector.

vector \int d); creates an instaneeof typevector, vis initialized to the zero vector

of dimensiond.

14.2 Manual Pages 11

Each Mcreate command produces a manual entry for a cormtrii¢tte manual entries are
typeset in the form of a variable declaration for a variablakbf type Mname, i.e., for the
default constructor the entry has the form

Mname Mvar;
and for a constructor taking arguments the entry has the form
Mname Mvar(parameter list);

In the second case the parameter list is extracted autatiafiom the code unit preceding
the manual comment. What is a code unit?

A code unitis a maximal sequence of consecutive non-blank lines ndagdng a com-
ment. In other words, the line preceding a code unit is eihgoty or the end of a comment,
the line following a code unit is either empty or the begimnaf a comment, and all lines
in a code unit are non-empty and do not belong to a commentda aait from which the
preprocessor is supposed to extract a function declarationld contain exactly one such
declaration. The general form for generating an entry fasrsstructor is therefore:
<empty line or end of a comment>
<code unit>

<zero or more empty lines>
/*{\Mcreate body }*/

The body of the Mcreate command contains the text that explhie constructor. Place-
holder substitution and € to IATeX conversion are applied to it. We give some more
examples.

vector (double d, double e)

{ ... inline implementation of constructor ...}
/*{\Mcreate This is okay.l}*/

vector (double d, double e, double f)
/*{\Mcreate This is also okay.}*/
{ ... inline implementation of constructor ...}

vector() ;

vector(int d);

/*{\Mcreate illegal, since code unit contains more
than one constructor.}*/

vector (double d)

{ ... inline implementation of constructor ...}
/*{\Mcreate illegal, since code unit preceding
the manual comment contains no constructor.}*/

vector (long d); /*{\Mcreate illegal, since manual comment
must start on a new linel}x/

We still need to discuss the role of the optional argument®he layout for the manual
entry of a constructor follows either the two-column forrsabwn in Figure 14.4 or the

12 Manual Pages and Documentation

declaration description
(— declwidth) createtextwidth)

Figure 14.4 The two-column layout for constructors.

declaration ‘
(textwidth)

description ‘
(createtextwidth)

Figure 14.5 The two-row layout for constructors.

two-row format shown in Figure 14.5. The argumeandefines the value afeclwidth The
default value of declwidth is 40% of the textwidth. The vabfereatetextwidths defined

by

createtextwidth= textwidth— declwidth
We use two-column layout if the declaration is short enouglffittinto a box of width
declwidth and use two-row layout otherwise. The argumerg either a pure number or a

number followed by one of thegX units of length (mm, cm, in, pt, or em). A missing unit
is taken to be cm, i.e., 3.2 is equivalent to 3.2cm.

The Mdestruct Command: Mdestruct applies to the destructor of a class.

~“vector();
/*{\Mdestruct The destructor ...}x*/

produces

~vectol) The destructor ...

It is customary in LEDA to produceo manual entry for the assignment operator, the
copy constructor, and the destructor of a class becausethandics of these operations is
defined in a uniform way for all LEDA types (see Section 2.3) &ence there is no need
to define them again for each data type. In fact, it would bduing. Think twice before
you break this rule.

We now come to the section for the operations of a data type.started by a Mopera-
tions comment.

The Moperations Command: A comment of the form
/*{\Moperations a b }*/

generates the header line of the operations part. The langtiments andb are optional.
An entry in the operations part is displayed in either a tho@@mn layout as shown in
Figure 14.6 or a two-row layout as shown in Figure 14.7. Theesoftypewidthand

14.2 Manual Pages 13

return type | function call | description
(___typewidth___)(callwidth) descriptwidth)

Figure 14.6 The three-column layout for the operations of a data type.

return type | function call ‘
(___typewidth___)(longcallwidth)
description ‘

(descriptwidth)

Figure 14.7 The two-row layout for the operations of a data type.

callwidth are set taa andb, respectively, and the value déscriptwidthis defined by the
equation

descriptwidth= textwidth— typewidth— callwidth.

We choose the three-column layout if the function call fite im box of width callwidth and
the two-row layout otherwige If the return type does not fit into a box of width typewidth,
we combine the return type and the function call into a singlé and attempt to put it
into a box of width typewidtht+ callwidth. If the combined unit fits, we use a modified
three-column layout, if it does not fit, we use a modified twartayout.

