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2
Foundations

We discuss the foundations of the LEDA system. We introdoceeskey concepts, such as
type, object, variable, value, item, and linear order, watesthese concepts to our imple-
mentation base €, and we put forth our major design decisions. A superficiaWidedge
of this chapter suffices for a first use of LEDA. We recommerad ylou read it quickly and
come back to it as needed.

The chapter is structured as follows. We first discuss theifigation of data types. Then
we treat the concept “copy of an object” and its relation &igrement and parameter pass-
ing by value. The other kinds of parameter passing come nekisactions on iteration
statements follow. We then tie data types to the class méshaof C++. Type param-
eters, linear orders, equality, hashed types, and impl&tien parameters are the topics
of the next sections. Finally, we discuss some helpful sfoalttions, management, error
handling, header and implementation files, compilatiorsflagd program checking.

2.1 Data Types

The most important concept is that oflata typeor simplytype A type T consists of a
set ofvalues which we denotesal(T), a set ofobjects which we denotebj(T), and a
set of functions that can be applied to the objects of the.tyjgeobject may or may not
have aname A named object is also calledariable and an object without a name is
called ananonymous objectAn object is a region of storage that can hold a value of the
corresponding type.

The set of objects of a type varies during execution of a @mgrlt is initially empty,
it grows as new objects are created (either by variable diefirsi or by applications of the
newoperator), and it shrinks as objects are destroyed.
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The values of a type form a set that exists independently ppaogram execution. We
define it using standard mathematical concepts and notafiiren we refer to the values
of a type without reference to an object, we also elsgnenbr instance e.g., we say that
the number 5 is a value, an element, or an instance ofittpe

An object always holds a value of the appropriate type. Tlheablis initialized when
it is created and the value may be modified by functions opeyain the object. For an
objectx we usex also to denote the value &f This is a misuse of notation to which every
programmer is accustomed to.

In LEDA the specification (also called definition) of a datpeyconsists of four parts:
a definition of the instances of the type, a description of howreate an object of the
type, the definition of the operations available on the dje€ the type, and information
about the implementation. In the LEDA manual the four pappear under the headers
Definition, Creation Operations and Implementationrespectively. Sometimes, there is
also a fifth section illustrating the use of the data type byxample. As an example we
give the complete specification of the parameterized da@staclkk E> in Figure 2.1.

2.1.1 Definition

The first section of a specification defines the instances efdtta type using standard
mathematical concepts and notation. It also introducestiootthat is used in later sections
of the specification. We give some examples:

e Aninstance of typetringis a finite sequence of characters. The length of the
sequence is called thengthof the string.

e Aninstance of typstaclkk E> is a sequence of elements of tyfge One end of the
sequence is designated astip and all insertions into and deletions from a stack take
place at its top end. The length of the sequence is callesiteef the stack. A stack
of size zero is calleempty

e Aninstance of typarray<E> is an injective mapping from an intervhl= [a.. b] of
integers into the set of variables of tyfe We calll the index set ané& the element
type of the array. For an arrayywe useA(i) to denote the variable indexed bya < i
<h.

e Aninstance of typsekE> is a set of elements of type. We call E the element type
of the set;E must be linearly ordered. The number of elements in the satlisd the
sizeof the set and a set of size zero is caléedpty

e Aninstance of typdist<E> is a sequence of list items (predefined item tiipeiten).
Each item contains an element of tyge We use(x) to denote an item with contert

Most data types in LEDA arparameterizegde.g., stacks, arrays, lists, and sets can be used
for an arbitrary element typE and we will later see that dictionaries are defined in terms
of a key type and an information type. A concrete type is aladifrom a parameterized
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Stacks (stack)

1. Definition

An instanceS of the parameterized data typeclkk E> is a sequence of elements of data
type E, called the element type & Insertions or deletions of elements take place only at
one end of the sequence, called the tofof he size ofSis the length of the sequence, a
stack of size zero is called the empty stack.

2. Creation

stackE> S declares a variabl& of type stack E>. Sis initialized with the
empty stack.

3. Operations

E Stop() returns the top element &f
Precondition Sis not empty.

void SpushE x) addsx as new top element t8.

E Spop() deletes and returns the top elemer$.of
Precondition Sis not empty.

int Ssize() returns the size &

bool Sempty() returns true i is empty, false otherwise.

void Sclear() makesS the empty stack.

4. Implementation

Stacks are implemented by singly linked linear lists. Aleogitions take tim@® (1), except
clear which takes tim@®©(n), wheren is the size of the stack.

Figure 2.1 The specification of the typstack E>.

type by substituting concrete types for the type paran@®tethis process is calleishstan-
tiation of the parameterized typ&oarray<string> are arrays of stringsekint> are sets

of integers, andtacksekint> x > are stacks of pointers to sets of integers. Frequently, the
actual type parameters have to fulfill certain conditiong,,é¢he element type of sets must
be linearly ordered. We discuss type parameters in det&iéation 2.8.

2.1.2 Creation
We discuss how objects are created and how their initialeveulefined. We will see that
an object either has a name or is anonymous. We will also leamnthe lifetime of an
object is determined.

A named objectalso called variable) is introduced by a-€variable definition We give
some examples.
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string s;

introduces a variable of type string and initializes it to the empty string.
stack<E> S;

introduces a variabl8 of typestaclkk E> and initializes it to the empty stack.
b_stack<E> S(int n);

introduces a variabl& of type h.stack E> and initializes it to the empty stack. The stack
can hold a maximum af elements.

set<E> S;
introduces a variabl8 of typesek E> and initializes it to the empty set.
array<E> A(int 1,int u);

introduces a variablé of typearray<E> and initializes it to an injective function
a:[l..u] — obj(E). Each object in the array is initialized by the default @litzation of
type E; this concept is defined below.

list<E> L;
introduces a variablke of typelist<E> and initializes it to the empty list.

int i;
introduces a variable of tygat and initializes it to some value of typet.

We always give variable definitions in their generic forma,,iwe use formal type names
for the type parameter&(in the definitions above) and formal arguments for the argume

of the definition {nt a, intb, andint n in the definitions above). Let us also see some
concrete forms.

string s("abc"); // initialized to "abc
set<int> S; // initialized to empty set of integers

array<string> A(2,5); // array with index set [2..5],
// each entry is set to the empty string

b_stack<int> S(100) ; // a stack capable of holding up to 100
// ints; initialized to the empty stack

The most general form of a variable definition im-Cis
T<T1,...,Tk> y(x1,...,x1).

It introduces a variable with nameof type T<T1, .., Tk> and uses argumentsy, ..., x| to
determine the initial value of. HereT is a parameterized type withtype parameters and
T1, ..., Tkare concrete types. If any of the parameter lists is emptgohesponding pair
of brackets is to be omitted.

Two kinds of variable definitions are of particular importanthe definition with default
initialization and the definition with initialization by pging. A definition with default
initialization takes no argument and initializes the variable with dieéault valueof the
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type. The default value is typically the “simplest” valuetbé type, e.g., the empty string,
the empty set, the empty dictionary, ... . We define the defallie of a type in the section
with header Creation. Examples are:

string s; // initialized to the empty string

stack<int> S; // initialized to the empty stack
array<string> A; // initialized to the array with empty index set

The built-in types such ashar, int, float, double and all pointer types are somewhat an
exception as they have no default value, e.g., the definiti@m integer variable initializes
it with some integer value. This value may depend on the di@thistory. Some compilers
will initialize i to zero (more generally, O casted to the built-in type in ¢joa¥, but one
should not rely on this

We can now also explain the definition of an array. Each véiatthe array is initialized
by the default initialization of the element type. If therlent type has a default value (as
is true for all LEDA types), this value is taken and if it hasdaefault value (as is true for
all built-in types), some value is taken. For exampleay<list<E> > A(1, 2) definesA as
an array of lists of element tyde. Each entry of the array is initialized with the empty list.

A definition with initialization by copyingakes a single argument of the same type and
initializes the variable with a copy of the argument. Thetagtic form is

T<T1,...,Tk> y(x)

wherex refers to a value of typ@ <T1, .., Tk>, i.e., X is either a variable name or more
generally an expression of tydeT1, ..., Tk>. An alternative syntactic format is

T<T1,...,Tk> ¥ = x.

We give some examples.

stack<int> P(S); // initialized to a copy of S
set<string> U(V); // initialized to a copy of V
string s = t; // initialized to a copy of t
int i = j; // initialized to a copy of j
int h = 5; // initialized to a copy of 5

We have to postpone the general definition of what conssitatepy to Section 2.3 and give
only some examples here. A copy of an integer is the integelf iind a copy of a string is
the string itself. A copy of an array is an array with the sanmdek set but new variables.
The initial values of the new variables are copies of the emlof the corresponding old
variables.

LEDA Rule 1 Definition with initialization by copying is available fowery LEDA type. It
initializes the defined variable with a copy of the argumdrhe definition.

1 The Gr+ standard defines that variables specified static are atitmifyatzero-initialized and that variables
specified automatic or register are not guaranteed to halinétd to a specified value.
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How long does a variable live? Thigetimeof a named variable is either tied to the block
containing its definition (this is the default rule) or is #weecution of the entire program (if
the variable is explicitly defined to be static). The firstkiof variable is calledutomatic
in C++ and the second kind is calletiatic Automatic variables are created and initialized
each time the flow of control reaches their definition andrdgst on exit from their block.
Static variables are created and initialized when the progexecution starts and destroyed
when the program execution ends.

We turn toanonymous objectsext. They are created by the operatemw the operator
returns a pointer to the newly created object. The generdhstic format is

new T<T1,...,Tk> (x1,...,x1);

whereT is a parameterized typdl, ..., Tk are concrete types, and, ..., x| are the
arguments for the initialization. Again, if any of the argemt lists is empty then the cor-
responding pair of brackets is omitted. The expressiorrmeta pointer to a new object of
type T<TL, .., Tk>. The object is initialized as determined by the argumgfts. ., xI. We
give an example.

stack<int> *sp = new stack<int>;

defines a pointer variabpand creates an anonymous object of tgteekint>. The stack
is initialized to the empty stack argis initialized to a pointer to this stack.

The lifetime of an object created hyewis not restricted to the scope in which it is
created. It extends till the end of the execution of the paogunless the object is explicitly
destroyed by thdeleteoperatordeletecan only be applied to pointers returnedrigwand
if it is applied to such a pointer, it destroys the object peihto. We say more about the
destruction of objects in Section 2.3.

