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The Geometry Kernels

A geometry kernel offers basic geometric objects, such as points, lines, segments, rays,
planes, circles, . . . , and geometric primitives operating on these objects, e.g, the computa-
tion of the area of the triangle defined by three points and thecomputation of the intersection
of two lines.

LEDA offers geometric kernels for plane geometry, for three-dimensional geometry, and
for geometry in higher dimensional space. We discuss the kernels for two- and three-
dimensional geometry in the first eight sections. The kernelfor higher dimensional ge-
ometry will be discussed in Section 8.9.

The two- and three-dimensional kernels come in two kinds: the rational kernel and the
floating point kernel. Write one of

#in
lude <LEDA/rat kernel.h>

#in
lude <LEDA/float kernel.h>

#in
lude <LEDA/d3 rat kernel.h>

#in
lude <LEDA/d3 float kernel.h>

to select a kernel. The kernels for two-dimensional geometry provide points, lines, seg-
ments, rays, vectors, circles, polygons, generalized polygons, and affine transformations.
We use the type namespoint, line, segment, ray, vector, circle, polygon, genpolygon,
and transform for the corresponding classes of the floating point kernel and the names
rat point, rat line, rat segment, rat ray, rat vector, rat circle, rat polygon, rat genpolygon,
andrat transformfor the corresponding classes of the rational kernel. If thedistinction be-
tween rational and floating point kernel is immaterial, we use capital letters: POINT, LINE,
SEGMENT, . . . . The three-dimensional kernels provide linesand planes.

The header files above simply collect the header files of all relevant classes into one. For
example,

2



The Geometry Kernels 3

〈rat kernel.h〉�

#in
lude <LEDA/rational.h>

#in
lude <LEDA/rat_point.h>

#in
lude <LEDA/random_rat_point.h>

#in
lude <LEDA/rat_segment.h>

#in
lude <LEDA/rat_ray.h>

#in
lude <LEDA/rat_line.h>

#in
lude <LEDA/rat_
ir
le.h>

#in
lude <LEDA/rat_ve
tor.h>

#in
lude <LEDA/rat_polygon.h>

#in
lude <LEDA/rat_gen_polygon.h>

It is important to understand the difference between the rational and the floating point
kernel.

In the rational kernel the Cartesian coordinates of points are rational numbers (in the
sense of mathematics) and the geometric primitives are exact, i.e., always give the correct
result.

In the floating point kernel the Cartesian coordinates of points are double precision float-
ing point numbers and the geometric primitives are approximate, i.e, they usually give the
correct result but there is no guarantee.The use of the floating point kernel is therefore not
without risk.

Why do we have the floating point kernel at all? There are several reasons: (1) the outside
world, e.g., the graphics systems used to visualize the results of geometric computations,
wants floating point numbers, (2) we started with the floatingpoint kernel, and (3) floating
point computation is faster than computation with rationalnumbers. The last sentence re-
quires further explanation. First, floating point computation is unreliable and hence the cost
of efficiency is a reliability problem. The dangers of floating point arithmetic in geometric
computations are discussed in Section 8.6. Second, the overhead of exact computation is
surprisingly small due to our extensive use of so-called floating point filters. Our experi-
ments show that the cost of exact arithmetic is never more than a factor of three in running
time and usually much smaller. The efficient realization of exact geometric computation
and floating point filters are discussed in Section 8.7.

In our own work we do program development exclusively with the rational kernel. Only
when a program is stable, we might consider switching to the floating point kernel. We
switch only if the use of the rational kernel does not give thedesired performance. A switch
to the floating point kernel should always be accompanied by acareful analysis of its limits,
see Section 8.8.

This chapter is organized as follows: the first two sections deal with geometric objects
and geometric predicates, respectively. Every user of LEDAgeometry should read them.
The next three sections treat special topics: affine transformations, generators for geometric
objects, and writing kernel independent code. They may be skipped on first reading. We
then have three sections on arithmetic. We first discuss the danger of using floating point
arithmetic as an implementation of mathematics’ real numbers, then describe the efficient
implementation of exact geometric predicates in the rational kernel, and finally comment
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on the safe use of the floating point kernel. The last three sections give a glimpse at the
higher-dimensional kernel, briefly review the history of geometry in LEDA, and discuss the
relation between LEDA and CGAL.

8.1 Basics

We discuss points, segments, lines, rays, vectors, and circles.

Cartesian and Homogeneous Coordinates:We assume that the ambient space is equipped
with the standard Cartesian coordinate system and specify points by their Cartesian coordi-
nates. For a pointp in the plane the functions

p.x
oord();

p.y
oord();

return thex- andy-coordinate ofp, respectively. Of course, thez-coordinate of a point in
space is returned byp.zcoord( ). The Cartesian coordinates of apoint are of typedouble
and the Cartesian coordinates of arat point are of typerational. We use RATTYPE as the
generic name, i.e., RATTYPE stands fordoublewhen the floating point kernel is used and
stands forrational when the rational kernel is used.

Pointsare stored by their Cartesian coordinates. Forrat pointsit is more efficient to store
them by their homogeneous coordinates, i.e., to use the samedenominator for thex- and
they-coordinate. The homogeneous coordinates of a point in the plane are a triple(x, y, w)

with w 6= 0; herew is called the homogenizing coordinate. The Cartesian coordinates of
a point with homogeneous coordinates(x, y, w) are(x/w, y/w). Observe that the homo-
geneous coordinates of a point are not unique. Two triples that are multiples of each other
specify the same point. The homogeneous coordinates of a point p in the plane are returned
by

p.X();

p.Y();

p.W();

respectively. The homogeneous coordinates of arat point are of typeinteger. Do points
also have homogeneous coordinates? Yes, for compatibilitywith rat points they do. The
homogenizing coordinate of apoint is the constant 1.0 and theX- andY-coordinate is sim-
ply the corresponding Cartesian coordinate. Thus the homogeneous coordinates of apoint
are of typedouble. We use INTTYPE to denote the type of the homogeneous coordinates1,
i.e., INT TYPE stands forintegerwhen the rational kernel is used, and stands fordouble
when the floating point kernel is used.

We said above that homogeneous coordinates are not unique. We guarantee, however,
that all accesses to the homogeneous coordinates of a point return the same value. We do

1 We chose RATTYPE and INTTYPE as the names for the types of the Cartesian and the homogeneous
coordinates because we prefer the rational kernel.
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not guarantee, however, that these values are the homogeneous coordinates specified in the
constructor for the point. The constructor may simplify therepresentation by cancelling
out common factors. Moreover, we always store a positive value for the homogenizing
coordinate.

In mathematical context we also usexp andyp for the Cartesian coordinates of a pointp
andXp, Yp, andWp for the homogeneous coordinates.

Construction: Points are constructed by either specifying their Cartesian or their homoge-
neous coordinates. Thus

point p(0.2,0.8);

point q(1,4,5);

rat point r(1,4,5);

rat point s(rational(1,5),rational(4,5));

are four different ways of defining a point with coordinates(1/5, 4/5). In the first construc-
tor we have defined apointby specifying its Cartesian coordinates, in the second constructor
we have specified apoint by giving a triple of doubles2, in the third constructor we have
specified arat point by a triple ofintegers, and in the fourth constructor we have specified
a rat point by a pair of rational numbers.

The generic form of the constructor is

POINT p(RAT TYPE x, RAT TYPE y)

for the construction from Cartesian coordinates, and

POINT p(INT TYPE X, INT TYPE Y, INT TYPE W = 1)

for the construction from homogeneous coordinates. The default constructor

POINT p;

constructs the origin. It is bad programming style to exploit this fact. We recommend
writing

POINT p(0,0);

to construct the origin.

We turn to segments, lines, and rays. A segment is constructed by specifying its two
endpoints. Thus

segment s(point p, point q);

rat segment s(rat point p, rat point q);

define asegmentand arat segment, respectively. The second point may also be specified
by a vector which defines the relative position of the second point with respect to the first
point. The generic forms are

SEGMENT s(POINT p, POINT q);

SEGMENT s(POINT p, VECTOR v); // same as s(p,p+v)

2 The Cartesian coordinates are obtained by performing the floating point divisions 1/5 and 4/5.
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The defining points of a segment can be accessed by

s.sour
e();

s.target();

Lines and rays are also defined by two points or by a point and a vector.

LINE l(POINT p, POINT q);

LINE l(POINT p, VECTOR v); // same as l(p,p+v)

RAY r(POINT p, POINT q);

RAY r(POINT p, VECTOR v); // same as r(p,p+v)

Of course, the two defining points must not be equal and the vector must not be the zero-
vector.

The default constructors

SEGMENT s;

LINE l;

RAY r;

introduce variables of the appropriate type. They are initialized to some object of the type
(the manual even specifies which), but it is bad programming style to rely on this fact.

Vectors can be specified by either their Cartesian or their homogeneous coordinates.

ve
tor v(double x, double y);

rat ve
tor v(rational x, rational x);

rat ve
tor v(integer X, integer Y, integer W = 1);

Observe that the analogy betweenvectorsandrat vectorsis not complete. There is no way
to define a two-dimensionalvectorby a triple of doubles. The reason is thatvectorsand
rat vectorsexist for arbitrary dimensions and that

ve
tor v(double x, double y, double z);

constructs a three-dimensional vector. The default constructor defines the zero vector.

Circles can be constructed in many ways. We describe two:

CIRCLE C(POINT a, POINT b, POINT 
);

CIRCLE C(POINT a, POINT b);

define a circle passing through pointsa, b, andc, and a circle with centera and passing
throughb respectively. Ifa = b in the second constructor, the circle has radius zero.

Some triples of points are unsuitable for defining a circle. Atriple is admissibleif
|{p1, p2, p3}| 6= 2. Assume now thatp1, p2, p3 are admissible. If|{p1, p2, p3}| = 1,
they define the circle with centerp1 and radius zero. Ifp1, p2, andp3 are collinear,C is a
straight line passing through them and the center ofC is undefined. Ifp1, p2, and p3 are
not collinear,C is the circle passing through them.

Affine transformations are discussed in Section 8.3 and polygons and generalized poly-
gons are discussed in Section 9.8.
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Points and Vectors: Points and vectors are related but clearly distinct geometric objects.
In order to work out the relationship between points and vectors it is useful to identify a
point with an arrow extending from the origin to the point. Inthis view a point is an arrow
attached to the origin. A vector is an arrow which is allowed to float freely in space3.

Points and vectors can be combined by arithmetical operations: for two pointsp andq
the differencep − q is a vector4 and for a pointp and a vectorv, p + v is a point.

For two vectorsv andw their sumv + w and their differencev − w are also vectors.
However, it does not make sense to add two points. The unary operator− reverses a vector.

The coordinates of a vectorv are accessed by

RAT TYPE v.
oord(int i); // i-th Cartesian 
oordinate

RAT TYPE v[int i℄; // i-th Cartesian 
oordinate

INT TYPE v.h
oord(int i); // i-th homogeneous 
oordinate

For a vectorv in d-space the Cartesian coordinates are indexed from 0 tod − 1 and the
homogeneous coordinates are indexed from 0 tod. The homogenizing coordinate has index
d. The homogenizing coordinate of avector is the constant 1. In two-dimensional space
the Cartesian and homogeneous coordinates can also be accessed byxcoord( ), ycoord( ),
X( ), Y( ), andW( ), respectively.

Vectors may be stretched or shrunk. Ifv is a vector andr has INTTYPE or RAT TYPE
then

r * v;

v / r;

compute the vectors whose Cartesian coordinates are multiplied by r and divided byr ,
respectively.

If v andw are vectors then

v * w

returns the scalar product ofv andw. This is the component-wise product of the Cartesian
coordinates and has RATTYPE.

The scalar product of a vector with itself yields the squaredlength of the vector. Instead
of writing v ∗ v one can also write

v.sqr length();

Handle Types, Identity and Equality: All geometric types are so-called handle types or
independent item types, see Sections 2.2 and 2.2.2, i.e., anobject of any geometric type
is a (smart) pointer to a representation object. For example, a rat point is a pointer to a
rat point rep and asegmentis a pointer to asegmentrep. The objects of the representation
class contain the defining information about the geometric object and possibly additional
information for internal use.
3 More precisely, a vector is an equivalence class of arrows where two arrows are equivalent if one can be moved

into the other by a translation of space.
4 More precisely, it is the equivalence class of arrows containing the arrow extending fromp to q.
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We give more details forrat points. The classesrat point andrat point rep are derived
from handlebaseandhandlerep, respectively. The classhandlebasecontains a data mem-
berPTR, which is a pointer to ahandlerep. In rat pointwe have a private member function
ptr which casts this pointer to a pointer to arat point rep. The classhandlerep is discussed
in Section 13.7. Arat point rep contains the homogeneous coordinates of a point (three
integers), floating point approximations of the homogeneous coordinates (threedoubles)
and the id-number of the point. The floating point approximations of the homogeneous
coordinates are used in the floating point filter and will be discussed in Section 8.7. The
id-number is used as the hash key in maps and hashing arrays. Any two point repshave
distinct id-numbers.


lass rat point rep : publi
 handle rep {

integer x, y, w;

double xd, yd, wd;

unsigned long id;

};


lass rat point : publi
 handle base {

rat point rep* ptr() 
onst { return (rat point rep*)PTR; }

};

We distinguish between identical and equal objects. Two points p andq are identical
(function identical(p, q)) if they point to the samepoint rep, and two pointsp andq are
equal(binary operator==) if they agree as geometric objects, i.e., have the same Cartesian
coordinates.

The assignment statement and the copy constructor preserveidentity, i.e., are realized by
pointer assignment.

POINT p(0,0);

POINT q(0,0);

POINT r = p;

identi
al(p,q); // evaluates to false

p == q; // evaluates to true

identi
al(p,r); // evaluates to true

p == r; // evaluates to true

Linear Orders: There are several linear orders defined on points.

• cmpx compares points by theirx-coordinate.

• cmpy compares points by theiry-coordinate.

• cmpxycompares points by theirx-coordinates. Points with equalx-coordinate are
compared by theiry-coordinate.

• cmpyxcompares points by theiry-coordinates. Points with equaly-coordinate are
compared by theirx-coordinate.

• cmpis the same ascmpxy. It is the default order for points.
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Associating Information with Geometric Objects: Points, lines, segments, rays, and cir-
cles have id-numbers and hencemapsandh arrayscan be defined for them. Observe that
mapsandh arraysassociate information with representation objects, i.e, only identical ob-
jects share their information. For example,

map<POINT,int> 
olor;

POINT p(0,0); 
olor[p℄ = 0;

POINT q(0,0); 
olor[q℄ = 1;

POINT r = p;


out << 
olor[p℄ << 
olor[q℄ << 
olor[r℄; // outputs 010

For points we can also use dictionaries and dictionary arrays to associate information (for
the other geometric types this requires the definition of a compare function). In dictionaries
and dictionary arrays equal objects share their information. For example,

d array<POINT,int> 
olor;

POINT p(0,0); 
olor[p℄ = 0;

POINT q(0,0); 
olor[q℄ = 1;

POINT r = p;


out << 
olor[p℄ << 
olor[q℄ << 
olor[r℄; // outputs 111

Observe thatp andq are equal and hence the assignment tocolor[q] also changes the color
of p.