An operation of a data type is either a member or a friend. timeeicase it can be a
function or an operator. Operators may be binary or unaryhsve a manual command for
each case. The existence of distinct manual commands falighiect cases is a historical
relict. The current version of the extractor knows the syrdbC++ sufficiently well to
be able to distinguish the cases without guidance by the el@ommand; this was not the
case for an earlier version of the extractor. We find that #eeaf distinct manual commands
increases readability.

The Mop Command: The Mop command applies to member functions of a data type. Fo
example,

list_item append(E x);

/*{\Mop appends a new item \Litem{x} to list |\Mvar| and

returns it
(equivalent to |\Mvar.insert(x,\Mvar.last(),after)|).}*/

generates (assuming that Mvar has value L)

list_item LappendE X) appends a new itenx) to list L and returns it
(equivalent td_.insert(x, L.last(), after)).

2 In earlier versions of the preprocessor the choice betweetwo layout styles had to be done manually. We
therefore had two versions of each manual command. Theathndrsion selected three-column layout and the
version with an appended character “I” selected two-rowldyYou can still find manual commands Mopl and
Mfuncl in many LEDA header files.

14 Manual Pages and Documentation

Note how the content of the first two columns is extracted fibm code unit preceding
the manual comment. Also note that we use member-functidirsgntax for the second
column and that the function is applied to the canonical abjé the type (which is the
value of placeholder Mvar). We give some more examples.

list_item append(const E& x);

/*{\Mop appends a new item \Litem{x} to

list |\Mvar| and returns it\\
(equivalent to |\Mvar.insert(x\,Mvar.last(),after)]|).}x/

also produces the manual entry above. This reflects our higiatconst-reference-parameter
is equivalent to a value-parameter. The opttenstref=yes does not suppress const-ref
pairs. The next function is long and hence is typeset in twwo{ayout.

list_item insert(E x, list_item it, int direction = after);

/*{\Mop inserts a new item \Litem{x} after or
before item |it]. Ix/

produces (assuming that Mvar has value L)

list_item Linsertg x, list_item it, int direction = after)
inserts a new itenix) after or before itenit.

In either layout style it may happen that the return type duomsfit into a box of width
typewidth. In this case we combine return type and functedhisto a single unit for which
we allot a box of width typewidth + callwidth. For example,

two_tuple<int,int> strange();
/*{\Mop a strange function. }*/

produces (assuming that Mvar has value L)

two_tupleint, int> L.strange() a strange function.

The Mbinop Command: Mbinop applies tabinary operatorsdefined as member func-
tions.

integer operator+(const integer& y);
/*{\Mbinop returns |\Mvar + y|. }*/

produces (assuming that Mvar has value x)

integer X+y returnsx + .

There are two facts worth noting about this output. First,use operator-call-syntax for
the second column. Second, we suppress the type of the angjymiEhe rule is as follows.
For an operator of clask the type of any value argument of tydeis not shown. The
optionpartypes=yes turns off this behavior.

14.2 Manual Pages 15

The Munop Command: Munop applies tanary operatorgiefined as member functions.

integer operator++(){....}
/*{\Munop returns the value of |\Mvar| and increments it.}*/

produces (assuming that Mvar has value x)

integer +4X returns the value of and increments it.

We put the operator applied to the canonical variable inéosacond column. Of course,
unary operators are typeset as either prefix or postfix oparas prescribed by the syntax
of C++.

The Marrop Command: Marrop applies to tharray access operator

E& operator[](list_item it) { ... return ... }
/*{\Marrop returns a reference to the
entry |it| of |\Mvar|.l}*/

produces (assuming that Mvar has value L)

E& L[list_item if] returns a reference to the enityof L.

The Mfunop Command: Mfunop applies to théunction call operator

string operator() (int i, int j) const { return sub(i,j); }
/*{\Mfunop returns the substring of |\Mvar| ... }x/

produces (assuming that Mvar has value s)

string qinti, intj) returns the substring &f...

The Mstatic Command: Mstatic applies tostatic member functionsFor example, the
type bigfloat has a static memb@und.modethat determines the current rounding mode.
A static member functiosetround-modeis used to set the rounding mode.

static void set_round_mode(rounding modes m =TO_NEAREST);

{round_mode = m;}
/*{\Mstatic sets |round_mode| to [m|.}*/

produces (assuming that Mname has value bigfloat)

void bigfloat:setround modefoundingmodes m= TO_NEAREST
setsround. modeto m.

16 Manual Pages and Documentation

The Mfunc Command: Mfunc applies tcmon-member functiornsf a data type.

friend integer abs(const integer& x);
/*{\Mfunc returns the absolute value of |[x|.}*/

produces

integer abs(nteger ¥ returns the absolute value xf

Note that thefriend qualifier does not appear in the manual. After all, it has imgtho do
with the semantics of the operation but is only an infornmafar the compiler.