2.1.3 Operations

Every type comes with a set of operations that can be apittetobjects of the type. The
definition of an operation consists of two parts: the definitof its interface (= syntax) and
the definition of its effect (= semantics).

We specify thanterface of an operatioessentially by means of the+€ function dec-
laration syntax. In this syntax the result type of the operais followed by the operation
name which in turn is followed by the argument list specifythe type of each argument.
The result type of an operation returning no resultagd. We extend this syntax by pre-
fixing the operation name by the name of an object to which gegation is being applied.
This facilitates the definition of the semantics. For exampl

void S.insert(E x);

defines the interface of the insert operation for tgp& E>; inserttakes an argumenmnt of
type E and returns no result. The operation is applied to the s¢h fve@me)S.

E& Alint il;

defines the interface of the access operation for typ@y<E>. Access takes an argument
i of typeint and returns a variable of tyde. The operation is applied to array.
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E S.popQ);

defines the interface of the pop operation for tygtaclE>. It takes no argument and
returns an element of type. The operation is applied to sta&k

int s.pos(string s1);

defines the interface of theosoperation for typestring. It takes an argumerstl of type
stringand returns an integer. The operation is applied to s&ing

The semantics of an operatids defined using standard mathematical concepts and no-
tation. The complete definitions of our four example operstiare:

void Sinsert(E x) addsx to S.

E& Ainti] returns the variablé\(i). Preconditiona <i < b.
E  Spop() removes and returns the top elementSofPrecondition Sis not
empty.

int spogstrings) returns—1 if slis not a substring of and returns the minimal
i, 0 <i <slength()—1, such thasl occurs as a substring af
starting at positiom, otherwise.

In the definition of the semantics we make use of the notatimoduced in sections
Definition and Creation. For example, in the case of arragséttion Definition introduces
A(i) as the notation for the variable indexedilgnd introducea andb as the array bounds.

Frequently, an operation is only defined for a subset of akflde arguments, e.g., the
pop operation on stacks can only be applied to a non-empty stdibke. preconditionof
an operation defines which conditions the arguments of amatipa must satisfy. If the
precondition of an operation is violated then the effecthaf operation is undefined. This
means thaeverything can happerThe operation may terminate with an error message or
with an arbitrary result, it may not terminate at all, or itymasult in abnormal termination
of the program. Does LEDA check preconditions? Sometindsds and sometimes it does
not. For example, we check whether an array index is out ofil®or whether a pop from
an empty stack is attempted, but we do not check whetheritteelongs to dictionanp
in D.inf (it). Checking the latter condition would increase the runnimgtof the operation
form constant to logarithmic and is therefore not done. Mgegaerally, we do not check
preconditions that would change the order of the running tirhan operation. All checks
can be turned off by the compile-time flaQLEDA_CHECKING_OFF.

All types offer the assignment operator. For typéhis is the operator

T& operator=(const T&).
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The assignment operator is not listed under the operatibagype since all types have it
and since its semantics is defined in a uniform way as we wélis&ection 2.3.

Our implementation base+@ allows overloading of operation and function names and
it allows optional arguments. We use both mechanisms. o¥erloaded function name
denotes different functions depending on the types of theraents. For example, we have
two translate operations for points:

point p.translate(vector v);
point p.translate(double alpha,double dist);

The first operation translatgeby vectorv and the second operation translgpea direction
alphaby distancedist

An optional argumenbf an operation is given a default value in the specificatibtine
operation. G+ allows only trailing arguments to be optional, i.e., if aneogition hask
argumentsk > 1, then the last, | > 0, may be specified to be optional. An example is the
insert operation into lists. If is alist<E> then

list_item L.insert(E x,list_item it, int dir = after)

insertsx before @lir == beforg or after dir == after) itemit into L. The default value of
dir is after, i.e., L.insert(x, it) is equivalent td_.insert(x, it, after).

2.1.4 Implementation

Under this header we give information about the implemeémaif the data type. We name
the data structure used, give a reference, listrtimming timeof the operations, and state
thespace requirementere is an example.

The data type list is realized by doubly linked linear lisédl operations take constant
time except for the following operationsearchandrank take linear timeO(n), item(i)
takes timeO(i ), bucketsort takes timeO(n + j — i) andsort takes timeO(n - ¢ - logn)
wherec is the time complexity of the compare function.s always the current length of
the list. The space requirement is +6L2n bytes.

It should be noted that the time bounds do not include the tisexed for parameter
passing. The cost of passing a reference parameter is bainyde constant and the cost
of passing a value parameter is the cost of copying the angurii¢e follow the custom to
account for parameter passing at the place of call.

Similarly, the space bound does not include the extra spaedad for the elements con-
tained in the set, it only accounts for the space requiretiéyata structure that realizes the
set. The extra space needed for an element is zero if the eléitsénto one machine word
and is the space requirement of the element otherwise. &tésts how parameterized data
types are implemented in LEDA. Values that fit exactly int@ evord are stored directly in
the data structure and values that do not fit exactly are diadirectly through a pointer.
The details are given in Section 13.1.

The information about the space complexity allows us to asmfhe exact space require-
ment of a list of sizen. We give some examples. A set of tylm<int> andlist<list<int> * >
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requires 16+ 12n bytes since integers and pointers fit exactly into a word. st\df type
list<list<int> > where thei-th list hasn; elements, 1< i < n, requires 16+ 12n +
D 1<i<n(16+ 12n;) bytes.

The information about time complexity is less specific thhat tfor space. We only
give asymptotic bounds.e., bounds of the forn®(f (n)) where f is a function ofn. A
bound of this form means that there are constengndc; (independent of) such that the
running time on an instance of sineis bounded byc; + ¢, - f(n). The constants; and
c, are not explicitely given. An asymptotic bound does pretiietactual running time on a
particular input (a€; andc, are not available), it gives however a feeling for the bebiavi
of an algorithm a® grows. In particular, if the running time ®(n) then an input of twice
the size requires at most twice the computing time, if thening time isO(n?) then the
computing time at most quadruples, and if itQglogn) then the computing time grows
only by an additive constant asdoubles. Thus asymptotic bounds allow us to extrapolate
running times from smaller to larger problem instances.

Why do we not give explicit values for the constaot@ndc,? The answer is simple, we
do not know them. They depend on the machine and compilethwttiao use (which we do
not know) and even for a fixed machine and compiler it is veffyodilt to determine them,
as machines and compilers are complex objects with comglleabor, e.g., machines have
pipelines, multilevel memaries, and compilers use somaitdd optimization strategies. It
is conceivable that program analysis combined with a sefrople experiments allows
one to determine good approximations of the constants,FAd87] for a first step in this
direction.

Our usual notion of running time is worst-case running tine, if an operation is said
to have running timeO( f (n)) then it is guaranteed that the running time is bounded by
c1 + ¢ - f(n) for every input of sizen and some constants andc,. Sometimes, running
times are classified as being expected (also called aveoagehortized. We give some
examples.

The expected access time for maps is constant. This asshatesrtandom set is stored
in the map.

The expected time to construct the convex hullngboints in 3-dimensional space is
O(nlogn). The algorithm is randomized.

The amortized running time @fisertanddecreassprio in priority queues is constant and
the amortized running time afeleteminis O(logn).

In the remainder of this section we explain the terms explemtel amortized. Aamor-
tizedtime bound is valid for a sequence of operations but not fandividual operation.
More precisely, assume that we execute a sequepc®p,, ..., Opn of operations on an
object D, whereop, constructsD. Let n; be the size oD before thei-th operation and
assume that thieth operation has amortized cd®t(T; (n;)). Then the total running time
for the sequencepy, Opy, ... Opm IS

om+ Y T,

1<i<m
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i.e., a summation of the amortized time bounds for the imligl operations yields a bound
for the sequence of the operations. Note that this does eotyate that thé-th operation
takes much longer thah (n;) for somei, it only states that the entire sequence runs in the
bound stated. However, if tHeth operation takes longer than(n;) then the preceding
operations took less than their allowed time.

We give an example: in priority queues (with the Fibonaccmhanplementation) the
amortized running time oinsert and decreassorio is constant and the amortized cost
of deleteminis O(logn). Thus an arbitrary sequence ofinsert n deletemin, andm
decreasgrio operations takes tim@(m + nlogn).

We turn toexpectedunning times next. There are two ways to compute expectedmg
times. Either one postulates a probability distributiontba inputs or the algorithm is
randomized, i.e., uses random choices internally.

Assume first that we have a probability distribution on thauis, i.e., ifx is any conceiv-
able input of sizen then prob(x) is the probability thak actually occurs as an input. The
expected running tim& (n) is computed as a weighted sufin) = > prob(x) - T (x),
wherex ranges over all inputs of size and T (x) denotes the running time on inpxt
We refer the reader to any of the textbooks [AHU83, CLR90, B#dtHor a more detailed
treatment. We usually assume th&iform distribution i.e., if x andy are two inputs of the
same size theprob(x) = prob(y). Itis time for an example.

The expected access time for maps is constamhafk |, E> realizes a partial function
m from some typd to some other typ&; the index typel must be either the typat or
a pointer or item type. LeD be the domain ofn, i.e., the set of arguments for whiohis
defined. The uniform distribution assumption is then thhsabsetsD of | of sizen are
equally likely. The average running time is computed witbpect to this distribution.

Two words of caution are in order at this point. Small averageing time does not
preclude the possibility of outliers, i.e., inputs for whithe actual running time exceeds
the average running time by a large amount. Also, averageingrtime is stated with
respect to a particular probability distribution on theutg This distribution is probably
not the distribution from which your inputs are drawn. So beetul.

A randomizedalgorithm uses random choices to control its execution.ekample, one
of our convex hull algorithms takes as input a set of pointh@plane, permutes the points
randomly, and then computes the hull in an incremental éashiThe running time and
maybe also the output of a randomized algorithm dependsemnatiidom choices made.
Averaging over the random choices yields the expected ngrihe of the algorithm. Note
that we are only averaging with respect to the random chaeice by the algorithm, and
do not average with respect to inputs. In fact, time boundaafiomized algorithms are
worst-case with respect to inputs. As of this writing alldamized algorithms in LEDA
are of the so-calletdas Vegastyle, i.e., their output is independent of the random akmic
made. For example, the convex hull algorithm always conmgptiie convex hull. If the
output of a randomized algorithm depends on the random ehdlen the algorithm is
calledMonte Carlostyle. An example of a Monte Carlo style randomized algaritk the
primality tests of Solovay and Strassen [SS77] and Rabibh$Rh They take two integers
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ands and test the primality af. If the algorithms declare non-prime them is non-prime.
If they declaren prime then this answer is correct with probability at least2ts, i.e., there
is chance that the answer is incorrect. However, this changeniscule (less than 200
for s = 100). The expected running time@slog® n).