Dictionary arrays are useful for removing multiple occurrences of equal objects. For
example, ifL is a list of points, then

d array<POINT,bool> first o

urren
e(true);

list item it;

forall items(it,L)

{ if ( !first o

urren
e[ L[it℄ ℄ )

L.del item(it);

else

first o

urren
e[ L[it℄ ℄ = false;

}

removes all but the first occurrence of every point fromL. What will this program do when
amapis used instead of ad array?

Converting between the Rational and the Floating Point Kernel: Floating point objects
can be converted to rational objects and rational objects can be converted to floating point
objects. We illustrate conversion for points.

If p is apoint or rat point then

point p.to point();

returns apoint. If p is a point the call is equivalent to the call of the copy constructor,
and if p is a rat point, the Cartesian coordinates of the point returned are floating point
approximations of the Cartesian coordinates ofp.

The conversion from rational objects to floating point objects needs to be used whenever
an object is to be displayed in a window. For example, ifW is awindowandp is a POINT,
then
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W << p.to point();

drawsp in W. The output statement above could be written even more elegantly asW ≪ p
if the classrat point provided a conversion operator topoint. We opted for the less elegant
code since the use of conversion operators can lead to unexpected side effects.

Both point classes have a constructor

POINT(
onst point& p, int pre
 = 0);

If POINT is rat point andprec is positive the constructor is equivalent to

rat point(integer(p.x
oord() * P), integer(p.y
oord() * P), P),

whereP = 2prec, i.e., the Cartesian coordinates ofp are approximated as rational numbers
with denominatorP. If prec is non-positive, the value ofprec is chosen such that there is
no loss of precision in the conversion.

When POINT ispoint andprec is positive, the point constructed has Cartesian coordi-
nates(⌊P ∗ x⌋/P, ⌊P ∗ x⌋/P), wherep = (x, y) and P = 2prec. If prec is non-positive,
the new point has coordinatesx andy.

Immutability: All geometric objects areimmutable. There are no operations that change a
geometric object, there are only operations to generate newgeometric objects from already
existing ones. For example, the operation

p.translate(1,1);

returns a point which is obtained fromp by translating it by the vector(1, 1); it does not
change the coordinates of the pointp. Of course, the translated point may be assigned top:

p = p.translate(1,1);

Input and Output: Geometric objects can be written on files and read from files. For
example, ifp is a POINT then


out << p;


in >> p;

writes p on standard output, and readsp from standard input, respectively. The input oper-
ators≫ are designed such that output written by≪ can be read by≫.

Graphical input and output is very important for geometric objects. Thewindowclass
knows how to draw geometric objects and supports the construction of geometric objects
by mouse input. The simplest way to draw a geometric object isto use the operator≪, for
example,

W << p.to point(); // W << p 
an be used if p is a point

W << s.to segment(); // W << s 
an be used if s is a segment

W << r.to ray(); // W << r 
an be used if r is a ray

W << l.to line(); // W << l 
an be used if l is a line

W << C.to 
ir
le(); // W << C 
an be used if C is a 
ir
le

W << P.to polygon(); // W << P 
an be used if P is a polygon
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If more control is needed, e.g, concerning the color or whether a circle should be drawn as
a disk, thedraw functions need to be used. For example,

W.draw segment(s,red); // draws s in red

W.draw disk(C,blue); // draws a blue filled 
ir
le

W.draw filled polygon(P,green); // draws a filled green polygon

Observe thats, C, andP must be floating point objects. Rational objects must be converted
to floating point objects first. For example,

W.draw filled polygon(P.to polygon(),green);

has to be used to draw a filledrat polygon. Observe that the call will also work forpolygons.
Why did we not overload thedraw-functions such that they also work for rational objects?

The reason is that this would have required to include the header files of the rational kernel
into the header file of the window class. The header file ofwindowis very large already and
we wanted to avoid a further increase in size.

We come to mouse input. The operator≫ can be used to read a point, segment, line, ray,
circle, or polygon. For example,

W >> p; // p is a point

W >> s; // s is a segment

read a point and a segment, respectively. The reading operations are blocking and wait
for mouse clicks. A point is constructed by a single click of the left mouse button, and a
segment, line, ray, and circle is constructed by two clicks of the left mouse button.

What happens when a mouse button different from the left mouse button is clicked?
Windows have an internal state in the same way as C++ input streams do. The state indicates
whether there is more input to read or not. The state is initially true and is set to false
by a click of the right mouse button (this is similar to endingstream input by the “eof”
character). If an input statement is used in the test of a conditional, an object of typewindow
is automatically converted to a boolean whose value is the internal state. For example,

list<point> L;

point p;

while ( W >> p ) L.append(p);

reads a sequence of points fromW. Every click of the left mouse button inputs a point
and a click of the right mouse button terminates the sequence. The three lines above are
essentially the implementation of the input operator for polygons.

In window.h the input operator≫ is only defined for the floating point objects. If you
want to use them for rational objects you must include the header file ratwindow.h. For
example,

#in
lude <LEDA/rat window.h>

rat point p;

while (W >> p) W << p.to point();

reads a sequence ofrat pointsand echos them inW.
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W

Figure 8.1 The Voronoi vertexv is the center of the circle passing through the pointsa, b, andc.
The three points lie in the windowW (indicated as a solid frame) butv lies far outsideW. It is a
bad strategy to draw the rayr as a ray starting inv and having direction orthogonal to the
direction froma to b. A slight error in the computation of the coordinates ofv due to round-off
may change the appearance ofr in W dramatically.

Input and Output: A Warning: As already mentioned, thewindowclass offers functions
to draw lines, rays, and segments, and many other geometric objects. For example,

W.draw segment(point p, point q);

W.draw ray(point p, point q);

will draw the segment with endpointsp andq and the ray with start pointp passing through
q, respectively. These functions have the desired effect if the pointsp andq lie in a rectangle
whose side lengths are about 1000 times the side lengths ofW. If one of the points lies
further away fromW, the use of these functions is ill-advised.

Consider the following situation. We are given three pointsa, b, andc in a windowW
and want to display their Voronoi diagram. Voronoi diagramsare discussed in Section 9.5.
Except when the points lie on a common line, the Voronoi diagram will consist of a single
vertexv from which three rays emanate. The Voronoi vertex is the center of the circle
passing through the three points. When the three points lie almost on a line,v will lie far
outsideW, see Figure 8.1. Each ray is part of the perpendicular bisector of two sites. It
is natural to draw the ray which is part of the perpendicular bisector ofa and b by the
following piece of code:

POINT v = CIRCLE(a,b,
).
enter();

VECTOR ve
 = b - a;

POINT ray point = v + ve
.rotate90();

W.draw ray(v.to point(),ray point.to point());

The drawing produced by this program will be a disappointment, if a, b, andc lie suffi-
ciently close to a common line, since the conversion ofv and ray point to points of the
floating point kernel (note that this conversion cannot be avoided since the windows class
knows only floating point objects) will incur rounding error. Moving eitherv or ray point
slightly has a dramatic effect on the appearance ofr in W.
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We recommend using a different strategy to draw rays and segments whose defining
points may lie far outsideW. In this situation the underlying linel is frequently known by
other means. In our example,l is the perpendicular bisector of the pointsa andb.

LINE l = p bise
tor(a,b);

The defining elements ofl lie in W and are hence known with high precision. The window
class offers functions

W.draw segment(point p, point q, line l, 
olor 
);

W.draw ray(point p, point q, line l, 
olor);

that draw the part of the linel betweenp andq, respectively, the part ofl on the ray with
sourcep and second pointq. Of course,p andq must lie onl or at least close to it. We give
the implementation of the second function.

If p is contained inW we simply draw the ray with sourcep and second pointq. If p lies
outside the window we clip the linel on W and call the resulting segments. The segment
s has the property that its source preceeds its target in the lexicographic order of points;
equality is possible. We draws either if p is smaller than the source ofs andq is larger than
p, or if p is larger than the target ofs andq is smaller thanp, or if p lies lexicographically
between the source and the target ofs. The latter case cannot happen mathematically, but it
can happen numerically, ifp lies close to either the source or the target ofs but not exactly
on l .

void window::draw ray(point p, point q, line l, 
olor 
ol)

{

if ( 
ontains(p) ) { draw ray(p,q,
ol); return; }

segment s;

point ll
(xmin(),ymin()); // left lower 
orner

point rr
(xmax(),ymax()); // right upper 
orner

if ( !l.
lip(ll
,rr
,s) ) return;

if ( 
ompare(p,s.sour
e()) < 0 && 
ompare(p,q) < 0 ||


ompare(s.target(),p) < 0 && 
ompare(q,p) < 0 ||


ompare(s.sour
e(),p) <= 0 && 
ompare(p,s.target()) <= 0 )

draw segment(s,
ol);

}

We will see an application of the refined drawing functions inSection 9.10.

Exercises for 8.1
1 Write a program that allows to input points in a graphics window and colors the points

randomly red and blue.
2 Write a program that allows to input points in a graphics window and always highlights

a pair of points with smallest distance. For two pointsp andq, p.sqrdist(q) computes
the squared distance betweenp andq.

3 Write a program that removes duplicates from a list of segments.
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q
r2

p

r1

r3

Figure 8.2 orientation(p, q, r1) = 1, orientation(p, q, r2) = 0, andorientation(p, q, r3) = −1.
The triangle△(p, q, r1) is shown dashed.

8.2 Geometric Primitives

We discuss some of the geometric primitives available in LEDA, in particular, the orienta-
tion function and its variants, lengths and distances, angles, and intersections.

8.2.1 The Orientation Function in the Plane
Theorientation functionis probably the most useful geometric primitive. Letp, q, andr
be three points in the plane. The tuple(p, q, r ) is said to havepositive orientationif p
andq are distinct andr lies to the left of the oriented line passing throughp andq and
oriented fromp to q, the tuple is said to havenegative orientationif r lies to the right of
the line, and the tuple is said to haveorientation zeroif the three points are collinear, see
Figure 8.2. An alternative way to define positive orientation is to say thatp, q, andr form
a counter-clockwise oriented triangle. The function

int orientation(POINT p, POINT q, POINT r)

computes the orientation of the triple(p, q, r ). It returns+1 in the case of positive orienta-
tion, −1 in the case of negative orientation, and 0 in the case of zeroorientation. There are
also predicates that test for special cases.

bool leftturn(p,q,r); // same as orientation(p,q,r) > 0

bool rightturn(p,q,r); // same as orientation(p,q,r) < 0

bool 
ollinear(p,q,r); // same as orientation(p,q,r) == 0

We next derive a determinant formula for the orientation function. For pointsp, q, and
r we use△(p, q, r ) to denote the triangle with verticesp, q, andr . We define thesigned
areaof the triangle△(p, q, r ) as its area times the orientation of the triple(p, q, r ).
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0
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q′ = (Q, 0)
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β

Figure 8.3 Proof of Lemma 1.

Lemma 1Let p, q, and r be points in the plane.
(a) The signed area of the triangle△(p, q, r ) is given by

1

2

∣∣∣∣∣∣

1 1 1
xp xq xr

yp yq yr

∣∣∣∣∣∣

(b) The orientation of(p, q, r ) is equal to the sign of the determinant above.

Proof Part( b) follows immediately from part (a) and the definitionof signed area. So we
only need to show part (a). We do so in two steps. We first verifythe formula for the case
that p is the origin and then extend it to arbitraryp. So let us assume thatp is equal to the
origin. We need to show that the signed areaA of △(p, q, r ) is equal to(xq yr − xr yq)/2.

Let α be the angle between the positivex-axis and the rayOq and letQ be the length
of the segmentOq, cf. Figure 8.3. Then cosα = xq/Q and sinα = yq/Q. Rotating
the triangle△(O, q, r ) by −α degrees about the origin yields a triangle△(O, q′, r ′) with
q′ = (Q, 0) and the same signed area. Thus,A = Q · yr ′/2.

Next observe thaty′
r = Rsin(β − α), whereR is the length of the segmentOr andβ

is the angle between the positivex-axis and the rayOr . Since sin(β − α) = sinβ cosα −

cosβ sinα andRcosβ = xr andRsinβ = yr we conclude that

A = Q · yr ′/2 = Q · R · sin(β − α)/2

= (Q cosα · Rsinβ − Q sinα · Rcosβ)/2 = (xq yr − xr yq)/2.

This verifies the formula in the case wherep is the origin.
Assume next thatp is different from the origin. Translatingp into the origin yields the

triangle△(O, q′, r ′) with q′ = q − p andr ′ = r − p5 . On the other hand subtracting the

5 Strictly speaking, we would have to writeq′ = 0 + (q − p) and similarly forr ′.
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first column from the other two columns of the determinant yields
∣∣∣∣∣∣

1 1 1
xp xq xr

yp yq yr

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 0
xp xq − xp xr − xp

yq yq − yp yr − yp

∣∣∣∣∣∣
=

∣∣∣∣
xq′ xr ′

yq′ yr ′

∣∣∣∣

which by the above is twice the area of the translated triangle.

Part (b) of the lemma above is the implementation of the orientation function.

8.2.2 The Orientation Function in Higher-Dimensional Space
We define the orientation function for an arbitrary dimensional space and derive a determi-
nant formula for it. Less mathematically inclined readers may skip the proofs of the lemmas
to follow.

Let (p0, p1, . . . , pd) be ad + 1-tuple of points ind-dimensional space. Their orientation
is zero if the points lie in a common hyperplane. If they do not, their orientation is either
positive or negative as determined by the following rules:

• Let o be the origin and letei for i , 0 ≤ i < d, be the endpoint of thei -th coordinate
vector ofd-dimensional space. The tuple(o, e0, . . . , ed−1) has positive orientation.

• Two tuples(p0, p1, . . . , pd) and(q0, q1, . . . , qd) have the same orientation if the
affine map that mapspi into qi for i , 0 ≤ i ≤ d, has positive determinant.

Lemma 2Let (p0, p1, . . . , pd) be a d+ 1-tuple of points in d-dimensional space. Then

orientation(p0, p1, . . . , pd) = signdet

(
1 · · · 1
p0 · · · pd

)
,

where the i-th column of the determinant consists of a1 followed by the vector of Cartesian
coordinates of pi for all i , 0 ≤ i ≤ d.

Proof Observe first that the pointsp0, . . . , pd have orientation zero iff they lie in a common
hyperplane which is true iff the homogeneous linear system

∑

0≤i≤d

λi = 0

∑

0≤i≤d

λi pi,l = 0 , 0 ≤ l ≤ d − 1

in variablesλ0, λ1, . . . , λd has a non-trivial solution. The determinant above is the deter-
minant of this system. We conclude thatorientation(p0, . . . , pd) = 0 iff the sign of the
determinant above is zero.