The Mbinopfunc Command: Mbinopfunc applies tbinary operatorghat are non-member
functions. You have probably got the rule by now. Commandirgnwith op apply to
members and commands ending with func apply to non-members.

friend string operator+(const string& x, const string& y);
/*{\Mbinopfunc returns the concatenation of |x| and |y|.}*/

friend ostream& operator<<(ostream& 0, const string& s);
/*{\Mbinopfunc writes string |s| to output stream |0|. }x*/

produces
string X+y returns the concatenation xfindy.
ostrean& ostrean& O « s writes stringsto the output strear®.

The Munopfunc Command: Munopfunc applies tanary operatorghat are nonmember
functions.

friend integer operator-(const integer& x)

/*{\Munopfunc unary minus ... }*/
produces
integer —X unary minus ...

The Mconversion Command: Mconversion applies taser-defined conversion operators
The following definition within class integer

operator rational()
/*{\Mconversion converts an |\Mtype| to a rational.}*/

produces (assuming that Mvar has value x)

rational X converts arintegerto a rational.

14.2 Manual Pages 17

Invisible Functions: Sometimes there is the need to generate a manual entry foctdn
or operator that does not exist. A typical situation is afofes. A typeA is derived from
a type B and inherits a function fronB. We want the function to appear in the manual
page of typeA but we do not want the function to appear in the header filealbse typeA
inherits it and including it in the header file would obscure situation). The solution is to
put the function inside a comment, e.g.,
/* inherited
void sort_edges() { graph::sort_edges(); }
%
/:{\Mop the edges of G are sorted increasingly according

to their contents. }*/

The begin and the end of the comment must be on separate [Miresstarting line may
contain a text that explains the situation.

Code Units with More than One Function Definition: The restriction that a code unit
contains only one function definition is sometimes unnatufa example is two closely
related functions for which one wants to produce only oneumnbantry.

friend bool operator==(const string& x, const charx* y);
friend bool operator==(const string& x, const string& y);

/*{\Mbinopfunc true iff x and y are equal.l}*/
produces
bool string x == stringy true iff x andy are equal.

Another example is conditional definitions, e.g., the asdaaction in the array data type
which depends on the compiler flag LEDBHECKING_OFF.

#if defined (LEDA_CHECKING_OFF)
E& operator[](int x) { return LEDA_ACCESS(E,v[x-Low]l); }

#else

E& operator[](int x) { return LEDA_ACCESS(E,entry(x)); }
#endif

/*{\Marrop returns $A(x)$.\\

\precond $a\le x\le b$. I*/

produces (assuming that Mvar has value A)

E& Alint X] returnsA(x).
Preconditiona < x < b.

If a code unit contains more than one function definition oeppocessor attempts to extract
thelastdefinition. It outputs the extracted definition on standartpat (except with option
warnings=no) and asks for an acknowledgment (except with optiok=no).

18 Manual Pages and Documentation

The Mimplementation Command: A command of the form
/*{\Mimplementation body}*/
produces the header line of the implementation part andsstpdody. For example,

/*{\Mimplementation The data type |\Mtypel| is realized
by doubly linked linear lists. All operations take
constant time except

for the following operations: |search| and |rank]|

take linear time $0(n)$,

I/

produces

5. Implementation

The data typédist is realized by doubly linked linear lists. All operation&éesconstant time
except for the following operationsearchandrank take linear timeO(n), ...

The Mexample Command: The Mexample command is used to produce the header line
of the example part and to include program code into the manlize simplest way to
include program code is to use the verbatim environmerfTpKL

/*{\Mexample The following little example illustrates
the list data type.
\begin{verbatim}
#include <LEDA/list.h>
main()
{
list<string> L;
L.append("hello world");
}

\end{verbatim} }*/
produces

6. Example

The following little example illustrates the list data type

#include <LEDA/list.h>
main()
{
list<string> L;
L.append("hello world");

14.2 Manual Pages 19

The Mtext Command: The Mtext command can be used to add arbitrary text to the man-
ual. For example,

/*{\Mtext

\headerline{Additional Operations for two-dimensional Points}
The following operations are only available for points

in two-dimensional space.

We will not mention this precondition in the sequel.

Ix/

produces

Additional Operations for two-dimensional Points

The following operations are only available for points irobdimensional space. We will
not mention this precondition in the sequel.