2.2 Item Types

Item types are ubiquitous in LEDA. We have diems (= items in dictionaries), pitems
(= items in priority queues), nodes and edges (= items inlgggmoints, segments, and
lines (= basic geometric items), and many others. What isesn

Items are simply addresses of containers and item varialpdegariables that can store
items. In other words, item types are essentiali+@ointer types. We say essentially,
because some item types are not implemented as pointer tgesome back to this point
below.

A (value of type)dicitemis the address of a dicontainer and a (value of typgpint
is the address of a poimbntainer. A diccontainer has a key and an information field
and additional fields that are needed for the data structudlenlying the dictionary and a
point.container has fields for the- andy-coordinate and additional fields for internal use.
In C++ notation we have as a first approximation (the details afereift):

class dic_container
{ K key;

I inf;

// additional fields required for the underlying data structure
}

typedef dic_container* dic_item;

class point_container
{ double x, y;
// additional fields required for internal use

}

typedef point_container* point;
// Warning: this is NOT the actual definition of point

We distinguish betweedependenandindependenitem types. The containers corre-
sponding to a dependent item type can only live as part oflaatan of containers, e.qg.,
a dictionary-container can only exist as part of a dictignarpriority-queue-container can
only exists as part of a priority queue, and a node-contaiaaronly exists as part of a
graph. A container of an independent item type is self-defitcand needs no “parent type”
to justify its existence. Points, segments, and lines aaengkes of independent item types.
We discuss the common properties of all item types now arad the special properties of
dependent and independent item types afterwards. We cikmnof an independent or
dependentitem type an independent or dependent item ctesgg

An item is the address of a container. We refer to the valumgdtin the container as
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attributesof the item, e.g., a point has an and ay-coordinate and a ditem has a key
and an information. We have functions that allow us to readtiributes of an item. For a
point p, p.xcoord ) returns thex-coordinate of the point, for a segment.start( ) returns
the start point of the segment, and for a.demit which is part of a dictionar, D.ke(it)
returns the key of the item. Note the syntactic difference:dependent items the parent
object is the main argument of the access function and fapeddent items the item itself
is the main argument.

We will systematically blur the distinction between itenmglacontainers. The previous
paragraph was the first step. We write “a point haxamordinate” instead of the more
verbose “a point refers to a container which stores-aoordinate” and “a didgtem has a
key” instead of the more verbose “a diem refers to a container that stores a key”. We also
say “a dicitem which is part of a dictionarp” instead of the more verbose “a diem that
refers to a container that is part of a diction®@y. We will see more examples below. For
example, we say that an insétinsert(k, i) into a dictionary “adds an item with keyand
informationi to the dictionary and returns it” instead of the more verlfasiels a container
with key k and informationi to the dictionary and returns the address of the container”.
Our shorthand makes many statements shorter and easiedtbuecan sometimes cause
confusion. Going back to the longhand should always resbleonfusion.

We said above that item types are essentialty @ointer types. The actual implemen-
tation may be different and frequently is. In the current lienpentation of LEDA all de-
pendent item types are realized directly as pointer typgs, #he typedicitemis defined
asdiccontaines, and all independent item types are realized as classesevwdmdg data
member is a pointer to the corresponding container class.

The reason for the distinction is storage management whikhrder for containers asso-
ciated with independent item types. For example, a dictpeantainer can be returned to
free store precisely if it is either deleted from the dictioncontaining it or if the lifetime of
the dictionary containing it ends. Both situations arelgascognized. On the other hand,
a point-container can be returned to free store if no pointtpdo it anymore. In order to
recognize this situation we make every point-containemkhow many points point to it.
This is called a reference count. The count is updated bypkeations on points, e.g., an
assignmenp = q increases the count of the container pointed ta@tand decreases the
count of the container pointed to lmy When the count of a container reaches zero it can be
returned to free store. In order to make all of this transpatiethe user of typgointit is
necessary to encapsulate the pointer in a class and to retisdipointer operations assign-
ment and access. This technique is known under the mamele typesnd is discussed in
detail in Section 13.7.

All item types offer the assignment operator and the equpliédicate. Assume that
is an item type and thaitl andit2 are variables of typ&. The assignment

itl = it2;

assigns the value af2 to itl and returns a referenceitd. This is simply the assignment
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between pointers. In the case of handle types the assigrrastibe side effect of updating
the reference counters of the objects pointed titbgndit2.

The equality predicate (operatioool operator== (const T&, const T&)) is more sub-
tle. For dependent item types it is the equality betweenes(ue., pointers) but for inde-
pendentitem types it is usually defined differently. Fomagée, two points in the Euclidean
plane are equal if they agree in their Euclidean coordinates

point p(2.0,3.0); // a point with coordinates 2.0 and 3.0

point q(2.0,3.0); // another point with the same coordinates
P == q; // evaluates to true

Note thatp andq are not equal as pointers. They point to distinct point-aiorers. How-
ever, they agree in their Euclidean coordinates and therdffie two points are said to be
equal. For independent item types we also havedéetity predicate (realized by function
bool identical{const T&, const T&)). It tests for equality of values (i.e., pointers). Thus
identicalp, ) evaluates to false. We summarize in:

LEDA Rule 2

(a) Forindependentitem types the identity predicate is etjub#tween values. The equal-
ity predicate is defined individually for each item type. dtusually equality between
attributes.

(b) For dependent item types the equality predicate is equiaditween values.

2.2.1 Dependent Item Types

Many advanced data types in LEDA are defined as collectioitemfs, e.g., a dictionary is
a collection of dicitems and a graph is defined in terms of nodes and edges. Tleistmm
usually has some combinatorial structure imposed on it, krgay be arranged in the form
of a sequence, or in the form of a tree, or in the form of a gdrmgeph. We give some
examples.

An instance of typalictionarnkK, I > is a collection of dicitems, each of which has an
associated key of typ€ and an associated information of typeThe keys of distinct items
are distinct. We usé, i) to denote an item with kely and informationi.

An instance of typdist<E> is a sequence of listems, each of which has an associated
information of typeE. We use(e) to denote an item with informatiom

An instance of typesortsegK, 1> is a sequence of satems, each of which has an
associated key of typK and an associated information of type The key typeK must
be linearly ordered and the keys of the items in the sequerrease monotonically from
front to rear. We usék, i) to denote an item with kelg and informatiori.

An instance of typgraphis a list of nodes and a list of edges. Each edge has a source
node and a target node. We usew) to denote an edge with sourgeand targeiw.

An instance of typeartition is a collection of partitioritems and a partition of these
items into so-callethlocks

In all examples above an instance of the complex data typeddection of items. This
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collection has some combinatorial structure: lists andesbsequences are sequences of
items, the items of a partition are arranged into disjointhks$, and the nodes and edges of a
graph form a graph. The items have zero or more attributestaetins and sedtems have a
key and an information, an edge has a source and a targetwleigas a partitioitem has

no attribute. An attribute either helps to define the contoinal structure, as in the case
of graphs, or associates additional information with amitas in the case of dictionaries,
lists, and sorted sequences. The combinatorial strucsueithier defined by referring to
standard mathematical concepts, such as set, sequenee,avrtby using attributes, e.g.,
an edge has a source and a target. The values of the attrilmitewy to certain types; these
types are usually type parameters. The type parameterbamadktibute values may have to
fulfill certain constraints, e.g., sorted sequences reghgir key type to be linearly ordered,
dictionaries require the keys of distinct items to be digtimnd the keys of the items in a
sorted sequence must be monotonically increasing front foorear.

Many operations on dictionaries (and similarly, for the estitomplex data types of
LEDA) have items in their interface, e.g., arsertinto a dictionary returns an item, and
a changeanf takes an item and a new value for its associated informatighy have we
chosen this design which deviates from the specificationallysmade in data structure text
books? The main reason is efficiency.

Consider the following popular alternative. It defines aiditary as a partial function
from some typeK to some other typé, or alternatively, as a set of pairs frokhx 1, i.e.,
as the graph of the function. In an implementation each @air) in the dictionary is
stored in some location of memory. It is frequently usefattthe pair(k, i) cannot only
be accessed through the Keput also through the location where it is stored, e.g., we may
want to lookup the information associated with kek (this involves a search in the data
structure), then compute with the valua new value’, and finally associate the new value
with k. This either involves another search in the data structyri the lookup returned
the location where the paik, i) is stored, it can be done by direct access. Of course, the
second solution is more efficient and we therefore wantedppart it in LEDA.

We provide direct access through diems. A dicitem is the address of a dictionary
container and can be stored in a_dtiem variable. The key and information stored in a
dictionary container can be accessed directly through dtefia variable.

Doesn'tthis introduce all the dangers of pointers, e.@. pibtential to change information
which is essential to the correct functioning of the undadydata structure? The answer
is no, because the access to dictionary containers throigtjorairy items is restricted,
e.g., the access to a key of a dictionary container is redd-tmthis way, items give the
efficiency of pointers but exclude most of their misuse, @iyen a dicitem its associated
key and information can be accessed in constant time, ieehawe the efficiency of pointer
access, but the key of a ditem cannot be changed (as this would probably corrupt the
underlying data structure), i.e., one of the dangers oftpairis avoided. The wish to have
the efficiency of pointer access without its dangers was ainmmotivation for introducing
items into the signatures of operations on complex datastype
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Let us next see some operations involving items. We useodiaties as a typical exam-
ple. The operations

dic_item D.lookup(K k);

I D.inf(dic_item it);

void D.change inf (dic_item it,I j);
have the following semantic®.lookupk) returns the iterfy sayit, with keyk in dictionary
D, D.inf(it) extracts the information frorit, and a new informatiorj is associated with
it by D.changdnf (it, j). Note that only the first operation involves a search in th& da
structure realizind® and that the other two operations access the item directly.