Assume next thatorientation(p0, p1, . . . , pd) 6= 0. The affine transformation that maps
(o, e0, . . . , ed−1) into (p0, p1, . . . , pd) is given byx 7→ p0 + P · x whereP has columns
p1 − p0, p2 − p0, . . . , pd − p0. Thus

detP = det
(

p1 − p0 p2 − p0 · · · pd − p0
)
.
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Adding an additional first row and first column to this determinant with the first entry in the
new row equal to one and all other entries in the new row equal to zero does not change the
value of the determinant (develop the determinant according to the new row). Therefore

detP = det
(

p1 − p0 p2 − p0 · · · pd − p0
)

= det

(
1 0 · · · 0
p0 p1 − p0 · · · pd − p0

)
= det

(
1 1 · · · 1
p0 p1 · · · pd

)
,

where the last equality follows from adding the first column to all other columns. We
conclude that(p0, p1, . . . , pd) has the same orientation as(o, e0, . . . , ed−1) if and only if
the determinant above is positive.

The lemma above generalizes Lemma 1. Observe that both lemmas give the same formula
for points in the plane.

We have already given an intuitive definition of orientationin the plane: three points
(p0, p1, p2) in the plane have orientation zero if they are collinear, have positive orientation
if they form a counter-clockwise oriented triangle, and have negative orientation if they
form a clockwise oriented triangle.

In three-dimensional space there is also an intuitive definition. Four points(p0, p1, p2, p3)

in three-dimensional space have orientation zero if they are coplanar, have positive orien-
tation if they form a right-handed system, and have negativeorientation if they form a
left-handed system. We need to explain the terms right- and left-handed system. Imagine
that you place the base of your thumb at pointp0 and let the thumb (index finger, middle
finger) point top1, p2, and p3, respectively. Only one of your hands will work and this
determines the handedness of the system. For four three-dimensional pointsp, q, r , ands

int orientation(p,q,r,s);

computes their orientation.
An alternative definition of orientation in three-dimensional space is to say that the four-

tuple (p0, p1, p2, p3) has positive orientation ifp3 sees(p0, p1, p2) in counter-clockwise
orientation. The last sentence connects orientation in three-dimensional space with orien-
tation in two-dimensional space. The next lemma generalizes this connection to higher
dimensions.

Lemma 3 Let (p′
0, p′

1, . . . , p′
d−1) be a d-tuple of points in(d − 1)-dimensional space with

positive orientation and let(p0, p1, . . . , pd) be a d+ 1-tuple of points in d-dimensional
space such that pi projects into p′i for i , 1 ≤ i < d, i.e., the Cartesian coordinate vector
of p′

i is the Cartesian coordinate vector of pi with the last entry removed. Let h be the
hyperplane spanned by p0, . . . , pd−1. Then(p0, p1, . . . , pd) has positive orientation if pd
lies above h, has orientation zero if pd lies on h, and has negative orientation if pd lies
below h.

Proof Let q be the projection ofpd into h. Then pd = q + c · ed−1 whereed−1 is the
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(d − 1)-th coordinate vector andc is positive if pd lies aboveh, is zero if pd lies onh, and
is negative ifpd lies belowh. Moreover there areλ0, λ1, . . . ,λd−1 such that

∑

0≤i≤d−1

λi = 1,

and ∑

0≤i≤d−1

λi pi = q.

Thus

det

(
1 1 · · · 1
p0 p1 · · · pd

)
= det

(
1 1 · · · 1 1
p0 p1 · · · pd−1 q + c · ed−1

)

= det

(
1 1 · · · 1 0
p0 p1 · · · pd−1 c · ed−1

)

= c · det

(
1 1 · · · 1
p′

0 p′
1 · · · p′

d−1

)
,

where the second equality follows from subtracting theλi -th multiple of thei -th column
from the last column fori , 0 ≤ i < d, and the last equality follows by expanding the
determinant according to the last column. Observe that the last column has only one non-
zero entry and that this entry is in the last row.

In the plane we connected the orientation of a triple(p, q, r ) to the signed area of the
triangle defined by the points. A similar connection holds inhigher-dimensional space. The
signed area of the simplex with verticesp0, p1, . . . , pd is equal to1

d! times the determinant
defined by the points.

8.2.3 Sidedness
Many geometric objects, such as lines and circles in the plane, planes and spheres in three-
dimensional space, and more generally hyperplanes and hyperspheres ind-dimensional
space, partition ambient space into two parts. We designateone of the parts as positive
and one as negative. The function

int O.side of(x);

whereO is a geometric object andx is a point in ambient space returns a positive number
(zero, a negative number, respectively) ifx lies in the positive part (lies onO, lies in the
negative part, respectively). Examples are

int l.side of(x); // l is a line

int C.side of(x); // C is a 
ir
le

int P.side of(x); // P is a polygon

What is the positive subspace with respect to a line or circleor hyperplane? We use the
orientation function for points to formulate general rules:
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• For a hyperplaneh in d-space defined by pointsp0, p1, . . . , pd−1 (in this order) the
positive subspace consists of all pointspd such that(p0, p1, . . . , pd) has positive
orientation. Thusline(p, q).sideof(x) is the same asorientation(p, q, x), if p andq
are distinct.

• For a hypersphereS in d-space defined by pointsp0, p1, . . . , pd (in this order) the
positive subspace consists of the interior of the sphere if(p0, p1, . . . , pd) is positively
oriented and consists of the exterior of the sphere otherwise. The same rule applies to
simplices.

In two-dimensional space the following alternative rule isalso worth remembering. Two
points defining a line and three points defining a circle impose a sense of direction on the
line or circle respectively (from the first point to the second point in the case of a line, and
from the first point through the second point to the third point in the case of a circle).The
positive subspace is the region to the left of the object.

Let p, q, andr be points in the plane. We may want to inquire about the position of a
point x with respect tocircle(p, q, r ). We could writecircle(p, q, r ).sideof(x). Since this
test incurs overhead for the construction of a circle we alsohave an alternative syntactic
format that avoids this overhead and also gives an answer in the case where thep, q, andr
do not define a circle.

int side of 
ir
le(p,q,r,x);

returns+1 if x is to the left of the oriented circle throughp, q, andr , returns−1 if x is to
the right of the oriented circle throughp, q, andr , and returns 0 if either|{ p, q, r }| ≤ 2 or
x lies on the oriented circle throughp, q, andr . We give some more explanations.

Three pointsp, q, andr that are not collinear define a unique circle passing through
them. We give this circle an orientation by insisting thatp, q, andr occur in this order on
the circle. Consider now a fourth pointx. It is either left of, on, or right of the oriented circle
throughp, q, andr . Note that left corresponds to inside if the circle is counter-clockwise
oriented and to outside otherwise, see Figure 8.4. The case that the pointsp, q, andr are
collinear deserves special attention. If the three points are not pairwise distinct then the
whichsidefunction returns zero. If they are pairwise distinct then weorient the line passing
through them such that the order of the points along the line is a circular permutation of
(p, q, r ), i.e., either(p, q, r ) or (q, r, p) or (r, p, q), and use again+1 for the left side and
−1 for the right side of the line.

Circles, spheres, triangles, simplices, simple polygons,and many other geometric objects
partition ambient space into a bounded and an unbounded region. Since there is no standard
convention in mathematics that connects boundedness and unboundedness with positive
and negative respectively, we have an enumeration type for the outcome of theregionof
function.

enum region kind { BOUNDED REGION, ON REGION, UNBOUNDED REGION };

region kind O.region of(x); // the generi
 form

region kind C.region of(x); // C is a 
ir
le
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Figure 8.4 The sides of a circle:d lies on the negative side of the circle defined by pointsa, b,
andc, ands lies on the positive side of the circle defined by pointsp, q, andr .

Frequently, one only wants to test for one of the outcomes. Wehave appropriate predicates.

bool O.inside(x); // O.region of(x) == bounded region

bool O.on boundary(x); // O.region of(x) == on region

bool O.outside(x); // O.region of(x) == unbounded region

8.2.4 Length and Distance
If p andq are POINTs andl is a LINE,

RAT TYPE p.sqr dist(q);

RAT TYPE l.sqr dist(q);

compute the square of the distance betweenq andp or l , respectively.
In the rational kernel there are no functions to compute distances, in the floating point

kernel there are, but think twice before using them. Why?
The distance between two pointsp andq is equal to((xp − xq)

2 + (yp − yq)
2)1/2 and

is hence, in general, not a rational number. The squared distance is a rational number and
hence the rational kernel provides only functions to compute squared distances. The floating
point kernel uses thesqrt function from the standard math-library to compute distances.

We find that the computation of distances is rarely needed. Consider the following prob-
lem. Let p andq be points. We want to define the circle centered atp whose radius isρ
times the distance betweenp andq. This is best written as

CIRCLE C(p, p + rho * (q - p));

Observe thatq − p is the vector fromp to q and hencerho ∗ (q − p) is a vector whose
length isρ times the distance betweenp andq.

The distances betweenp andq andr , respectively, can be compared by

int p.
mp dist(q,r); // same as 
mp(p.sqr dist(q),p.sqr dist(r));
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This is more efficient than computing the two squared distances and comparing them.

8.2.5 Angles
There is no type angle in either the rational or the floating point kernel. There are, however,
a number of functions related to angles. In particular, two vectorsv1 andv2 can be compared
by the angle which they form with the positivex-axis. For a vectorv let α(v) be the angle
by which the positivex-axis has to be turned counter-clockwise until it aligns with v. The
zero vector defines the angle zero.

int 
ompare by angle(VECTOR v1, VECTOR v2);

returnscmp(α(v1), α(v2)).
We describe the implementation. If one of the vectors is the zero vector the comparison

is easily made. If both vectors are zero, they are equal, and if only one is zero, it is the
smaller. So assume that both vectors are non-zero. We say that a non-zero vector(x, y)

belongs to the upper half-plane if eithery > 0 or y = 0 andx > 0, and we say that it
belongs to the lower half-plane otherwise. Letupper1andupper2be the half-planes to
which our vectors belong (the value is+1 for a vector in the upper half-plane and−1 for a
vector in the lower half-plane). If the two vectors belong todistinct half-planes, the vector
in the upper half-plane is smaller and hence we may return thesign ofupper2− upper1. If
the two vectors lie in the same half-plane,v1 precedesv2 iff the triangle(O, O+v1, O+v2)

is counter-clockwise oriented iff the orientation of(O, O + v1, O + v2) is positive iff its
signed area is positive. The signed area is the length of the cross-product ofv1 andv2, i.e.,
x1y2 − x2y1. We may therefore return−sign(x1y2 − x2y1).

Rational vectors are stored by their homogeneous coordinates. Since the ordering of
angles does not depend on the length of vectors and since the homogenizing coordinate is
guaranteed to be non-negative, we may ignore it.

〈 angleorder.c〉+�

int 
ompare_by_angle(
onst rat_ve
tor& v1, 
onst rat_ve
tor& v2)

{ 
onst integer& x1 = v1.h
oord(0);


onst integer& y1 = v1.h
oord(1);


onst integer& x2 = v2.h
oord(0);


onst integer& y2 = v2.h
oord(1);

if ( x1 == 0 && y1 == 0 ) return ( x2 == 0 && y2 == 0 ? 0 : -1);

if ( x2 == 0 && y2 == 0 ) return 1;

// both ve
tors are non-zero

int sy1 = sign(y1); int sy2 = sign(y2);

int upper1 = ( sy1 != 0 ? sy1 : sign(x1) );

int upper2 = ( sy2 != 0 ? sy2 : sign(x2) );

if ( upper1 == upper2 ) return sign(x2*y1 - x1*y2);

return sign(upper2 - upper1);

}
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8.2.6 Intersections
There are functions to compute the intersections between lines, rays, and segments. For
example, ifl is a LINE ands is a SEGMENT then

bool l.interse
tion(s, p);

returnstrue if l ands have a single point in common and returnsfalseotherwise. In the
latter case, the unique point of intersection is assigned top.

Exercises for 8.2
1 Write a functioncircumcenterthat takes three pointsp, q, andr and returns the center of

the circle passing throughp, q, andr . The three points are assumed to be non-collinear.
2 Use the left-turn predicate to write a function that tests whether four pointsp, q, r , and

s in the plane form a convex quadrilateral.
3 Modify the test from the previous exercise such that it decides whether the four points

form a counter-clockwise oriented convex quadrangle.
4 Let p, q, r , ands be four points in three space not lying in a plane. Position your left or

right hand such thatp coincides with the base of your thumb, andq, r , ands coincide
with the tips of your thumb, index finger, and middle finger, respectively. Convince
yourself that only one of the two hands will work and relate the choice of hand to the
orientation of the four points.

8.3 Affine Transformations

An affine transformationT of the plane is specified by a 3×3 matrixT with T2,0 = T2,1 = 0
andT2,2 6= 0. It maps the pointp with homogeneous coordinate vector(px, py, pw) to the
point T · p. Transformations are calledtransformin the floating point kernel and are called
rat transformin the rational kernel. We use TRANSFORM as the generic name.

TRANSFORM T;

TRANSFORM T1(M);

declaresT as the identity transform and declaresT1 as the transform with transformation
matrix M. M must be a 3× 3 matrix in the floating point kernel and a 3× 3 integermatrix
in the rational kernel. Functional notation is used to applyan affine transformation to a
geometric object. For example,

p = T(q); // p and q are points

P = T(Q); // P and Q are polygons

v = T(w); // v and w are ve
tors

C = T(D); // C and D are 
ir
les; T must be rigid

The norm of an affine transformationT is defined as

|T | = (T0,0T1,1 − T0,1T1,0)/T2
2,2.

A transformation is calledrigid iff its norm has absolute value one.
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RAT TYPE T.norm();

returns the norm ofT .
If T andT1are transformations then

T(T1);

is the transformation obtained by first applyingT1and thenT .
Translations, rotations, and reflections are special casesof affine transformations.
A matrix of the form 


w 0 x
0 w y
0 0 w




realizes a translation by the vector(x/w, y/w) and a matrix of the form



a −b 0
b a 0
0 0 w




wherea2 + b2 = w2 realizes a rotation by the angleα about the origin, where cosα = a/w

and sinα = b/w. Rotations are in counter-clockwise direction.
It is inconvenient to specify transformations by their transformation matrix. We have

several functions that construct transformations. Observe that these functions are not con-
structors but functions that return transformations. For example

TRANSFORM T = translation(
onst INT TYPE& dx, 
onst INT TYPE& dy,


onst INT TYPE& dw);

TRANSFORM T = translation(
onst RAT TYPE& dx, 
onst RAT TYPE& dy);

construct translations by the vector(dx/dw, dy/dw) and the vector(dx, dy), respectively.