Generally,
/*{\Mtext body }*/

adds body to the document. The body is subject to placehsldestitution and &+ to
IATEX conversion. The Mtext command can be used to include argi#TeX commands
into the output of the preprocessor. We did this alreadyHertteader line command in the
example above. Another frequent use of the Mtext commaradbange the values of the
parameters governing the layout. For example

/*{\Mtext

\settowidth{\typewidth}{|void|}

\addtolength{\typewidth}{\colsep}

\computewidths

I/

sets the width of the first column to the widthwadid plus the value of colsep, where colsep
is predefined as 1.5em. The commar@dmputewidths causes the recomputation of the
dependent variable descriptwidth.

The Moptions Command: The Moptions command allows us to include preprocessor op-
tions directly into the header file. For example, the headerfdr LEDA's window type
contains

/*{\Moptions

usesubscripts=yes

Ix/

and hence this section of the LEDA-manual is typeset witlssripts, see also Section 14.2.4.

The Msubst Command: The Msubst command allows us to define additional placehold-
ers. For example,

20 Manual Pages and Documentation

/*{\Msubst

int_type integer

quot_type rational

I/

introduces the placeholderat _type andquot _type with valuesinteger andrational,
respectively.

14.2.3 Warnings and Acknowledgments

The preprocessor issues warnings and error messages anthagkser to acknowledge

them. With the optioma.ck=no no acknowledgments are necessary and the optionings=no
suppresses the warnings. One can also suppress warningsifiogle manual comment,

e.g.

/*{\Moptions nextwarning=no }*/

point head();

point start();

/*{\Mop returns the start point of |\Mvar|}*/

suppresses the warning that there is more than one funatifimtébn in the current code
section. We recommend running Lman withrnings=yes andack=yes and using the
mechanism above to turn off warnings individually.

14.2.4 Subscripts

Sometimes program variables are numbered and it would legmitypeset the numbers as
subscripts. The optionsesubscripts=yes does exactly this. Within the context of this
option | x0| is typeset axg and |x11] is typeset ax;;. Note that the subscript rule is
applied only to identifiers consisting of a single charactéwus|diff1] is still typeset as
diff1.

14.2.5 TeX macros
We defined a collection ofgK-commands that facilitate the production of manual pages;
they are contained IMANUAL .mac in LEDAROOT/Manual/tex.

Many data types in LEDA are defined in terms of items. We haeptad the convention
that items are enclosed in angular braces. The comrkkitkem produces items. It takes
a single argument and encloses it in angular braces. Thenarguis typeset in math-
mode, i.e.\Litem{x} producegx), \Litem{x,y} producesx, y), and\Litem{diff}
producegdiff). The last example shows that identifiers of length more thensthould
be enclosed in vertical bars, e.gLitem{|diff |} producegdiff).

The wordPreconditionappears frequently in manual pagesrecond produces it. The
macro\CC produces &+. The commandheaderline{arg} produces a header line,
i.e., it prints its argument in boldface and disallows pageks after the header line. The
command3aDLK and\DRK produce[[and]], respectively.

Vertical bars require some care. Recall that vertical bakela special meaning (they

14.2 Manual Pages 21

bracket G-+ text) and therefore we need to make special provisions tbym@vertical bars

in IATpX-text produced by our preprocessor. The commshdert expands to a vertical
bar, i.e., the preprocessor leaves it alone and gi6-definition is \def\Lvert{|}. A
frequent use of vertical bars in mathematical text is to teeabsolute values. The command
\Labs produces absolute values, egx, + \Labs{|diff|} + z$ producex+|diff |+z.

The commands§Lvert and\Labs can only be used in math-mode, i.e., in order to produce
a| within text you need to writ@¢\Lvert$.

MANUAL . mac also defines thé'TgX environmenmanual This environment sets parindent
to zero, parskip to 14pt and increases baselineskip sligittbve its standard value. The
manual is typeset in this environment.

The file MANUAL . pagesize in LEDAROOT/Manual/tex defines textwidth, textheight,
topmargin, evensidemargin, and oddsidemargin. Valuestwivork well with European
ad-size paper and US legal-size paper are predefined inléis fi

14.2.6 Applying Lman to Web-Files

Followers of literate programming do not split their implentations into h-files and c-files
but combine them into a single file. This causes no problenvfioan as it ignores all but
the manual commands and the code units preceding them.

A problem may arise if the web-system in use allows the usputdormatting instruc-
tions into the code chunks as, for example, CWEB does. Inctiée the manual extractor
must purge the code of formatting instructions. The stashglarsion of ext knows how to
remove CWEB's formatting instructions. In order to adag thanual extractor to another
web-system which allows formatting instructions in codardts you need to edit the code
chunk<purge code unit. .> in ext.nw. We have used Lman successfully on CWEB, noweb,
and Lweb-files.