Let us have a look at the insert operation for dictionarieg:ne

dic_item D.insert(K k,I i);

There are two cases to consider.Ofcontains an itenit whose key is equal tk then the
information associated witihis changed td andit is returned. IfD contains no such item,
then anewcontainer, i.e., a container which is not part in any diciign is added tdD,

this container is made to contafk, i), and its address is returned. In the specification of
dictionaries all of this is abbreviated to

dicitem DinsertK k, 1) associates the informationwith the keyk. If there is an
item (k, j) in D thenj is replaced by, else a new item
(k, 1) is added taD. In both cases the item is returned.

For any dependent item type the set of values of the type itnifae special valugil®.
This value never belongs to any collection and no attribatesever defined for it. We
use it frequently as the return value for function calls fadtin some sense. For example
D.lookupk) returnsnil if there is no item with ke in D.

Containers corresponding to dependent item types canigit@iside collections. As-
sume, for example, that the container referred to byitgim it belongs to some dictionary
D and is deleted frond by D.delitem(it). This removes the container froBhand destroys
it. It is now illegal* to access the fields of this container.

LEDA Rule 3 It is illegal to access the attributes of an item which refers& container
that has been destroyed or to access the attributes of tirenite

In the definition of operations involving items this axiorneduently appears in the form
of a precondition.

| D.inf (dicitem it) returns the information of iten.
Precondition it must belong to dictionarp.

2 The operation returnsil if there is no item with key in D.
3 Recall that all dependent item types are pointer typesriatir

4 Of course, as in ordinary life, illegal actions can be perfed anyway. The outcome of an illegal action is hard to
predict. You may be lucky and read the values that existedreéhe container was destroyed, or you may be
unlucky and read some random value, or you might get caughgenerate a segmentation fault.
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2.2.2 Independent Item Types
We now come to independent item types. Points, lines, semiategers, rationals, and
reals are examples of independent item types. We discustspoi

A pointis an item with two attributes of type double, callbdx- andy-coordinate of the
point, respectiveR; We use(a, b) to denote a point witkk-coordinatea andy-coordinate
b.

Note that we are not saying that a point is a pair of doubless#lye a point is an item
and this item has two double attributes, namely the cootéinaf the point. In other words,
a point is logically a pointer to a container that containe thoubles (and additional fields
for internal use). This design has several desirable iraptios:

e Assignment between points takes constant time. This igcpéatly important for
types where the attributes are large, e.g., arbitrary gi@tintegers.

e Points can be tested for identity (= same pointer value) andduality (= same
attribute values). The identity test is cheap.

e The storage management for points and all other indepeitdemtypes is transparent
to the LEDA user.

We have functions to query the attributes of a pojmkcoord ) returns thex-coordinate
and p.ycoord ) returns they-coordinate. We also have operations to construct new oint
from already constructed points, e.g.,

point p.translate(double a,double b);

returns a new pointp.xcoord ) + a, p.ycoord ) + b), i.e., it returns an item with attributes
p.xcoord ) + a and p.ycoord ) + b. It is important to note thatanslatedoes not change
the pointp. In fact, there is no operation on points that changes thibatiks of an already
existing point. This is true for all independent item types.

LEDA Rule 4 Independent item types offer no operations that allow tongeaattributes;
the attributes are immutable.

We were led to this rule by programs of the following kind (aHiis not a LEDA pro-
gram):

q =Pp;

p.change x(a); // change x-coordinate of p to a
After the assignmerg and p point to the same point-container and hence changisg-
coordinate also changg%s x-coordinate, a dangerous side-effect that can lead tossttrat
are very hard to fiftl We therefore wanted to exclude this possibility of erroe &plored
two alternatives. The first alternative redefines the seitgof the assignment statement to
mean component-wise assignment and the second alterfatigs operations that change

5 There are also points with rational coordinates and pomtsgher dimensional space.
6 Both authors spent many hours finding errors of this kind.
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attributes. We explored both alternatives in a number ofrgta programs, adopted the
second alternatiVeand casted it into the rule above.

A definition of an independent item always initializes afirisutes of the item. For
example,

point p(2.0,3.0);

point q; // q has coordinates but it is not known which.
defines a poinp with coordinateg2.0, 3.0) and a poinig. The coordinates of poirg are
defined but their exact value is undetermined. This is theesaonvention as for built-in

types.

LEDA Rule 5 The attributes of an independent item are always defined.attiqolar,
definition with default initialization initializes all atibutes. A type may specify the initial
values but it does not have to.

We explored alternatives to this rule. For example, we am@reid the rule that the initial
value of an attribute is always the default value of the @pomding type. This rule sounds
elegant but we did not adopt it because of the following edami/e mentioned already
that the default value of typgoubleis undefined and that the default value of typgonal
is zero. Thus a point with rational coordinates (typepoint) would be initialized to the
origin and a point with floating point coordinates (typeint) would be initialized to some
unspecified point. This would be confusing and a source afreilthe rule above helps to
avoid this error by encouraging the practice that objecnohdependent item type are to
be initialized explicitly.

2.3 Copy, Assignment, and Value Parameters

We now come to a central concept o#€and hence LEDA, the notion of eopy. Its
importance stems from the fact that several other key cdacap defined in terms of it,
namely assignment, creation with initialization by comyiparameter passing by value,
and function value return. We give these definitions first anly afterwards define what
it means to copy a value. At the end of the section we also ksttad relation between
destruction and copying.

We distinguish between primitive types and non-primitiypds. All built-in types, all
pointer types, and all item types are primitive. For prim@ttypes the definition of a copy
is trivial, for non-primitive types the definition is someathinvolved. Fortunately, most
LEDA users will never feel the need to copy a non-primitivgeab and hence can skip the
non-trivial parts of this section.

We start by defining assignment and creation with initidiaaby copying in terms of
copying. This will also reveal a close connection betweeasigasnent and creation with

7 This does not preclude the possibility that other examplaslavhave led us to a different conclusion.
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initialization. The designers of €3 decided that definition with initialization is defined
in terms of copy and we decided that assignment should alstefi@ed in terms of copy.
Observe that €+ allows one to implement the assignment operator for a afeass arbitrary
way. We decided that the assignment operator should havéf@mnsemantics for all
LEDA types.

LEDA Rule 6 An assignment = A assigns a copy of the value of expression A to the
variable x.

C++ Axiom 1 A definitionT x = A creates a new variable x of type T and initializes it with
a copy of the value of A. An alternative syntactic forrmi ig (A). The statementew T(A)
returns a pointer to a newly created anonymous object of fyp&he object is initialized
with a copy of the value of A.

The axioms above imply that the code fragmehtg; x = AandT x = A are equiv-
alent, i.e., creation with default initialization followeby an assignment is equivalent to
creation with initialization by copyirfy The next axiom ties parameter passing by value
and value return to definition with initialization and herloeopying.

C++ Axiom 2

a) A value parameter of type T and name x is specifiedl as Let A be an actual param-
eter, i.e., A is an expression of type T. Parameter passiegusvalent to the definitiom

x = A

b) Let f be a function with return type T and leéturn A be a return statement in the
body of f; Ais an expression of type T. Function value retamqjuivalent to the definition
T x = A where x is a name invented by the compiler. x is called a tearpmariable.

Now that we have seen so many references to the notion of dapyalue, it is time to
define it. A copy of a natural number is simply the number itsBlore generally, this is
true for all so-callegrimitive types.

LEDA Rule 7

(a) All built-in types, all pointer types, and all item types gmmitive.
(b) A copy of a value of a primitive type is the value itself.

We conclude, that the primitive types behave exactly like khilt-in types and hence
if you understand what copy, assignment, parameter pabginglue, and function value
return mean for the built-in types, you also understand tfamall primitive types. For
non-primitive types the definition of a copy is more complexi anaking a copy is usually
a non-constant time operation. Fortunately, the copy diperdor non-primitive types is
rarely needed. We give the following advice.

Advice: Avoid assignment, initialization by copying, paeter passing by value, and

8 This assumes that both kinds of creations are defined foyfeeTt.
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function value return for non-primitive types. Also exsectare when using a non-primitive
type as an actual type parameter.

// read on, if you plan to use any of the statements below

L1 = L2; // L1 and L2 are lists
int f(list<int> A); // non-primitive value parameter
list<int> £(); // non-primitive return value

dictionary<string,list<int> > D; // non-primitive type parameter

The values of non-primitive types exhibit structure, eagvalue of typestaclkk E> is a
sequence of elements of tyfie a value of typearray<E> is a set of variables of typE
indexed by an interval of integers, and a value of tlipeE> is a sequence of list items
each with an associated element of type Therefore, non-primitive types are also called
structured A copy of a value of a structured type is similar but not ideadtto the original
in the same sense as the Xerox-copy of a piece of paper isasilit not identical to the
original; it has the same content but is on a different pidqmper.

We distinguish two kinds of structured typdtem-basedandnon-item-basedA struc-
tured type is called item-based if its values are defined Besations of items. Dictionaries,
sorted sequences, and lists are examples of item-baseduséd types, and arrays and
sets are examples of non-item-based structured types. sesaysimple-structuredype
instead of non-item-based structured type.

LEDA Rule 8

(a) A value x of a simple-structured type is a set or sequencecaifiats or variables of
some type E. A copy of X is a component-wise copy.

(b) A copy of a variable is a new variable of the same type, in#té with a copy of the
value of the original.

We give some examples. Copying the statlk4, 2) produces the stadd, 4, 2), copying
an array<int> with index set [1. 3] means creating three new integer variables indexed
by the integers one to three and initializing the variabléh wopies of the values of the
corresponding variable in the original, and copyirgtackdictionanxkK, | > x > produces
a stack with the same length and the same pointer values. dlloe/ing code fragment
shows that a copy of a value of a structured type is distirechfthe original.

array<int> A(0,2);

array<int> B = A;

int* p = A[0];

int* q = B[0];

P == q; // evaluates to false

We next turn to item-based structured types.

LEDA Rule 9 A value of an item-based structured type is a structuredectibn of items

each of which has zero or more attributes. A copy of such aevala collection of new
items, one for each item in the original. The combinatortalisture imposed on the new
items is isomorphic to the structure of the original. Evetiribute of a new item which
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does not encode combinatorial structure is set to a copy@ttrresponding attribute of
the corresponding item in the original.