TRANSFORM T = refle
tion(
onst POINT& q, 
onst POINT& r);

TRANSFORM T = refle
tion(
onst POINT& q);

construct the reflection across the straight line passing throughq andr and the reflection
across the pointq, respectively.

TRANSFORM T = rotation90(
onst POINT & q);

TRANSFORM T = rotation(
onst POINT& q, double alpha, double eps);

construct rotations about the pointq. In the first case the rotation is byπ/4 and in the
second case the rotation is approximately byα. ǫ is a tolerance parameter.

We show the implementations of the last two functions. Rotation by π/4 is achieved by
the rotation matrix 


0 −1 0
1 0 0
0 0 1



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and rotation about an arbitrary pointq is achieved by first translating by the vectorO − q,
rotating about the origin, and finally translating back by the vectorq − 0.

〈rotation〉�

stati
 TRANSFORM rotation90_origin(
onst POINT& q)

{

INT_MATRIX M(3,3);

for (int i = 0; i < 3; i++)

for (int j = 0; j < 3; j++)

M(i,j) = 0 ;

M(0,1) = -1; M(1,0) = +1;

M(2,2) = 1;

return TRANSFORM(M);

}

TRANSFORM rotation90(
onst POINT& q)

{

TRANSFORM R = rotation90_origin(q);

TRANSFORM T0 = translation(-q.X(),-q.Y(),q.W());

TRANSFORM T1 = translation( q.X(), q.Y(),q.W());

TRANSFORM T = T1(R(T0));

T.simplify();

return T;

}

Observe that we have given the functionrotation90origin an artificial argument of type
POINT so that we can use the same code for both kernels. In the piece of code above,
we declaredrotation90origin static, as it is an auxiliary function that should not be visible
outside the filetransform.c.

We come to the rotation by an arbitrary angleα. We only show how to construct the
transformation matrix for the rotation about the origin. Weconstruct a pointp on the unit
circle and in directionα (this is a member function of CIRCLE) and then use the coordinates
of p as the sine and cosine ofα.

〈rotation〉+�

stati
 TRANSFORM rotation_origin(
onst POINT& q,

double alpha, double eps)

{ POINT origin(0,0);

POINT X(1,0);

CIRCLE C(origin,X); // unit 
ir
le 
entered at origin

POINT p = C.point_on_
ir
le(alpha,eps);

INT_MATRIX M(3,3);

M(0,2) = M(1,2) = M(2,0) = M(2,1) = 0;

M(0,0) = M(1,1) = p.X() ;

M(0,1) = -p.Y(); M(1,0) = p.Y();

M(2,2) = p.W();

return TRANSFORM(M);

}
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It remains to explain the functionpointoncircle. In the floating point kernel we use the
sine and cosine function from the math-library to constructp; epsplays no role in this
construction. In the rational kernel we use the method described in [CDR92] to find integers
a, b, andw and an angleα′such that

a2 + b2 = w2

cosα′ = a/w

sinα′ = b/w

|α′ − α| ≤ ǫ.

General affine transformations are a fairly recent additionto our geometry kernels. In
earlier versions we had only functions for special affine transformations. They were member
functions of the geometric classes. For example,

p.translate(RAT TYPE dx,RAT TYPE dy);

returns the pointp + v wherev = (dx, dy).
Transformations are a good tool to generate difficult inputsfor geometric algorithms. In

Section 9.8.4 we perform the following experiment. We first construct a regularn-gon P,
n = 20000, with its vertices on the unit circle. We then construct Q = T(P) whereT is a
rotation by 2π/(nm) andm is a large integer, e.g.,m = 109. We finally compute the union
of P andQ.

Exercises for 8.3
1 Implement the function that composes two transformations.
2 Implement the function that applies a transformation to a point.
3 Implement the function that applies a transformation to a vector. This is different from

the solution to the previous exercise.
4 Implement the function that constructs the transformation matrix for reflection at a point.
5 Implement the function that constructs the transformation matrix for reflection at a line.

8.4 Generators for Geometric Objects

There is a frequent need to generate geometric objects, random or otherwise. We describe
generators for random points in the plane and generators forpolygons. There are also
generators for random points in space.

Generators for Random Points: We have generators for random points in squares, in
discs, near circles, and on circles. For each generator there is a version that generates a
single point and a version that generates a list of points.

random_point_in_square(POINT& p, int max
);

random_points_in_square(int n, int max
, list<POINT>& L);
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generate a random point with integer coordinates in the range [−maxc.. + maxc] and a list
of n such points, respectively.

random_point_in_unit_square(POINT& p, int D = (1<<30) - 1 );

random_points_in_unit_square(int n, int D, list<POINT>& L);

random_points_in_unit_square(int n, list<POINT>& L);

generate a point in the unit square, i.e., a point whose coordinates are of the formi /D for a
random integeri , 0 ≤ i ≤ D, n such points, andn such points with the default value ofD,
respectively.

For the remaining generators we only give the form that generates a single point.

random_point_in_dis
(POINT& p, int R);

random_point_in_unit_dis
(POINT& p, int D = (1<<30) - 1);

generate a random point with integer coordinates in the discwith radiusR and a random
point with coordinates of the formi /D for integeri in the unit disc, respectively.

random_point_near_
ir
le(POINT& p, int R);

random_point_near_unit_
ir
le(POINT& p, int D = (1<<30) - 1);

generate a random point with integer coordinates near the circle with radiusR and a random
point with coordinates of the formi /D for integeri near the unit circle, respectively.

The latter function is implemented as follows. We generate arandom doublex in the unit
interval, setφ = 2πx, and construct the point(⌊D cosφ⌋, ⌊D sinφ⌋, D).

void random_point_near_unit_
ir
le(POINT& p, int D)

{ double a;

Rand_Sour
e >> a;

double phi = 2*a*LEDA_PI;

int x = int(D*
os(phi));

int y = int(D*sin(phi));

p = POINT(x,y,D);

}

With the rational kernel we can also generate points that lieexactlyon a circle.

random_point_on_
ir
le(POINT& p, int R, int C = 1000000);

random_point_on_unit_
ir
le(POINT& p, int C = 1000000);

constructs a point on the circle with radiusR and on the unit circle, respectively. This
assumes that the rational kernel is used. In both cases the point is chosen at random from a
set of at leastC candidates. With the floating point kernel the function is equivalent to the
nearcircle and thenearunit circle function with D = 1.0/C, respectively.

The implementation ofrandompointonunit circle with the rational kernel is as follows:

void random_point_on_unit_
ir
le(rat_point& p, int C)

{ rat_point origin(0,0);

rat_
ir
le Cir
(origin,origin + rat_ve
tor::unit(1));

double a; Rand_Sour
e >> a;
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double eps = 1.0/(2*C);

p = Cir
.point_on_
ir
le(2*LEDA_PI*a,eps);

}

where the functionpointoncircle is as described at the end of Section 8.3.
The last two generators are much slower than all other generators when the rational kernel

is used. We have therefore generated files of 50000 random points (withC = 106). They
are available as:

LEDAROOT/data/geo/ratpointsunit circle random50000.ex
LEDAROOT/data/geo/pointsunit circle random50000.ex

Generating Polygons: We have two generators for polygons.

POLYGON P = reg_n_gon(int n, CIRCLE C, double epsilon);

POLYGON P = n_gon( int n, CIRCLE C, double epsilon);

The first generator generates a nearly regularn-gon. Thei -th point is generated by the call
C.pointoncircle(2π i /n, epsilon). With the rational kernel the vertices of the n-gon are
guaranteed to lie on the circle, with the floating point kernel they are only guaranteed to lie
nearC.

The second generator generates a (nearly) regularn-gon whose vertices lie near the circle
C. For the floating point kernel the function is equivalent to the function above. For the
rational kernel the function first generates an n-gon with floating point arithmetic and then
converts the resultingpolygonto arat polygon.

8.5 Writing Kernel Independent Code

We use the C++ precompilation mechanism to write code that is independentof the kernel.
Recall that the kernels are designed such that all functionsthat are available in a rational
kernel are also available in the corresponding floating point kernel.

The only difference between the rational kernel and the floating point kernel is the inter-
pretation of the generic names POINT, SEGMENT, LINE, . . . . Inorder to give the generic
names the interpretation required in a particular kernel one of the files must be included:

#in
lude <LEDA/rat kernel names.h>

#in
lude <LEDA/float kernel names.h>

#in
lude <LEDA/d3 rat kernel names.h>

#in
lude <LEDA/d3 kernel names.h>

Every one of these files consists of a sequence of define-statements which define the generic
names for the corresponding kernel. For example,

// part of rat kernel names.h

#define KERNEL RAT KERNEL

#define INT TYPE integer

#define RAT TYPE rational
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#define VECTOR rat ve
tor

#define POINT rat point

#define SEGMENT rat segment

#define TRANSFORM rat transform

We also have files that undefine all names used in a kernel. Theyare:

#in
lude <LEDA/kernel names undef.h>

#in
lude <LEDA/d3 kernel names undef.h>

Suppose now that we want to write a program that is supposed towork for both two-
dimensional kernels. We write a generic version of the program using only the generic
names and then derive the two specialized versions from it. For example,

〈FOO.c〉�

main(){

window W; W.display();

POINT p;

while ( W >> p) W << p.to_point();

}

〈rat foo test.c〉�

#in
lude <LEDA/rat_point.h>

#in
lude <LEDA/window.h>

#in
lude <LEDA/rat_window.h> // lets W >> p work for rat_points

#in
lude <LEDA/rat_kernel_names.h>

〈FOO.c〉

#in
lude <LEDA/kernel_names_undef.h>

〈foo test.c〉�

#in
lude <LEDA/point.h>

#in
lude <LEDA/window.h>

#in
lude <LEDA/float_kernel_names.h>

〈FOO.c〉

#in
lude <LEDA/kernel_names_undef.h>

The header file window.h is included in both specializationsand it is hence tempting to
write

〈BAD FOO.c〉�

#in
lude <LEDA/window.h>

main(){

window W; W.display();

POINT p;

while ( W >> p) W << p.to_point();

}
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This will lead to a disaster. Never include a file in a piece of code that is subject to
renaming,except if you are absolutely sure that the renaming mechanism is not used in the
included file. Window.h includes the entire floating point kernel which in turn includes files
like transform.h. The latter file uses the renaming mechanism.

Why did we undefine all names at the end of footest.c and ratfoo test.c? We found that
it helps to guard against the error pointed out in the preceding paragraph. If footest.c is
included in a file that uses the renaming mechanism the compiler will generate a message
that certain names are undefined. For example

#in
lude <LEDA/rat kernel names.h>

#in
lude "rat foo test.
"

POINT p; // POINT is undefined here

We use the renaming mechanism just described for all source files in src/planealg and for
some source files in src/plane. We also use the mechanism for the header files for polygons,
generalized polygons, transformations, point sets, and generation of random points. In these
cases the generic header files are stored in incl/LEDA/generic.

Sometimes, a small part of the code is specific to a particularkernel. We use conditional
compilation in this situation. For example,

// an error was just dis
overed

#if ( KERNEL == FLOAT KERNEL )


err << "Please move to the rational kernel.";

#else


err << "Please report this error.";

#endif

The conversion functions between floating point objects andrational objects form a more
substantial example. In the case of POLYGONs we have:

// part of POLYGON.h

POLYGON(
onst POLYGON& P) : handle base(P) {} // 
opy 
onstru
tor

#if ( KERNEL == RAT KERNEL )

rat polygon(
onst polygon& Q, int pre
 = 0);

#endif

#if ( KERNEL == FLOAT KERNEL )

polygon(
onst polygon& Q, int pre
);

#endif

polygon to polygon() 
onst;

The first declaration defines the copy constructor for both instantiations and the last dec-
laration defines the conversion function topolygonsfor both instantiations. The middle
declaration is conditional. In classrat polygonwe also have the constructors

rat polygon(
onst polygon&, int);

rat polygon(
onst polygon&);

and in classpolygonwe also have the constructor

polygon(
onst polygon&, int pre
);
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It is important thatprec is not an optional argument in the latter case as this would clash
with the copy constructor.

We summarize: the pre-compilation mechanism of C++ allows us to write kernel inde-
pendent code. Files that use the renaming mechanism must never be included in a piece of
code that is subject to renaming.

8.6 The Dangers of Floating Point Arithmetic

We give two examples for the dangers of floating point arithmetic in geometric computation.
Both examples show that floating point geometric objects canexhibit bizarre behavior that
deviates widely from the behavior predicted by mathematics. We will see more examples
in the chapter on geometry algorithms.

8.6.1 Convex Hulls
The first example was suggested by Stefan Schirra. Consider the following piece of code.
We define a segments and construct a setL of points consisting of the endpoints ofL and
the intersections betweens and some number of random lines.

〈float hull test〉�

point p0(-LEDA_PI, -LEDA_PI);

point p1(+LEDA_PI, +LEDA_PI);

segment s(p0,p1);

list<point> L; L.append(p0); L.append(p1);

for (int i = 0; i < 10000; i++)

{ double ax, ay;

rand_int >> ax; rand_int >> ay; point p(ax*LEDA_PI, ay*LEDA_PI);

rand_int >> ax; rand_int >> ay; point q(ax*LEDA_PI, ay*LEDA_PI);

line l(p,q); point r;

if ( l.interse
tion(s,r) ) L.append(r);

}

list<point> CH = CONVEX_HULL(L);

We then compute the convex hull ofL, see Section 9.1. Since all points inL lie on s, the
convex hull should have exactly two vertices. Figure 8.5 shows the output of a sample run
of the program. The convex hull has more than two vertices, contrary to what mathematics
tells us. The explanation is simple. When the intersection betweens and a linel is computed
with the floating point kernel, the point of intersection does not necessarily lie ons but only
nears.
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Figure 8.5 The convex hull of points contained in a common line segment computed with the
floating point kernel. The hull has five vertices although there should be only two.

8.6.2 Braided Lines (Verzopfte Geraden)
The second example was suggested by Lyle Ramshaw who also coined the name braided
lines (verzopfte Geraden in German) for it. Consider the lines

l1 : y = 9833· x/9454 and l2 : y = 9366· x/9005.

Both lines pass through the origin and the slope ofl1 is slightly larger than the slope ofl2.
At x = 9454· 9005 we havey1 = 9833· 9005= 9366· 9454+ 1 = y2 + 1.

The following program runs through multiples of 0.001 between 0 and 1 and computes
the correspondingy-valuesy1 andy2. It compares the twoy-values and, if the outcome of
the comparison is different than in the previous iteration,printsx together with the current
outcome.

