8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Contents

The Geometry Kernels

Basics

Geometric Primitives

Affine Transformations

Generators for Geometric Objects
Writing Kernel Independent Code

The Dangers of Floating Point Arithmetic
Floating Point Filters

Safe Use of the Floating Point Kernel

A Glimpse at the Higher-Dimensional Kernel
History

LEDA and CGAL

Bibliography

Index

page2

14
22
25
27
30
34
53
55
55
56

58

60

8
The Geometry Kernels

A geometry kernel offers basic geometric objects, such astqdines, segments, rays,
planes, circles, ..., and geometric primitives operatinglese objects, e.g, the computa-
tion of the area of the triangle defined by three points anddineputation of the intersection
of two lines.

LEDA offers geometric kernels for plane geometry, for thdémensional geometry, and
for geometry in higher dimensional space. We discuss theekerfor two- and three-
dimensional geometry in the first eight sections. The kefmehigher dimensional ge-
ometry will be discussed in Section 8.9.

The two- and three-dimensional kernels come in two kinds:rétional kernel and the
floating point kernel. Write one of

#include <LEDA/rat _kernel.h>

#include <LEDA/float _kernel.h>

#include <LEDA/d3_rat_kernel.h>
#include <LEDA/d3_float_kernel.h>

to select a kernel. The kernels for two-dimensional geoyngtovide points, lines, seg-
ments, rays, vectors, circles, polygons, generalizedguoly, and affine transformations.
We use the type namgmint, line, segmentray, vector, circle, polygon genpolygon
and transformfor the corresponding classes of the floating point kernel tie names
ratpoint, ratline, rat segmentratray, ratvector, ratcircle, rat polygon rat genpolygon
andrat transformfor the corresponding classes of the rational kernel. Iidis&nction be-
tween rational and floating point kernel is immaterial, we aapital letters: POINT, LINE,
SEGMENT, The three-dimensional kernels provide liawed planes.

The header files above simply collect the header files of kEVamt classes into one. For
example,

The Geometry Kernels 3

(rat_kernel.h=

#include <LEDA/rational.h>
#include <LEDA/rat_point.h>
#include <LEDA/random_rat_point.h>
#include <LEDA/rat_segment.h>
#include <LEDA/rat_ray.h>

#include <LEDA/rat_line.h>
#include <LEDA/rat_circle.h>
#include <LEDA/rat_vector.h>
#include <LEDA/rat_polygon.h>
#include <LEDA/rat_gen_polygon.h>

It is important to understand the difference between thiemat and the floating point
kernel.

In the rational kernel the Cartesian coordinates of points eational numbers (in the
sense of mathematics) and the geometric primitives aretexac always give the correct
result.

In the floating point kernel the Cartesian coordinates ofyy®are double precision float-
ing point numbers and the geometric primitives are appraxéni.e, they usually give the
correct result but there is no guaranteBhe use of the floating point kernel is therefore not
without risk.

Why do we have the floating point kernel at all? There are s¢veasons: (1) the outside
world, e.g., the graphics systems used to visualize thdtsesuigeometric computations,
wants floating point numbers, (2) we started with the floatinmt kernel, and (3) floating
point computation is faster than computation with ratiamainbers. The last sentence re-
quires further explanation. First, floating point compiatais unreliable and hence the cost
of efficiency is a reliability problem. The dangers of flogtipoint arithmetic in geometric
computations are discussed in Section 8.6. Second, théeaiof exact computation is
surprisingly small due to our extensive use of so-calledifigapoint filters. Our experi-
ments show that the cost of exact arithmetic is never moreafactor of three in running
time and usually much smaller. The efficient realization xda geometric computation
and floating point filters are discussed in Section 8.7.

In our own work we do program development exclusively with thtional kernel. Only
when a program is stable, we might consider switching to thatifig point kernel. We
switch only if the use of the rational kernel does not givedbsired performance. A switch
to the floating point kernel should always be accompanieddaraful analysis of its limits,
see Section 8.8.

This chapter is organized as follows: the first two sectiossl avith geometric objects
and geometric predicates, respectively. Every user of LEE@Ametry should read them.
The next three sections treat special topics: affine tramsftions, generators for geometric
objects, and writing kernel independent code. They may fgpsk on first reading. We
then have three sections on arithmetic. We first discussahget of using floating point
arithmetic as an implementation of mathematics’ real nusltben describe the efficient
implementation of exact geometric predicates in the rafiternel, and finally comment

4 The Geometry Kernels

on the safe use of the floating point kernel. The last thregmecgive a glimpse at the
higher-dimensional kernel, briefly review the history obgeetry in LEDA, and discuss the
relation between LEDA and CGAL.

8.1 Basics

We discuss points, segments, lines, rays, vectors, andirc

Cartesian and Homogeneous Coordinates\We assume that the ambient space is equipped
with the standard Cartesian coordinate system and spediifiygsby their Cartesian coordi-
nates. For a poinp in the plane the functions

p-xcoord();

p.ycoord();
return thex- andy-coordinate ofp, respectively. Of course, theecoordinate of a point in
space is returned bg.zcoord). The Cartesian coordinates opaint are of typedouble
and the Cartesian coordinates abapoint are of typerational. We use RATTYPE as the
generic name, i.e., RATYPE stands fodoublewhen the floating point kernel is used and
stands forrational when the rational kernel is used.

Pointsare stored by their Cartesian coordinates. @bpointsit is more efficient to store
them by their homogeneous coordinates, i.e., to use the damaminator for thex- and
they-coordinate. The homogeneous coordinates of a point inlree@re a tripl€x, y, w)
with w # 0; herew is called the homogenizing coordinate. The Cartesian doates of
a point with homogeneous coordinaies y, w) are(X/w, y/w). Observe that the homo-
geneous coordinates of a point are not unique. Two triplasate multiples of each other
specify the same point. The homogeneous coordinates ohapoi the plane are returned

by

p.-X0);

p.YO;

p.W0O);
respectively. The homogeneous coordinates wHtaoint are of typeinteger. Do points
also have homogeneous coordinates? Yes, for compatibility rat pointsthey do. The
homogenizing coordinate offintis the constant 1.0 and th& andY-coordinate is sim-
ply the corresponding Cartesian coordinate. Thus the hemaaus coordinates ofpmint
are of typedouble We use INTTYPE to denote the type of the homogeneous coordihates
i.e., INT_-TYPE stands fointegerwhen the rational kernel is used, and standsdimuble
when the floating point kernel is used.

We said above that homogeneous coordinates are not unigaggudfantee, however,
that all accesses to the homogeneous coordinates of a ptimnb the same value. We do

1 We chose RAITYPE and INLTYPE as the names for the types of the Cartesian and the horeoge
coordinates because we prefer the rational kernel.

8.1 Basics 5

not guarantee, however, that these values are the homageoeordinates specified in the
constructor for the point. The constructor may simplify teeresentation by cancelling
out common factors. Moreover, we always store a positiveesébr the homogenizing
coordinate.

In mathematical context we also usgandy, for the Cartesian coordinates of a pomt
andXp, Yp, andW, for the homogeneous coordinates.

Construction: Points are constructed by either specifying their Cartesiaheir homoge-
neous coordinates. Thus

point p(0.2,0.8);
point q(1,4,5);

rat_point r(1,4,5);
rat_point s(rational(1,5),rational(4,5));

are four different ways of defining a point with coordinat&gb, 4/5). In the first construc-
tor we have definedpointby specifying its Cartesian coordinates, in the secondtoacter
we have specified point by giving a triple of doubles in the third constructor we have
specified aat point by a triple ofintegers and in the fourth constructor we have specified
arat pointby a pair of rational numbers.

The generic form of the constructor is

POINT p(RAT_TYPE x, RAT TYPE y)
for the construction from Cartesian coordinates, and
POINT p(INT TYPE X, INT TYPE Y, INT TYPE W = 1)
for the construction from homogeneous coordinates. Thaultefonstructor
POINT p;
constructs the origin. It is bad programming style to explbis fact. We recommend
writing
POINT p(0,0);
to construct the origin.

We turn to segments, lines, and rays. A segment is constrimstespecifying its two
endpoints. Thus

segment s(point p, point q);
rat_segment s(rat_point p, rat_point q);

define asegmentind arat segmentrespectively. The second point may also be specified
by a vector which defines the relative position of the secaridtwith respect to the first
point. The generic forms are

SEGMENT s(POINT p, POINT q);
SEGMENT s (POINT p, VECTOR v); // same as s(p,p+v)

2 The Cartesian coordinates are obtained by performing taérftp point divisions 15 and 45.

6 The Geometry Kernels

The defining points of a segment can be accessed by

s.source();
s.target();

Lines and rays are also defined by two points or by a point arettok
LINE 1(POINT p, POINT q);

LINE 1(POINT p, VECTOR v); // same as 1(p,p+v)

RAY r(POINT p, POINT q);
RAY r(POINT p, VECTOR v); // same as r(p,p+v)

Of course, the two defining points must not be equal and therewust not be the zero-
vector.
The default constructors

SEGMENT s;
LINE 1;
RAY r;

introduce variables of the appropriate type. They aredlifd to some object of the type
(the manual even specifies which), but it is bad programntiylg £ rely on this fact.

Vectors can be specified by either their Cartesian or theitrdgeneous coordinates.

vector v(double x, double y);
rat_vector v(rational x, rational x);
rat_vector v(integer X, integer Y, integer W = 1);

Observe that the analogy betwessttorsandrat vectorsis not complete. There is no way
to define a two-dimensionakectorby a triple of doubles. The reason is theatctorsand
rat vectorsexist for arbitrary dimensions and that

vector v(double x, double y, double z);

constructs a three-dimensional vector. The default cootir defines the zero vector.
Circles can be constructed in many ways. We describe two:

CIRCLE C(POINT a, POINT b, POINT c);
CIRCLE C(POINT a, POINT b);

define a circle passing through poirgtsb, andc, and a circle with centest and passing
throughb respectively. Ifa = b in the second constructor, the circle has radius zero.

Some triples of points are unsuitable for defining a circle.triple is admissibleif
[{p1, P2, P3}| # 2. Assume now thap;, py, ps are admissible. If{p1, p2, p3}| = 1,
they define the circle with centgn, and radius zero. Ip;, p2, and ps are collinearC is a
straight line passing through them and the cente€ @& undefined. Ifp;, py, and ps are
not collinearC is the circle passing through them.

Affine transformations are discussed in Section 8.3 andguuly and generalized poly-
gons are discussed in Section 9.8.

8.1 Basics 7

Points and Vectors: Points and vectors are related but clearly distinct geamebijects.
In order to work out the relationship between points and ascit is useful to identify a
point with an arrow extending from the origin to the point.tihis view a point is an arrow
attached to the origin. A vector is an arrow which is allonedadat freely in space

Points and vectors can be combined by arithmetical opestifor two pointsp andq
the differencep — q is a vectof and for a pointp and a vector, p + v is a point.

For two vectorsy andw their sumv + w and their difference — w are also vectors.
However, it does not make sense to add two points. The unanatip— reverses a vector.

The coordinates of a vectorare accessed by

RAT_TYPE v.coord(int i); // i-th Cartesian coordinate

RAT_TYPE v[int il; // i-th Cartesian coordinate
INT_TYPE v.hcoord(int i); // i-th homogeneous coordinate

For a vectorv in d-space the Cartesian coordinates are indexed fromd)-tol and the
homogeneous coordinates are indexed fromd) fBhe homogenizing coordinate has index
d. The homogenizing coordinate ofvactoris the constant 1. In two-dimensional space
the Cartesian and homogeneous coordinates can also beseddyscoord), ycoord),
X(),Y(),andW(), respectively.

Vectors may be stretched or shrunkvlis a vector and has INT.TYPE or RAT_.TYPE
then

r * V;

v/ r;
compute the vectors whose Cartesian coordinates are fadtipy r and divided byr,
respectively.

If v andw are vectors then

V * W

returns the scalar product ofandw. This is the component-wise product of the Cartesian
coordinates and has RATYPE.

The scalar product of a vector with itself yields the squdeedth of the vector. Instead
of writing v * v one can also write

v.sqr_length();

Handle Types, Identity and Equality: All geometric types are so-called handle types or
independent item types, see Sections 2.2 and 2.2.2, i.@bjant of any geometric type
is a (smart) pointer to a representation object. For exangplat point is a pointer to a
rat pointrep and asegmentis a pointer to aegmentep. The objects of the representation
class contain the defining information about the geometrjea and possibly additional
information for internal use.

3 More precisely, a vector is an equivalence class of arrowsewive arrows are equivalent if one can be moved
into the other by a translation of space.
4 More precisely, it is the equivalence class of arrows coirtgithe arrow extending frorp to q.

8 The Geometry Kernels

We give more details forat points The classesat point andrat pointrep are derived
from handlebaseandhandlerep, respectively. The claggndlebasecontains a data mem-
berPTR which is a pointer to dandlerep. In rat pointwe have a private member function
ptr which casts this pointer to a pointer taa_pointrep. The clas$andlerepis discussed
in Section 13.7. Aratpointrep contains the homogeneous coordinates of a point (three
integery, floating point approximations of the homogeneous coatdis (threedoubled
and the id-number of the point. The floating point approxioret of the homogeneous
coordinates are used in the floating point filter and will becdssed in Section 8.7. The
id-number is used as the hash key in maps and hashing arraystwh pointrepshave
distinct id-numbers.

class rat_point_rep : public handlerep {

integer x, y, Ww;
double xd, yd, wd;

unsigned long id;

3
class rat_point : public handle base {

rat_point_rep* ptr() const { return (rat_point rep*)PTR; }
3

We distinguish between identical and equal objects. Twatsg andq areidentical
(functionidenticalp, q)) if they point to the sameointrep, and two pointsp andq are
equal(binary operatoe==) if they agree as geometric objects, i.e., have the same<ant
coordinates.

The assignment statement and the copy constructor pregentdy, i.e., are realized by
pointer assignment.

POINT p(0,0);
POINT q(0,0);

POINT r = p;
identical(p,q); // evaluates to false
P == q; // evaluates to true

identical(p,r); // evaluates to true
p == r; // evaluates to true

Linear Orders: There are several linear orders defined on points.
e cmpx compares points by thex-coordinate.
e cmpy compares points by they-coordinate.

e Cmpxycompares points by thex-coordinates. Points with equalcoordinate are
compared by theiy-coordinate.

e cmpyxcompares points by they-coordinates. Points with equglcoordinate are
compared by theix-coordinate.

e cmpis the same asmpxy. It is the default order for points.

8.1 Basics 9

Associating Information with Geometric Objects: Points, lines, segments, rays, and cir-
cles have id-numbers and henoapsandharrayscan be defined for them. Observe that
mapsandharraysassociate information with representation objects, inéy mentical ob-
jects share their information. For example,
map<POINT,int> color;
POINT p(0,0); color[p]

POINT q(0,0); color([q]
POINT r = p;

cout << color[p] << color[q] << color[r]; // outputs 010

0;
1;

For points we can also use dictionaries and dictionary arfayassociate information (for
the other geometric types this requires the definition ofraare function). In dictionaries
and dictionary arrays equal objects share their informmatimr example,
d_array<POINT,int> color;
POINT p(0,0); color[p]

POINT q(0,0); color(q]
POINT r = p;

cout << color[p] << color[ql << color[r]l; // outputs 111

0;
1;

Observe thap andq are equal and hence the assignmermidior[q] also changes the color
of p.
Dictionary arrays are useful for removing multiple occages of equal objects. For
example, ifL is a list of points, then
d_array<P0INT,bool> first_occurrence(true);
list_item it;
forall_items(it,L)
{ if (!'first_occurrencel L[it]])
L.del_item(it);
else
first_occurrence[L[it]] = false;

}

removes all but the first occurrence of every point fromWhat will this program do when
amapis used instead of darray?