Again we give some examples. Copyindisi<E> of length 5 means creating five new
list items, arranging these items in the form of a list, anttirsg the contents of the-th
new item, 1< i < 5, to a copy of the contents of theth item in the original. To copy
a graph (typegraph) with n nodes andn edges means creatimgnew nodes andh new
edges and creating the isomorphic graph structure on thencofy aGRAPHE1, E2>°
means copying the underlying graph and associating with eaw node or edge a copy of
the variable associated with the corresponding origindenar edge. According to LEDA
Rule 8 this means creating a new variable and initializirgtlh a copy of the value of the
old variable.

The programming language literature sometimes uses thensadf shallowand deep
copy. We want to relate these notions to the LEDA concept of a cQmnsider a structure
nodecontainerconsisting of a pointer to a node container and a pointerrmesather type.

class node_container

{ node_container* succ;

Ex content;

}

Such a structure may, for example, arise in the implememtatdf a singly linked list; one
pointer is used for the successor node and the other pomigsad for the the content,
i.e., the list has typéist<E * > for some typeE. A shallow copy of a node is a new node
whose two fields are initialized by component-wise assigmnma deep copy of a node is
a copy of the entire region of storage reachable from the nicale both kinds of pointers
are followed when making a deep copy. In other words, a shaltipy follows no pointer,
a deep copy follows all pointers. Our notion of copying is mmeemantically oriented.
Copying alist<E = > of n items means creating new items (this involves following the
successor pointers), establishing a list structure on tlaachsetting the content attribute of
each item to a copy of the contents of the corresponding itetime original. Since the type
Ex is primitive (recall that all pointer types are primitivélig is tantamount to setting the
contents of any new item to the contents of the corresponalithgiem. In particular, no
copying of values of typ& takes place. In other words, when making a copy|&ftaE * >
we follow successor pointers as if making a deep copy, butoweodifollow theE * pointers
as if making a shallow copy.

Parameter passing by value involves copying. Since mosingggts to operations on
complex data types have value parameters, this has to be iraticeaccount when read-
ing the specifications of operations on data types. Consideexample, the operation
D.insertk, i) for dictionaries. It takes a kdyand an informatiom, adds a new itenik, i)
to D and returns the new itefh Actually, this is not quite true. The truth is that the new
9 A GRAPHEL E2 is a graph where each node and edge has an associated vafigipeE1 andE2,

respectively.
10 We assume for simplicity, thad contains no item with ke.
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item contains a copy d€ and a copy of. For primitive types a value and a copy of it are

identical and hence the sentence specifying the semaffitsestcan be taken literally. For

non-primitive types copies and originals are distinct aadde the sentence specifying the

semantics oinsertis misleading. We should say “adds a new itaropy ofk, copy ofi) to

D” instead of “adds a new itertk, i) to D". We have decided to suppress the words “copy

of” for the sake of brevity*. The following example shows the effect of copying.
dictionary<string,dictionary<int,int> > M;

dictionary<int,int> D;
dic_item it = D.insert(1,1);

.insert ("U11i",D);

.lookup ("Ul1li") .inf(it); // illegal
.change_inf (it,2) ;

.lookup ("Ul1li") .access(1); // returns 1
.insert(2,2);

.lookup("U11li") .lookup(2); // returns nil

=0 =0 ==

The insertion oD into M stores a copy oD in M. The itemit belongs toD but not to the
copy of D. Thus querying it$nf-attribute in the copy oD returned byM.lookup” Ulli ")

is illegal. The operatioD.changenf (it, 2) changes thanf -attribute ofit to 2; this has no
effect on the copy oD stored inM and hence the access operation in the next line returns
1. Similarly, the second insertion infd has no effect on the copy and hence the lookup in
the last line returnasil.

When the lifetime of an object ends itdestructed The lifetime of a named object ends
either at the end of the block where it was defined (this is #fawlt rule) or when the
program terminates (if declared static). The life of an gmeous object is ended by a call
of delete We need to say what it means to destruct an object. For LEDjéets there is a
simple rule.

LEDA Rule 10 When a LEDA-object is destructed the space allocated forotiject is
freed. This is exactly the space that would be copied whepg abthe object were made.

2.4 More on Argument Passing and Function Value Return

C++ knows two kinds of parameter passing, by value and by referegimilarly, a function
may return its result by value or by reference. We have ajreii&tussed value arguments
and value results. We now review reference arguments aederefe results and at the
end of the section discuss functions as arguments. Thi®eeamintains no material that is

11 n the early versions of LEDA only primitive types were alledvas type parameters and hence there was no need

for the words “copy of”. When we allowed non-primitive typas type parameters we decided to leave the
specification ofnsertand many other operations unchanged and to only make onal geshark.
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specific for LEDA, it is just a short review of reference pariers, reference results, and
function arguments in €.
The specification of a formal parameter has one of the thmeesio

T x (value parameter of type)T
T& x (reference parameter of type),T
const T& x (constant reference parameter of typg T

The qualifierconst in the last form specifies that it is illegal to modify the valaf the
parameter in the body of the procedure. The compiler atteiopterify that this is indeed
the case. LefA be the actual parameter corresponding to formal paramet®arameter
passing is tantamount to the definitidnx = A in the case of a value parameter and to the
definitionT& x = A in the case of a reference parameter. We already know thensiesa
of T x = A:anewvariable of typeT is created and initialized with a copy of the value of
expressiorA. The definitiorT& x = A does not define a new variable. Rather it introduces
X as an additional name for the object denoted®W\ote that the argumem must denote
an object in the case of a reference parameter. In eithetltadiéetime ofx ends when the
function call terminates.

Argument passing by reference must be used for parametesamalue is to be changed
by the function. For arguments that are not to be changeddsftiction one may use either
a value paramet&for a constant reference parameter. Note, however, thahgdssvalue
makes a copy of the argument and that copying a “large” vaige, a graph, list, or array,
is expensive. Moreover, we usually want the function to wammkhe original of a value and
not on a copy. We therefore advice to specify arguments ofpronitive types either as
reference parameters or as constant reference parameadeis ase value parameters only
for primitive types. In our own code we very rarely pass otgaxf non-primitive type by
value. If we do then we usually add the comment: “Yes, we digtuaant to work on a

copy”.
An example for the use of a constant reference parameter is

void DIJKSTRA(const graph& G, node s, const edge array<int>& cost,
node_array<int>& dist, node_array<edge>& pred)

This functiort® takes a grapl®, a nodes of G, a non-negative cost function on the edges of
G, and computes the distance of each vertex from the sourcisf)n Also for each vertex
v # s, predv] is the last edge on a shortest path freto v. The constant qualifiers ensure
thatDIJKSTRAdoes not chang@ andcost(although they are reference parameters). What
would happen if we change@ to a value parameter? Well, we would pass a copof
instead ofG itself. Since a copy of a graph has new nodes and edgesjot a node of
the copy andtostis not defined for the edges of a copy. The function would fai iwas
passed by value. Thus, it is essential Bds passed by reference.

Parameter passing moves information into a function andtfoim value return moves
12 |t is legal to assign to a variable that is defined as a valuarpater. Such an assignment does not affect the value

of the actual parameter.
13 see Section 6.6 for a detailed discussion of this function.
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information out of a function. Consider the call of a functi® with return typeT or T&
for some typel and assume that the call terminates with the return statereenrn A.
The call is equivalent to the definition of a temporarwhich is initialized with A, i.e.,
return A amountstoeitheT t = AorT& t = A. The temporary replaces the function
call.

Let us go through an example. LEtbe any type. We define four functions with the four
combinations of return value and parameter specification.

T £f1(T x) { return x; }
T £f2(T& x) { return x; }
T& £3(T& x) { return x; }

T& £4(T x) { return x; }
// illegal, since a reference to a local variable is returned

Lety andz be objects of typd . The statement
z = £1(y);

copiesy three times, first frony to the formal parametet (value argument), then from
to a temporary (value return), and finally frorhto z (assignment). In

z = £2(y);

y is copied only twice, first frony to a temporary (value return) and then from the tempo-
rary intoz (assignment).

z = £3(y);

copiesy once, namely frony into z (assignment). Since returns a reference to an object
of typeT it can also be used on the left-hand side of an assignment. So

£3(y) = z;

assigngztoy.
Some operations taKanctions as argument# function argument with result typeT
and argument typeEl, ..., Tkis specified as

T(xf) (T1,T2,...,Tk)

Thex reflects the fact that a pointer to the function is passed. éanarete example let us
look at the bucket sort operation on lists with element tigpe

void L.bucket_sort(int i,int j,int(*f) (E&));

requires a functiorf with a reference parameter of tygethat maps each elementlofinto
[i..]]. Itsorts the items of into increasing order according t i.e., item(x) is before
(y) after the call if eitherf (x) < f(y) or f(X) = f(y) and(x) precedesy) before the
call.
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25 Iteration

For many data types, LEDA offefteration macroghat allow to iterate over the elements
of a collection. These macros are similar to the-@or-statement. We give some examples.
For all item-based types we have

forall_items(it,D)
{ /* the items in D are successively assigned to it */ }

This iteration successively assigns all itemdirto it and executes the loop body for each
one of them. For lists and sets we also have iteration statsrtigat iterate over elements.
// L is a list<point>
point p;
forall(p,L)
{ /* the elements of L are successively assigned to p */ }.

For graphs we have statements to iterate over all nodesgd@gdise all edges adjacent to a
given node, ..., for example:
forall nodes(v,G)
{ /* the nodes of G are successively assigned to vx*/ }

forall edges(e,G)
{ /* the edges of G are successively assigned to e*/ }

forall adj_edges(e,v)
{ /* all edges adjacent to v are successively assigned to e */ }

It is dangerous to modify a collection while iterating oveWe have

LEDA Rule 11 An iteration over the items in a collection C must not add nems to C.
It may delete the item under the iterator, but no other itetme attributes of the items in C
can be changed without restriction.