14.2.7 Redirecting Output

Lman and Ldoc write the extracted manual page to theofilefile. In the case of Ldoc

the default value obutfile is equal tobasename .man wherebasename . 1w is the input

file to Ldoc. In the case of Lman the outfile is some internal fi¥®u may redirect the

output to a different file by assigning tmtfile in an Moptions command, e.g., after

/*{\Moptions outfile=type.man }*/

the output will be written to fileype .man. This feature is useful for at least two purposes.
The first use is to generate several manual pages from the saumee. This can be

achieved by always directing the output to the appropriae-file. There is a small incon-

venience:AIEX expects manual pages to be enclosed in the manual envirinklewever,

the required\begin{manual} and\end{manual} commands are generated automatically

only for the default outfile. So one needs to write:

/*{\Moptions outfile=type.man }*/

/*{\Mtext \begin{manuall} }*/

now come the commands than generate the manual
/*{\Mtext \end{manuall} }*/

22 Manual Pages and Documentation

The second use of redirecting output is to rearrange therraltégthin a single manual
page. It is conceivable that one wants to use a differentraideresentation in the manual
page and in the implementation. Assume that the manual stsnsf two parts and that
we want to arrange the two parts in reverse order in the mamdiin the documentation.
Write:

\section{The Manual Page}

\begin{manual}
\input{partl.man}
\input{part2.man}
\end{manual}

\section{Code}

/*{Moptions outfile=part2.man }*/
the stuff that goes into part 2

/*{Moptions outfile=partl.man }*/
the stuff that goes into part 1

14.2.8 TheLman Options

The behavior of Lman can be fine-tuned by options. A talhn without arguments
gives a short survey of all available options. Options arcHjgd in assignment syntax
variable=value. There must be no blank on either side of the equality sigthérist of
options to follow we list the default value of each optiontfirs

size<{12, 11, 1¢: Determines the font size.

constref={no, yeg: Determines how const-ref parameters are displayed. Wémth
option a const-ref parameteonst T& x is displayed as a value parameTe and with
the yes-option it is displayed in full.

partypes={no, yeg: Determines how parameters of unary and binary operatordisre
played. Consider, for example, an operataf a class number. With the no-option the op-
eratoroperator+(number x, number y) isdisplayed ag + y and with the yes-option
it is displayed aswumber x + number y.

numbered={no, yes: Determines whether the header line of the manual page is num-
bered. You probably want it numbered when the manual pagenbes part of a larger
document.

titte={yes, ng: If title is set to no, the manpage comment produces no output.
warnings={no, yes: Determines whether Lman gives warnings. You probably wanse

the no-option when you inspect LEDA manual pages and theop&en when you design
manual pages yourself.

ack={no, yeg: Determines whether Lman asks for acknowledgments of wgsnin

usesubscripts{no, yeg: Determines whether variables consisting of a single charac
followed by a number are displayed as subscripted variables

14.3 Making a Manual: The Mkman Command 23

filter={all, signatures, definition, creation, operations, implerentation, example, op-
name}: Determines which part of the manual page is shown. The diboshows the
complete manual page, the signature-option shows thetsigsaof all operations of the
data type, the next five options show only the correspondiatjen of the manual page,
and the opname-option shows only the operation with the seme.

outfile={string }: Determines whether thg=X-file generated is only written on a tempo-
rary file (the default option) or on the file with name string.

latexruns={1, 0, 2}: Determines the number ofTEX runs used to produce the manual
page. ATeX needs to be run twice if the manual page contains crossaretes.
xdvi={yes, ng: Determines whether the manual page is displayed by xdwatéikiuns is
at least one and xdvi is no then the resulting dvi-file is cdpmto file T.dvi in the working
directory.

Lman can be customized by putting options in a file Lman.cfgither the home direc-
tory or the working directory. Command line options takegadence over options in the
working directory which in turn take precedence over ogionthe home directory.

14.3 Making a Manual: The Mkman Command

Many manual pages combined into a single document make aahaila explain a simple
mechanism to produce LEDA-style manuals. Assume that we tegsroduce a document
consisting of a title page, an introduction, and the managkg of types A and B. Assume
also that the manual information about types A and B is caethin files with extension
ext® in a common directordir and that the working directory contains a master TeX-file
as shown in Figure 14.8 and also a filetroduction.tex. The command

Mkman dir ext

cycles through all file€ . ext in dir and calls

lextract f.ext /extract/f.tex

for each one of them. This creates filegtract/A . tex andextract/B. tex after which
the master file may be processed wiTEX.