Converting between the Rational and the Floating Point Kerrel: Floating point objects
can be converted to rational objects and rational objectideaconverted to floating point
objects. We illustrate conversion for points.

If pisapointorratpointthen

point p.to_point();

returns apoint If p is a point the call is equivalent to the call of the copy camstior,
and if p is aratpoint, the Cartesian coordinates of the point returned are flggioint
approximations of the Cartesian coordinatepof

The conversion from rational objects to floating point objateeds to be used whenever
an object is to be displayed in a window. For exampl&Yifs awindowand p is a POINT,
then

10 The Geometry Kernels

W << p.to_point();

drawsp in W. The output statement above could be written even moremlggs\W < p
if the classrat point provided a conversion operatorpoint We opted for the less elegant
code since the use of conversion operators can lead to uctexide effects.

Both point classes have a constructor

POINT(const point& p, int prec = 0);
If POINT is ratpointandprecis positive the constructor is equivalent to
rat_point (integer (p.xcoord() * P), integer(p.ycoord() * P), P),

whereP = 2°"¢¢ j.e., the Cartesian coordinatesfre approximated as rational numbers
with denominatorP. If precis non-positive, the value gfrecis chosen such that there is
no loss of precision in the conversion.

When POINT ispoint andprecis positive, the point constructed has Cartesian coordi-
nates(P x x|/P, | P % x]/P), wherep = (x, y) andP = 2P, |f precis non-positive,
the new point has coordinatgsandy.

Immutability: All geometric objects arenmutable There are no operations that change a
geometric object, there are only operations to generatege@metric objects from already
existing ones. For example, the operation

p.translate(1,1);

returns a point which is obtained fromby translating it by the vectod, 1); it does not
change the coordinates of the pomtOf course, the translated point may be assigneu to

p = p.translate(1,1);

Input and Output: Geometric objects can be written on files and read from filest F
example, ifp is a POINT then

cout << p;

cin >> p;
writes p on standard output, and read$rom standard input, respectively. The input oper-
ators>> are designed such that output written&ycan be read by>.

Graphical input and output is very important for geomettigeats. Thewindowclass
knows how to draw geometric objects and supports the cartgiruof geometric objects
by mouse input. The simplest way to draw a geometric object isse the operateg, for
example,

W << p.topoint(); // W << p can be used if p is a point

W << s.to_segment(); // W << s can be used if s is a segment
W << r.toray(); // W << r can be used if r is a ray

W << 1.toline(); // W << 1 can be used if 1 is a line

W << C.to_circle(); // W << C can be used if C is a circle
W << P.to_polygon(); // W << P can be used if P is a polygon

8.1 Basics 11

If more control is needed, e.g, concerning the color or wéreshcircle should be drawn as
a disk, thedraw functions need to be used. For example,
W.draw_segment (s,red); // draws s in red

W.draw_disk(C,blue); // draws a blue filled circle
W.draw filled polygon(P,green); // draws a filled green polygon

Observe thas, C, andP must be floating point objects. Rational objects must be exiad
to floating point objects first. For example,

W.draw filled polygon(P.to polygon() ,green);

has to be used to draw a filleat polygon Observe that the call will also work fpolygons

Why did we not overload théraw-functions such that they also work for rational objects?
The reason is that this would have required to include thddrefiles of the rational kernel
into the header file of the window class. The header filwiatlowis very large already and
we wanted to avoid a further increase in size.

We come to mouse input. The operagsrcan be used to read a point, segment, line, ray,
circle, or polygon. For example,

W > p; //p is a point

W > s; // s is a segment
read a point and a segment, respectively. The reading apesadre blocking and wait
for mouse clicks. A point is constructed by a single click lné left mouse button, and a
segment, line, ray, and circle is constructed by two clidkhe left mouse button.

What happens when a mouse button different from the left enduston is clicked?
Windows have an internal state in the same way-&si@put streams do. The state indicates
whether there is more input to read or not. The state is iittaue and is set to false
by a click of the right mouse button (this is similar to endstgeam input by the “eof”
character). If an input statement is used in the test of aitiondl, an object of typaindow
is automatically converted to a boolean whose value is tegrial state. For example,

list<point> L;

point p;

while (W >> p) L.append(p);
reads a sequence of points fram. Every click of the left mouse button inputs a point
and a click of the right mouse button terminates the sequenhe three lines above are
essentially the implementation of the input operator fdygons.

In window.h the input operatas> is only defined for the floating point objects. If you
want to use them for rational objects you must include theleeéile ratwindow.h. For
example,

#include <LEDA/rat_window.h>

rat_point p;
while (W >> p) W << p.topoint();

reads a sequence it pointsand echos them iv.

12 The Geometry Kernels

A-f~f>r

- =

®c

Figure 8.1 The Voronoi vertew is the center of the circle passing through the paints, andc.
The three points lie in the windoW (indicated as a solid frame) butlies far outsideW. Itis a
bad strategy to draw the rayas a ray starting im and having direction orthogonal to the
direction fromato b. A slight error in the computation of the coordinatesyafue to round-off
may change the appearance of W dramatically.

Input and Output: A Warning: As already mentioned, theindowclass offers functions
to draw lines, rays, and segments, and many other geombjects. For example,

W.draw_segment (point p, point q);

W.draw_ray(point p, point q);
will draw the segment with endpoinfsandq and the ray with start poir passing through
g, respectively. These functions have the desired effelaeipbintsp andq lie in a rectangle
whose side lengths are about 1000 times the side lengtké. off one of the points lies
further away from, the use of these functions is ill-advised.

Consider the following situation. We are given three poatb, andc in a windowW
and want to display their Voronoi diagram. Voronoi diagraams discussed in Section 9.5.
Except when the points lie on a common line, the Voronoi diagwill consist of a single
vertexv from which three rays emanate. The Voronoi vertex is theareott the circle
passing through the three points. When the three pointdrtiest on a linep will lie far
outsideW, see Figure 8.1. Each ray is part of the perpendicular lmsedttwo sites. It
is natural to draw the ray which is part of the perpendicuiaettor ofa andb by the
following piece of code:

POINT v = CIRCLE(a,b,c).center();

VECTOR vec = b - a;

POINT ray_point = v + vec.rotate90();
W.draw_ray(v.to_point(),raypoint.to_point());

The drawing produced by this program will be a disappointmiéra, b, andc lie suffi-
ciently close to a common line, since the conversion @nd ray_point to points of the
floating point kernel (note that this conversion cannot b@ded since the windows class
knows only floating point objects) will incur rounding errdvioving eitherv or ray_point
slightly has a dramatic effect on the appearanaeinfW.

8.1 Basics 13

We recommend using a different strategy to draw rays and eegnwhose defining
points may lie far outsid&V. In this situation the underlying linkeis frequently known by
other means. In our exampleis the perpendicular bisector of the poiatandb.

LINE 1 = p_bisector(a,b);

The defining elements oflie in W and are hence known with high precision. The window
class offers functions

W.draw_segment (point p, point q, line 1, color c);
W.draw_ray(point p, point q, line 1, color);

that draw the part of the linebetweenp andq, respectively, the part dfon the ray with
sourcep and second poirg. Of course p andgq must lie orl or at least close to it. We give
the implementation of the second function.

If piscontained inV we simply draw the ray with sourgeand second poirg. If p lies
outside the window we clip the lineon W and call the resulting segmest The segment
s has the property that its source preceeds its target in Kieographic order of points;
equality is possible. We drasweither if p is smaller than the source stindq is larger than
p, or if pis larger than the target gfandq is smaller tharp, or if p lies lexicographically
between the source and the targes.of he latter case cannot happen mathematically, but it
can happen numerically, {f lies close to either the source or the targes bfit not exactly
onl.

void window::draw ray(point p, point q, line 1, color col)
{
if (contains(p)) { draw_ray(p,q,col); return; }

segment s;

point 1llc(xmin(),ymin()); // left lower corner

point rrc(xmax(),ymax()); // right upper corner

if (!'l.clip(llc,rrc,s)) return;

if (compare(p,s.source()) < O && compare(p,q) < 0 ||
compare(s.target(),p) < O && compare(q,p) < 0 ||
compare (s.source() ,p) <= 0 && compare(p,s.target()) <= 0)

draw_segment (s, col) ;

}

We will see an application of the refined drawing functionSéction 9.10.

Exercises for 8.1

1 Write a program that allows to input points in a graphicsdeiw and colors the points
randomly red and blue.

2 Write a program that allows to input points in a graphicsdeiw and always highlights
a pair of points with smallest distance. For two poiptandq, p.sqrdist(q) computes
the squared distance betwepandq.

3 Write a program that removes duplicates from a list of segme

14 The Geometry Kernels

Figure 8.2 orientation(p, g, r1) = 1, orientation(p, g, r2) = 0, andorientation(p, q,r3) = —1.
The triangleA(p, q, r1) is shown dashed.

8.2 Geometric Primitives

We discuss some of the geometric primitives available in RED particular, the orienta-
tion function and its variants, lengths and distances,em@ind intersections.

8.2.1 The Orientation Function in the Plane

The orientation functionis probably the most useful geometric primitive. Lgtq, andr

be three points in the plane. The tugle, g, r) is said to havepositive orientatiorif p
andq are distinct and lies to the left of the oriented line passing througtandg and
oriented fromp to g, the tuple is said to haveegative orientatiorif r lies to the right of
the line, and the tuple is said to hawientation zerdf the three points are collinear, see
Figure 8.2. An alternative way to define positive orientai®to say thap, g, andr form

a counter-clockwise oriented triangle. The function

int orientation(POINT p, POINT q, POINT r)

computes the orientation of the triple, g, r). It returns+1 in the case of positive orienta-
tion, —1 in the case of negative orientation, and 0 in the case ofaieatation. There are
also predicates that test for special cases.

bool leftturn(p,q,r); // same as orientation(p,q,r) > O

bool rightturn(p,q,r); // same as orientation(p,q,r) < O
bool collinear(p,q,r); // same as orientation(p,q,r) == 0

We next derive a determinant formula for the orientationction. For pointsp, g, and
r we useA(p, g, r) to denote the triangle with verticgs g, andr. We define thesigned
areaof the triangleA(p, g, r) as its area times the orientation of the tripfe g, r).

8.2 Geometric Primitives 15

0 q=(Q.0
Figure 8.3 Proof of Lemma 1.

LemmalLet p, g, and r be points in the plane.
(a) The signed area of the triangle(p, g, r) is given by

1 1 1
Yo Yq W
(b) The orientation ofp, g, r) is equal to the sign of the determinant above.

Proof Part(b) follows immediately from part (a) and the definitiminsigned area. So we
only need to show part (a). We do so in two steps. We first vénié/formula for the case
that p is the origin and then extend it to arbitrapy So let us assume thatis equal to the
origin. We need to show that the signed areaf A(p, g, r) is equal to(XqYr — X Yq)/2.

Let o be the angle between the positiveaxis and the rayDg and letQ be the length
of the segmenOq, cf. Figure 8.3. Then cas = X;/Q and sint = y,/Q. Rotating
the triangleA (O, g, r) by —a degrees about the origin yields a triangl€O, q', r") with
g’ = (Q, 0) and the same signed area. ThAsx Q - y;//2.

Next observe thay, = Rsin(8 — «), whereR is the length of the segmer and g
is the angle between the positixeaxis and the rayOr. Since sii8 — o) = sinB cosa —
cosB sine andRcosB = x, andRsinB = y; we conclude that

A = Q- y/2 = Q-R-sin—a)/2
= (Qcosa - Rsing — Qsina - Rcosp)/2 = (Xg¥r — X Yq)/2.

This verifies the formula in the case wharés the origin.
Assume next thap is different from the origin. Translating into the origin yields the
triangleA(O, g, r’) with ' = g — pandr’ =r — p®. On the other hand subtracting the

5 Strictly speaking, we would have to writg¢ = 0+ (q — p) and similarly forr’.

16 The Geometry Kernels

first column from the other two columns of the determinankdge

1 1 1 1 0 0
Xq/ Xr/
Xp Xg X | =] Xp Xq=Xp Xr—Xp =|
Yo Yg Yr Yo Ya—Yp Yr—VYp A
which by the above is twice the area of the translated trang| O

Part (b) of the lemma above is the implementation of the taitéom function.

8.2.2 The Orientation Function in Higher-Dimensional Space
We define the orientation function for an arbitrary dimensicspace and derive a determi-
nant formula for it. Less mathematically inclined readeayrskip the proofs of the lemmas
to follow.

Let (po, p1, ..., pg) be ad + 1-tuple of points ird-dimensional space. Their orientation
is zero if the points lie in a common hyperplane. If they do, tle¢ir orientation is either
positive or negative as determined by the following rules:

e Letobe the originand le¢y fori, 0 <i < d, be the endpoint of thieth coordinate
vector ofd-dimensional space. The tuple, ey, . . ., €4_1) has positive orientation.

e Two tuples(po, p1, ..., pd) and(qo, as, . . ., qq¢) have the same orientation if the
affine map that mapp; into g; fori, 0 <i < d, has positive determinant.

Lemma 2Let(po, 1, ..., Pa) be a d+ 1-tuple of points in d-dimensional space. Then
orientation(po, Pi, - - -, Pa) = Signdet< 1 ... 1) |
pO N pd

where the i-th column of the determinant consists dbfallowed by the vector of Cartesian
coordinates of pforalli, 0 <i < d.

Proof Observe first that the poinf®, . . ., pg have orientation zero iff they lie in a common
hyperplane which is true iff the homogeneous linear system

> x=0

O<i<d
> kipi=0,0<l<d-1
O<i<d
in variablesig, A1, ..., Ag has a non-trivial solution. The determinant above is themdet

minant of this system. We conclude thaientationpo, ..., pg) = O iff the sign of the
determinant above is zero.

Assume next thabrientation(po, p1, ..., Pa) # 0. The affine transformation that maps
(0, €p, ..., €4-1) into (Po, P1, ..., Pg) is given byx — pg + P - x whereP has columns

P1 — Po, P2 — Po, .-+, Pd — Po. Thus
detP = det(pp—po P2—Po -+ Pa—Po)-

8.2 Geometric Primitives 17

Adding an additional first row and first column to this detararit with the first entry in the
new row equal to one and all other entries in the new row equagito does not change the
value of the determinant (develop the determinant accgridithe new row). Therefore

detP = det(pp—po P2—Po -~ Pd—Po)
= det(1 0 0) = det(1 Lo l),
Po Pr—Po -+ Pd—Po Po P -+ Pd
where the last equality follows from adding the first colunonall other columns. We
conclude thatpo, p1, ..., pg) has the same orientation s ey, ..., €_1) if and only if
the determinant above is positive. O

The lemma above generalizes Lemma 1. Observe that both legingthe same formula
for points in the plane.

We have already given an intuitive definition of orientatianthe plane: three points
(pPo, P1, P2) in the plane have orientation zero if they are collinearghaasitive orientation
if they form a counter-clockwise oriented triangle, and énanegative orientation if they
form a clockwise oriented triangle.