We give some examples:

// L is a list<int>

// delete all occurrences of 5
forall(it,L)

if ( L[it] == 5 ) L.del(it);
forall(it,L)

if ( L[it] == 5 ) L.del(L.succ(it)); // illegal
// add 1 to the elements following a 5
forall(it,L)

if ( L[it] == 5 ) L[L.succ(it)]++;
forall(it,L)

L.append(1); // infinite loop
// G is a graph;
//add a new node s and edges (s,v) for all nodes of G
node s = G.new.node();

node v;
forall nodes(v,G) if (v != s) G.new_edge(s,v);
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The iterations statements in LEDA are realized by macro esioa. This will be dis-
cussed in detail in Section 13.9. We give only one example teemotivate the rule above
and the rules to follow. Thiorall_itemsloop for lists

forall items(it,L) { <<body>> }

expands into a & for-statement. The expansion process introduces a neablaria dis-
tinct variable is generated for every loop by the expansioegss.loopit of typelistitem
and initializes it with the first item oE. In each iteration of the loopoopit is assigned to
it, loopit is advanced, and the loop body is executed. The loop teresnalient has the
valuenil.

for (list_item loop_it = (L).firstitem();

it = loop-it, loop_it = (L) .next_item(loop-it), it; )

{ <<body>> }
The fact that we use macro expansion to reduce the forgidoa G-+ for-loop has two
consequences.

LEDA Rule 12 Break and continue statements can be used in forall-loops.

We give an example.
list_item it;
forall_items(it,L) if ( L[it] == 5 ) break;
if ( it ) // there is an occurrence of 5 in L
else // there is no occurrence of 5 in L

There is second consequence which is less pleasing. Conside

edge e;

forall(e,G.all edges()) { <<body>> }
where the functiorG.all_,edge$ ) returns a list of all edges db. The expansion process
will generate

for (list_item loop_it = (G.all_edges()).firstitem();

it=loop-it,loop-it=(G.all_edges()) .next_item(loop_it),it;)
{ <<body>> }

and hence the functio@.allLedge$ ) is called in every iteration of the loop. This is certainly
not what is intended.

LEDA Rule 13 The data type argument in an iteration statement must not foeetion
call that produces an object of the data type but an objedhefdata type itself.

The correct way to write the loop above is

list<edge> E = G.all_edges();
edge e;
forall(e,E) { <<body>> }
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or even simpler

forall_edges(e,G) { <<body>> }

2.6 STL Style Iterators

STL (Standard Template Library [MS96])) is a library of badi&ta types and algorithms
that is part of the €+ standard. STL has a concept caliegtatorsthat is related to, but
different from LEDA's item concept. In STL the forall-itent@op for alist<int> is written
as

for (list<int>::iterator it = L.begin(); it != L.end(); it++)
{ <<body>> }

In the loop body the content of the iterator can be accessed iy LEDA one writesL [it]
to access the content ivf

Many LEDA data structures offer also STL style iterators.isTieature is still experi-
mental and we refer the user to the manual for details.

2.7 Data Types and C++

LEDA's implementation base is€3. We show in this section how abstract data types can
be realized by thelass mechanismof C++. We do so by giving a complete implementation
of the data type stack which we specified at the beginningisfahapter. We also give
the reader a first impression of LEDA's structure and we ihtice the reader to Lweb and
noweb.

A C++ class consists afata memberandfunction membersThe data members define
how the values of the class are represented and the functarbers define the operations
available on the class. Classes may be parameterized. Wdafove a parameterized class
staclk E> that realizes the LEDA data type with the same name.

(stack.¢=

template <class E> // E is the type parameter of stack
class stack
{ private:
(data membels
public:
(function membets
};
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lweave
source.tex
source.lw
source.[¢cclh]
notangle

Figure 2.2 Lweb: Iweave transforms a file source.lw into a file source tetangle extracts
program files. Lweb is a dialect of noweb [Ram94].

The definition of a class consists of a private part and a pydait; the private part is only
visible within the class and the public part is also visibl#side the class. We declare the
data members private to the class and hence invisible eutsédclass. This emphasizes the
fact that we are defining an abstract data type and hencerigisvant outside the class how
a value is represented in the machine and how the operatiensiplemented. To further
emphasize this fact we give an implementation of stacksim gbction that is different
from the one actually used in LEDA. The function members hecinterface of the class
and hence public.

It is time to give more information about Lwehwebis the literate programming tool
which we use to produce manual pages, implementation gpand which we used to
produce this book. It is dialect afoweb[Ram94]. It allows us to write a program and
its documentation into a single file (usually with extensily) and offers two utilities to
produce two views of this file, one for a human reader and onh&C++ compiler:lweave
typesets program and documentation and creates a file withsgn .tex which can then
be further processed usingXand ETpXandnotangleextracts the program and puts it into
a file (usually with extension .c or .cc or .h). Figure 2.2 wilizes the process.

We postpone the discussion of lweave to Chapter 14 and ostyss notangle here. A
noweb-filé* consists of documentation chunks and code chunks. A dodati@mchunk
starts withe followed by a blank or by a carriage return in column one ofa land a code
chunk starts withihame of chunje in column one of a line. Code chunks are given names.
If several chunks are given the same name they are concatiel@2dde chunks are referred
to by (name of chunk

In this section we have already defined a chistlck.¢. It refers to chunkgdata mem-
bers and({function membeiswhich will be defined below. The command

notangle -Rstack.c Foundations.lw > stack.c
will extract the chunlstack. c (the “R” stands for root) from the file Foundations.lw (the
name of the file containing this chapter) and write it intakte.

We come back to stacks. We represestacikk E> by a G++ array A of type E and two
integersszandn with n < sz The arrayA has sizeszand the stack consists of elements

14 s far as notangle is concerned there is no difference betaemweb-file (usually with extension .nw) and a
Lweb-file.
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AJ0], Al1], ..., A[n] with A[n] being the top element of the stack. The stack is empty if
n=-1.

(data membeis=

Ex A;
int sz;
int n;

The function members correspond to the operations availablstacks. We start with
the constructors. There are two ways to create a stteklK E> S creates an empty stack
andstaclkk E> S(X) creates a stack whose initial value is a copyXofThe corresponding
function members are the so-calléefault constructoand so-calleadopy constructorre-
spectively. In G+ a constructor has the same name as the class itself, i.€qtiséructors
of classT have namé& . The default constructor has no argument and the copy canstr
has a constant reference argument of type

(function membeis

stack() // default constructor
{ /* we start with an array of ten elements */
A = new E[10];
sz = 10;
n = -1;

}

stack(const stack<E>& X) // copy constructor
{ sz = X.sz;

A = new E[sz];

n = X.n;

for(int i = 0; i <= n; i++) A[i] = X.A[i]l;

We give some more functionemptyreturnstrue if the stack is emptytop returns the top
element of a non-empty stacgushadds an element to a stagbop deletes an element
from a non-empty stack and returns it, aadperforms assignment. We l&ip check its
precondition and call an error-handler when it is violatddwever,popdoes not check its
precondition. Recall that LEDA does not promise to checlpedktonditions.

(function membeis-=

int empty() { return (n == -1); }
E top()
{ if ( n == -1) error_handler(1,"stack::top: stack is empty");

return Aln];

}
E pop() { return A[n--1; }

A pushfirst checks whether there is still room in the array. If nbtaubles the size oA.
In either case it increasesand assigng to the new top element of the stack.
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(function membejs-=

void push(const E& x)
{if (n + 1 == sz)
{ sz =2 % sz;
Ex B = A;
A = new E[sz];
for (int i = 0; i <= n; i++) A[i] = B[il;
delete[] B;
}
A[++n] = x;

}

An assignment first checks for the trivial assignm@nt S, then destroys the old value of
the left-hand side, copies the right-hand side into theHaftd side, and finally returns a
reference to the left-hand side.

(function membejs-=

stack<E>& operator=(const stack<E>& X)
{ if (this '= &X)
{ deletel] A4;
sz = X.s8z;
A = new E[sz];
n = X.n;
for (int i=0; i<=n; i++) A[i] = X.A[i];
}
return (*this);

}

When the lifetime of a stack ends the arrayeeds to be deleted.

(function membejs-=
“stack() { delete[] A; }

This completes the definition of clastclk E>. The class essentially realizes the data type
stack E> as defined on page 4; we invite the reader to complete the mmgsitation by
writing the code forclear.

Our implementation of the stack data type wastes space.ih@dgat we perform 1000
pushes followed by 1000 pops. The pushes will increase teeo$iA to at least 1000 buA
does not shrink again during the pops. The LEDA implememiadif stacks uses space in
a more thrifty way; its space requirement is proportionaht number of elements in the
stack.

In this section we gave the reader a first impression of hovd#ta types of LEDA are
implemented in @+. Chapter 13 gives the detalils.
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2.8  Type Parameters

Most data types in LEDA are parameterized. We have lists amarbitrary element type
E and dictionaries over any linearly ordered key typeand any information typé. Any
class that provides a certain small set of functions can bd as an actual type argument:
one must be able to create a variable of the type and iniiélzither with the default value
(default constructor) or with a copy of an already existirdue (copy constructor). One
must be able to perform assignment (operatirto read a value of the type from an input
stream (functiorRead, and to print a value onto an output stream (functuoimt). Finally,
when the lifetime of an object ends one must be able to destrgestructor). Sometimes,
type arguments need to have additional abilities. Linearflered types have to support
comparisons between their elements, hashed types havpporstashing, and numerical
types have to support arithmetic.

LEDA Rule 14 Any actual type argument must provide the following six fions:
a default constructor ~ T::T()

a copy constructor T::T(const T&)

an assignment operator T& T::operator=(const T&)

a read function void Read(T&,istream&)

a print function void Print(const T&,ostream&)
a destructor T::"TO.

A linearly ordered type must in addition provide
a compare function int compare(const T&,const T&).

A hashed type must in addition provide

a hash function int Hash(const T&)

an equality operator bool operator ==(const T&,const T&).
A numerical type must in addition have the basic arithmetiicfions addition, subtraction,
and multiplication, and the standard comparison operators

We have already discussed the default constructor, the copstructor, the destructor,
and the assignment operator. The functi®esdandPrint read an object of typ& from
an input stream and print it to an output stream, respegtivequality and the functions
compare Hashare discussed in the next section and number types are séstirs Chap-
ter 4. We next give the complete definition of a linearly osdeclasgair.