All header files of LEDA are contained in the directory LEDARWT/incl/LEDA and the
master file for manual production is called MANUAL.tex andantained in the directory
LEDAROOT/Manual/MANUAL. Thus an execution of

Mkman $LEDAROOT/incl/LEDA h
latex MANUAL.tex

in the latter directory produces the dvi-file of the LEDA mahusince LEDAROOT/incl/LEDA
and h are the default values of the first and second argumevikafan, respectively, the

3 Typical extensions are h, nw, and Iw.

24

\documentclass[12pt,adpaper] {book}
\usepackage{Lweb}
\begin{document}

\title {A Simple Manual}
\maketitle
\input{Introduction.tex}
\input{extract/A.tex}
\input{extract/B.tex}
\end{document}

Figure 14.8 A master tex-file for a simple manual.

#!/bin/csh -f

if ($1 == "") then
set source = $LEDAROOT/incl/LEDA
set ext = h

else
set source = $1
if ($2 == "") then
set ext = h
else
set ext = $2
endif
endif

\rm -r -f extract
mkdir extract

echo Extracting manual pages ...
echo non

foreach f ($source/*.$ext)
echo "extracting manual from $f"

Manual Pages and Documentation

lextract $f extract/‘basename $f .$ext‘.tex

end

Figure 14.9 The shell script Mkman for manual production.

first line may actually be abbreviated to Mkman. Figure 1sévss the shell script that
realizes Mkman.

14.4 The Manual Directory in the LEDA System

The subdirectory Manual of the LEDA directory contains adidithat are relevant for man-
ual production, see Figure 14.10.

14.5 Literate Programming and Documentation 25

LEDAROOT
I

Manual
________________ | __

I I I I I I
DVI MANUAL cmd contrib noweb tex

Figure 14.10 The subdirectory Manual of the LEDA directory.

¢ MANUAL contains the tex-sources for the LEDA-Manual.

e DVI contains the dvi-files obtained by applying Lman to albber files of the LEDA
system. The dvi-files in DVI are accessed by the online maviealer xIman.

e cmd contains the commands Lman, Mkman,
e contrib contains sources of contributions made by persatsde the LEDA group.

e noweb contains the noweb-sources for all programs useddoual production. In
particular, the noweb-filext .nw contains the Perl programs and shell scripts for
lextract, Lman, Mkman,

e tex contains thegX files required for manual production.

14.5 Literate Programming and Documentation

Many data types and algorithms of the LEDA system are doctexein the literate pro-
gramming system noweb [Ram94] and its LEDA-dialect Lwebot¢.dnd lweave are our
tools to turn noweb- and Lweb-files into nice looking documsen

Literate programming advises to integrate specificatimplémentation, and documen-
tation into a single file and to use tools (usually cali@dgleandweavé to extract program
and to typeset documentation. Among the many literate progring systems we have
used CWEB[KL93] and noweb our current favorite is noweb and its LEDA-dialect Lweb.
We used Lweb to produce this book.

14.5.1 Noweb and Lweb

We start with a brief review of noweb, see also Section 2.7wé&lbprovides commands
notangleand noweavehat can be applied to so-called noweb-files. A noweb-filerfao
contains program source code interleaved with documentaiivhen notangle is given a
noweb-file, it extracts the program and writes it to standargbut, and when noweave is
given a noweb-file it produces &TEX source on standard output.

4 noweb can be obtained by anonymous ftp from CTAN, the Congrsikie TeX Archive Network, in directory
web/noweb.

26 Manual Pages and Documentation

noweave LaTeX source

l______ notangle program

A noweb-file is a sequence ofiunks A chunk is either @ocumentation chunér acode
chunk Documentation chunks begin with a line that starts withtasign (@) followed by
a space or newline. Code chunks begin with

<<code chunk name>=

on a line by itself. Chunks are terminated by the beginningrafther chunk or by the end
of the file. Several code chunks may have the same name. Neteogcatenates their
definitions to produce a single chunk. Code chunks containceocode and references to
other code chunks.

Notangle extracts code by expanding one code chunk. In thansion process code
chunk definitions behave like macro definitions, i.e., ifdednition of chunk XXX contains
references to other code chunks then these chunks are g@landed, and so on.