In three-dimensional space there is also an intuitive defmi Four points po, p1, P2, P3)
in three-dimensional space have orientation zero if theycaplanar, have positive orien-
tation if they form a right-handed system, and have negati@entation if they form a
left-handed system. We need to explain the terms right- eftchinded system. Imagine
that you place the base of your thumb at pgigtand let the thumb (index finger, middle
finger) point top;, p2, and ps, respectively. Only one of your hands will work and this
determines the handedness of the system. For four threendiomal point®, g, r, ands

int orientation(p,q,r,s);

computes their orientation.

An alternative definition of orientation in three-dimensabspace is to say that the four-
tuple (po, P1, P2, P3) has positive orientation ips sees(po, p1, P2) in counter-clockwise
orientation. The last sentence connects orientation eetgimensional space with orien-
tation in two-dimensional space. The next lemma genemaliais connection to higher
dimensions.

Lemma 3Let(py, p3,-- ., Py_1) be a d-tuple of points id — 1)-dimensional space with
positive orientation and letpo, ps1, ..., pqg) be a d+ 1-tuple of points in d-dimensional
space such that;gprojects into pfori, 1 <i < d, i.e., the Cartesian coordinate vector
of g is the Cartesian coordinate vector of with the last entry removed. Let h be the
hyperplane spanned byp..., py_1. Then(po, p1, ..., Pg) has positive orientation if p
lies above h, has orientation zero ifj fies on h, and has negative orientation if pes
below h.

Proof Let g be the projection ofpy into h. Thenpy = q + ¢ - e4_1 whereey_; is the

18 The Geometry Kernels

(d — 1)-th coordinate vector anclis positive if pq lies aboveh, is zero if pq lies onh, and
is negative ifpq lies belowh. Moreover there argg, A1, ..., Ad—1 such that

A =1,
O<i<d-1
and
Z Aipi=a.
O<i<d-1
Thus
det(1 1 ... 1) _ det(1 1 ... 1 1)
Po P1 -+ Pd Po P1 -+ Pd-1 +C-€4-1
_ det(l 1 ... 1 0)
Po P1 -+ Pd-1 C-€&-1
_ c.det<1, Lo 1)
Po P1 - Py-1

where the second equality follows from subtracting theth multiple of thei-th column
from the last column fof, 0 < i < d, and the last equality follows by expanding the
determinant according to the last column. Observe thatasiecblumn has only one non-
zero entry and that this entry is in the last row. O

In the plane we connected the orientation of a trigleq, r) to the signed area of the
triangle defined by the points. A similar connection holdkigher-dimensional space. The
signed area of the simplex with verticpg pi, ..., pq iS equal to% times the determinant
defined by the points.

8.2.3 Sidedness

Many geometric objects, such as lines and circles in thesplalanes and spheres in three-
dimensional space, and more generally hyperplanes anddphmeres ind-dimensional
space, partition ambient space into two parts. We desigmateof the parts as positive
and one as negative. The function

int 0.side_of(x);

whereO is a geometric object andis a point in ambient space returns a positive number
(zero, a negative number, respectivelyXifies in the positive part (lies o, lies in the
negative part, respectively). Examples are

int l.side_of (x); // 1 is a line
int C.side_of (x); // C is a circle
int P.side_of (x); // P is a polygon

What is the positive subspace with respect to a line or cocleyperplane? We use the
orientation function for points to formulate general rules

8.2 Geometric Primitives 19

e For a hyperplané in d-space defined by points, p1, ..., Pa—1 (in this order) the

positive subspace consists of all poimtssuch that po, p1, ..., pg) has positive
orientation. Thudine(p, q).sideof(x) is the same asrientationp, g, x), if p andq
are distinct.

e For a hyperspherg8in d-space defined by point, p1, .., pg (in this order) the
positive subspace consists of the interior of the sphamifps, ..., pg) is positively
oriented and consists of the exterior of the sphere otherwike same rule applies to
simplices.

In two-dimensional space the following alternative rulalso worth remembering. Two
points defining a line and three points defining a circle ingpasense of direction on the
line or circle respectively (from the first point to the sedgmoint in the case of a line, and
from the first point through the second point to the third p@irthe case of a circle)The
positive subspace is the region to the left of the object

Let p, g, andr be points in the plane. We may want to inquire about the positif a
pointx with respect taircle(p, g, r). We could writecircle(p, g, r).sideof (x). Since this
test incurs overhead for the construction of a circle we abee an alternative syntactic
format that avoids this overhead and also gives an answkeindse where thg, g, andr
do not define a circle.

int side_of_circle(p,q,r,x);

returns+1 if x is to the left of the oriented circle through q, andr, returns—1 if x is to
the right of the oriented circle through g, andr, and returns O if eithef p, g,r}| < 2 or
x lies on the oriented circle through g, andr. We give some more explanations.

Three pointsp, q, andr that are not collinear define a unique circle passing through
them. We give this circle an orientation by insisting tipaty, andr occur in this order on
the circle. Consider now a fourth poixt It is either left of, on, or right of the oriented circle
throughp, g, andr. Note that left corresponds to inside if the circle is comtieckwise
oriented and to outside otherwise, see Figure 8.4. The bas¢hie pointsp, g, andr are
collinear deserves special attention. If the three poirgsnat pairwise distinct then the
whichsidefunction returns zero. If they are pairwise distinct thenosient the line passing
through them such that the order of the points along the 8re ¢ircular permutation of
(p,q,r),i.e., eitherp, g, r)or(q,r, p) or (r, p, q), and use again-1 for the left side and
—1 for the right side of the line.

Circles, spheres, triangles, simplices, simple polygand,many other geometric objects
partition ambient space into a bounded and an unboundeatregince there is no standard
convention in mathematics that connects boundedness d@mlindedness with positive
and negative respectively, we have an enumeration typenéoptitcome of theegionof
function.

enum region kind { BOUNDED REGION, ON_REGION, UNBOUNDED REGION };
region kind 0.region of (x); // the generic form

region kind C.region of (x); // C is a circle

20 The Geometry Kernels

Figure 8.4 The sides of a circled lies on the negative side of the circle defined by points,
andc, ands lies on the positive side of the circle defined by poipts|, andr.

Frequently, one only wants to test for one of the outcomesh&Ve appropriate predicates.

bool 0.inside(x); // 0.region of (x) == bounded region
bool 0.on_boundary(x); // 0.region of(x) == on_region
bool 0.outside(x); // 0.region_ of (x) == unbounded region

8.2.4 Length and Distance
If pandq are POINTs andlis a LINE,

RAT_TYPE p.sqr_dist(q);

RAT_TYPE 1.sqr.dist(q);
compute the square of the distance betwgand p orl, respectively.

In the rational kernel there are no functions to computeadists, in the floating point
kernel there are, but think twice before using them. Why?

The distance between two poinpsandq is equal to((Xp — Xq)? + (Yp — Yg)?)¥/? and
is hence, in general, not a rational number. The squaredndistis a rational number and
hence the rational kernel provides only functions to coragqguared distances. The floating
point kernel uses thegrt function from the standard math-library to compute disé&nc

We find that the computation of distances is rarely neededsider the following prob-
lem. Letp andq be points. We want to define the circle centereg athose radius i
times the distance betwegrandq. This is best written as

CIRCLE C(p, p + rho * (q - p));

Observe thatyy — p is the vector fromp to g and henceho x (q — p) is a vector whose
length isp times the distance betwegrandq.
The distances betwegnandq andr, respectively, can be compared by

int p.cmp.dist(q,r); // same as cmp(p.sqr_dist(q),p.sqrdist(r));

8.2 Geometric Primitives 21

This is more efficient than computing the two squared distamnd comparing them.

8.2.5 Angles

There is no type angle in either the rational or the floatinigtdcernel. There are, however,
a number of functions related to angles. In particular, tectorsy; andv, can be compared
by the angle which they form with the positixeaxis. For a vectop let «(v) be the angle
by which the positivex-axis has to be turned counter-clockwise until it alignshwit The
zero vector defines the angle zero.

int compare by_angle(VECTOR v1, VECTOR v2);

returnscmp(a (v1), a(v2)).

We describe the implementation. If one of the vectors is #re zector the comparison
is easily made. If both vectors are zero, they are equal, fandly one is zero, it is the
smaller. So assume that both vectors are non-zero. We shg tian-zero vecto(x, Y)
belongs to the upper half-plane if eithgr> 0 ory = 0 andx > 0, and we say that it
belongs to the lower half-plane otherwise. lgtperlandupper2be the half-planes to
which our vectors belong (the value-sl for a vector in the upper half-plane ard. for a
vector in the lower half-plane). If the two vectors belonglistinct half-planes, the vector
in the upper half-plane is smaller and hence we may retursigmeofupper2— upperl If
the two vectors lie in the same half-plane precedes; iff the triangle(O, O+v1, O+vy)
is counter-clockwise oriented iff the orientation @, O + vy, O + vp) is positive iff its
signed area is positive. The signed area is the length ofrtiesgroduct of; andv,, i.e.,
X1Y2 — Xo¥1. We may therefore returasign(xi1y, — Xoy1).

Rational vectors are stored by their homogeneous coosdinabince the ordering of
angles does not depend on the length of vectors and sincethedenizing coordinate is
guaranteed to be non-negative, we may ignore it.

(-angleorder.g+=

int compare_by_angle(const rat_vector& vl, const rat_vector& v2)
{ const integer& x1 = v1.hcoord(0);
const integer& yl = vl.hcoord(1l);
v2.hcoord(0) ;
v2.hcoord (1) ;
if ((x1 == 0 &% y1 == 0) return (x2 ==0 & y2==07 0 : -1);
if (x2 == 0 & y2 == 0) return 1;

// both vectors are non-zero

const integer& x2
const integer& y2

int syl = sign(yl); int sy2 = sign(y2);
int upperl
int upper2

(syl '=0 7 syl : sign(x1));
(sy2 '=0 7 sy2 : sign(x2));

if (upperl == upper2) return sign(x2*yl - x1*y2);

return sign(upper2 - upperl);

22 The Geometry Kernels

8.2.6 Intersections
There are functions to compute the intersections betwees lirays, and segments. For
example, ifl is a LINE andsis a SEGMENT then

bool 1l.intersection(s, p);

returnstrue if | ands have a single point in common and retufatse otherwise. In the
latter case, the unique point of intersection is assigned to

Exercises for 8.2

1 Write afunctiorcircumcenterthat takes three points g, andr and returns the center of
the circle passing througp, g, andr. The three points are assumed to be non-collinear.

2 Use the left-turn predicate to write a function that testetler four pointg, g, r, and
sin the plane form a convex quadrilateral.

3 Modify the test from the previous exercise such that it desiwhether the four points
form a counter-clockwise oriented convex quadrangle.

4 Let p, q,r, ands be four points in three space not lying in a plane. Positiour yeft or
right hand such thap coincides with the base of your thumb, amd , ands coincide
with the tips of your thumb, index finger, and middle fingeispectively. Convince
yourself that only one of the two hands will work and relate toice of hand to the
orientation of the four points.

8.3 Affine Transformations

An affine transformatioi of the plane is specified by a3 matrixT with T, o = T21 =0
andT,» # 0. It maps the poinp with homogeneous coordinate vect@, py, p,) to the
pointT - p. Transformations are calléthnsformin the floating point kernel and are called
rat transformin the rational kernel. We use TRANSFORM as the generic name.

TRANSFORM T;

TRANSFORM T1(M);
declaresT as the identity transform and declarEkas the transform with transformation
matrix M. M must be a 3« 3 matrixin the floating point kernel and a3 3 integermatrix
in the rational kernel. Functional notation is used to appiyaffine transformation to a
geometric object. For example,

p = T(q); // p and q are points

P = T(Q); // P and Q are polygons

v = T(w); // v and w are vectors

Cc =T(D); // C and D are circles; T must be rigid

The norm of an affine transformatidnis defined as
ITI = (TooTr — ToaTro)/ T

A transformation is calledgid iff its norm has absolute value one.

8.3 Affine Transformations 23

RAT_TYPE T.norm();

returns the norm of .
If T andT1are transformations then

T(T1);

is the transformation obtained by first applyihgjand thenr .
Translations, rotations, and reflections are special aafs#$ine transformations.
A matrix of the form

w 0 X
0O w vy
0 0 w

realizes a translation by the vector/w, y/w) and a matrix of the form

a —-b O
b a 0
0O 0 w

wherea? + b? = w? realizes a rotation by the angleabout the origin, where cos= a/w
and sink = b/w. Rotations are in counter-clockwise direction.

It is inconvenient to specify transformations by their sEmmmation matrix. We have
several functions that construct transformations. Oles#rat these functions are not con-
structors but functions that return transformations. Kamneple

TRANSFORM T = translation(const INT_TYPE& dx, const INT_TYPE& dy,

const INT_TYPE& dw);
TRANSFORM T = translation(const RAT TYPE& dx, const RAT_TYPE& dy);

construct translations by the vecialx/dw, dy/dw) and the vectotdx, dy), respectively.

TRANSFORM T = reflection(const POINT& q, const POINT& r);
TRANSFORM T = reflection(const POINTE q);

construct the reflection across the straight line passirmutihg andr and the reflection
across the poird, respectively.

TRANSFORM T = rotation90(const POINT & q);
TRANSFORM T = rotation(const POINT& q, double alpha, double eps);

construct rotations about the poigt In the first case the rotation is by/4 and in the
second case the rotation is approximatelyby is a tolerance parameter.

We show the implementations of the last two functions. Ranalby 7z /4 is achieved by
the rotation matrix
-1

o O

0
0 O
0 1

24 The Geometry Kernels

and rotation about an arbitrary poigis achieved by first translating by the vector— q,
rotating about the origin, and finally translating back bg tectorg — O.

(rotation)=
static TRANSFORM rotation90_origin(const POINT& q)

{
INT_MATRIX M(3,3);
for (int 1 = 0; i < 3; i++)

for (int j = 0; j < 3; j++)
M(i,j) =0 ;

M(0,1) = -1; M(1,0) = +1;

M(2,2) = 1;

return TRANSFORM(M) ;
}
TRANSFORM rotation90(const POINT& q)
{

TRANSFORM R = rotation90_origin(q);

TRANSFORM TO = translation(-q.X(),-q.Y(),q.W());
TRANSFORM T1 = translation(q.X(), q.Y(),q.W());

TRANSFORM T = T1(R(TO));
T.simplify();
return T;

Observe that we have given the functiaiation9Qorigin an artificial argument of type
POINT so that we can use the same code for both kernels. In the piezmde above,
we declaredotation9Qorigin static, as it is an auxiliary function that should not be isi

outside the filetransform.c.

We come to the rotation by an arbitrary angle We only show how to construct the
transformation matrix for the rotation about the origin. ¥énstruct a poinp on the unit
circle and in directiom (this is a member function of CIRCLE) and then use the coatéis
of p as the sine and cosine of

(rotation)4+=
static TRANSFORM rotation_origin(const POINT& q,
double alpha, double eps)
{ POINT origin(0,0);
POINT X(1,0);
CIRCLE C(origin,X); // unit circle centered at origin
POINT p = C.point_on_circle(alpha,eps);
INT_MATRIX M(3,3);
M(0,2) = M(1,2) = M(2,0) = M(2,1) = O;

M(0,0) = M(1,1) = p.X() ;
M(0,1) = -p.YOO; M(1,0) = p.YO;
M(2,2) = p.W();

return TRANSFORM(M) ;

8.4 Generators for Geometric Objects 25

It remains to explain the functiopointoncircle. In the floating point kernel we use the
sine and cosine function from the math-library to constrpcepsplays no role in this
construction. In the rational kernel we use the method desgtin [CDR92] to find integers
a, b, andw and an angle’such that

a’+b?> = w?
cosa’ = a/w
sind’ = b/w

o —a| =< e

General affine transformations are a fairly recent additioour geometry kernels. In
earlier versions we had only functions for special affinegfarmations. They were member
functions of the geometric classes. For example,

p.translate(RAT_TYPE dx,RAT_TYPE dy);

returns the poinp + v wherev = (dx, dy).