(definition of class paj=

class pair
{ double x, y;
public:
pairO { x=y=20; 1}
pair(const pair& p) { x =p.x; y = p.y; }
friend void Read(pair& p,istream& is) { is >> p.x >> p.y; }
friend void Print(const pair& p,ostream& os)
{os <«<p.x << " "<Kp.y; }
friend int compare(const pair&,const pair&) ;
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int compare(const pair& p,const pair& q)
{ if (p.x < q.x) return - 1;

if (p.x > q.x) return 1;

if (p.y < q.y) return - 1;

if (p.y > q.y) return 1;

return 0;

We need to make two remarks about the definition of the gdass (1) The function®kead
Print, andcompareare not member functions of the class, but global functidrigey are
declared as friends gfair so that they can access the private data of the class. (2)dVe di
not define two of the required functions, namely the assigrimperator and the destructor
~pair. The reason is that€ will generate them automatically. More precisely, if no
copy constructor, assignment operator, or destructorfiaatkthen the default version is
used. The default version copies component-wise, assmnpanent-wise, and destructs
component-wise, respectively. Thus the definition of thpycoonstructor could also be
omitted from clasgair.

The typepair can be used as the key type in a dictionary, i.e., we may define

dictionary<pair,int> D;

What happens if one uses a cldssas an actual type parameter without defining one
of the required functions (that are not generated autoalt)® The G-+ compiler will
produce an error message that it cannot match certain tunsctFor example, the compiler
used by the first author produces

LEDA/dictionary.h:52: no match for
‘_I0_ostream withassign & << const pair & °’

when given the following program

(parameterizedlata typetest.¢=
#include <LEDA/dictionary.h>
class pair
{ double x;

double y;
public:

pairO { x=y=0; }

pair(const pair& p) { x =p.x; y = p.y; }
s
main(){

dictionary<pair,int> D;

}
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2.9 Memory Management

LEDA provides an efficienthemory management systémat is used for all node, edge,
and item types and that can easily be customized for useredkfilasses by means of
the LEDA_MEMORY macro. One simply has to add the macro ¢albA_MEMORY (T) to the
definition of classT. This call createsewanddeleteoperators for the clask that rely on
LEDA's memory manager. The main advantages over the buileivanddeleteoperators
are:

e Memory is allocated in big chunks and thus frequent and gastls to the memory
allocator are avoided.

e Memory returned by thdeleteoperator is reused by later calls of thewoperator,
i.e., the manager provides garbage collection.

The implementation of LEDA's memory manager is discussesiation 13.8. The defi-
nition of our clasgair now reads as follows. We advise the reader to follow this sehie
the definition of his classes.

(refined definition of class pagi=

class pair
{ private:
double x, y;

public:

pair() { x=y=0; }

/* pair uses the default versions of copy constructor,
assignment operator, and destructor */

friend void Read(pair& p,istream& is) { is >> p.x >> p.y; }

friend void Print(const pair& p,ostream& os)
{os<«<p.x <" "< p.y; }

friend int compare(const pair&,const pair&);

LEDA_MEMORY (pair) ;
};

2.10 Linearly Ordered Types, Equality and Hashed Types

Algorithms frequently need to compare objects: a geomatgorithm may have to deter-
mine whether one line is above another line at a certamlue, a sorting algorithm needs
to compare the objects it is supposed to sort, and a shodtsafgorithm needs to compare
the lengths of two paths. Also, many data types such as datties, priority queues, and
sorted sequences need to compare the objects of their keyTyye appropriate mathemat-
ical concept is a linear order.
A binary relation< (less than or equal) on a s&ts called dinear orderif the following

three conditions hold for at, y,z € S
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e X < x (reflexivity).
e X <yandy < zimpliesx < z (transitivity).
e X < yory < X (anti-symmetry).

Note that the “or” in the third condition is not exclusive. Weay havex < y andy < x
even ifx andy are distinct. Here is an example. For non-vertical ligesnd h, define
g < hif the intersection ofy with the y-axis is below or equal to the intersectiontofvith
they-axis. Theng < h andh < giff g andh intersect they-axis in the same point.

We callx andy equivalentf x < y andy < x and we say that is strictly less than y
and writex < yory > x if x < y andx andy are not equivalent. Note that for any two
elementx andy exactly one of the following three relations holdsis strictly less thary,

X is equivalent toy, ory is strictly less tharx.

In LEDA, a functionint cmp(const T&, const T&) is said to realize a linear order on the

typeT if there is a linear ordex on T such that for alk andy in T

<0, ifx<y
cmpx,y){ =0, if xis equivalenttoy
>0, fx>y

LEDA Rule 15 Atype T is calledinearly orderedf the function
int compare(const T&,const T&)

is defined for the type T and realizes a linear order on T. If pargx, y) returns zero for
two objects x and y then they are calleompare-equivalertr simplyequivalent

Note that we have adopted the syntactic convention thatuhetibn with the name
comparedefines the order ofi. This is in line with similar conventions already used in
C++, e.g., that constructors have the same name as the type.

For many primitive data types a functiocompareds predefined and defines the so-called
default orderingof the type. The default ordering is the usual “less than ora€dor the
numerical types, the lexicographic ordering for strings] ¢he lexicographic ordering of
the Cartesian coordinates for points. For all other typeékere is no default ordering, and
the user has to define the functioampareif a linear order onT is required. We already
gave an example in the preceding section.

A weaker concept than linear orders is equivalence relafidpinary relationR defines
anequivalence relatioon a setSif the following three conditions hold for al, y,ze S

o X Rx(reflexivity).
e XxRyandyRzimpliesx Rz(transitivity).

e XRyimpliesyRx(symmetry).
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We have already seen an equivalence relation, namely cerguarivalence. The relation
R defined byx Ryif comparéx, y) == 0 defines an equivalence relation. We also require

LEDA Rule 16 If the equality operator
bool operator==(const T&,const T&)

is defined for a class T then it defines an equivalence relatiom . We call x and y equal
if x ==y evaluates to true.

We requireno relationship between equality and compare-equivaleneg two objects
may be equal but not compare-equivalent or compare-eguivalt not equal. However,
for all LEDA types with predefinedompareand== the two notions agree. On the other
hand, there are applications where it is natural to disisifgbetween the two concepts.
For example, a plane sweep algorithm for line segment ietticen (cf. Section 10.7.2)
compares segments by thiecoordinate of their intersection with a vertical sweeland
thus two segments can be compare-equivalent without bejingl e

We next turn to hashed types. A hashed ti¥peust provide the equality operator and
the functionint Hashconst T&). Of course, the hash function should not tell objects apart
that are equal.

LEDA Rule 17 For any hashed type and any objects x and y of type T :3fxy then
Hash(x) == Hash(y).

There is one further point that we have to make. Recall tlatekample, a dictionary
stores copies of keys (and informations) and that for stinect types a copy of a value is
distinct from the original. It is possible to write compatmétions and equality operators
that distinguish between a value and a copy of the value. Waigdd lead to a disaster, e.g.,
a lookup in a dictionary would fail to find a stored key. We tfere have

LEDA Rule 18 A value and a copy of a value must be compare-equivalent amal.eq

For primitive types, this axiom is trivially fulfilled sinc&copy is identical to the original.

In some situations it is useful to have more than one linederofor a typeT. For
example, we might want to have two dictionari@s andD2 with key typepair. In D1 the
pairs are to be ordered by the lexicographic ordering of tGartesian coordinates and in
D2 by the lexicographic ordering of their polar coordinatetie WictionaryD1 is easy to
define. We simply write

dictionary<pair,int> D1,

but how can we define the second dictionary? After all, we lthegesyntactic convention
that the function with the nanmmparedefines the order on a type. There are two solutions,
one old and one added recently.

The first solution is to define an equivalent type with theraliéive ordering. The code
sequence
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int pol_cmp(const point& x,const point& y)
{ /* compute lexicographic ordering by polar coordinates */ }

DEFINE_LINEAR ORDER (point,pol_cmp,pol_point);
dictionary<pol_point,int> D2;

first defines the ordering by polar coordinates and then definiypepolpoint by a call
to theDEFINE_LINEAR_ORDER macro. The typolpointis equivalent to the typgpoint,
in particular, a papoint can be assigned to a point and vice versa. However,rteging
on the typepolpoint is given by the functionppolcmp The last line defines the desired
dictionaryD2.

The second solution makes the linear order an additionahaegt of any data type that
requires a linearly ordered type, e.g.,

dictionary<point,int> D(pol_cmp) ;

declares a dictionar) that uses the functiopoL.cmpfor comparing points.

Instead of passing a function to the dictionary, one can pé&ss a class which has a
function operator and is derived from the clésdacmpbase This variant is helpful when
the compare function depends on a global parameter. We giegample. More examples
can be found in Sections 10.7.2 and 10.3. Assume that we wanttpare edges of a graph
GRAPHpoint, int> (in this type every node has an associated point in the ptheeyoint
associated with a nodeis accessed &5[v]) according to the distance of their endpoints.
We write

(compareexample=
class cmp_edges_by_length: public leda_cmp_base<edge> {
const GRAPH<point,int>& G;
public:
cmp_edges_by_length(const GRAPH<point,int>& g): G(g){}

int operator() (const edge& e, const edge& f) const
{ point pe = G[G.source(e)]; point ge = G[G.target(e)];
point pf = G[G.source(f)]; point qf = G[G.target(£f)];
return compare(pe.sqr_dist(qe),pf.sqr_dist(qf));
}
};
main(){
GRAPH<point,int> G;
cmp_edges_by_length cmp(G) ;
list<edge> E = G.all_edges();
E.sort (cmp);

The classcmpedgedylengthhas a function operator that takes two edgesd f of a
graphG and compares them according to their length. The gfaph a parameter of the
constructor. In the main program we defitrap(G) as an instance aimpedgedylength
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and then passmpas the compare object to the sort functiotistkedge . In the implemen-
tation of the sort function a comparison between two edgesade by writingcmpe, f),
i.e., for the body of the sort function there is no differemgeether a function or a compare
objectis passed to it.

The example above illustrates a nice feature of literatggamming. We gave a named
program chunk that illustrates a concept of LEDA. Of couveewant to make sure that the
program fragment is correct and hence we want to execut@ithi¥ effect we enclose it
into a larger program chunk which we can extract and compite usually do not show the
enclosing program chunk, i.e., we enclose it intéTggk command\ignore that makes it
invisible to BTpXby expanding to the empty string. We show the constructitceo

\ignore{
<<compare_test.c>>=

#include <LEDA/graph.h>
#include <LEDA/point.h>

<<compare_example>>

@ }end ignore

2.11 Implementation Parameters

Some data types in LEDA, e.g., dictionary, priority queusrday, and sorted sequence,
come with several implementations. A user of such a data tgmechoose a particular
implementation by giving the name of the implementationraadditional parameter, e.g.,
_darray<l, E, skiplist> selects the skiplist implementation of dictionary arrajte that
the type name now starts with an underscore. This is negesisae G-+ does not allow us
to overload templates. The following program uses the hiphplementation of dictionary
arrays to count word occurrences in the input stream.