Noweave produces &TEX source from a noweb-file. To this end it copies the docu-
mentation chunks verbatim to standard output (except foteglicode, see below) and it
typesets code chunks in typewriter font. Note that this iegpthat documentation chunks
starting with an @-sign followed by a newline-charactertsianew paragraph in the sense
of IATEX and that documentation chunks containing non-white stnfthe same line as the
@-sign do not. Code may lopiotedwithin documentation chunks by placing double square
brackets [[...1]) around it. Noweave typesets quoted code in typewriter. font

This completes our review of nowebhwebis our local dialect of noweb which we de-
veloped for the production of this book and for the documtgmnaof the LEDA system.
Lweb-files have extensionlw. Figure 14.11 shows an Lweb file and Figure 14.12 shows
the result of applying lweave to it. The differences betwkeeeb and noweb are the fol-
lowing:

e Code can be quoted by either double square brackéts.(]) or vertical bars
(I...]). Code quoted in double square brackets is set in typevioiteiand code
guoted in vertical bars is typeset in mathitalics font. TWw&s already discussed in
Section 14.2.2.

e Program examples can be included in documentation chunlsds/that start with
@c. The text after the program example must start with ang@fsilowed by a
space-character or a newline-character.

e Empty lines in program chunks generate somewhat less aksfiace than an empty
line in a verbatim-like environment. This makes code chuokk better.

e Page breaks are forbidden between the first few and the lasinfes of a code chunk.

14.5 Literate Programming and Documentation 27

lweave LaTeX source

| ____ notangle program

Lweb-files have extension .lw. Notangle applies also to Lifilels and noweave is re-
placed by lweave; lweave is realized as a pair of pre- ancppostssor to noweave. The
preprocessor handles the code quoted by vertical bars angrtlgram examples and the
postprocessor takes care of empty lines in code chunks. fiplkeientation of lweave is
part of ext.nw in LEDAROOT/Manual/noweb.

14.5.2 Documentation

Many classes and programs of the LEDA-system are documasied Lweb and this book
is also an Lweb document. We recommend having at least tlesviog major sections in
a documentation:

e A preamble consisting of the title page, the table of costeantd maybe an abstract
and an introduction.

e A manual page as discussed in the previous section.

e A section containing the header file augmented by manual amsso as to allow
manual extraction.

e A section containing the c-file.
e A section containing test, example, or demo programs.

Figure 14.13 shows a simple Lweb-file stack.lw having thememended structure. More
substantial examples can be found in the subdirectory Lviiéied EDAROQOT directory.

14.5.3 Ldoc
Ldoccombines the functionality of Lman and lweave. A call

Ldoc XXX[.lw] options

produces a file XXX.man in the working directory and a temppfade temp.lw. The for-
mer file contains the manual and is essentially the file predury Lman (except for the
preamble and postamble required BYK). The Lman-options constref, partypes, warn-
ings, ack, and usesubscripts apply. The file temp.lw is nbthby the deletion of all manual
comments (except for Mpreamble comments) from the input Tilee optiondelman=no
suppresses the deletion. The temporary file temp.lw is teabthrough Iweave and the
result is moved to XXX.tex in the working directory.

We introduced an additional manual comment for the use withcl. the Mpreamble
comment. As far as Lman is concerned it is equivalent to thexMtcommand, i.e., its

28

Manual Pages and Documentation

\documentclass[adpaper]{article}
\usepackage{Lweb}
\begin{document}
\subsubsection{Jordan Sorting}

We proceed to describe an implementation. Its global
structure is given by:

Qc

<<include statements>>;

<<typedefs and global variables>>;
<<class point>>;

<<class bracket>>;

<<procedure Jordan sort>>;

@ As outlined above, we construct three data structures
simultaneously: the sorted list of the numbers processed so
far, call it |L|, and the

upper and lower tree of brackets. Each item of the

list |L| contains its abscissa (a |float|) and pointers

to the brackets in the two trees containing it.

<<class point>>=

class point{

private:

float abscissa;

bracket* bracket_in_upper_tree;
bracket* bracket_in_lower_tree;

public:
<<member functions of class point>>

}

@ A node of either tree corresponds to a bracket.

A bracket needs to know its two endpoints

(as items in the list |L|), its sorted sequence

of sub-brackets (a |sortseq<bracket*,>| which we
abbreviate as |children_listl),

and its position among its siblings (a |seq_item]).
\end{document}

Figure 14.11 An Lweb file: It is part of the section on sorted sequencesisflibok.

body is included into the produced tex-file after placehokistitution and €+ to IATEX
conversion. Ldoc produces two output files, namely XXX.mad temp.lw. The output of
Mpreamble commands is put into the latter file instead of tdmér. A typical use of the
Mpreamble command is the definition ofagX-command whose body should be subjected
to C++ to IATpX-conversion. The following example is taken from LEDA'sogeep class.