Transformations are a good tool to generate difficult inportgjeometric algorithms. In
Section 9.8.4 we perform the following experiment. We fistgtruct a regulan-gon P,
n = 20000, with its vertices on the unit circle. We then condt@c= T (P) whereT is a
rotation by 2r/(nm) andm is a large integer, e.gn = 10°. We finally compute the union
of P andQ.

Exercises for 8.3

1 Implement the function that composes two transformations

2 Implement the function that applies a transformation toiatp

3 Implement the function that applies a transformation t@etar. This is different from
the solution to the previous exercise.

Implement the function that constructs the transfornmatiatrix for reflection at a point.
Implement the function that constructs the transfornmatiatrix for reflection at a line.

[S2 >N

8.4 Generators for Geometric Objects

There is a frequent need to generate geometric objectsymand otherwise. We describe
generators for random points in the plane and generatorpdiygons. There are also
generators for random points in space.

Generators for Random Points: We have generators for random points in squares, in
discs, near circles, and on circles. For each generatoe thkea version that generates a
single point and a version that generates a list of points.

random_point_in_square(POINT& p, int maxc);
random_points_in_square(int n, int maxc, list<POINT>& L);

26 The Geometry Kernels

generate a random point with integer coordinates in theag§nmaxc.. + maxd and a list
of n such points, respectively.
random_point_in_unit_square(POINT& p, int D = (1<<30) - 1);

random_points_in_unit_square(int n, int D, 1list<POINT>& L);
random_points_in_unit_square(int n, list<POINT>& L);

generate a point in the unit square, i.e., a point whose auaest are of the forr/D for a
random integer, 0 < i < D, n such points, and such points with the default value &f,
respectively.

For the remaining generators we only give the form that gerera single point.

random_point_in_disc(POINT& p, int R);
random_point_in_unit_disc(POINT& p, int D = (1<<30) - 1);

generate a random point with integer coordinates in thewligt radiusR and a random
point with coordinates of the foriry D for integeri in the unit disc, respectively.

random_point_near_circle(POINT& p, int R);
random_point_near_unit_circle(POINT& p, int D = (1<<30) - 1);

generate a random point with integer coordinates near tbke evith radiusk and a random
point with coordinates of the foriry D for integeri near the unit circle, respectively.

The latter function is implemented as follows. We generatsdom double in the unit
interval, setp = 27X, and construct the poirit D cos¢ |, | D sing |, D).

void random_point_near_unit_circle(POINT& p, int D)

{ double a;

Rand_Source >> a;
double phi = 2%a*LEDA_PI;

int x = int(D*cos(phi));
int y = int(D*sin(phi));
p = POINT(x,y,D);

}

With the rational kernel we can also generate points tha#etlyon a circle.

random_point_on_circle(POINT& p, int R, int C = 1000000);
random_point_on_unit_circle(POINT& p, int C = 1000000);

constructs a point on the circle with radil&and on the unit circle, respectively. This
assumes that the rational kernel is used. In both cases thieipohosen at random from a
set of at leas€ candidates. With the floating point kernel the function isieglent to the
nearcircle and theneatunitcircle function with D = 1.0/C, respectively.

The implementation ofandompointonunitcircle with the rational kernel is as follows:

void random_point_on_unit_circle(rat_point& p, int C)

{ rat_point origin(0,0);

rat_circle Circ(origin,origin + rat_vector::unit(1));
double a; Rand_Source >> a;

8.5 Writing Kernel Independent Code 27

double eps = 1.0/(2%C);
p = Circ.point_on_circle(2+«LEDA_PI*a,eps);

}
where the functiompointoncircle is as described at the end of Section 8.3.

The last two generators are much slower than all other gearenahen the rational kernel
is used. We have therefore generated files of 50000 randomsp@vithC = 10°). They
are available as:

LEDAROOQOT/data/geo/rapoints.unit_circle_random50000.ex

LEDAROOQOT/data/geo/pointanit_circle_random50000.ex

Generating Polygons: We have two generators for polygons.

POLYGON P
POLYGON P

reg_n_gon(int n, CIRCLE C, double epsilon);
n_gon(int n, CIRCLE C, double epsilon);

The first generator generates a nearly regadgon. Thei-th point is generated by the call
C.pointoncircle(2ri /n, epsilor). With the rational kernel the vertices of the n-gon are
guaranteed to lie on the circle, with the floating point kéthey are only guaranteed to lie
nearC.

The second generator generates a (nearly) regedg@n whose vertices lie near the circle
C. For the floating point kernel the function is equivalenthe function above. For the
rational kernel the function first generates an n-gon withtit@ point arithmetic and then
converts the resultingolygonto arat polygon

8.5 Writing Kernel Independent Code

We use the &€+ precompilation mechanism to write code that is independgtite kernel.
Recall that the kernels are designed such that all functivaisare available in a rational
kernel are also available in the corresponding floating tdamel.

The only difference between the rational kernel and theifiggioint kernel is the inter-
pretation of the generic names POINT, SEGMENT, LINE, ... older to give the generic
names the interpretation required in a particular kerneldafrthe files must be included:

#include <LEDA/rat _kernel_names.h>

#include <LEDA/float _kernel_ names.h>

#include <LEDA/d3_rat_kernel names.h>
#include <LEDA/d3_kernel names.h>

Every one of these files consists of a sequence of defineygtatse which define the generic
names for the corresponding kernel. For example,

// part of rat kernel names.h
#define KERNEL RAT _KERNEL

#define INT_TYPE integer
#define RAT_TYPE rational

28 The Geometry Kernels

#define VECTOR rat_vector
#define POINT rat_point
#define SEGMENT rat_segment
#tdefine TRANSFORM rat_transform

We also have files that undefine all names used in a kernel. areey

#include <LEDA/kernel names_undef.h>
#include <LEDA/d3_kernel names_undef.h>

Suppose now that we want to write a program that is supposeaaitk for both two-
dimensional kernels. We write a generic version of the mogusing only the generic
names and then derive the two specialized versions fronoiteample,

(FOO.4=
main(){
window W; W.display();

POINT p;
while (W >> p) W << p.to_point();
}

(rat_footest.¢=

#include <LEDA/rat_point.h>

#include <LEDA/window.h>

#include <LEDA/rat_window.h> // lets W >> p work for rat_points
#include <LEDA/rat_kernel_names.h>

(FOO.g
#include <LEDA/kernel_names_undef.h>

(foo_test.¢=

#include <LEDA/point.h>
#include <LEDA/window.h>

#include <LEDA/float_kernel_names.h>
(FOO.g
#include <LEDA/kernel_names_undef.h>

The header file window.h is included in both specializatiand it is hence tempting to
write

(BAD_FOO.g=
#include <LEDA/window.h>
main(){
window W; W.display();

POINT p;
while (W >> p) W << p.to_point();
}

8.5 Writing Kernel Independent Code 29

This will lead to a disaster. Never include a file in a piece of ade that is subject to
renaming, except if you are absolutely sure that the renaming mechreigiaot used in the
included file. Window.h includes the entire floating pointrk& which in turn includes files
like transform.h. The latter file uses the renaming mecimanis

Why did we undefine all names at the end of fiest.c and rafoo_test.c? We found that
it helps to guard against the error pointed out in the prexggdaragraph. If fodest.c is
included in a file that uses the renaming mechanism the cempill generate a message
that certain names are undefined. For example

#include <LEDA/rat kernel names.h>

#include "rat foo_test.c"

POINT p; // POINT is undefined here

We use the renaming mechanism just described for all solesariisrc/planealg and for
some source files in src/plane. We also use the mechanishrefbetder files for polygons,
generalized polygons, transformations, point sets, andrmggion of random points. In these
cases the generic header files are stored in incl/LEDA/gener

Sometimes, a small part of the code is specific to a partikiarel. We use conditional
compilation in this situation. For example,

// an error was just discovered

#if (KERNEL == FLOAT_KERNEL)

cerr << "Please move to the rational kernel.";
#else

cerr << "Please report this error.";

#endif

The conversion functions between floating point objectsratidnal objects form a more
substantial example. In the case of POLYGONSs we have:

// part of POLYGON.h
POLYGON (const POLYGON& P) : handle base(P) {} // copy constructor

#if (KERNEL == RAT_KERNEL)
rat_polygon(const polygon& Q, int prec = 0);
#endif

#if (KERNEL == FLOAT KERNEL)
polygon(const polygon& Q, int prec);
#endif

polygon to_polygon() const;

The first declaration defines the copy constructor for boghaintiations and the last dec-
laration defines the conversion function golygonsfor both instantiations. The middle
declaration is conditional. In clasat polygonwe also have the constructors

rat_polygon(const polygon&, int);
rat_polygon(const polygon&);

and in claspolygonwe also have the constructor

polygon(const polygon&, int prec);

30 The Geometry Kernels

It is important thatprecis not an optional argument in the latter case as this wouwldhcl
with the copy constructor.

We summarize: the pre-compilation mechanism ef@llows us to write kernel inde-
pendent code. Files that use the renaming mechanism muetineincluded in a piece of
code that is subject to renaming.

8.6 The Dangers of Floating Point Arithmetic

We give two examples for the dangers of floating point aritticrie geometric computation.
Both examples show that floating point geometric objectsexdnibit bizarre behavior that
deviates widely from the behavior predicted by mathematile will see more examples
in the chapter on geometry algorithms.

8.6.1 Convex Hulls

The first example was suggested by Stefan Schirra. Considdoliowing piece of code.
We define a segmestand construct a set of points consisting of the endpoints bfand
the intersections betwearand some number of random lines.

(floathull_tesy=

point pO(-LEDA_PI, -LEDA_PI);
point pl(+LEDA_PI, +LEDA_PI);

segment s(p0,pl);
list<point> L; L.append(p0O); L.append(pl);

for (int i = 0; i < 10000; i++)
{ double ax, ay;

rand_int >> ax; rand_int >> ay; point p(ax*LEDA_PI, ay*LEDA_PI);
rand_int >> ax; rand_int >> ay; point q(ax*LEDA_PI, ay*LEDA_PI);
line 1(p,q); point r;

if (l.intersection(s,r)) L.append(r);
}

list<point> CH = CONVEX_HULL(L);

We then compute the convex hull bf see Section 9.1. Since all pointslinlie on s, the
convex hull should have exactly two vertices. Figure 8.5xghthe output of a sample run
of the program. The convex hull has more than two verticestraoy to what mathematics
tells us. The explanationis simple. When the intersecteiwbers and a lind is computed
with the floating point kernel, the point of intersection domt necessarily lie ombut only
nears.

8.6 The Dangers of Floating Point Arithmetic 31

Figure 8.5 The convex hull of points contained in a common line segmentputed with the
floating point kernel. The hull has five vertices althoughrét®hould be only two.

8.6.2 Braided Lines (Verzopfte Geraden)
The second example was suggested by Lyle Ramshaw who alsedcthie name braided
lines (verzopfte Geraden in German) for it. Consider thedin

l;: y=9833-x/9454 and I, : y = 9366-x/9005

Both lines pass through the origin and the slopé a$ slightly larger than the slope &f.
At x = 9454.- 9005 we havey; = 9833- 9005= 9366- 9454+ 1 =y, + 1.

The following program runs through multiples o001 between 0 and 1 and computes
the corresponding-valuesy; andy,. It compares the twg-values and, if the outcome of
the comparison is different than in the previous iteratfmmts x together with the current
outcome.

(braidedlinestest.¢=
#include <stream.h>
main(){
cout.precision(12);
float delta = 0.001;

int last_comp = -1;
float a = 9833, b = 9454, c = 9366, d = 9005;
for (float x = 0; x < 0.1; x = x + delta)
{ float y1 = a*x/b; // 11 is steeper
float y2 = c*x/d;

int comp = (yl1 < y27 -1 : (y1 == y2?7 0 : +1));

32 The Geometry Kernels

if (comp !'= last_comp)
{ cout <<"\n" << x << ": ";

if (comp == -1) cout << "11 is below 12";
if (comp == 0) cout << "1l1 intersects 12";
if (comp == +1) cout << "1l1 is above 12";
}
last_comp = comp;
}
cout <<"\n\n";
}

Clearly, we should expect the program to print

0.000: 11 intersects 12
0.001: 11 is above 12

Well, the first few lines of the actual output &re

11 intersects 12
.00300000002608: 11 is above 12
.00400000018999: 11 intersects 12
.0050000003539: 11 is above 12
.00800000037998: 11 intersects 12
.00900000054389: 11 is below 12
.0100000007078: 11 is above 12
.0110000008717: 11 intersects 12
.0120000010356: 11 is above 12
.0130000011995: 11 intersects 12
.0140000013635: 11 is above 12
.0150000015274: 11 is below 12
.01600000076: 11 intersects 12
.0180000010878: 11 is below 12
.0190000012517: 11 intersects 12

[eNeNeoNoNeNeoNeoNeNeoNeoNoNoNoNeNe)

We conclude that the lines intersect many times, contrawhtat mathematics teaches us.
What went wrong? The typioat consists of only a finite number of values and hence a

line is really a step function as shown in Figure 8.6. The lviftthe steps of our two lines

|1 andl, are distinct and hence the lines intersect.

8.6.3 Overcoming the Dangers of Floating Point Arithmetic
The examples above show that the implementation of gearragorithms may be a diffi-
cult task. How can we overcome the difficulties?

The first approach sticks with inexact arithmetic but usemadre carefully. The pa-
pers [Mil88, Mil89a, Mil89b, FM91, LM90, GSS93, GSS89] déye algorithms for line

6 This output is produced on the first author’s workstatiorthéf program is run on the same author’s notebook, it
produces the correct result. The explanation for this beh&vthat on the notebook double precision arithmetic
is used to implement floats. According to the+Gtandard floats must not offer more precision than doubles;
they are not required to provide less.

8.6 The Dangers of Floating Point Arithmetic 33

Figure 8.6 Lines as step functions and their multiple intersections.

arrangements, intersections, convex hulls, and Vororagjrdims based on imprecise primi-
tives. We suggest that the reader has a look at at least ohes# papers in order to appre-
ciate the ingenuity needed to overcome the shortcoming®atiriig point arithmetic. We
were afraid of the required ingenuity and therefore did oot this approach for LEDA.

The alternative approach is to switch to exact arithmetiis pproach was pioneered by
Karasick, Lieber, and Nackman [KLN91]. They discussed thragutation of Delaunay di-
agrams by exact rational arithmetic. The use of exact agtlimovercomes the correctness
problems associated with floating point arithmetic, howeakethe cost of a much increased
running time. Fortune and van Wyk [FYW96] showed that theafdtoating point filters
can give exact geometric computation at low cost. We adapieid ideas to the LEDA
system [MN94b, MN94a]. Floating point filters are the topitte next section.

Exercises for 8.6

1 Give aversion of the intertwined lines fdoublearithmetic.

2 Play with the voronoi demo (in xlman) and try to find exampid®ere it works incor-
rectly when run with the floating point kernel. Try to explamhat goes wrong.