#include <LEDA/d array.h>
#include <LEDA/impl/skiplist.h>
main()
{ _d_array<string,int,skiplist> N(0);
// d_array<string,int> N(0) selects default implementation
string s;
while (cin >> s) N[s]++;
forall_defined(s,N) cout << s << " " << N[s] << endl;
}

The types with and without implementation parameter arset{orelated.

Any type _T<T1, .., Tk, xyzimpl> is derived (in the @+ sense of the word) from the
corresponding “normal” parameterized typ&T1, ..., Tk>. This allows us, for example, to
pass an instance of typE<T1, ..., Tk, xyzimpl> as an argument to a function with a formal
parameter of typd <T1, .., Tk>&, a feature that allows us to execute even pre-compiled
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algorithms with different implementations of data types giwe an example. We define a
proceduravord.countthat has a parameter of typgerray<string, int>.
void word_count(d_array<string,int>& N)
{ string s;
while (cin >> s) N[s]++;

forall_defined(s,N) cout << s << " " << N[s] << endl;
}

Any implementation of carrays can be passedwmrd.count

d_array<string,int> N1(0);

word_count (N1) ;

_d_array<string,int,skiplist> N2(0);

word_count (N2) ;
The section “Implementation Parameters” of the LEDA marausl/eys the implementa-
tion parameters currently available. Section 13.6 disssisse realization of implemen-
tation parameters. The latter section also describes ho&@ALUser may add his own
implementation of a data type to the system.

2.12  Helpful Small Functions

There are a number of small, but helpful, functions. We noensome of them here and
refer the reader to the section “Miscellaneous Functiom$h®e LEDA manual for the full
list.

int i = read_int("i = ");

prints “i = " (more generally, its string argument) on standard output #hen reads an
integer from standard input. Similar functions exist todrs&rings, character, and doubles.

The functionusedtime is very helpful for running time experiments. For examphe t
chunk

float T = used time(); // sets T to the current cpu time
// an experiment

cout << used_time(T);
// sets T to the current cpu time and returns the difference
// to the previous value of T

// another experiment
cout << used_time(T);

will print the cpu time used in each of two experiments.
The function

void print_statistics();
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prints a summary of the currently used memory. For examipéeptogram

(memorystatistio =
list<point> L;

{ for (int i = 0; i < 100000; i++) L.append(point());
list<point> L1 = L;
}

print_statistics();

produces

STD_MEMORY_MGR (memory status)

e +
| size used free blocks bytes |
o +
| 12 100000 100214 294 2402568 |
| 20 27 381 1 8160 |
| 40 100002 77 493 4003160 |
o +
[ time: 0.53 sec space: 6300.92 kb |
o +
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The statistics tell us that space for a total of 10080000214 records of size 12 bytes
(= list nodes), for a total of 24 381 records of size 20, and for a total of 1000027
records of size 40 (= points) was allocated. It also givesrmftion on which of these
records are currently used and which are free. In our exartideecords for the nodes of
L and the points irL are still allocated and the records for the nodet bhave already
been freed. Observe that the program allocates space f@0R03t nodes, but only for

100000 structures to contain representations of points] fection 2.2.2 to understand

why. Space is allocated in blocks of 8160 bytes. The nextdiodalumn shows the number

of allocated blocks for the structures of the different siaed the last column shows the

space consumption in bytes. Our program required ab&uim@gabytes. It ran for.83

seconds.
The functions
T ledamin(const T& a, const T& b);

T ledamax(const T& a, const T& b);
void leda swap(T& a, T& b);

return the minimum, the maximum, and swap the values of #mgiuments, respectively.

They can be used for any tyde
Finally, the function

double truncate(double x, int k = 10);
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returns a double whose mantissa is truncated &fterl bits after the binary point, i.e., if
X # 0 then the binary representation of the mantissa of thetreaslthe form d.dddddddd,
where the number of d’s is equal o

2.13  Error Handling

The error handler

error_handler(int i, char* s);

writess to the diagnostic output (cerr) and terminates the progtamommally ifi # 0. The
function

leda_assert(bool b, int i, char* s);

calls error_handlexi, s) if b is falseand has no effect otherwise. Users can provide their
own error handling functiohandlerby calling

set_error_handler (handler);

After this function callhandleris used instead of the default error handleandler must
be a function of typeroid handlefint, charx). The parameters are replaced by the error
number and the error message, respectively.

2.14  Program Checking

Programming is an error-prone task. How do we make surehkgirograms in LEDA are
correct? We take the following measures:

e We start from correct algorithms as described in the latgediure on data structures
and algorithms.

e We try to document our programs carefully. This book corgairany examples of
carefully documented programs. We try to document so clyehat we can show
our programs around and give them to colleagues to read. Dathkcoined the name
“literate programming” for this style of programming.

e We test extensively and our large user community tests.
e We use program checking [SM90, BK89, BLR90, MN&5].

In this section we concentrate on the last item. ConsideogramP that computes a
function f. We call P checkablef for any inputx it returnsy, the alleged value of (x),
and maybe additional informatidnthat makes it easy to verify that indegd= f (x). By
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easy to verify we mean two things. Firstly, there must be gpkmrogranC (a checking
program) that, giver, y, andl, checks whether indegd= f (x). The progranC should
be so simple that its correctness is “obvious”. Secondky,rtinning time ofC on inputs
X, Y, andl should be no larger than the running timeRfon x. This guarantees that the
checking progran® can be used without severe penalty in running time.

We give some examples.

Consider a program that takes mnx n matrix A and anm vectorb and is supposed to
check whether the linear systefax = b has a solution. As stated, the program is supposed
to return a boolean value indicating whether the systemligbte or not. This program is
not checkable. In order to make it checkable, we extend tieeface.

On input A andb the program returns either:

e ‘“the system is solvable” and a vectosuch thatA - x = b or
e ‘“the system is unsolvable” and a vectosuch that™ - A= 0andc’ - b # 0.

The extended program is easy to check. If it answers “theesy$ solvable”, we check
that A - x = b and if it answers “the system is unsolvable”, we check tHat A = 0 and
c' - b # 0. Thus the check amounts to a matrix-vector and a vectderpcoduct which
are fast and also easy to program. We leave it as an exergisem® that the vectar exists,
when the system is solvable, and only remark that Gaussiamation will produce it.

The second example is planarity testing. The task is to éaegliether a graph is planar.
A witness of planarity is a planar embedding and a witnes®ofplanarity is a Kuratowski
subgraph. The details can be found in Section 8.7. The ptgriast played an important
role in the development of LEDA. A firstimplementation of inezadded to LEDA in 1991.
The implementation had been tested on a small number of grdphl993 we were sent
a graph together with a planar drawing of it. However, ourgpam declared the graph
non-planar. It took us some days to discover the bug. Moreitaptly, we realized that
a complex question of the form "is this graph planar” desemere than a yes-no answer.
We adopted the thesis that

a program should justify (prove) its answers in a way
that is easily checked by the user of the program.

By now many functions in LEDA justify their answers and comiéhweheckers, see Sec-
tions 5.5.3, 10.3, 10.4.3, 10.5.3, and all sections in Gihrapt

What do we gain by program checking?

First, the answer of a program can be verified for any singhblpm instance. This is
much less than program verification which gives a guaramtealf problem instances, but
it is assuring.

Second, a user of a program can develop trust in the programlittie intellectual
investment. A user of a linear systems solver does not neadderstand the intricacies
of Gaussian elimination. For any program run, she can coeevierself of the correctness
of the computation by a simple matrix-vector and vectorteeproduct. The program for
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the latter two tasks is so simple, that it is even conceivabherify them formally. See
[BSM97] for a first example of a verified checker.

Third, a developer of a program can give compelling evidesfcés correctness with-
out revealing any details of the implementation. It suffitepublish the interface of the
functions, to define what constitutes a witness, and to plltie checking program.

Fourth, program checking allows us to use a potentially lirezti program as if it were
correct. If a program operates correctly on a particularaimse, fine, and if it operates
incorrectly, it is caught by the checker. Thus, if all sutimoes of a functionf are checked,
no checker of a subroutine fires, and an error occurs duriagxecution off, the error
must be inf. This feature of program checking is extremely useful dyitie debugging
phase of program development.

Fifth, program checking supports testing. Traditionadlgting is restricted to problem
instances for which the solution is known by other meansgfim checking allows one to
test onanyinstance. For example, we use the following program (amahegre) to check
our algorithm to compute maximal matching in graphs (se¢i@e¢.7).

for (int n = 0; n < 100; n++)

for (int m = 0; m < 100; m++)
{ random graph(G,n,m); // random graph with n nodes and m edges
list<edge> M = MAX_CARD MATCHING(G,0SC);

CHECK_MAX_CARD_MATCHING (G,M,0SC) ;
X

Sixth, a checker can only be written if the problem at handgerously defined. We
noticed that some of our specifications contained hiddemnagBons which were revealed
during the design of the checker. For example, an early e our biconnected compo-
nents algorithm assumed that the graph contains no isalaigeks.

The papers [SM90, BS94, SM91, BSM97, BS95, BSM95, SWM95, BKBLR90,
BW96, WB97, AL94, MNS 96, DLPT97] contain further material on program checking.

2.15 Header Files, Implementation Files, and Libraries

The specifications of all LEDA types and algorithms are corté in the header files in
directory LEDAROOT/incl/LEDA. In order to use a particulREDA type or algorithms
one must include the appropriate header file.

#include <LEDA/list.h> // to use lists
#include <LEDA/dictionary.h> // to use dictionaries
#include <LEDA/point.h> // to use points

#include <LEDA/graph alg.h> // to use the graph algorithms
#include <LEDA/geo_alg.h> // to use the geometric algorithms

The implementations of all LEDA data types and algorithmes@mtained in the .c-files
collected in the various subdirectories of LEDAROQOT/srchey are pre-compiled into
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four libraries (libL.a, libG.a, libP.a, libWx.a) which cdre linked with G-+ application
programs. The section “Using LEDA’ of the LEDA manual debes how this is done.

2.16 Compilation Flags

The compilation flag -DLEDACHECKING_OFF turns off all checking of preconditions.
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