〈braided lines test.c〉�

#in
lude <stream.h>

main(){


out.pre
ision(12);

float delta = 0.001;

int last_
omp = -1;

float a = 9833, b = 9454, 
 = 9366, d = 9005;

for (float x = 0; x < 0.1; x = x + delta)

{ float y1 = a*x/b; // l1 is steeper

float y2 = 
*x/d;

int 
omp = (y1 < y2? -1 : (y1 == y2? 0 : +1));
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if (
omp != last_
omp)

{ 
out <<"\n" << x << ": ";

if (
omp == -1) 
out << "l1 is below l2";

if (
omp == 0) 
out << "l1 interse
ts l2";

if (
omp == +1) 
out << "l1 is above l2";

}

last_
omp = 
omp;

}


out <<"\n\n";

}

Clearly, we should expect the program to print

0.000: l1 interse
ts l2

0.001: l1 is above l2

Well, the first few lines of the actual output are6 :

0: l1 interse
ts l2

0.00300000002608: l1 is above l2

0.00400000018999: l1 interse
ts l2

0.0050000003539: l1 is above l2

0.00800000037998: l1 interse
ts l2

0.00900000054389: l1 is below l2

0.0100000007078: l1 is above l2

0.0110000008717: l1 interse
ts l2

0.0120000010356: l1 is above l2

0.0130000011995: l1 interse
ts l2

0.0140000013635: l1 is above l2

0.0150000015274: l1 is below l2

0.01600000076: l1 interse
ts l2

0.0180000010878: l1 is below l2

0.0190000012517: l1 interse
ts l2

We conclude that the lines intersect many times, contrary towhat mathematics teaches us.
What went wrong? The typefloat consists of only a finite number of values and hence a

line is really a step function as shown in Figure 8.6. The width of the steps of our two lines
l1 andl2 are distinct and hence the lines intersect.

8.6.3 Overcoming the Dangers of Floating Point Arithmetic
The examples above show that the implementation of geometric algorithms may be a diffi-
cult task. How can we overcome the difficulties?

The first approach sticks with inexact arithmetic but uses itmore carefully. The pa-
pers [Mil88, Mil89a, Mil89b, FM91, LM90, GSS93, GSS89] develop algorithms for line

6 This output is produced on the first author’s workstation. Ifthe program is run on the same author’s notebook, it
produces the correct result. The explanation for this behavior is that on the notebook double precision arithmetic
is used to implement floats. According to the C++ standard floats must not offer more precision than doubles;
they are not required to provide less.
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l1 l2

Figure 8.6 Lines as step functions and their multiple intersections.

arrangements, intersections, convex hulls, and Voronoi diagrams based on imprecise primi-
tives. We suggest that the reader has a look at at least one of these papers in order to appre-
ciate the ingenuity needed to overcome the shortcomings of floating point arithmetic. We
were afraid of the required ingenuity and therefore did not adopt this approach for LEDA.

The alternative approach is to switch to exact arithmetic. This approach was pioneered by
Karasick, Lieber, and Nackman [KLN91]. They discussed the computation of Delaunay di-
agrams by exact rational arithmetic. The use of exact arithmetic overcomes the correctness
problems associated with floating point arithmetic, however, at the cost of a much increased
running time. Fortune and van Wyk [FvW96] showed that the useof floating point filters
can give exact geometric computation at low cost. We adaptedtheir ideas7 to the LEDA
system [MN94b, MN94a]. Floating point filters are the topic of the next section.

Exercises for 8.6
1 Give a version of the intertwined lines fordoublearithmetic.
2 Play with the voronoi demo (in xlman) and try to find exampleswhere it works incor-

rectly when run with the floating point kernel. Try to explainwhat goes wrong.

7 The conference version of their paper appeared in 1993.
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8.7 Floating Point Filters

Floating point filters apply to the evaluation of geometric predicates as used in the condi-
tionals of geometric programs. For example,

swit
h ( orientation(a,b,
) )

{ 
ase -1: // negative orientation


ase 0: // 
ollinear points


ase +1: // positive orientation

}

Evaluating a geometric predicate is tantamount to determining the sign of an arithmetic
expression. For example, the test above is equivalent to

swit
h (sign((ax*bw-bx*aw)*(ay*
w-
y*aw)-(ay*bw-by*aw)*(ax*
w-
x*aw)))

{ 
ase -1: //


ase 0: //


ase +1: //

}

whereax, ay, awdenote the homogeneous coordinates of pointa and similarly for the points
b andc. The homogeneous coordinates of arat point are integersand hence evaluating
the conditional involves ten multiplications and four additions of integers. Unfortunately,
integerarithmetic is considerably more expensive than floating point arithmetic and hence
we might expect to pay a tremendous price for exact computation.

The observation that paves the way for floating point filters is that we only want to know
the sign of the arithmetic expression but not its value. It isfrequently possible to determine
the sign of an expression with floating point arithmetic although it is impossible to determine
its value with floating point arithmetic.

In order to compute the sign of an expression8 E, a floating point filter computes an
approximationẼ of E using floating point arithmetic and also a boundB on the maximal
difference betweeñE and the (unknown) exact valueE, i.e.,

|E − Ẽ| ≤ B,

or ,

Ẽ − B ≤ E ≤ Ẽ + B.

Thus:

• if Ẽ > B thenE > 0,

• if Ẽ < −B thenE < 0,

• if neither of the above,B < 1 andE andẼ are integral thenE = 0.

For the third item observe that if neither of the first two cases applies then|Ẽ| ≤ B. If Ẽ
is integral andB < 1 this impliesẼ = 0. If E is integral this implies further thatE = 0.

In order to derive a specific floating point filter one has to:

8 We useE in the usual double meaning: it denotes an expression and also the value of the expression.
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E Ẽ mesE indE

a, integer fl(a) |fl(a)| 1

a, float integer fl(a) |fl(a)| 0

A + B Ã ⊕ B̃ mesA ⊕ mesB 1 + max(indA, indB) · δ

A − B Ã ⊖ B̃ mesA ⊕ mesB 1 + max(indA, indB) · δ

A · B Ã ⊙ B̃ mesA ⊙ mesB 1 + indA · δ + indB · δ2

Table 8.1 The recursive definition ofmesE andindE. The first column contains the case
distinction according to the syntactic structure ofE, the second column contains the rule for
computingẼ and the third and fourth columns contain the rules for computing mesE andindE;
⊕ and⊙ denote the floating point implementations of addition and multiplication. We use the
abbreviationsδ = 1 + 2−53 andfl(a) = a.to double( ). For the entry in the last row and last
column one may assumeindB ≤ indA.

• specify how the approximatioñE is computed,

• specify how the boundB is computed, and

• prove that|E − Ẽ| ≤ B holds.

In the next section we will describe a variant of the floating point filter used in the rational
kernel. In later sections we comment on other filters, we discuss an expression compiler for
the automatic generation of floating point filters, and we give theoretical and experimental
evidence for the efficacy and efficiency of floating point filters.

8.7.1 A Floating Point Filter
We discuss a variant of the filter used in the rational kernel.The filter described here is
slightly stronger that the one described in [MN94b, MN94a].In the current kernel you will
find a mixture of both filters. The filter works for expressionswith integer operands and
operations addition, subtraction, and multiplication. Anextension to expressions with real
operands and the additional operations division and squareroot was later devised in [Bur96,
Fun97, BFS98].

The approximatioñE is simply the value obtained by evaluatingE with double precision
floating point arithmetic.

The boundB is computed according to the rules given in Table 8.1. This table contains
the recursive definitions of the indexindE and the measuremesE of an expressionE; B is
defined as

B = 2−53 · indE · mesE.

Before we prove that̃E and B have the property required for a floating point filter, we
apply the filter to the orientation predicate. We obtain:
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// 
onvert arguments to double

double axd = ax.to double(), ayd = ay.to double();

// and similarly for the other 
oordinates

// evaluate E with floating point arithmeti


double E tilde = (axd*bwd - bxd*awd) * (ayd*
wd - 
yd*awd) -

(ayd*bwd - byd*awd) * (axd*
wd - 
xd*awd);

// 
ompute mes by repla
ing all arguments by their absolute

// values and by repla
ing - by + in E.

double axd = fabs(axd), ayd = fabs(ayd);

// and similarly for the other 
oordinates

double mes = (axd*bwd + bxd*awd) * (ayd*
wd + 
yd*awd) +

(ayd*bwd + byd*awd) * (axd*
wd + 
xd*awd);

double ind = 11.0; // see below

double B = ind * mes * eps; // eps = 2^{-53}.

if ( E tilde > B ) return 1;

if ( E tilde < -B ) return -1;

if ( B < 1) return 0;

// resort to integer arithmeti


return sign((ax*bw-bx*aw)*(ay*
w-
y*aw)-(ay*bw-by*aw)*(ax*
w-
x*aw));

Some comments on this program are in order.

(1) How did we compute the index? We have:
The index of an integera is s1 = 1;
The index of an expression of the forma · a is s2 = 1 + s1(δ + δ2) ≈ 3.
The index of an expression of the forma · a + a · a is s3 = 1 + s2δ ≈ 4.
The index of an expression of the form(a ·a+a ·a) ·(a ·a+a ·a) is s4 = 1+s3(δ+δ2) ≈ 9.
The index of the orientation predicate iss5 = 1 + s4δ ≈ 10.
s5 is slightly larger than 10 and certainly less than 11. We may therefore use 11 as the
index of the expression predicate. This overestimate ofindE will also cover any rounding
error in the computation ofB. Note that we definedB as 2−53 · indE · mesE but compute
2−53 ⊙ indE ⊙ mesE, where⊙ denotes floating point multiplication.

(2) The computation of̃E starts with the conversion of the homogeneous coordinates of
a, b, andc from integerto double. In the rational kernel we make this conversion when the
points are constructed. In this way the conversion is made only once for eachrat point and
not every time a predicate is evaluated for arat point.

(3) The computation ofmesE involves the same number of arithmetic operations as the
computation ofẼ. The computation ofB requires, in addition, to take the absolute val-
ues of the arguments and to multiplyindE, mesE, and 2−53. The number of operations to
computeB is therefore at least the number of operations to computeẼ. The actual time
required to computẽE and B is usually less than twice the time to computeẼ alone (see
Section 8.7.4 for some measurements), since modern micro-processors have highly effective
floating point units with multiple pipelined arithmetic units and since the cost of arithmetic
is small once the data is in the processing unit.
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(4) Our expressions have integer operands and operations+, −, and·. HenceE and Ẽ
are integral.

We will next prove that Table 8.1 indeed defines a valid boundB. We need to review
some properties of the IEEE floating point standard [Gol90, Gol91, IEE87].

A floating point number consists of a signs, a mantissam, and an exponente. In double
formats has one bit,m consists of fifty-two bitsm1, . . . ,m52, andeconsists of the remaining
eleven bits of a double word. The number represented by the triple (s, m, e) is defined as
follows:

• e is interpreted as an integer in [0.. 211 − 1] = [0 .. 2047].

• If m1 = . . . = m52 = 0 ande = 0 then the number is +0 or -0 depending ons.

• If 1 ≤ e ≤ 2046 then the number iss · (1 +
∑

1≤i≤52 mi 2−i ) · 2e−1023.

• If somemi is non-zero ande = 0 then the number iss ·
∑

1≤i≤52 mi 2−i 2−1023. This is
a so-called denormalized number.

• If all mi are zero ande = 2047 then the number is+∞ or −∞ depending ons.

• In all other cases the triple represents NaN ( = not a number).

The largest positive double (except for∞) is MAXDOUBLE = (2 − 2−52) · 21023 and the
smallest positive double isMINDOUBLE = 2−52 · 2−1023.

In this section we are interested infloating point integers, i.e., integers that can be repre-
sented as floating point numbers. The set of floating point integers consists of:

• the number zero,

• all integers of the forms · (1 +
∑

1≤i≤52 mi 2−i ) · 2e with 0 ≤ e ≤ 1023 (we must have
mi = 0 for i > e),

• the numbers+∞ and−∞.

We call an integerrepresentableif |a| ≤ 2 · 21023. For a representable integera, let fl(a)

be a floating point number nearest toa. For a non-representable integer letfl(a) = ±∞

depending on the sign ofa.

Floating point arithmetic incurs rounding error. It is therefore important to distinguish
between the mathematical operations addition, subtraction, multiplication and their floating
point implementations. We use+, −, and· for the exact operations and⊕, ⊖, and⊙ for
their floating point implementations.

We need the following facts:

(a) If a is an integer then

|a − fl(a)| ≤ 2−53 · |fl(a)|,

whereeps = 2−53 is called themachine precision. If a is a non-representable integer
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(including±∞) thenfl(a) = ∞ and the claim is true. So, assume thata is representable.
The floating point approximation ofa is obtained by “rounding” in the 53-rd bit. More
precisely, if|a| < 253 thenfl(a) = a and if |a| ≥ 253 anda has the binary representation

a = s ·
∑

0≤i≤L

mi · 2L−i

with m0 = 1 andL ≥ 53, then

fl(a) = s · (
∑

0≤i≤52

mi · 2L−i + δ · 2L−52),

whereδ ∈ {0, 1} is chosen such that the better approximation ofa is obtained. Clearly,
|a − fl(a)| ≤ 2L−52/2 and|fl(a)| ≥ 2L . Thus,|a − fl(a)| ≤ 2−53 · |fl(a)|.

We want to remark that the assumption thata is integer is crucial for claim (a). If|a| ≤

MinDouble/2, the best floating point approximation ofa is zero. Thus, there is no bound
on the error|a − fl(a)| in terms offl(a). Life is easier for integers.

(b) If a is an integer thenfl(a) is a floating point integer.

(c) If f1 and f2 are floating point integers, op∈ {+, −, ·}, f = f1 op f2, andõp is the
floating point implementation of op, then

f1õp f2 = fl( f ),

i.e., the floating point operation returns a floating point integer closest tof . There is no
need to argue here. It is an “axiom” of the IEEE standard that every arithmetic operation is
implemented with the least possible error.

(d) Under the same hypothesis as in the preceding item:

| f1õp f2 − f1 op f2| ≤ 2−53| f1õp f2|.

Let f̃ = f1õp f2 and f = f1 op f2. Then f̃ = fl( f ) by (c) and hence| f̃ − f | ≤ 2−53| f̃ |

by part (a).

(e) If f is an integer thena.to double( ) returnsfl(a). That is the way we implemented
the functionto double.

(f) Floating point arithmetic is monotone, i.e., ifa1 ≤ a2 andb1 ≤ b2 thena1 ⊕ a2 ≤

b1 ⊕ b2 and if 0≤ a1 ≤ a2 and 0≤ b1 ≤ b2 thena1 ⊙ a2 ≤ b1 ⊙ b2.

(g) Multiplication by a power of two incurs no rounding error, i.e., if a is a power of two
andb is a floating point integer such that 2a anda · b are representable, thena ⊕ a = 2 · a
anda ⊙ b = a · b.

Theorem 1If mesE and indE are computed according to Table 8.1 then|Ẽ| ≤ mesE and

|Ẽ − E| ≤ 2−53 · indE · mesE

≤ 2−53 ⊙ indE ⊙ mesE ⊙ (1 + 2−52).