7 The conference version of their paper appeared in 1993.

34 The Geometry Kernels

8.7 Floating Point Filters

Floating point filters apply to the evaluation of geometniedicates as used in the condi-
tionals of geometric programs. For example,

switch (orientation(a,b,c))

{ case -1: // negative orientation

case 0: // collinear points
case +1: // positive orientation

}

Evaluating a geometric predicate is tantamount to detengithe sign of an arithmetic
expression. For example, the test above is equivalent to
switch (sign((ax*bw-bx*aw)* (ay*cw-cy*aw)-(ay*bw-by*aw)* (ax*cw-cx*aw)))
{ case -1: //
case 0: //
case +1: //

}

whereax, ay, awdenote the homogeneous coordinates of ppamd similarly for the points
b andc. The homogeneous coordinates ofadpoint areintegersand hence evaluating
the conditional involves ten multiplications and four adxtis of integers Unfortunately,
integerarithmetic is considerably more expensive than floatingijpaiithmetic and hence
we might expect to pay a tremendous price for exact comunati

The observation that paves the way for floating point filterthat we only want to know
the sign of the arithmetic expression but not its value. ftaguently possible to determine
the sign of an expression with floating point arithmetic altgh it is impossible to determine
its value with floating point arithmetic.

In order to compute the sign of an expresSidh a floating point filter computes an
approximationE of E using floating point arithmetic and also a boudn the maximal
difference betweek and the (unknown) exact valls, i.e.,

IE—-E|<B,

or,

E-B<E<E+B.

Thus:

e if E > BthenE > 0,

e if E < —BthenE <0,

e if neither of the aboveB < 1 andE andE are integral there = 0.

For the third item observe that if neither of the first two caapplies thenE| < B. If E
is integral andB < 1 this impliesE = 0. If E is integral this implies further thd = 0.
In order to derive a specific floating point filter one has to:

8 \We useE in the usual double meaning: it denotes an expression aadres/alue of the expression.

8.7 Floating Point Filters 35

E E mes indg
a, integer fl(a) Ifl(@)| 1
a, float integer fl(a) Ifl(@)| 0
A+ B A®B mes@®mes 1+ maxindya,indg)-s
A—B AoB mes®mes 1+ maxindy,indg)-s
A.-B AOB meaOmes 1-+inda-s+indg - 82

Table 8.1 The recursive definition ahes andindg. The first column contains the case
distinction according to the syntactic structureEgfthe second column contains the rule for
computingE and the third and fourth columns contain the rules for coingunes andindg;
@ and® denote the floating point implementations of addition andtigiication. We use the
abbreviationss = 1 + 2752 andfl(a) = a.to.doublg). For the entry in the last row and last
column one may assuniedg < inda.

e specify how the approximatiol is computed,
e specify how the boun® is computed, and
e provethaiE — E| < B holds.

In the next section we will describe a variant of the floatingpfilter used in the rational
kernel. In later sections we comment on other filters, weudis@n expression compiler for
the automatic generation of floating point filters, and wedheoretical and experimental
evidence for the efficacy and efficiency of floating point fite

8.7.1 A Floating Point Filter
We discuss a variant of the filter used in the rational kerfidle filter described here is
slightly stronger that the one described in [MN94b, MN94a]the current kernel you will
find a mixture of both filters. The filter works for expressiamith integer operands and
operations addition, subtraction, and multiplication. éxtension to expressions with real
operands and the additional operations division and sqoatevas later devised in [Bur96,
Fun97, BFS98].

The approximatiork is simply the value obtained by evaluatiEgwith double precision
floating point arithmetic.

The boundB is computed according to the rules given in Table 8.1. THitetaontains
the recursive definitions of the indéxdg and the measummes of an expressiort; B is
defined as

B = 27°%.indg - mes.

Before we prove thaE and B have the property required for a floating point filter, we
apply the filter to the orientation predicate. We obtain:

36 The Geometry Kernels

// convert arguments to double

double axd = ax.to_double(), ayd = ay.to_double();
// and similarly for the other coordinates

// evaluate E with floating point arithmetic
double E_tilde = (axd*bwd - bxd*awd) * (ayd*cwd - cyd*awd) -
(ayd*bwd - byd*awd) * (axd*cwd - cxd*awd);

// compute mes by replacing all arguments by their absolute
// values and by replacing - by + in E.

double axd = fabs(axd), ayd = fabs(ayd);
// and similarly for the other coordinates

double mes = (axd*bwd + bxd*awd) * (ayd*cwd + cyd*awd) +
(ayd*bwd + byd*awd) * (axd*cwd + cxd*awd);

double ind = 11.0; // see below
double B = ind * mes * eps; // eps = 2°{-53}.

if (E_.tilde > B) return 1;
if (E_.tilde < -B) return -1;
if (B < 1) return O0;

// resort to integer arithmetic

return sign((ax*bw-bx*aw) * (ay*cw-cy*aw) - (ay*bw-by*aw) * (ax*cw-cx*aw)) ;

Some comments on this program are in order.

(1) How did we compute the index? We have:
The index of an integeatis s; = 1;
The index of an expression of the foam aiss; = 1+ (8 + 82) ~ 3.
The index of an expression of the fomm a +a-aisss = 1+ $8 ~ 4.
The index of an expression of the fol@-a+a-a)-(a-a+a-a)issy = 1+s3(§+8%) ~ 9.
The index of the orientation predicatesis= 1 + s ~ 10.
s is slightly larger than 10 and certainly less than 11. We niegydfore use 11 as the
index of the expression predicate. This overestimaitaayd will also cover any rounding
error in the computation oB. Note that we define® as 253 . indg - mes but compute
2753 0 inde © mes:, where® denotes floating point multiplication.

(2) The computation oE starts with the conversion of the homogeneous coordindtes o
a, b, andc from integerto double In the rational kernel we make this conversion when the
points are constructed. In this way the conversion is matliearte for eachat pointand
not every time a predicate is evaluated faaapoint

(3) The computation ofmeg involves the same number of arithmetic operations as the
computation ofE. The computation oB requires, in addition, to take the absolute val-
ues of the arguments and to multiphdg, mes:, and 2°°3. The number of operations to
computeB is therefore at least the number of operations to computdhe actual time
required to comput& and B is usually less than twice the time to compielone (see
Section 8.7.4 for some measurements), since modern mioaegsors have highly effective
floating point units with multiple pipelined arithmetic @#mand since the cost of arithmetic
is small once the data is in the processing unit.

8.7 Floating Point Filters 37

(4) Our expressions have integer operands and operatipas and-. HenceE andE
are integral.

We will next prove that Table 8.1 indeed defines a valid boBndWe need to review
some properties of the IEEE floating point standard [Gol9819G, IEE87].

A floating point number consists of a signa mantissan, and an exponer& In double
formats has one bitm consists of fifty-two bitsny, ..., msp, ande consists of the remaining
eleven bits of a double word. The number represented by ifhle s, m, e) is defined as
follows:

e eisinterpreted as an integer in [®** — 1] = [0.. 2047].
e If m;=...=ms=0ande = 0thenthe numberis +0 or -0 dependingson
e If1 <e <2046 thenthe numberss (1+) ;__5m27) 227105

e If somem; is non-zero ane = 0 then the numberis- Y, _; 5, mi27'2719%, This is
a so-called denormalized number.

e Ifall m; are zero an@ = 2047 then the number isco or —oo depending ors.
¢ Inall other cases the triple represents NaN (= not a number).
The largest positive double (except fos) is MAXDOUBLE = (2 — 2752) . 21023 gnd the
smallest positive double MINDOUBLE = 2-52. 21023

In this section we are interestedfloating point integersi.e., integers that can be repre-
sented as floating point numbers. The set of floating poiegts consists of:

e the number zero,

e allintegers of the forns - (1+ Y, _;_s,M27") - 22 with 0 < e < 1023 (we must have
m; = 0fori > €),

e the numbers-oco and—oo.

We call an integerepresentabléf |a| < 2 - 2923 For a representable integerlet fl(a)
be a floating point number nearestao For a non-representable integerfléa) = +oo
depending on the sign af

Floating point arithmetic incurs rounding error. It is tfare important to distinguish
between the mathematical operations addition, subtraatialtiplication and their floating
point implementations. We usg, —, and- for the exact operations ar@, ©, and® for
their floating point implementations.

We need the following facts:

(a) If ais an integer then
la—fl@a) <27 Ifi@),

whereeps = 2753 is called themachine precision If a is a non-representable integer

38 The Geometry Kernels

(including +00) thenfl(a) = oo and the claim is true. So, assume thads representable.
The floating point approximation & is obtained by “rounding” in the 53-rd bit. More
precisely, ifla] < 252 thenfl(a) = a and if|a] > 2% anda has the binary representation

with mg = 1 andL > 53, then
fllay=s-(Y m-2-" 45 2-7%9,
0<i<52

wheres € {0, 1} is chosen such that the better approximatiormé$ obtained. Clearly,
la—fl(@)| < 2--%2/2 and|fl(a)| > 2'. Thus,|a — fl(a)| < 2753 |fl(a)|.

We want to remark that the assumption thas integer is crucial for claim (a). Ifa| <
MinDouble/2, the best floating point approximation afis zero. Thus, there is no bound
on the errota — fl(a)| in terms offl(a). Life is easier for integers.

(b) If ais an integer thefi(a) is a floating point integer.
(c) If f1 and f, are floating point integers, op {+, —, -}, f = f; op fp, andop is the
floating point implementation of op, then
f16pf, = fl(1),

i.e., the floating point operation returns a floating poirieger closest tof. There is no
need to argue here. Itis an “axiom” of the IEEE standard thatyearithmetic operation is
implemented with the least possible error.

(d) Under the same hypothesis as in the preceding item:
| f10~pf2 - f1 op fo] < 2_53| flévp fl.
Let f = fi6pf,andf = fyop fo. Thenf = fl(f) by (c) and hencef — f| < 2753 f]
by part (a).

(e) If f is anintegerthenatadoublg) returnsfl(a). That is the way we implemented
the functiontadouble

(f) Floating point arithmetic is monotone, i.e.,af < a, andb; < by, thena; @ a, <
b1 ®byandif0< a3 < ap and 0< by < by thena; ® a, < b; © b,.

(g) Multiplication by a power of two incurs no rounding erroe., if a is a power of two
andb is a floating point integer such thad 2nda - b are representable, thenrba=2-a
andaGb=a-b.

Theorem 1If mes and inde are computed according to Table 8.1 tH&i < mes and

IE—E| < 27°.indg - meg
< 2720indg @ mes O (1+27%?).

8.7 Floating Point Filters 39

Proof We use induction on the structure of the expressioihe claim E| < mes follows
immediately from the monotonicity of floating point arithtiee For the other claims we
have to work slightly harder. We first prove

|IE — E| < 27%%.indg - meg..
Assume first thaE is an integern. Then
la—fl@@)] <27 fi@)

by item (a) and the claim is certainly true.dfis a floating point integer thefifa) = a and
hence the index can be set to zero for floating point integers.

We come to the induction step. L&tand B be the two subexpressions Bfand letA
andB be their floating point values. Then

Al <= mes

IA— A < 27°.indp-mes
Bl < mes

IB—B| < 27°.indg-mes

by induction hypothesis.
We now make a case distinction according to the operatiorbating A and B.
AssumeE = A+ B. Then

IE—E|=|A®@B—-(A+B)|<|A®dB—(A+B)|+|A- A +|B—B|

ltem (d) with f; = A and f, = B implies that the first term is bounded by*| A @ B| and
monotonicity of floating point arithmetic implies that

|A® B| < mesy & meg = mes.

For the other two terms we use the induction hypothesis tclade

IA

27%%. (indp - mes, + indg - mes)

2753 . max(ind,, indg) - (Mes, + mes)

2753 . max(ind,, indg) - (1 +27%%) - (mes, & mes)
2753 . max(inda, indg) - (1 4+ 27°%) - mesg.

|A— Al +|B — B|

IAIA

Putting the two bounds together completes the induction fetethe case of an addition.
The argument for subtractions is completely analogous.
We turn to multiplicationsg = A - B. We have

IE-E|=|A0OB-A-B/<|AOB—A-B|+|A-B—A-B|+|A-B—A-B|.

ltem (d) with f; = Aand f, = B implies that the first term is bounded by*| A ® B| and
monotonicity of floating point arithmetic implies that

|A® B| < mes © meg = mes.

40 The Geometry Kernels

For the second term we use the induction hypothesis to cdaclu

IA-B—A-B] = |A—A-|B|
< 27%.inda - mes - mes
< 27%.inda- (14275 . (mes © mes)

2753 . inda - (14 27°%) - meg,

and for the third term we conclude analogously

|Al-|B - B]

(1+27°% .]Al-27%2.indg - meg;
(142753 . mes - 273 indg - mes;
2753 indg - (14 27°%)%(meg © mes;)
27%%.indg - (14 27532 . meg..

|A-B— A-B|

IANIA TN

Putting the three bounds together completes the inductgmfer the case of a multiplica-
tion.

It remains to prove the inequality
27%%.inde - meg < 2720 inde @ meg © (14 27%?).
It follows from
inde - mes < (inde @ mes) - (1+27°% <inde ® meg O (1+ 275

and the fact that the multiplication by 2 incurs no rounding error. O

8.7.2 Alternative Filters
We discuss the filter originally (and still mostly) used iretkernel, static and dynamic
filters, special methods for determinants, and speciahzitdmetics.

The Filter Used Originally in the Kernel: In our original filter we computethdg and
mesg according to Table 8.2. In this table we also define a quaRty Pe is a power of
two with |E| < Pg, |E| < Pg, andPg < mes:. The boundB(E) is defined as

B =2""0indg ©® meg.
In order to see that this bound is correct one proves that
IE—E|<2°.inde- Pe and Pg < mes
and observes that
2753 indg - Pe =272 0indg ©® Pe < 272 @ indg © mes,

since 253 and Pg are powers of two and since floating point arithmetic is moniat

8.7 Floating Point Filters 41

The inequality
|IE—E|<2%.inde - Pe

is again shown by induction on the structureEnfThe base case is obvious. The induction
steps are as follows.

In the case of an addition we have
IA@B— (A+B)| = |A@B—(A+B)|+|A—Al+|B - B
275%(|A® B| +indaPa + inds Pg)
2753(PA @ Pg + (indA + indg) max(Pa, Pg))
2753(1 + (inda + indg)/2) - 2- max(Pa, Pg)),

|E — E|

IAIA I

A

where the last inequality follows from

Po® Pg < max(Pa, Pg) & maxPa, Pg)
= max(Pa, Pg) + max(Pa, Ps) = 2-maxPa, Pg).

In the case of multiplication we have

E—E| = [AOB—A-B|+|A-|B-B|+|B|-|A— A
< 2%(A©B|+|A||B-B|+|B||A- A))
< 27 58(Po®Pg+ Pa-indg - Pg + Pg -inda - Pa)
< 27°%1+inda+indg) - Pa- Ps.

The inequalityPe < meg is also shown by induction on the structuretof We leave
the induction step to the reader. For the basis of the indoatie observe thateelal <
2 - fl(a) = meg for an integen.

This concludes the proof that Table 8.2 defines a filter.

For the orientation predicate Table 8.2 gives an index ofcbaameasure of 8M, where
M is the measure according to Table 8.1. Tigus= 40- M. Table 8.1 give8 = 11- M,
which is significantly better.

Static Filters: Fortune and van Wyk [FYW96] invented the idea of a floatingpfilter.
They proposed a static filter in whidhis precomputed completely. Assume that it is known
apriori thatja] < 2 for all integer arguments of an expressién Thenmes < 2" for alll
argumentsa and we mayprecompute mesby replacingmesg by 2- for all argumentsa.
This yieldsB = 2753. 11. 2*-+3 with Table 8.1. The filter of Fortune and van Wyk is called
staticbecauseB is precomputed entirely. In contrast, the filter used in @itéonal kernel
precomputetde but computesnes on the fly. Such a filter may be callegmi-dynamic

Static filters are faster than semi-dynamic filters, but theyless precise and they are
less convenient to use. For example, they cannot be usedliatal on-line algorithm,
where no apriori bound on the size of the arguments is knowa.dé¢ided against static
filters because of their less convenient use.