14.5 Literate Programming and Documentation 29

We proceed to describe an implementation. Its global sireds given by:

(include statemenis

(typedefs and global variables
(class poin};

(class bracket;

(procedure Jordan sort

As outlined above, we construct three data structures samebusly: the sorted list of
the numbers processed so far, callLjtand the upper and lower tree of brackets. Each
item of the listL contains its abscissa fl@af) and pointers to the brackets in the two trees
containing it.

(class poinf=

class point{

private:

float abscissa;

bracket* bracket_in_upper_tree;
bracket* bracket_in_lower_tree;

public:
{(member functions of class pajnt
}

A node of either tree corresponds to a bracket. A bracketsieekhow its two endpoints
(as items in the list), its sorted sequence of sub-bracketsdgasegbracket, > which
we abbreviate ashildrenlist), and its position among its siblings aqitem).

Figure 14.12 The result of applying lweave + latex to the file of Figure 14.1

/*{\Mpreamble

\newcommand{\grsummary}

{The class |geo_rep| is used to represent points, hyperplanes,
directions, and vectors. The latter ...}

Ix/

14.5.4 Thelmplementation of Ldoc
Ldoc is based on the commankxtract Idel, andweave where weave is noweave for
noweb and lweave for Lweb.

foo.[lw|nw|lw] - ldel - foo-del.[lwlnw|w] - weave - foo.tex
| |
lextract \input{foo.man}
[[

foo.man -----------------"-------—---------------

Ldoc first uses lextract to extract the manual and Idel to rentbe manual comments, it
then applies the appropriate weave command to the outputetf &nd it finally applies
[ATeXand xdvi to the resulting file. All Lman options apply. In @mdto try out Ldoc copy

30

\documentclass[adpaper]{article}
\usepackage{Lweb}

\begin{document}

\title{Stack\\ [stackl| }
\author{Kurt Mehlhorn}

\maketitle

\tableofcontents

\section{The Manual Page of Type Stack}
\input{stack.man}

@ \section{The Header File}
<<stack.h>>= the file of Figure 1.2

@ \section{The Implementation}
<<stack.c>>= ...

@ \section{A Test Program}
<<stack-test.c>>= ...

Q
\end{document}

Figure 14.13 The generic structure of a documentation.

Manual Pages and Documentation

sortseq.lw from LEDAROOT/Lweb to a directory where you hawete-permission and
then call Ldoc sortseq.

Bibliography

[KL93] D. Knuth and S. Levy.The CWEB System
of Structured Documentation, Version 3.0
Addison-Wesley, 1993.

[Lam86] L. Lamport.IATEX. Addison-Wesley, 1986.

[Ram94] N. Ramsey. Literate programming
simplified. IEEE Softwargpages 97-105, 1994.

[WS90] L. Wall and R.L. SchwartzProgramming
perl. O'Reilly & Associates, 1990.

31

w, 26
callwidth, 13

descriptwidth, 13
documentation, 2—30
code unit, 11, 17
example of a header file, 3
example of a manual page, 4
Fman, 4
Ldoc, 27
leave, 27
literate programming, 21, 25-30
Lman, 2-5
options, 22
redirecting output, 21
lweave, 26
Lweb, 26
making a manual, 23-24
manual commands, 6-20
Manpage, 6
Marrop, 15
Mbinop, 14
Mbinopfunc, 16
Mconversion, 16
Mcreate, 10
Mcreation, 10
Mdefinition, 8
Mdestruct, 12
Mexample, 18
Mfunc, 16
Mfunop, 15
Mimplementation, 18
Mname, 10
Mop, 13
Moperations, 12
Moptions, 19
Mpreamble, 28
Mstatic, 15

Index

Msubst, 19
Mtext, 19
Mtypemember, 9
Mtypes, 9
Munop, 15
Munopfunc, 16
Mvar, 10
manual comment, 2
manual directory, 24-25
manual pages, 5-23
invisible functions, 17
structure, 6
TeX macros, 20
warnings, 20
Mkman command, 23
notangle, 25
noweave, 25
noweb, 25

Fman,seedocumentation

header file
decoration for manual production, 6

Ldoc, seedocumentation
Lman,seedocumentation
lweave,seedocumentation
Lweb, seedocumentation

manual
how to make oneseedocumentation
manual comment, 2

notangle seedocumentation
noweave seedocumentation
noweb,seedocumentation

typewidth, 13

32