8.7 Floating Point Filters 39

Proof We use induction on the structure of the expressionE. The claim|Ẽ| ≤ mesE follows
immediately from the monotonicity of floating point arithmetic. For the other claims we
have to work slightly harder. We first prove

|Ẽ − E| ≤ 2−53 · indE · mesE.

Assume first thatE is an integera. Then

|a − fl(a)| ≤ 2−53 · |fl(a)|

by item (a) and the claim is certainly true. Ifa is a floating point integer thenfl(a) = a and
hence the index can be set to zero for floating point integers.

We come to the induction step. LetA and B be the two subexpressions ofE and let Ã
andB̃ be their floating point values. Then

| Ã| ≤ mesA

| Ã − A| ≤ 2−53 · indA · mesA

|B̃| ≤ mesB

|B̃ − B| ≤ 2−53 · indB · mesB

by induction hypothesis.
We now make a case distinction according to the operation combining A andB.
AssumeE = A + B. Then

|Ẽ − E| = | Ã ⊕ B̃ − (A + B)| ≤ | Ã ⊕ B̃ − (Ã + B̃)| + | Ã − A| + |B̃ − B|.

Item (d) with f1 = Ã and f2 = B̃ implies that the first term is bounded by 2−53| Ã ⊕ B̃| and
monotonicity of floating point arithmetic implies that

| Ã ⊕ B̃| ≤ mesA ⊕ mesB = mesE.

For the other two terms we use the induction hypothesis to conclude

| Ã − A| + |B̃ − B| ≤ 2−53 · (indA · mesA + indB · mesB)

≤ 2−53 · max(indA, indB) · (mesA + mesB)

≤ 2−53 · max(indA, indB) · (1 + 2−53) · (mesA ⊕ mesB)

= 2−53 · max(indA, indB) · (1 + 2−53) · mesE.

Putting the two bounds together completes the induction step for the case of an addition.
The argument for subtractions is completely analogous.

We turn to multiplications,E = A · B. We have

|Ẽ − E| = | Ã ⊙ B̃ − A · B| ≤ | Ã ⊙ B̃ − Ã · B̃| + | Ã · B̃ − A · B̃| + |A · B̃ − A · B|.

Item (d) with f1 = Ã and f2 = B̃ implies that the first term is bounded by 2−53| Ã ⊙ B̃| and
monotonicity of floating point arithmetic implies that

| Ã ⊙ B̃| ≤ mesA ⊙ mesB = mesE.
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For the second term we use the induction hypothesis to conclude

| Ã · B̃ − A · B̃| = | Ã − A| · |B̃|

≤ 2−53 · indA · mesA · mesB

≤ 2−53 · indA · (1 + 2−53) · (mesA ⊙ mesB)

= 2−53 · indA · (1 + 2−53) · mesE,

and for the third term we conclude analogously

|A · B̃ − A · B| = |A| · |B̃ − B|

≤ (1 + 2−53) · | Ã| · 2−53 · indB · mesB

≤ (1 + 2−53) · mesA · 2−53 · indB · mesB

≤ 2−53 · indB · (1 + 2−53)2(mesA ⊙ mesB)

= 2−53 · indB · (1 + 2−53)2 · mesE.

Putting the three bounds together completes the induction step for the case of a multiplica-
tion.

It remains to prove the inequality

2−53 · indE · mesE ≤ 2−53 ⊙ indE ⊙ mesE ⊙ (1 + 2−52).

It follows from

indE · mesE ≤ (indE ⊙ mesE) · (1 + 2−53) ≤ indE ⊙ mesE ⊙ (1 + 2−52)

and the fact that the multiplication by 2−53 incurs no rounding error.

8.7.2 Alternative Filters
We discuss the filter originally (and still mostly) used in the kernel, static and dynamic
filters, special methods for determinants, and specializedarithmetics.

The Filter Used Originally in the Kernel: In our original filter we computedindE and
mesE according to Table 8.2. In this table we also define a quantityPE. PE is a power of
two with |E| ≤ PE, |Ẽ| ≤ PE, andPE ≤ mesE. The boundB(E) is defined as

B = 2−53 ⊙ indE ⊙ mesE.

In order to see that this bound is correct one proves that

|E − Ẽ| ≤ 2−53 · indE · PE and PE ≤ mesE

and observes that

2−53 · indE · PE = 2−53 ⊙ indE ⊙ PE ≤ 2−53 ⊙ indE ⊙ mesE,

since 2−53 andPE are powers of two and since floating point arithmetic is monotonic.
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The inequality

|E − Ẽ| ≤ 2−53 · indE · PE

is again shown by induction on the structure ofE. The base case is obvious. The induction
steps are as follows.

In the case of an addition we have

|E − Ẽ| = | Ã ⊕ B̃ − (A + B)| = | Ã ⊕ B̃ − (Ã + B̃)| + | Ã − A| + |B̃ − B|

≤ 2−53(| Ã ⊕ B̃| + indAPA + indB PB)

≤ 2−53(PA ⊕ PB + (indA + indB) max(PA, PB))

≤ 2−53(1 + (indA + indB)/2) · 2 · max(PA, PB)),

where the last inequality follows from

PA ⊕ PB ≤ max(PA, PB) ⊕ max(PA, PB)

= max(PA, PB) + max(PA, PB) = 2 · max(PA, PB).

In the case of multiplication we have

|E − Ẽ| = | Ã ⊙ B̃ − Ã · B̃| + | Ã| · |B̃ − B| + |B| · | Ã − A|

≤ 2−53(| Ã ⊙ B̃| + | Ã||B̃ − B| + |B|| Ã − A|)

≤ 2−53(PA ⊙ PB + PA · indB · PB + PB · indA · PA)

≤ 2−53(1 + indA + indB) · PA · PB.

The inequalityPE ≤ mesE is also shown by induction on the structure ofE. We leave
the induction step to the reader. For the basis of the induction we observe that 2log|a| ≤

2 · fl(a) = mesa for an integera.
This concludes the proof that Table 8.2 defines a filter.

For the orientation predicate Table 8.2 gives an index of 5 and a measure of 8· M, where
M is the measure according to Table 8.1. ThusB = 40 · M. Table 8.1 givesB = 11 · M,
which is significantly better.

Static Filters: Fortune and van Wyk [FvW96] invented the idea of a floating point filter.
They proposed a static filter in whichB is precomputed completely. Assume that it is known
apriori that|a| ≤ 2L for all integer arguments of an expressionE. Thenmesa ≤ 2L for all
argumentsa and we mayprecompute mesE by replacingmesa by 2L for all argumentsa.
This yieldsB = 2−53 ·11·24L+3 with Table 8.1. The filter of Fortune and van Wyk is called
staticbecauseB is precomputed entirely. In contrast, the filter used in the rational kernel
precomputesindE but computesmesE on the fly. Such a filter may be calledsemi-dynamic.

Static filters are faster than semi-dynamic filters, but theyare less precise and they are
less convenient to use. For example, they cannot be used at all in an on-line algorithm,
where no apriori bound on the size of the arguments is known. We decided against static
filters because of their less convenient use.
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E Ẽ PE mesE indE

a, integer fl(a) 2⌈log|a|⌉ 2|fl(a)| 1

a, float integer fl(a) 2⌈log|a|⌉ 2|fl(a)| 0

A + B Ã ⊕ B̃ 2 max(PA, PB) 2(mesA ⊕ mesB) 1 + (indA + indB)/2

A − B Ã ⊖ B̃ 2 max(PA, PB) 2(mesA ⊕ mesB) 1 + (indA + indB)/2

A · B Ã ⊙ B̃ PA PB mesA ⊙ mesB 1 + indA + indB

Table 8.2 The recursive definition ofmesE andindE in the original filter.PE is a power of two
with |E| ≤ PE, |Ẽ| ≤ PE, andPE ≤ mesE; it is only needed for the correctness proof of the
filter. We set 2⌈log 0⌉ = 0.

Dynamic Filters: Consider the expression

E = (a + b) − a

when a and b are float integers anda ≫ b. The semi-dynamic filter of Section 8.7.1
assumes that the error in the subtraction may be as large as

2−53mesE ≈ 2−53(2a + b).

However, the actual error is approximately

2−53 · Ẽ ≈ 2−53 · b,

which is much smaller.
Dynamic filters attempt to exploit this differency by estimating the round-off error more

carefully. They use the formulae

| Ã ⊕ B̃ − (A + B)| ≤ | Ã ⊕ B̃ − (Ã + B̃)| + | Ã − A| + |B̃ − B|

≤ 2−53| Ã ⊕ B̃| + | Ã − A| + |B̃ − B|

and

| Ã ⊙ B̃ − A · B| = | Ã ⊙ B̃ − Ã · B̃ + Ã · B̃ − A · B̃ + A · B̃ − A · B|

≤ 2−53| Ã ⊙ B̃| + | Ã − A| · |B̃| + |A||B̃ − B|

to recursively compute a bound on the error. More precisely,in the case of an addition the
errorerrE for the expressionE is computed as

erre = (2−53 ⊙ |Ẽ| ⊕ errA ⊕ errB) ⊙ (1 + 2−51),

where the multiplication by 1+ 2−51 accounts for the error in the computation of the error
bound. We leave it to the reader to derive the corresponding formula for multiplication.

Dynamic filters are more costly but also more precise than semi-dynamic filters. Observe
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that the computation oferrE in the case of an addition requires two additions and two
multiplications. The computation ofmesE requires only one addition. We concluded from
our experiments in [MN94b] that the additional cost is not warranted for the rational kernel.

We do use dynamic filters in the number typereal, see Section 4.4, since the cost of
exact computation is very high forrealsand hence a higher computation time for the filter
is justified.

Determinants: Many geometric predicates, e.g., the orientation and the insphere predi-
cates, are naturally formulated as the sign of a determinant. The efficient computation of the
signs of determinants has therefore received special attention [Cla92, ABDP97, BEPP97].
None of the methods is available in LEDA.

Specialized Arithmetics: Consider again the orientation predicate

sign((ax*bw-bx*aw)*(ay*
w-
y*aw) - (ay*bw-by*aw)*(ax*
w-
x*aw) )

and assume that it is known that the absolute value of all arguments is less than 2L . The
arguments are assumed to be integer. It is then easy to compute an apriori bound on the
maximal number of binary digits required for any of the intermediate results. We have:
The integera requiresL bits;
An expression of the forma · a requires 2L bits.
An expression of the forma · a + a · a requires 2L + 1 bits.
An expression of the form(a · a + a · a) · (a · a + a · a) requires 4L + 2 bits.
The orientation predicate requires at most 4L + 3 bits.
Given this knowledge one could try to optimize the arithmetic, i.e., instead of using a gen-
eral purpose package for the computation with arbitrary precision integers (such as the class
integer) one could design integer arithmetic optimized for a particular bit length. This av-
enue is taken in [FvW96, She97].

8.7.3 Expression Compilers
The incorporation of the floating point filter into the rational kernels was a tedious task;
it was done to a large extent by Ulrike Bartuschka. For each predicate she had to derive
manually the formulae forindE andmesE. For example, the code for the orientation test
contains the following comment:

---------------------------------------------------------------------------

ERROR BOUNDS

---------------------------------------------------------------------------

mes(E) = 2*(mes(aybw-byaw)*mes(ax
w-
xaw) + mes(axbw-bxaw)*mes(ay
w-
yaw))

= 2*(4*(fabs(aybw)+fabs(byaw)) * (fabs(ax
w)+fabs(
xaw)) +

4*(fabs(axbw)+fabs(bxaw)) * (fabs(ay
w)+fabs(
yaw)))

= 8*((fabs(aybw)+fabs(byaw)) * (fabs(ax
w)+fabs(
xaw)) +

(fabs(axbw)+fabs(bxaw)) * (fabs(ay
w)+fabs(
yaw)))

ind(E) = ((ind(aybw-byaw) + ind(ax
w-
xaw) +0.5) +

(ind(axbw-bxaw) + ind(ay
w-
yaw) +0.5) + 1 ) / 2
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= (4.5 + 4.5 + 1) / 2 = 5

eps(E) = ind(E) * mes(E) * eps0

= 40 * ((fabs(aybw)+fabs(byaw))*(fabs(ax
w)-fabs(
xaw)) +

(fabs(axbw)-fabs(bxaw))*(fabs(ay
w)-fabs(
yaw))) * eps0;

---------------------------------------------------------------------------

Already Fortune and Wyk [FvW96] observed that the generation of the filters can be
automated. Stefan Funke [Fun97, BFS98] adopted the idea forLEDA and generalized it to
a larger class of expressions and number types. His expression compiler generates floating
point filters automatically from suitably decorated expressions. For example, in order to
generate a filter for the orientation predicate one writes

int orientation(
onst rat point& a, 
onst rat point& b,


onst rat point& 
)

{ int res sign;

BEGIN PREDICATE

{

DECLARE ATTRIBUTES integer type FOR a.X() a.Y() a.W() b.X()

b.Y() b.W() 
.X() 
.Y() 
.W();

integer AX=a.X(); integer AY=a.Y(); integer AW=a.W();

integer BX=b.X(); integer BY=b.Y(); integer BW=b.W();

integer CX=
.X(); integer CY=
.Y(); integer CW=
.W();

integer D= (AX*BW-BX*AW) * (AY*CW-CY*AW) -

(AY*BW-BY*AW) * (AX*CW-CX*AW);

res sign=sign(D);

}

END PREDICATE

return res sign;

}

The expression compiler produces a (very lengthy) program of the following form.

int orientation(
onst rat point& a, 
onst rat point& b,


onst rat point& 
)

{ int res sign;

{

/* a floating point evaluation of the predi
ate whi
h assigns

one of -1, 0, +1, NO IDEA to res sign */

if (res sign == NO IDEA)

{ /* exa
t evaluation of predi
ate with result in res sign */

}

}

return res sign;

}

The expression compiler is available as an LEP.

8.7.4 Efficacy and Efficiency of Filters
We discuss the efficacy and the efficiency of floating point filters. Efficacy refers to the
percentage of tests, for which the filter is able to deduce thesign of the test, and efficiency
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refers to the cost of the evaluation of the filter and the relationship of this cost to the cost of
a computation with integers.

A floating point filter for an expressionE computes an approximatioñE of E and a
boundB for the maximal difference between the approximation and the exact value. The
following lemma is trivial but useful.

Lemma 4 If E and Ẽ are integral and B< 1 then sign(Ẽ) = sign(E).

Under what conditions can we claim thatB < 1 without actually computing it? Consider
the orientation predicate for points with integer homogeneous coordinates(x, y, 1) with
|x|, |y| ≤ 2L . We assume thatL is small enough such that the coordinates are floating point
integers. The orientation predicate for pointsa, b, andc is given by the expression

E = (AX - BX) * (AY - CY) - (AY - BY) * (AX - CX)

and henceB ≤ 8 · 2−53 · 22L+3 according to Theorem 1; the index of the expression is 7
when computed withδ = 1. We rounded up to 8 to account for the fact thatδ = 1 + 2−53.