42 The Geometry Kernels

E E Pe mes inde
a, integer fla) 2floglal] 2fl(@)] 1
a, float integer ~ fl(a) 2flogalf 2fl(@)] 0
A+B A®B 2maxPa, Ps) 2(mes®meg) 1+ (inda+indg)/2
A-B Ao B 2maxPa Pg) 2(mes®mes) 1+ (inda+indg)/2
A.-B Ao B PaPg mes O mes; 1+inda + indg

Table 8.2 The recursive definition aheg andinde in the original filter. Pe is a power of two
with |[E| < Pg, |E| < Pg, andPg < meg; itis only needed for the correctness proof of the
filter. We set 20901 — Q.

Dynamic Filters: Consider the expression
E=@+b)—a
whena andb are float integers and > b. The semi-dynamic filter of Section 8.7.1
assumes that the error in the subtraction may be as large as
2 %mesg ~ 27%%(2a + b).

However, the actual error is approximately

2—53 X E ~ 2—53 .b
which is much smaller.

Dynamic filters attempt to exploit this differency by estiing the round-off error more
carefully. They use the formulae

IA@B—(A+B) < |[A®@B—-(A+B)|+|A- A +|B—B|
< 2% A®B|+|A- A +|B-B|

and
IAB—A-Bl = [AOB—A-B+A-B—A-B+A-B—A-B|
< 2% AOB|+|A— Al-|B|+|A|B - B|

to recursively compute a bound on the error. More preciselie case of an addition the
errorerrg for the expressioft is computed as

erme = (2720 |E| @ erra @ errg) O (14 27°Y),

where the multiplication by % 275! accounts for the error in the computation of the error
bound. We leave it to the reader to derive the correspondaimgula for multiplication.
Dynamic filters are more costly but also more precise than-ggmamic filters. Observe

8.7 Floating Point Filters 43

that the computation oérrg in the case of an addition requires two additions and two
multiplications. The computation ohes requires only one addition. We concluded from
our experiments in [MN94b] that the additional cost is notnaated for the rational kernel.

We do use dynamic filters in the number tymal, see Section 4.4, since the cost of
exact computation is very high foeealsand hence a higher computation time for the filter
is justified.

Determinants: Many geometric predicates, e.g., the orientation and thphere predi-
cates, are naturally formulated as the sign of a determiifdna efficient computation of the
signs of determinants has therefore received specialtmttelCla92, ABDP97, BEPP97].
None of the methods is available in LEDA.

Specialized Arithmetics: Consider again the orientation predicate
sign((ax*bw-bx*aw)* (ay*xcw-cy*aw) - (ay*bw-by*aw)* (ax*xcw-cx*aw))

and assume that it is known that the absolute value of allraegds is less than'2 The
arguments are assumed to be integer. It is then easy to cerapupriori bound on the
maximal number of binary digits required for any of the imediate results. We have:
The integem requiresL bits;

An expression of the form - a requires 2 bits.

An expression of the form - a + a - arequires 2 + 1 bits.

An expression of the forma-a+a-a)- (a-a+a-a) requires 4 + 2 bits.

The orientation predicate requires at mokst-4 3 bits.

Given this knowledge one could try to optimize the arithmgte., instead of using a gen-
eral purpose package for the computation with arbitrargipien integers (such as the class
integen one could design integer arithmetic optimized for a patécbit length. This av-
enue is taken in [FYW96, She97].

8.7.3 Expression Compilers

The incorporation of the floating point filter into the ratarkernels was a tedious task;
it was done to a large extent by Ulrike Bartuschka. For ea€ekdipate she had to derive
manually the formulae foinde andmes. For example, the code for the orientation test
contains the following comment:

mes (E) = 2*(mes(aybw-byaw)*mes (axcw-cxaw) + mes(axbw-bxaw) *mes(aycw-cyaw))
= 2% (4*x(fabs(aybw)+fabs(byaw)) * (fabs(axcw)+fabs(cxaw)) +
4x(fabs (axbw)+fabs(bxaw)) * (fabs(aycw)+fabs(cyaw)))
8x((fabs(aybw)+fabs(byaw)) * (fabs(axcw)+fabs(cxaw)) +
(fabs (axbw)+fabs(bxaw)) * (fabs(aycw)+fabs(cyaw)))

ind(E) ((ind(aybw-byaw) + ind(axcw-cxaw) +0.5) +

(ind (axbw-bxaw) + ind(aycw-cyaw) +0.5) + 1) / 2

44 The Geometry Kernels

(4.5 +4.5+1) /2 = 5

= ind(E) * mes(E) * epsO
= 40 * ((fabs(aybw)+fabs(byaw))* (fabs(axcw)-fabs(cxaw)) +
(fabs(axbw)-fabs(bxaw)) * (fabs(aycw)-fabs(cyaw))) * epsO;

[0]
o)
0
—~
[x3]
~
|

Already Fortune and Wyk [FvW96] observed that the genenatibthe filters can be
automated. Stefan Funke [Fun97, BFS98] adopted the iddEIDA and generalized it to
a larger class of expressions and number types. His expressimpiler generates floating
point filters automatically from suitably decorated exgiens. For example, in order to
generate a filter for the orientation predicate one writes

int orientation(const rat_point& a, const rat_point& b,
const rat_point& c)
{ int res_sign;
BEGIN_PREDICATE
{
DECLARE_ATTRIBUTES integer_type FOR a.X() a.Y() a.W() b.X()
b.YO) b. WO c.XO c.Y(O) c.WO;
integer AX=a.X(); integer AY=a.Y(); integer AW=a.W();
integer BX=b.X(); integer BY=b.Y(); integer BW=b.W();
integer CX=c.X(); integer CY=c.Y(); integer CW=c.W();
integer D= (AX*BW-BX*AW) * (AY*CW-CY*AW) -
(AY*BW-BY*AW) * (AX*xCW-CX*AW);
res_sign=sign(D);
}
END_PREDICATE
return res_sign;

}
The expression compiler produces a (very lengthy) progritimecfollowing form.

int orientation(const rat_point& a, const rat_point& b,
const rat_point& c)
{ int res_sign;

{

/* a floating point evaluation of the predicate which assigns
one of -1, 0, +1, NO_IDEA to res_sign */

if (res_sign == NO_IDEA)
{ /* exact evaluation of predicate with result in res_sign */
}

}

return res_sign;

}
The expression compiler is available as an LEP.

8.7.4 Efficacy and Efficiency of Filters
We discuss the efficacy and the efficiency of floating poineffiit Efficacy refers to the
percentage of tests, for which the filter is able to deducssitpe of the test, and efficiency

8.7 Floating Point Filters 45

refers to the cost of the evaluation of the filter and the i@hship of this cost to the cost of
a computation with integers.

A floating point filter for an expressioE computes an approximatiof of E and a
boundB for the maximal difference between the approximation amdetkact value. The
following lemma is trivial but useful.

Lemma 41f E and E are integral and B< 1 then sigiiE) = sign(E).

Under what conditions can we claim thHat< 1 without actually computing it? Consider
the orientation predicate for points with integer homogersecoordinatesx, y, 1) with
IX], ly] < 2-. We assume thdt is small enough such that the coordinates are floating point
integers. The orientation predicate for poiatd, andc is given by the expression

E = (AX - BX) * (AY - CY) - (AY - BY) * (AX - CX)

and henceB < 8- 27°3. 22143 gccording to Theorem 1; the index of the expression is 7
when computed witld = 1. We rounded up to 8 to account for the fact that 1 4+ 2753,

We have 8 27°3. 22443 ~ 1iff 3 — 53+ 2L + 3 < 0iff L < 47/2. We conclude that
double precision floating point arithmetic is guaranteedit@ the correct result if thg-
andy-coordinates are at most2

What happens it is larger? The floating point computation is able to dedueesign
of E if |[E| > B. SinceE is twice the signed area (see Lemma 8.2.1) of the triangle wit
vertices(a, b, ¢), the floating point computation is able to deduce the comsiggt for any
triple of points which span a triangle whose area is at leagt8° . 22-+3/2. Devillers and
Preparata [DP96] have shown that for a random triple of gand forL going to infinity,
the probability that the area of the spanned triangle isast|® 2753 . 221+3/2 goes to one.
Thus for largel. and for triples of random points, the floating point compotatvill almost
always be able to deduce the signebaind exact computation will be rarely needed.

Observe that the result cited in the previous paragraphrdksperucially on the fact that
the points are chosen randomly. In an actual computati@mtaiion tests will not be per-
formed for random triples of points even if the input corsiztrandom points. It is there-
fore not clear what the result says about actual computation

The clasgat_point has a static member functigmint statisticswhich gives information
about the efficacy of its floating point filter. The call

rat_point::print_statistics();
prints a statistic of the following form:

compare: 167 / 44330 (0.38 %)
orientation: 71 / 48975 (0.14 %)
side of circle: 3194 / 22317 (14.31 %)

The statistic states for each of the functiamsnpare orientation andsideof_circle how
many times it was evaluated and how many times the filterdailed an exact computation
was necessary. In this particular execution, 22317 sidedédests were performed out of
which 3194 required exact computation. This amounts t81Lpercent.

46 The Geometry Kernels

Table 8.3 shows the results of a more substantial experirii@ettable was generated by
the program below. We first generate a LiStof n random points either on the unit circle or
in the unit square. We then construct a li¢tof points whose homogeneous coordinates are
d bit binary numbers for different values dfby truncating the Cartesian coordinateslto
bits; ford = 60 no truncation takes place (this is indicated by the infisign in Table 8.3.
We construct the Delaunay diagram for the pointe1n

(produce efficacy of filter tabjes
int n = 10000;
list<rat_point> LO;

for (int k = 0; k < 2; k++)
{ if (k == 0) random_points_on_unit_circle(n,LO);
else random_points_in_unit_square(n,LO);
for (int d = 8; d <=60; d +=d < 12 7 2 : 10)
{ list<rat_point> L1;
rat_point p;
I.write_table("\n");
if (d <=50)
{ double D = ldexp(1,d);
forall(p,L0) L1.append(rat_point(integer(p.xcoordD()*D),
integer (p.ycoordD()*D),1));
I.write_table("",d);

}
else
{ L1 =1L0;
I.write_table("$ \\infty $");
}

(reset counters to zeyo

GRAPH<rat_point,int> DT;
DELAUNAY_TRIANG(L1,DT);

{(write a line of the tablg

}
I.write_table(" \\hline");
}

For each experiment we generate one line in Table 8.3. Thsmapoint has static data

members that keep a count of the number of compare, orientatind side of circle tests
performed and also of the number of tests where the filtes.f8i&fore each experiment we
set the counters to zero. After each experiment we printeadfrthe table.

(reset counters to zeyes
rat_point::cmp_count = 0;
rat_point::exact_cmp_count = O;
rat_point::orient_count = O;
rat_point::exact_orient_count = O;
rat_point::soc_count = O;
rat_point::exact_soc_count = O;

8.7 Floating Point Filters 47

Compare Orientation Side of circle

d N number exact % number exact % number exact %

8 1883 157814 0 0.00 19909 0 0.00 7242 0 0.00
10 5298 187379 0 0.00 58263 0 0.00 20736 5743 27.70
12 8383 216679 0 0.00 89307 0 0.00 35931 24693 68.72
22 9999 230556 0 0.00 98899 0 0.00 46410 42454 91.48
32 9999 231656 0 0.00 90664 137 0.15 40003 39797 99.49
42 9999 231665 0 0.00 91205 152 0.17 40083 40083 100.00

00 9999 231665 125 0.05 44279 87 0.20 13082 13082 100.00

8 9267 230060 0 0.00 130431 0 0.00 64176 0 0.00
10 9953 236690 0 0.00 147814 0 0.00 77409 136 0.18
12 9996 236661 0 0.00 149233 0 0.00 78693 105 0.13
22 10000 235727 0 0.00 149057 0 0.00 78695 113 0.14
32 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15
42 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15
co 10000 235729 574 0.24 149059 0 0.00 78695 115 0.15

Table 8.3 Efficacy of floating point filter: The top part contains theuks for random points on
the unit circle and the lower part contains the results fodoem points in the unit square. In each
case we generated 10000 points. The first column shows thisiore (= number of binary
places) used for the homogeneous coordinates of the ptlietsecond column contains the
number of distinct points in the input. The other columnstaonthe number of tests, the
number of exact tests, and the percentage of exact testsmed for the compare, the
orientation, and the side of circle primitive.

Table 8.3 confirms the theoretical considerations from #ggrining of the section. For
each test there is a value @tbelow which the floating point computation is able to decide
all tests. For the orientation test this valuedas somewhere between 22 and 32 (we argued
above that the value is 42) and for the side of circle test the value is somewhere letge
and 10 (we ask the reader in the exercises to compute thevatae). Also, the percentage
of the tests, where the filter fails, is essentially an insiegfunction ofd.

The compare, orientation, and side of circle functions sé®rne tests of increasing
difficulty. This is easily explained. The compare functioecitles the sign of a linear
function of the Cartesian coordinates of two points, themtation function decides the
sign of a quadratic function of the Cartesian coordinatethide points, and the side of
circle function decides the sign of a polynomial of degregr o the Cartesian coordinates

48 The Geometry Kernels

of four points. The larger the degree of the polynomial oftést, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the urdtecare much more difficult
than the random points in the unit square, in particulantfferside of circle test. Again this
is easily explained.

For the side of circle test, four almost co-circular pointour exactly co-circular points
are the most difficult input, and for sufficiently largethe situation thatE| < B and
B > 1 arises frequently. Points on (or near) the unit circle eawsparticular difficulty for
the compare and the orientation function. Points on (or)reeaegment would prove to be
difficult for the orientation test.

For random points in the unit square the filter is highly difecfor all three tests; the
filter fails only for a very small percentage of the tests.

We turn to the question of how much a filter saves with resgeeirining time. Table 8.4
was produced by the following program.

(produce efficiency of filter tables
forall(p,L1) Lf.append(p.to_point());

GRAPH<rat_point,int> DT;
GRAPH<rat_point,int> DT_no_filter;
GRAPH< point,int> DT_FK;

float T = used_time();
DELAUNAY_TRIANG (Lf,DT_FK) ;
I.write_table(" & ", used_time(T));

(efficiency table: check correctness of float computation

used_time(T); // to set the timer
DELAUNAY_TRIANG (L1,DT);
I.write_table(" & ", used_time(T));

rat_point::use_filter = O;
DELAUNAY_TRIANG(L1,DT_no_filter);
I.write_table(" & ", used_time(T));
rat_point::use_filter = 1;

We generated the same llst of rat pointsas above. We then converted eaahpoint to

a point to obtain a listLf of points Finally, we computed the Delaunay triangulation in
three different ways: first with the floating point kernelethwith the rational kernel, and
finally with the rational kernel without its floating pointtir. The clasgat pointhas a static
variableusefilter which controls the use of the floating point filter.

Table 8.4 has to be interpreted with care. Let us first insgpecindividual columns.