We have 8· 2−53 · 22L+3 < 1 iff 3 − 53+ 2L + 3 < 0 iff L < 47/2. We conclude that
double precision floating point arithmetic is guaranteed togive the correct result if thex-
andy-coordinates are at most 223.

What happens ifL is larger? The floating point computation is able to deduce the sign
of E if |Ẽ| > B. SinceE is twice the signed area (see Lemma 8.2.1) of the triangle with
vertices(a, b, c), the floating point computation is able to deduce the correctsign for any
triple of points which span a triangle whose area is at least 8· 2−53 · 22L+3/2. Devillers and
Preparata [DP96] have shown that for a random triple of points and forL going to infinity,
the probability that the area of the spanned triangle is at least 8· 2−53 · 22L+3/2 goes to one.
Thus for largeL and for triples of random points, the floating point computation will almost
always be able to deduce the sign ofE and exact computation will be rarely needed.

Observe that the result cited in the previous paragraph depends crucially on the fact that
the points are chosen randomly. In an actual computation orientation tests will not be per-
formed for random triples of points even if the input consists of random points. It is there-
fore not clear what the result says about actual computations.

The classrat point has a static member functionprint statisticswhich gives information
about the efficacy of its floating point filter. The call

rat point::print statisti
s();

prints a statistic of the following form:


ompare: 167 / 44330 (0.38 %)

orientation: 71 / 48975 (0.14 %)

side of 
ir
le: 3194 / 22317 (14.31 %)

The statistic states for each of the functionscompare, orientation, andsideof circle how
many times it was evaluated and how many times the filter failed and an exact computation
was necessary. In this particular execution, 22317 side of circle tests were performed out of
which 3194 required exact computation. This amounts to 14.31 percent.
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Table 8.3 shows the results of a more substantial experiment. The table was generated by
the program below. We first generate a listL0 of n random points either on the unit circle or
in the unit square. We then construct a listL1 of points whose homogeneous coordinates are
d bit binary numbers for different values ofd by truncating the Cartesian coordinates tod
bits; ford = 60 no truncation takes place (this is indicated by the infinity-sign in Table 8.3.
We construct the Delaunay diagram for the points inL1.

〈produce efficacy of filter table〉�

int n = 10000;

list<rat_point> L0;

for (int k = 0; k < 2; k++)

{ if ( k == 0 ) random_points_on_unit_
ir
le(n,L0);

else random_points_in_unit_square(n,L0);

for (int d = 8; d <= 60; d += d < 12 ? 2 : 10)

{ list<rat_point> L1;

rat_point p;

I.write_table("\n");

if ( d <= 50 )

{ double D = ldexp(1,d);

forall(p,L0) L1.append(rat_point(integer(p.x
oordD()*D),

integer(p.y
oordD()*D),1));

I.write_table("",d);

}

else

{ L1 = L0;

I.write_table("$ \\infty $");

}

〈reset counters to zero〉

GRAPH<rat_point,int> DT;

DELAUNAY_TRIANG(L1,DT);

〈write a line of the table〉

}

I.write_table(" \\hline");

}

For each experiment we generate one line in Table 8.3. The classrat point has static data
members that keep a count of the number of compare, orientation, and side of circle tests
performed and also of the number of tests where the filter fails. Before each experiment we
set the counters to zero. After each experiment we print a line of the table.

〈reset counters to zero〉�

rat_point::
mp_
ount = 0;

rat_point::exa
t_
mp_
ount = 0;

rat_point::orient_
ount = 0;

rat_point::exa
t_orient_
ount = 0;

rat_point::so
_
ount = 0;

rat_point::exa
t_so
_
ount = 0;
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Compare Orientation Side of circle

d N number exact % number exact % number exact %

8 1883 157814 0 0.00 19909 0 0.00 7242 0 0.00

10 5298 187379 0 0.00 58263 0 0.00 20736 5743 27.70

12 8383 216679 0 0.00 89307 0 0.00 35931 24693 68.72

22 9999 230556 0 0.00 98899 0 0.00 46410 42454 91.48

32 9999 231656 0 0.00 90664 137 0.15 40003 39797 99.49

42 9999 231665 0 0.00 91205 152 0.17 40083 40083 100.00

∞ 9999 231665 125 0.05 44279 87 0.20 13082 13082 100.00

8 9267 230060 0 0.00 130431 0 0.00 64176 0 0.00

10 9953 236690 0 0.00 147814 0 0.00 77409 136 0.18

12 9996 236661 0 0.00 149233 0 0.00 78693 105 0.13

22 10000 235727 0 0.00 149057 0 0.00 78695 113 0.14

32 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15

42 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15

∞ 10000 235729 574 0.24 149059 0 0.00 78695 115 0.15

Table 8.3 Efficacy of floating point filter: The top part contains the results for random points on
the unit circle and the lower part contains the results for random points in the unit square. In each
case we generated 10000 points. The first column shows the precision (= number of binary
places) used for the homogeneous coordinates of the points,the second column contains the
number of distinct points in the input. The other columns contain the number of tests, the
number of exact tests, and the percentage of exact tests performed for the compare, the
orientation, and the side of circle primitive.

Table 8.3 confirms the theoretical considerations from the beginning of the section. For
each test there is a value ofd below which the floating point computation is able to decide
all tests. For the orientation test this value ofd is somewhere between 22 and 32 (we argued
above that the value is 47/2) and for the side of circle test the value is somewhere between 8
and 10 (we ask the reader in the exercises to compute the exactvalue). Also, the percentage
of the tests, where the filter fails, is essentially an increasing function ofd.

The compare, orientation, and side of circle functions seemto be tests of increasing
difficulty. This is easily explained. The compare function decides the sign of a linear
function of the Cartesian coordinates of two points, the orientation function decides the
sign of a quadratic function of the Cartesian coordinates ofthree points, and the side of
circle function decides the sign of a polynomial of degree four in the Cartesian coordinates
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of four points. The larger the degree of the polynomial of thetest, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the unit circle are much more difficult
than the random points in the unit square, in particular, forthe side of circle test. Again this
is easily explained.

For the side of circle test, four almost co-circular points or four exactly co-circular points
are the most difficult input, and for sufficiently larged the situation that|Ẽ| ≤ B and
B > 1 arises frequently. Points on (or near) the unit circle cause no particular difficulty for
the compare and the orientation function. Points on (or near) a segment would prove to be
difficult for the orientation test.

For random points in the unit square the filter is highly effective for all three tests; the
filter fails only for a very small percentage of the tests.

We turn to the question of how much a filter saves with respect to running time. Table 8.4
was produced by the following program.

〈produce efficiency of filter table〉�

forall(p,L1) Lf.append(p.to_point());

GRAPH<rat_point,int> DT;

GRAPH<rat_point,int> DT_no_filter;

GRAPH< point,int> DT_FK;

float T = used_time();

DELAUNAY_TRIANG(Lf,DT_FK);

I.write_table(" & ", used_time(T));

〈efficiency table: check correctness of float computation〉

used_time(T); // to set the timer

DELAUNAY_TRIANG(L1,DT);

I.write_table(" & ", used_time(T));

rat_point::use_filter = 0;

DELAUNAY_TRIANG(L1,DT_no_filter);

I.write_table(" & ", used_time(T));

rat_point::use_filter = 1;

We generated the same listL1 of rat pointsas above. We then converted eachrat point to
a point to obtain a listLf of points. Finally, we computed the Delaunay triangulation in
three different ways: first with the floating point kernel, then with the rational kernel, and
finally with the rational kernel without its floating point filter. The classrat pointhas a static
variableusefilter which controls the use of the floating point filter.

Table 8.4 has to be interpreted with care. Let us first inspectthe individual columns.
The running time with the floating point kernel does not increase with the precision of the

input. Observe, that ford < 22 and points on the unit circle, the input contains a significant
fraction of multiple points (see the second column of Table 8.3) and hence the first three
lines really refer to simpler problem instances. Ford ≥ 22 and points on the unit circle and
for d ≥ 10 and points in the unit square the input contains almost no multiple points and
the running times are independent of the precision. The computation with the floating point



8.7 Floating Point Filters 49

d Float kernel Rational kernel RK without filter

8 0.73 1.12 4.35

10 1.3 2.43 7.8

12 1.85 5.09 11.18

22 2.17 7.93 14.4

32 2.02 7.79 13.29

42 2.01 8.32 15.46

∞ 2∗ 5.09 9.19

8 2.58 3.59 16.33

10 2.8 3.98 18.36

12 2.83 4.04 18.63

22 2.82 4.02 20.51

32 2.86 3.96 20.77

42 2.83 4.01 26.02

∞ 2.83 3.99 33.2

Table 8.4 Efficiency of the floating point filter: The top part contains the results for random
points on the unit circle and the lower part contains the results for random points in the unit
square. The first column shows the precision (= number of binary places) used for the Cartesian
coordinates of the points. The other columns show the running time with the floating point filter,
with the rational kernel with the floating point filter, and with the rational kernel without its
floating point filter. A star in the second column indicates that the computation with the floating
point kernel produced an incorrect result. geometry kernels!running time

kernel is not guaranteed to give the correct result. In fact,it produced an incorrect result in
one of the experiments (indicated by a∗). We come back to this point below.

The running time with the rational kernel and no filter increases sharply as a function of
the precision. This is due to the fact that larger precision means larger integers and hence
larger computation time for the integer arithmetic. We see one exception in the table. For
points on the unit circle the computation on the exact pointsis faster than the computation
with the rounded points. The explanation can be found in Table 8.3. The number of tests
performed is much smaller for exact inputs than for rounded inputs. Observe, that for points
that lie exactly on a circle any triangulation is Delaunay.

The running time for the rational kernel (with the filter) increases only slightly for the
second set of inputs and increases more pronouncedly for thepoints on the unit circle. This
is to be expected because the filter fails more often for the points on the unit circle.
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Let us next compare columns.
The comparison between the last two columns shows the efficiency gained by the floating

point filter. The gains are impressive, in particular, for the easier set of inputs. For random
points in the unit square, the computation without the filteris between five and almost
ten times slower. For random points on a unit circle the gain is less impressive, but still
substantial. The running time without the filter is between two and five times higher than
with the filter.

The comparison between the second and the third column showswhat we might gain by
further improving our filter technology. For our easier set of inputs the computation with
the rational kernel is about 50% slower than the computationwith the floating point kernel.
This increase in running time stems from the computation of the error boundB in the filter.
For our harder set of inputs the difference between the rational kernel and the floating point
kernel is more pronounced. This is to be expected since the rational kernel resorts to exact
computation more frequently for the harder inputs. The floating point kernel produced the
incorrect result in one of the experiments.

We used the following piece of code to check the correctness of the computation with
the floating point kernel. We make a copyDT FK1 of the graph computed with the floating
point kernel, in which everypoint is converted to arat point. This conversion is without
loss of precision. We then check whether the copy is a Delaunay triangulation; the check is
discussed in Section 9.4.3. The check is executed with the rational kernel and is therefore
exact.

〈efficiency table: check correctness of float computation〉�

GRAPH<rat_point,int> DT_FK1;

node v; edge e;

node_array<node> 
opy_of(DT_FK);

forall_nodes(v,DT_FK) 
opy_of[v℄ = DT_FK1.new_node(rat_point(DT_FK[v℄));

forall_nodes(v,DT_FK)

forall_adj_edges(e,v)

DT_FK1.new_edge(
opy_of[v℄,
opy_of[DT_FK.target(e)℄,DT_FK[e℄);

DT_FK1.make_map();

if ( !Is_Delaunay_Triangulation(DT_FK1,NEAREST) ) I.write_table("$^*$");

We were very surprised when we first saw Table 8.4. We expectedthat the floating point
computation would fail more often, not only when the full 52 bits are used to represent
Cartesian coordinates of points. After all, the rational kernel resorts to integer arithmetic
most of the time already for much smaller coordinate length and the difficult set of inputs.

We generated Table 8.5 to gain more insight9. It gives more detailed information ford
ranging from 43 to 52. For our difficult inputs the floating point computation fails whend

9 While writing this section, our work was very much guided by experiments. We had a theory of what floating
point filters can do. Based on this theory we had certain expectations about the behavior of filters. We made
experiments to confirm our intuition. In some cases the experiments contradicted our intuition and we had to
revise the theory.
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d 43 44 45 46 47 48 49 50 51 52

diff C C C F F F F F F F

easy C C C C C C C C C C

Table 8.5 Correctness of floating point computation: A detailed view for d ranging from 43 to
52. The second row corresponds to points on the unit circle and the last row corresponds to
points in the unit square. A “C” indicates that the computation produced the correct result and a
“F” indicates that a incorrect result was produced.

is 46 or larger and for our easy inputs it never fails. Ford < 45 and both sets of inputs it
produces the correct result. Our theoretical considerations give a guarantee only ford < 10.

In the remainder of this section we try to explain this discrepancy. We find the explanation
interesting10 but do not know at present whether it has any consequences forthe design of
floating point filters.

Let D = 2d and consider four pointsa, b, c, andd on the unit circle11. We use points
a′, b′, c′, andd′ with integer Cartesian coordinates⌊ax D⌋, ⌊ayD⌋, . . . . The side of circle
function is the sign of the determinant

∣∣∣∣∣∣∣∣

1 1 1 1
ax bx cx dx

ay by cy dy

a2
x + a2

y b2
x + b2

y c2
x + c2

y d2
x + d2

y

∣∣∣∣∣∣∣∣

as will be shown in Section 9.9. The value of this determinantis a homogeneous fourth
degree polynomialp(ax, ay, . . .). We need to determine the sign ofp(a′

x, a′
y, . . .). Let us

relatep(ax, ay, . . .) andp(a′
x, a′

y, . . .).
We have

a′
x = ⌊ax D⌋ = ax D + δax ,

where−1 < δax ≤ 0, and analogous equalities hold for the other coordinates.Thus

p(a′
x, a′

y, . . .) = p(ax D + δax , ayD + δay, . . .)

= p(ax D, ayD, . . .) + q3(ax D, δax, ayD, δay, . . .)

+ q2(ax D, δax, ayD, δay, . . .) + q1(ax D, δax, ayD, δay, . . .)

+ q0(ax D, δax, ayD, δay, . . .),

whereqi has degreei in theax D, ay D, . . . and degree 4− i in theδax , δay, . . . . Since the
four pointsa, b, c, andd are co-circular, we have

p(ax D, ayD, . . .) = D4 p(ax, ay, . . .) = 0.

10 We all know from our physics classes that the important experiments are the ones that require a new explanation.
11 In the final round of proof-reading we noticed that we used with two meanings. In the sequeld is a point, except

in the final sentence of the section.
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Up to this point our argumentation was rigorous. From now on we give only plausibility
arguments. Since the valuesax D may be as large asD and since the valuesδax are smaller
than one, the sign ofp(a′

x, a′
y, . . .) is likely to be determined by the sign ofq3. Sinceq3 is

a third degree polynomial in theax D we might expect its value to be aboutf · D3 for some
constantf . The constantf is smaller than one but not much smaller. Expansion of the side
of circle determinant shows that the coefficient ofδax in q3 is equal to

∣∣∣∣∣∣

1 1 1
byD cyD dy D

(b2
x + b2

y) · D2 (c2
x + c2

y) · D2 (d2
x + d2

y) · D2

∣∣∣∣∣∣
= D3(cy − ay − by),

where we used the fact thatp2
x + p2

y = 1 for a pointp on the unit circle. We conclude that
f has the same order as they-coordinate of a random point on the unit circle and hence
f ≈ 1/2.

We evaluatep(a′
x, a′

y, . . .) with floating point arithmetic. By Theorem 1, the maximal
error in the computation ofp is g · D4 · 2−53 for some constantg; the actual error will be
less. The argument in the proof of Lemma 5 shows thatg ≤ 28. Thus we might expect that
the floating point evaluation ofp(a′

x, a′
y, . . .) gives the correct sign as long asg · D4 ·2−53 <

f · D3 or d < 53− logg+ log f ≈ 53− 8− 1 = 44. This agrees quite well with Table 8.5.

8.7.5 Conclusion
We discussed the floating point filter in the rational kernel.We have seen that floating point
filters give an exact implementation of geometric primitives at a reasonable cost.

Exercises for 8.7
1 The side of circle predicate determines for a four tuple(a, b, c, d) of points, whetherd

lies to the left, on, or to the right of the circle defined by thefirst three points. Derive a
formula for the side of circle predicate for points given by Cartesian coordinates and for
points given by homogeneous coordinates.

2 (Continuation) Derive a filter for both versions of the sideof circle predicate according
to Tables 8.1 and 8.2. Compare your results with the implementation of the side of circle
predicate forrat points.

3 Dynamic Filter: Derive a formula to computeerrE from Ẽ, errA, anderrB for E = A·B.
4 In 〈produce efficacy of filter table〉 we generated points by truncating the Cartesian co-

ordinates toD bits, i.e., we generatedrat pointsby

rat point(integer(p.x
oordD()*D),integer(p.y
oordD()*D),1).

What will change if we generate the points by

rat point(integer(p.x
oordD()*D),integer(p.y
oordD()*D),D).

instead? Predict and then experiment.
5 Produce tables similar to Tables 8.3 and 8.4 for points thatlie on a segment. Predict the

outcome of the experiment before making it.
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8.8 Safe Use of the Floating Point Kernel

The discussion of floating point filters in the previous section paves the way for a safe use
of the floating point kernel. The following statement is trivial but nevertheless important.

It is safe to use the floating point kernel if it is guaranteed to give the correct result.
Lemma 4 gives a sufficient condition for the correctness of a floating point computation.

If all arguments of an expression are integers, if the expression is a polynomial, i.e., uses
only operations addition, subtraction, and multiplication, and if B < 1 then the evaluation
with floating point arithmetic gives the correct sign of the expression. We have seen in
Section 8.7.4 that the conditionB < 1 is guaranteed if the arguments of the expression
are sufficiently small; of course, the meaning of sufficiently small depends on the test. The
following lemma gives information.

Lemma 5 Assume that all points have integer Cartesian coordinates whose absolute value
is less than2L . Then the floating point kernel correctly evaluates the compare function if
L ≤ 50, correctly evaluates the orientation function if L≤ 24, and correctly evaluates the
side of circle function if L≤ 11.

Proof We give the proof for the side of circle function. Leta, b, c andd be points. We use
axanday to denote the Cartesian coordinates ofa and similarly for the other points.

The side of circle function is the sign of the determinant
∣∣∣∣∣∣∣∣

1 1 1 1
ax bx cx dx
ay by cy dy

ax2 + ay2 bx2 + by2 cx2 + cy2 dx2 + dy2

∣∣∣∣∣∣∣∣

as will be shown in Section 9.9.
If a is equal to the origin the determinant above reduces to a 3× 3 determinant. Ifa is

not equal to the origin, we may shifta into the origin without changing the side of circle
function. Shiftinga into the origin replaces any pointp by the pointO + (p − a).

This leads to the following program to compute the side of circle function. In this pro-
gram we indicate the bit length of all intermediate results as comments.

int side of 
ir
le(
onst point& a, 
onst point& b, 
onst point& 
,


onst point& d)

{ // 
omments indi
ate bit lengths of values if 
oordinates have

// at most L bits.

double ax = a.x
oord(); // L bits

double ay = a.y
oord();

double bx = b.x
oord() - ax; // L + 1 bits

double by = b.y
oord() - ay;

double bw = bx*bx + by*by; // 2L + 3 bits

double 
x = 
.x
oord() - ax; // L + 1 bits

double 
y = 
.y
oord() - ay;

double 
w = 
x*
x + 
y*
y; // 2L + 3 bits
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double D1 = 
y*bw - by*
w; // 2L + 3 + L + 1 + 1 = 3L + 5 bits

double D2 = bx*
w - 
x*bw; // 3L + 5 bits

double D3 = by*
x - bx*
y; // 2L + 3

double dx = d.x
oord() - ax; // L + 1 bits

double dy = d.y
oord() - ay;

double D = D1*dx + D2*dy + D3*(dx*dx + dy*dy);

// 3L + 5 + L + 1 + 2 = 4L + 8 bits

if (D != 0)

return (D > 0) ? 1 : -1;

else

return 0;

}

The comments show that the maximal number of bits required for the determinantD is
4L +8. ThusD can be represented provided that 4L +8 ≤ 53; observe that the mantissa of
a double precision floating point number consists of 53 bitsm0, m1, . . . , m52, of which the
bit m0 is not stored, since it is always 1 (except if the number is zero or underflow occurred).

The computation of, for example, Delaunay diagrams uses only the compare, orientation,
and side of circle functions applied to input points and hence is safe as long as all input
points have integer Cartesian coordinates whose absolute value is less than 211 = 2048.

If the coordinates of the inputs come from a larger range, it is frequently possible to
round the input coordinates to a smaller precision without affecting the meaning of the
computation, for example, if the coordinates come from a physical measurement whose
precision is limited.

The following functiontruncateis useful in this situation. It takes a listL0 of points and
an integerprecand returns a listL of points. If all points inL0 are equal to the origin,L
is equal toL0. So assume otherwise and letM be the smallest power of two larger than
the absolute value of all coordinates of all points inL0, and letP = 2prec. For each point
p = (x, y) the point(⌊(x/M) · P⌋ · (M/P), ⌊(y/M) · P⌋ · (M/P)) is added toL. Observe
that x/M (and similarlyy/M) is less than 1 and hence(x/M) · P is less than 2prec. The
multiplication byM/P (which is a power of two) moves the binary point for all pointsin
the same way. Thus the theorem above applies to the modified points (with L = prec).

The implementation is simple. We first determine the maximumabsolute value of any
coordinate. If it is zero we are done. Otherwise, we setM to the smallest power of two
larger than any absolute value. This is easily done using thefunctionsfrexpandldexpfrom
the math-library. Recall thatfrexp(M, ∗exp) assigns toexp the exponent of the smallest
power of two larger thanM and thatldexp(1, k) returns 2k.

〈 truncate.c〉+�

list<point> trun
ate(
onst list<point>& L0, int pre
)

{ double M = 0;

point p;

forall(p,L0)

M = leda_max(M,leda_max(fabs(p.x
oord()),fabs(p.y
oord())));



8.9 A Glimpse at the Higher-Dimensional Kernel 55

if ( M == 0 ) return L0;

int exp;

frexp(M,&exp); // 2^(exp - 1) <= max < 2^exp

M = ldexp(1,exp); // round max to next power of two

double C = ldexp(1,pre
 - exp); // P/M

double C_inv = ldexp(1,exp - pre
); // M/P

list<point> L;

forall(p,L0) L.append(point(floor(p.x
oord() * C)*C_inv,

floor(p.y
oord() * C)*C_inv));

return L;

}

There is also a version of truncate which operates on a list ofrat points. It simply converts
everyrat point p to a point by callingp.to point( ), then applies the function above to the
resulting list of points, and finally converts everypoint q in the resulting list to arat point
by calling the constructorrat point(q).

8.9 A Glimpse at the Higher-Dimensional Kernel

The higher-dimensional kernel provides points, vectors, directions, hyperplanes, segments,
lines, affine transformations, and operations connecting these types ind-dimensional Eu-
clidean space for arbitrary finited. Points have rational coordinates, hyperplanes have ratio-
nal coefficients, and analogous statements hold for the other types. All geometric primitives
are exact, since they are implemented using rational arithmetic. The computational basis
for the kernel is provided by the classes integer, integer vector, and integer matrix discussed
in Chapter 4. We refer the reader to [MMN+98] for details. The higher-dimensional kernel
is available as an LEP and was developed as part of the CGAL project.

8.10 History

The geometric part of LEDA evolved slowly and not without pain. We started with plane
geometry in 1991. We introduced classes point, line, and segment and some algorithms op-
erating on them, e.g., line segment intersection, Voronoi diagram construction, and convex
hull construction. The programs provided in 1991 were not robust; on some inputs they
failed by either delivering a wrong result or by crashing. The non-robustness of our original
implementations was mainly due to three reasons:

• The programs were only designed to handle so-called non-degenerate inputs, e.g., the
line segment intersection program assumed that no two inputsegments overlapped and
the convex hull program assumed that the first three points were not collinear.
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• Floating point arithmetic was used as the underlying arithmetic. We have seen in
Section 8.6 that floating point arithmetic can lead to bizarre behavior of geometric
objects.

• We had no checkers for geometric objects and hence were limited in our ability to test
our algorithms.

Based on the bad experiences made by us and many others, we andothers laid the theoret-
ical foundations for correct and efficient implementationsof geometric algorithms [FvW96,
For96, CDR92, Yap93, Cla92, MN94b, BMS94a, BMS94b, BFS98, BRMS97, MNS+96,
OLPT97, BR96, YD95, Sch, BEPP97].

Starting in 1994 we reimplemented the geometric classes andalgorithms and simultane-
ously extended them considerably. We introduced the rational kernel with its built-in float-
ing point filter, we redesigned all geometric algorithms andfreed them from the assumption
of non-degenerate inputs, and we added many new algorithms and checkers.

8.11 LEDA and CGAL

In 1997 the geometry effort of LEDA became part of project CGAL (= Constructing a Ge-
ometry Algorithms Library), a research project carried outby ETH Zürich, Freie Universität
Berlin, INRIA Sophia Antipolis, Martin-Luther Universit¨at Halle-Wittenberg, Max-Planck-
Institut für Informatik and Universität des Saarlandes,RISC Linz, Tel-Aviv University, and
Universiteit Utrecht, and funded by the European Union. Theproject was coordinated by
Mark Overmars from Utrecht and ran for twenty-four months. The successor project is
called GALIA and will be coordinated by the Max-Planck-Institut.

One of the goals of the projects is to build a comprehensive library for computational
geometry called CGAL (Computational Geometry Algorithms Library). CGAL [CGA]
goes much beyond LEDA geometry. The distinctive features ofCGAL are:

• A geometry kernel [FGK+96] that can be instantiated with any number type. In LEDA
we only have a floating point kernel and a rational kernel. It would be a non-trivial
task to build a kernel based on the number typereal. In CGAL this is easily possible.

• Geometric algorithms that are decoupled from the geometry kernel and can be used
with any geometry kernel. Observe that LEDA’s geometric algorithms are tied to the
LEDA kernels and also to LEDA’s graphs and data structures. CGAL achieves the new
flexibility by the use of so-calledgeneric programming. In this paradigm the kernel
and the data structures are specified as template arguments of any geometric algorithm.
The algorithm can then be instantiated with different kernels and data structures.

• A large variety of geometric data structures and algorithmswhich will go beyond what
is offered by LEDA.
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• An open architecture that makes it easy to import modules from other libraries.

The development of CGAL will not make LEDA geometry obsolete. The systems can
be used side by side and both systems offer functionality which the other system does not
have.
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length and distance, 20–21
orientation, 14–18
sidedness, 18–20

geometric transformations, 22–25
geometry algorithms

angle order, 21
convex hull with floating point arithmetic, 30
Delaunay diagram, 46

geometry kernels,see alsogeometric objects, 2–57
basic geometric objects, 4–13
conversion between kernels, 9
danger of floating point kernel, 30–33
floating point filter,seefloating point filter, 34
floating point kernel, 2
geometric primitives, 14–22
higher-dimensional, 55
kernel independance, 27–30
rational kernel, 2

efficiency,seefloating point filter
safe use of floating point kernel, 53–55

handle type
use in geometry, 7

higher-dimensional geometry, 55
homogeneous coordinates, 4

identity
of geometric objects, 7

immutability of geometric objects, 10
INT TYPE, 4
intersections of geometric objects, 22

kernel independance, 27

labels of geometric objects, 9
leftturn, 14
length, 7, 20
line, seegeometry objects, 6
linear order

for points, 8

machine precision, 37
map(data type)

for geometric objects, 9

n gon, 27
negative orientation, 14
negative side, 18

orientation
determinant, 15
in higher dimensions, 16
in space, 17
in the plane, 14

orientation, 14

point,seegeometry objects
Cartesian coordinates, 4
construction, 5
conversion between kernels, 9
equality, 7
homogeneous coordinates, 4
identity, 7
immutability, 10
input and output, 10
linear order, 8
orientation, 14
point rep, 8
print statistics, 45
random points, 25
representation, 8
truncation of precision, 10
W, 4
X, 4
xcoord, 4
Y, 4
ycoord, 4

point on circle, 25
polygon

generators, 27
positive orientation, 14
positive side of geometric object, 18
pre-compilation, 30
precision of geometric representation, 54
print statistics, 45

randompoint in disc, 26
randompoint in square, 25
randompoint in unit square, 26
randompoint near circle, 26
randompoint on circle, 26
rat circle,seecircle
rat line, seeline
rat point,seepoint
rat ray,seeray
rat segment,seesegment
RAT TYPE, 4
rat vector,seevector
rational geometry kernel,seegeometry kernels
ray,seegeometry objects, 6

drawing a ray, 12
reflections, 23
reg n gon, 27
region of, 19
rightturn, 14
rotations, 23
running time experiments

floating point filter, 49

safe use of floating point kernel, 53
scalar product, 7
segment,seegeometry objects, 5
side of, 18
side of circle, 53
sidedness, 18–20
sign of an expression, 34
signed area of a triangle, 14
simplex, 18

transformations (geometric), 22–25
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translations, 23
truncate, 54

unbounded region wrt. geometric object, 19

vector, 6
verzopfte Geraden, 31
volume of a simplex, 18

window

drawing a geometric object, 10

drawing a ray, 12

≫, 10

≪, 10

mouse input of geometric objects, 11