The running time with the floating point kernel does not imm@with the precision of the
input. Observe, that fat < 22 and points on the unit circle, the input contains a sigaific
fraction of multiple points (see the second column of TabR &nd hence the first three
lines really refer to simpler problem instances. Bor 22 and points on the unit circle and
for d > 10 and points in the unit square the input contains almost nkigte points and
the running times are independent of the precision. The ctaipn with the floating point

8.7 Floating Point Filters 49

d Floatkernel Rational kernel RK without filter

8 0.73 1.12 4.35
10 1.3 2.43 7.8
12 1.85 5.09 11.18
22 2.17 7.93 14.4
32 2.02 7.79 13.29
42 2.01 8.32 15.46
00 2F 5.09 9.19

8 2.58 3.59 16.33
10 2.8 3.98 18.36
12 2.83 4.04 18.63
22 2.82 4.02 20.51
32 2.86 3.96 20.77
42 2.83 4.01 26.02
00 2.83 3.99 33.2

Table 8.4 Efficiency of the floating point filter: The top part contaime tresults for random
points on the unit circle and the lower part contains thelte$or random points in the unit
square. The first column shows the precision (= number offpiplaces) used for the Cartesian
coordinates of the points. The other columns show the rgntiine with the floating point filter,
with the rational kernel with the floating point filter, andtivthe rational kernel without its
floating point filter. A star in the second column indicatest tthe computation with the floating
point kernel produced an incorrect result. geometry kesingining time

kernel is not guaranteed to give the correct result. In faptoduced an incorrect result in
one of the experiments (indicated by)aWe come back to this point below.

The running time with the rational kernel and no filter in@essharply as a function of
the precision. This is due to the fact that larger precisi@ans larger integers and hence
larger computation time for the integer arithmetic. We see exception in the table. For
points on the unit circle the computation on the exact pamfaster than the computation
with the rounded points. The explanation can be found ind&. The number of tests
performed is much smaller for exact inputs than for roundedis. Observe, that for points
that lie exactly on a circle any triangulation is Delaunay.

The running time for the rational kernel (with the filter) irases only slightly for the
second set of inputs and increases more pronouncedly f@oihés on the unit circle. This
is to be expected because the filter fails more often for tlretpon the unit circle.

50 The Geometry Kernels

Let us next compare columns.

The comparison between the last two columns shows the eifigigained by the floating
point filter. The gains are impressive, in particular, fae #asier set of inputs. For random
points in the unit square, the computation without the filkebetween five and almost
ten times slower. For random points on a unit circle the gailess impressive, but still
substantial. The running time without the filter is between tind five times higher than
with the filter.

The comparison between the second and the third column skbatswe might gain by
further improving our filter technology. For our easier skinputs the computation with
the rational kernel is about 50% slower than the computatitimthe floating point kernel.
This increase in running time stems from the computatioheftrror bound in the filter.
For our harder set of inputs the difference between themakicernel and the floating point
kernel is more pronounced. This is to be expected since tlmmeadh kernel resorts to exact
computation more frequently for the harder inputs. The iitmapoint kernel produced the
incorrect result in one of the experiments.

We used the following piece of code to check the correctnéfiseocomputation with
the floating point kernel. We make a copy_FK1 of the graph computed with the floating
point kernel, in which everpointis converted to aat point This conversion is without
loss of precision. We then check whether the copy is a Delatrisngulation; the check is
discussed in Section 9.4.3. The check is executed with tiened kernel and is therefore
exact.

(efficiency table: check correctness of float computation

GRAPH<rat_point,int> DT_FK1;

node v; edge e;

node_array<node> copy_of (DT_FK) ;

forall_nodes(v,DT_FK) copy_of[v] = DT_FK1.new_node(rat_point (DT_FK[v]));

forall_nodes(v,DT_FK)
forall_adj_edges(e,v)
DT_FK1.new_edge (copy_of [v],copy_of [DT_FK.target(e)],DT_FK[el);

DT_FK1.make_map();
if (!'Is_Delaunay_Triangulation(DT_FK1,NEAREST)) I.write_table("$ *$");

We were very surprised when we first saw Table 8.4. We expeletedhe floating point
computation would fail more often, not only when the full 5@sbare used to represent
Cartesian coordinates of points. After all, the rationahle¢ resorts to integer arithmetic
most of the time already for much smaller coordinate lengthtae difficult set of inputs.

We generated Table 8.5 to gain more insight gives more detailed information fat
ranging from 43 to 52. For our difficult inputs the floating pptomputation fails whed
9 While writing this section, our work was very much guided bperiments. We had a theory of what floating

point filters can do. Based on this theory we had certain eéafiens about the behavior of filters. We made

experiments to confirm our intuition. In some cases the éxyants contradicted our intuition and we had to
revise the theory.

8.7 Floating Point Filters 51

d 43 44 45 46 47 48 49 50 51 52

df ¢ ¢ ¢ F F F F F F F

essy C C C C C€C € € C cC cC

Table 8.5 Correctness of floating point computation: A detailed viewd ranging from 43 to
52. The second row corresponds to points on the unit ciraelznlast row corresponds to
points in the unit square. A “C” indicates that the computagproduced the correct result and a
“F” indicates that a incorrect result was produced.

is 46 or larger and for our easy inputs it never fails. Bot 45 and both sets of inputs it
produces the correct result. Our theoretical consideratijive a guarantee only fdr< 10.

In the remainder of this section we try to explain this dipenrecy. We find the explanation
interesting® but do not know at present whether it has any consequencésefalesign of
floating point filters.

Let D = 29 and consider four points, b, ¢, andd on the unit circlé:. We use points

a, b, ¢/, andd’ with integer Cartesian coordinatga,D |, [ayD], The side of circle
function is the sign of the determinant

1 1 1 1

ay by Cx dy

ay by Cy dy

a?+aZ bZ+b? c2+c2 d2+d?
as will be shown in Section 9.9. The value of this determinsra homogeneous fourth
degree polynomiap(ax, ay, ...). We need to determine the sign pfa;, aj, ...). Letus

relatep(ay, ay, ...) andp(a,, a(y o).
We have

a)/(= I_aXDJ = a.XD +8ax,

where—1 < §,, < 0, and analogous equalities hold for the other coordindtiess

/

p(ax,a;,,...) = p(axD +8a,ayD 484, ...)
= p@xD,ayD,...) + q3(aXD,8ax,ayD,8ay,...)
+ 02(ax D, 8a,, 8yD, 8ay, ...) + Qu(@xD, 35, yD, day, - -)
+ qo(aXD,Sax,ayD,(Say,...),
whereq; has degreein theasD, a,D, ... and degree 4 i in theda,, da, Since the
four pointsa, b, ¢, andd are co-circular, we have
p(axD, ayD,...) = D*p(ax, ay, ...) = 0.

10 We all know from our physics classes that the important érpEnts are the ones that require a new explanation.
11 |1 the final round of proof-reading we noticed that we dseith two meanings. In the sequelis a point, except
in the final sentence of the section.

52 The Geometry Kernels

Up to this point our argumentation was rigorous. From now ergive only plausibility
arguments. Since the valuagD may be as large a3 and since the valuek, are smaller
than one, the sign ab(a;, aj, .. .) is likely to be determined by the sign gf. Sinceqs is
a third degree polynomial in theg D we might expect its value to be abolit D3 for some
constantf. The constanf is smaller than one but not much smaller. Expansion of the sid
of circle determinant shows that the coefficienggfin gz is equal to

1 1 1
(b2 +b2) - D? (cZ+c2)-D? (dZ+d2) - D?

where we used the fact thaf + p§ = 1 for a pointp on the unit circle. We conclude that
f has the same order as tlgecoordinate of a random point on the unit circle and hence
f~1/2.

We evaluatep(a;, a;, . ..) with floating point arithmetic. By Theorem 1, the maximal
error in the computation op is g - D* - 2753 for some constaryg; the actual error will be
less. The argument in the proof of Lemma 5 shows th&t28. Thus we might expect that
the floating point evaluation gf(a,, a,, .. .) gives the correct sign as long@sD*- 275 <
f.D3%ord < 53—logg+log f ~ 53— 8— 1= 44. This agrees quite well with Table 8.5.

8.7.5 Conclusion
We discussed the floating point filter in the rational kerivék have seen that floating point
filters give an exact implementation of geometric primisia a reasonable cost.

Exercises for 8.7

1 The side of circle predicate determines for a four tupleb, ¢, d) of points, whethed
lies to the left, on, or to the right of the circle defined by thist three points. Derive a
formula for the side of circle predicate for points given bgrtésian coordinates and for
points given by homogeneous coordinates.

2 (Continuation) Derive a filter for both versions of the safecircle predicate according
to Tables 8.1 and 8.2. Compare your results with the impleatiem of the side of circle
predicate forat points

3 Dynamic Filter: Derive a formula to compugerg from E, erra, anderrg for E = A-B.

4 In (produce efficacy of filter tabjeve generated points by truncating the Cartesian co-
ordinates tdD bits, i.e., we generatadt pointsby

rat_point (integer (p.xcoordD () *D) ,integer (p.ycoordD()*D),1).
What will change if we generate the points by
rat_point(integer (p.xcoordD()*D) ,integer (p.ycoordD()*D),D).

instead? Predict and then experiment.
5 Produce tables similar to Tables 8.3 and 8.4 for pointslidnan a segment. Predict the
outcome of the experiment before making it.

8.8 Safe Use of the Floating Point Kernel 53

8.8 Safe Use of the Floating Point Kernel

The discussion of floating point filters in the previous satiaves the way for a safe use
of the floating point kernel. The following statement is i@hbut nevertheless important.
It is safe to use the floating point kernel if it is guaranteedjive the correct result.
Lemma 4 gives a sufficient condition for the correctness abatithg point computation.
If all arguments of an expression are integers, if the exgioesis a polynomial, i.e., uses
only operations addition, subtraction, and multiplicatiand if B < 1 then the evaluation
with floating point arithmetic gives the correct sign of thgression. We have seen in
Section 8.7.4 that the conditioB < 1 is guaranteed if the arguments of the expression
are sufficiently small; of course, the meaning of sufficigsthall depends on the test. The
following lemma gives information.

Lemma 5 Assume that all points have integer Cartesian coordinatess® absolute value
is less thar-. Then the floating point kernel correctly evaluates the camgunction if
L < 50, correctly evaluates the orientation function if£ 24, and correctly evaluates the
side of circle function if L< 11

Proof We give the proof for the side of circle function. Latb, c andd be points. We use
axandayto denote the Cartesian coordinates@nd similarly for the other points.
The side of circle function is the sign of the determinant

1 1 1 1
ax bx cX dx
y by cy dy

a
ad+ay bl +by olf+cy d+dy

as will be shown in Section 9.9.

If a is equal to the origin the determinant above reduces to«e8B3leterminant. If is
not equal to the origin, we may shétinto the origin without changing the side of circle
function. Shiftinga into the origin replaces any poimtby the pointO + (p — a).

This leads to the following program to compute the side dfleifunction. In this pro-
gram we indicate the bit length of all intermediate resuits@mments.

int side_of circle(const point& a, const point& b, const point& c,

const point& d)

{ // comments indicate bit lengths of values if coordinates have
// at most L bits.

double ax = a.xcoord(); // L bits

double ay = a.ycoord();

double bx = b.xcoord() - ax; // L + 1 bits
double by = b.ycoord() - ay;

double bw = bx*bx + by*by; // 2L + 3 bits
double cx = c.xcoord() - ax; // L + 1 bits
double cy = c.ycoord() - ay;

double cw = cx*cx + cy*cy; // 2L + 3 bits

54 The Geometry Kernels

double D1 = cy*bw - by*cw; // 2L + 3 + L + 1 + 1 = 3L + 5 bits
double D2 = bx*cw - cx*bw; // 3L + 5 bits
double D3 = byxcx - bx*cy; // 2L + 3
double dx = d.xcoord() - ax; // L + 1 bits
double dy = d.ycoord() - ay;
double D = Dixdx + D2xdy + D3*(dx*dx + dyxdy);
// 3L +5 + L+ 1+ 2=4L + 8 bits

if (D !'=0)

return (D > 0) 2 1 : -1;
else

return O;

}

The comments show that the maximal number of bits requiredhi® determinanD is
4L + 8. ThusD can be represented provided that-# 8 < 53; observe that the mantissa of

a double precision floating point number consists of 53gsmy, ..., sy, of which the
bit mg is not stored, since it is always 1 (except if the number is beunderflow occurred).
O

The computation of, for example, Delaunay diagrams usestbalcompare, orientation,
and side of circle functions applied to input points and Ieeiscsafe as long as all input
points have integer Cartesian coordinates whose absallite is less than'2 = 2048.

If the coordinates of the inputs come from a larger ranges frequently possible to
round the input coordinates to a smaller precision withdfgciing the meaning of the
computation, for example, if the coordinates come from asj@& measurement whose
precision is limited.

The following functiontruncateis useful in this situation. It takes a lis0 of points and
an integemprecand returns a list. of points. If all points inLO are equal to the origin,
is equal toLO. So assume otherwise and Mt be the smallest power of two larger than
the absolute value of all coordinates of all pointd. i) and letP = 2P'*¢, For each point
p = (X, y) the point(|(x/M) - P| - (M/P), | (y/M) - P] - (M/P)) is added td_. Observe
thatx/M (and similarlyy/M) is less than 1 and hen¢g/M) - P is less than 2¢¢. The
multiplication by M /P (which is a power of two) moves the binary point for all poiirts
the same way. Thus the theorem above applies to the modifiatsfwith L = preg.

The implementation is simple. We first determine the maxinalsolute value of any
coordinate. If it is zero we are done. Otherwise, weMeto the smallest power of two
larger than any absolute value. This is easily done usinfuthetionsfrexpandldexpfrom
the math-library. Recall thatexp(M, xexp assigns teexpthe exponent of the smallest
power of two larger thaM and thatdexp(1, k) returns 2.

(_truncate.¢+=

list<point> truncate(const list<point>& LO, int prec)
{ double M = 0;
point p;
forall(p,L0)
M = leda_max(M,leda_max(fabs(p.xcoord()),fabs(p.ycoord())));

8.9 A Glimpse at the Higher-Dimensional Kernel 55

if (M == 0) return LO;

int exp;

frexp (M, &exp) ; // 2" (exp - 1) <= max < 2"exp

M = 1dexp(1l,exp); // round max to next power of two
double C = ldexp(1,prec - exp); // P/M

double C_inv = ldexp(1l,exp - prec); // M/P

list<point> L;

forall(p,LO) L.append(point(floor(p.xcoord() * C)*C_inv,
floor(p.ycoord() * C)*C_inv));

return L;

There is also a version of truncate which operates on a listtqfoints It simply converts
everyratpoint pto a point by callingp.ta_point(), then applies the function above to the
resulting list of points, and finally converts evargint gin the resulting list to aat point
by calling the constructaiat point(q).

8.9 A Glimpse at the Higher-Dimensional Kernel

The higher-dimensional kernel provides points, vectargctions, hyperplanes, segments,
lines, affine transformations, and operations connectiegd types im-dimensional Eu-
clidean space for arbitrary finite Points have rational coordinates, hyperplanes have ratio
nal coefficients, and analogous statements hold for the ttpes. All geometric primitives
are exact, since they are implemented using rational agtitmThe computational basis
for the kernel is provided by the classes integer, integetoreand integer matrix discussed
in Chapter 4. We refer the reader to [MMNB8] for details. The higher-dimensional kernel
is available as an LEP and was developed as part of the CGAkqgiro

8.10 History

The geometric part of LEDA evolved slowly and not withoutmpaiVe started with plane

geometry in 1991. We introduced classes point, line, antcheajand some algorithms op-
erating on them, e.g., line segment intersection, Vororagrdm construction, and convex
hull construction. The programs provided in 1991 were nbusb, on some inputs they
failed by either delivering a wrong result or by crashingeTion-robustness of our original
implementations was mainly due to three reasons:

e The programs were only designed to handle so-called noardggte inputs, e.g., the
line segment intersection program assumed that no two sgmgments overlapped and
the convex hull program assumed that the first three points net collinear.

56 The Geometry Kernels

e Floating point arithmetic was used as the underlying arétien We have seen in
Section 8.6 that floating point arithmetic can lead to bizésehavior of geometric
objects.

e We had no checkers for geometric objects and hence weredrritour ability to test
our algorithms.

Based on the bad experiences made by us and many others, w#harslaid the theoret-
ical foundations for correct and efficient implementatiohgeometric algorithms [FVW96,
For96, CDR92, Yap93, Cla92, MN94b, BMS94a, BMS94b, BFSRM$97, MNS 96,
OLPT97, BR96, YD95, Sch, BEPP97].

Starting in 1994 we reimplemented the geometric classesigadithms and simultane-
ously extended them considerably. We introduced the raticgrnel with its built-in float-
ing point filter, we redesigned all geometric algorithms &neéd them from the assumption
of non-degenerate inputs, and we added many new algorithchsheckers.

8.11 LEDA and CGAL

In 1997 the geometry effort of LEDA became part of project Q@A Constructing a Ge-
ometry Algorithms Library), a research project carriedlogETH Zirich, Freie Universitat
Berlin, INRIA Sophia Antipolis, Martin-Luther Universit Halle-Wittenberg, Max-Planck-
Institut fur Informatik and Universitat des Saarland®ESC Linz, Tel-Aviv University, and
Universiteit Utrecht, and funded by the European Union. ptaect was coordinated by
Mark Overmars from Utrecht and ran for twenty-four monthheSuccessor project is
called GALIA and will be coordinated by the Max-Planck-litust.

One of the goals of the projects is to build a comprehenshmaty for computational
geometry called CGAL (Computational Geometry Algorithmibriary). CGAL [CGA]
goes much beyond LEDA geometry. The distinctive featuréS@AL are:

e A geometry kernel [FGK96] that can be instantiated with any number type. In LEDA
we only have a floating point kernel and a rational kernel.dtig be a non-trivial
task to build a kernel based on the number tygad. In CGAL this is easily possible.

e Geometric algorithms that are decoupled from the geometnyek and can be used
with any geometry kernel. Observe that LEDA's geometriodthms are tied to the
LEDA kernels and also to LEDA's graphs and data structur€sACachieves the new
flexibility by the use of so-calledeneric programmingin this paradigm the kernel
and the data structures are specified as template arguniemyg geometric algorithm.
The algorithm can then be instantiated with different keriaed data structures.

e Alarge variety of geometric data structures and algoritinhigh will go beyond what
is offered by LEDA.

8.11 LEDA and CGAL 57

e Anopen architecture that makes it easy to import modulews fsther libraries.

The development of CGAL will not make LEDA geometry obsoletde systems can

be used side by side and both systems offer functionalitghwttie other system does not
have.

Bibliography

[ABDP97] F. Avnaim, J.-D. Boissonnat, pages 702-709, 1997.
O. Deuvillers, and F.P. Preparata. Evaluating [Bur96] Chr. Burnikel.Exact Computation of
signs of determinants with floating point Voronoi Diagrams and Line Segment
arithmetic. Algorithmica 17(2):111-132, 1997. Intersections PhD thesis, Max-Planck-Insitut
[BEPP97] Hervé Bronnimann, loannis Emiris, fur Informatik, Saarbriicken, April 1996.
Victor Pan, and Sylvain Pion. Computing exadiCDR92] J. Canny, B. Donald, and G. Ressler. A
geometric predicates using modular arithmetic rational rotation method for robust geometric
with single precision. IfProceedings of the algorithms. In ACM-SIGACT
Symp. on Computational Geometpages ACM-SIGGRAPH, editorProceedings of the
174-182, 1997. 8th Annual Symposium on Computational
[BFS98] C. Burnikel, S. Funke, and M. Seel. Exact Geometry (SCG '92pages 251-260, Berlin,
arithmetic using cascaded computationPhoc. FRG, June 1992. ACM Press.
of the ACM Symp. on Computational GeometffCGA] CGAL (computational geometry algorithms
1998. library). http://www.cs.ruu.nl/CGAL.
[BMS94a] Ch. Burnikel, K. Mehlhorn, and [Cla92] K. L. Clarkson. Safe and effective
S. Schirra. On degeneracy in geometric determinant evaluation. 1B1st IEEE FOCS
computations. IiProc. SODA 94pages 16-23, pages 387-395, 1992.

1994. [DP96] O. Devillers and F. Preparata. A
[BMS94b] Ch. Burnikel, K. Mehlhorn, and St. probabilistic analysis of the power of arithmetic
Schirra. How to compute the Voronoi diagram filters. Technical Report CS-96-27, Brown
of line segments: Theoretical and experimental University - Department of Computer Science,

results. INLNCS volume 855, pages 227-239. September 1996.

Springer-Verlag Berlin/New York, 1994. [FGK*96] A. Fabri, G.-J. Giezeman, L. Kettner,
Proceedings of ESA'94. S. Schirra, and S. Schonherr. The CGAL
[BR96] Raja P. K. Banerjee and Jarek R. Rossignac. Kernel: A basis for geometric computation. In

Topologically exact evaluation of polyhedra Workshop on Applied Computational Geometry

defined in CSG with loose primitive€omputer (WACG96) LNCS, 1996.

Graphics Forum15(4):205-217, 1996. ISSN [FM91] S. Fortune and V. Milenkovic. Numerical

0167-7055. stability of algorithms for line arrangements. In
[BRMS97] Ch. Burnikel, R.Fleischer, K. Mehlhorn, = ACM-SIGACT ACM-SIGGRAPH, editor,

and S. Schirra. A strong and easily computable Proceedings of the 7th Annual Symposium on

separation bound for arithmetic expressions
involving square roots(ps). IRroc. SODA 97

58

Computational Geometry (SCG '9ages
334-341, North Conway, NH, USA, June 1991.

Bibliography

ACM Press.

[For96] Fortune. Robustness issues in geometric
algorithms. INWACG: 1st Workshop on Applied

59

Annual Symposium on Computational Geometry
(SCG '89) pages 197-207, Saarbricken, FRG,
June 1989. ACM Press.

Computational Geometry: Towards GeometridMil89b] Victor Milenkovic. Double precision

Engineering, WACGLNCS, 1996.

[Fun97] S. Funke. Exact arithmetic using cascaded

computation. Master’s thesis,
Max-Planck-Insitut fur Informatik,
Saarbriicken, April 1997.

[FYW96] S. Fortune and C. van Wyk. Static

geometry: A general technique for calculating
line and segment intersections using rounded
arithmetic. In30th Annual Symposium on
Foundations of Computer Sciengmges
500-505, Research Triangle Park, North
Carolina, 30 October—1 November 1989. IEEE.

analysis yields efficient exact integer arithmetifMMN 98] K. Mehlhorn, Miller, S. Naher,

for computational geometnACM Trans.
Graph, 15:223-248, 1996.

[Gol90] David Goldberg. What every computer
scientist should know about floating-point
arithmetic. ACM Computing Surveys
23(1):5-48, March 1990.

[Gol91] David Goldberg. Corrigendum: “What
every computer scientist should know about
floating-point arithmetic” ACM Computing
Surveys23(3):413-413, September 1991.

[GSS89] L. Guibas, D. Salesin, and J. Stolfi.
Epsilon geometry: building robust algorithms

S. Schirra, M. Seel, C. Uhrig, and J. Ziegler. A
computational basis for higher-dimensional
computational geometry and its applications.
Computational Geometry: Theory and
Applications 10:289-303, 1998.
http://www.mpi-sb.mpg.de/"seel.

[MN94a] K. Mehlhorn and S. Naher.

Implementation of a sweep line algorithm for
the straight line segment intersection problem.
Technical Report MPI-1-94-160,
Max-Planck-Institut fir
Informatik,Saarbriicken, 1994.

from imprecise computations. Proceedings of[MN94b] K. Mehlhorn and S. Naher. The

the fifth annual Symposium on Computational
Geometry: Saarbrucken, West Germany, June

5-7, 1989 pages 208-217, New York, NY
10036, USA, 1989. ACM Press.

implementation of geometric algorithms. In

13th World Computer Congress IFIP94

volume 1, pages 223-231. Elsevier Science B.V.
North-Holland, Amsterdam, 1994.

[GSS93] Leonidas J. Guibas, David Salesin, and [MNST96] K. Mehlhorn, S. Naher, T. Schilz,

Jorge Stolfi. Constructing strongly convex
approximate hulls with inaccurate primitives.
Algorithmica 9:534-560, 1993.

[IEE87] IEEE standard 754-1985 for binary
floating-point arithmetic, 1987.

[KLN91] Michael Karasick, Derek Lieber, and
Lee R. Nackman. Efficient Delaunay
Triangulation Using Rational ArithmeticACM

Transactions on Graphi¢40(1):71-91, January

1991.
[LM90] Z.Liand V. Milenkovic. Constructing

S. Schirra, M. Seel, R. Seidel, and Ch. Uhrig.
Checking Geometric Programs or Verification
of Geometric Structures. IRroc. of the 12th
Annual Symposium on Computational
Geometrypages 159-165, 1996.

[OLPT97] O.Deuvillers, G. Liotta, F.P. Preparata,

and R. Tamassia. Checking the convexity of
polytopes and the planarity of subdivisions.
Technical report, Center for Geometric
Computing, Department of Computer Science,
Brown University, 1997.

strongly convex hulls using exact or rounded [Sch] S. Schirra. Robustness and precision issues in

arithmetic. In ACM-SIGACT
ACM-SIGGRAPH, editorProceedings of the
6th Annual Symposium on Computational

CA, June 1990. ACM Press.

[Mil88] V. J. Milenkovic. Verifiable
Implementations of Geometric Algorithms
Using Finite Precision ArithmeticPhD thesis,
Carnegie Mellon University, July 1988.

[Mil89a] V. Milenkovic. Calculating approximate

curve arrangements using rounded arithmetic.
In Kurt Mehlhorn, editorProceedings of the 5th

geometric computation. to appear, prelimiary
version avaiable as MPI report.

[She97] J.R. Shewchuk. Adaptive precision
Geometry (SCG '90)pages 235243, Berkeley,

flaoting-point arithmetic and fast robust
geometric predicate®iscrete &
Computational Geometry18:305-363, 1997.

[Yap93] C.K. Yap. Towards Exact Geometric

Computation. INCCCG5 pages 405-419, 1993.

[YD95] C.K.Yapand T. Dube. The Exact

Computation Paradigm. I8omputing in
Euclidean Geometry IMWorld Scientific Press,
1995.

Index

affine transformations, 22-25
angle, 21
area
of a simplex, 18
of atriangle, 14
arithmetic demand of geometric computations, 53

bounded region wrt. geometric object, 19
braided lines, 31

Cartesian coordinates, 4
CGAL, 56
circle, 6
side of, 19
collinear, 14
compareby_angle 21
correctness
exact geometric computations, 3
rational geometry kernel, 3
safe use of floating point kernel, 53

determinant, fast evaluation, 43
dictionaries for geometric objects, 9
distance, 20

efficiency
of geometric computing, 34
equality
of geometric objects, 7
errors
braided lines, 31
convex hull with floating point arithmetic, 30
floating point arithmetic and geometry, 30-33, 50
exact geometric computations, 3
expression compiler, 43

filter, seefloating point filter
floating point filter, 34-52
definition and correctness, 34—-40

determinant, 43

dynamic version, 42

efficacy and efficiency, 44-52
expression compiler, 43
orientation predicate, 35
original version, 40
specialized arithmetics, 43
static version, 41

floating point integers, 37
floating point kernelseegeometry kernels

generic programming, 56
geometric computation

arithmetic demand, 53
efficiency, 34

geometric objectsee als@eometry kernels

60

angle, 21

arithmetic demand, 53
associating information, 9
basics, 4-13

bounded region, 19
Cartesian coordinates, 4
comparing distances, 21
conversion between kernels, 9
distance, 20

equality, 7

generators, 25-27

generic names, 27

handle types, 7
homogeneous coordinates, 4
identity, 7

immutability, 10

input and output, 10
intersections, 22

kernel independance, 27
length, 20

mouse input, 11

negative side of geometric object, 18
on-region, 19

Index

positive side, 18
precision of geometric representation, 54
representation, 8
side of, 18
truncation of precision, 54
unbounded region, 19
window, 10
geometric primitives, 14-22
comparing distances, 21
intersections, 22
length and distance, 20-21
orientation, 14-18
sidedness, 18-20
geometric transformations, 22—-25
geometry algorithms
angle order, 21
convex hull with floating point arithmetic, 30
Delaunay diagram, 46
geometry kernelssee als@eometric objects, 2-57
basic geometric objects, 4-13
conversion between kernels, 9
danger of floating point kernel, 30—33
floating point filter,seefloating point filter, 34
floating point kernel, 2
geometric primitives, 14-22
higher-dimensional, 55
kernel independance, 27-30
rational kernel, 2
efficiency,seefloating point filter
safe use of floating point kernel, 53-55

handle type

use in geometry, 7
higher-dimensional geometry, 55
homogeneous coordinates, 4

identity

of geometric objects, 7
immutability of geometric objects, 10
INT_TYPE, 4
intersections of geometric objects, 22

kernel independance, 27

labels of geometric objects, 9
leftturn, 14
length, 7, 20
line, seegeometry objects, 6
linear order

for points, 8

machine precision, 37
map(data type)
for geometric objects, 9

n_gon 27
negative orientation, 14
negative side, 18

orientation
determinant, 15
in higher dimensions, 16
in space, 17
in the plane, 14
orientation 14

point, seegeometry objects
Cartesian coordinates, 4
construction, 5
conversion between kernels, 9
equality, 7
homogeneous coordinates, 4
identity, 7
immutability, 10
input and output, 10
linear order, 8
orientation, 14
pointrep, 8
print_statistics 45
random points, 25
representation, 8
truncation of precision, 10
w, 4

pointon.circle, 25
polygon
generators, 27
positive orientation, 14
positive side of geometric object, 18
pre-compilation, 30

precision of geometric representation, 54

print_statistics 45

randompointin_disc 26
randompointin_square 25
randompointin_unit.square 26
randompoint.near.circle, 26
randompoint.on_circle, 26
rat.circle, seecircle

ratline, seeline

rat.point, seepoint

ratray, seeray

rat segmentseesegment
RAT_TYPE, 4

rat vector,seevector

rational geometry kerneteegeometry kernels

ray, seegeometry objects, 6
drawing aray, 12

reflections, 23

reg-n_gon, 27

region.of, 19

rightturn, 14

rotations, 23

running time experiments
floating point filter, 49

safe use of floating point kernel, 53
scalar product, 7
segmentseegeometry objects, 5
sideof, 18

side.of_circle, 53

sidedness, 18-20

sign of an expression, 34

signed area of a triangle, 14
simplex, 18

transformations (geometric), 22—-25

61

62 Index

translations, 23 window
truncate 54 drawing a geometric object, 10
unbounded region wrt. geometric object, 19 drawing a ray, 12
, 10
vector, 6 >
verzopfte Geraden, 31 <, 10

volume of a simplex, 18 mouse input of geometric objects, 11

