
Contents

6 Graphs and their Data Structures page2
6.1 Getting Started 2
6.2 A First Example of a Graph Algorithm: Topological Ordering 6
6.3 Node and Edge Arrays and Matrices 7
6.4 Node and Edge Maps 11
6.5 Node Lists 13
6.6 Node Priority Queues and Shortest Paths 15
6.7 Undirected Graphs 19
6.8 Node Partitions and Minimum Spanning Trees 21
6.9 Graph Generators 25
6.10 Input and Output 31
6.11 Iteration Statements 33
6.12 Basic Graph Properties and their Algorithms 36
6.13 Parameterized Graphs 42
6.14 Space and Time Complexity 43

Bibliography 45

Index 46

1

6

Graphs and their Data Structures

The graph data type is one of the central data types in LEDA. Inthe first two sections we give
a gentle introduction to it. Each of the remaining sections is devoted to a particular aspect
of the graph data type: node and edge arrays, node and edge maps, node lists, node priority
queues, node partitions, undirected graphs, graph generators, input and output, iteration
statements, basic graph properties, parameterized graphs, and time and space complexity.

6.1 Getting Started

A directed graph G= (V, E) consists of a setV of nodes or vertices and a setE of
edges. Figure 6.1 shows a directed graph. Every edgee has asource node source(e) and a
target node target(e). In our figures we draw an edgeeas an arrow starting atsource(e) and
ending attarget(e). We refer to the source and the target of an edge as theendpointsof the
edge. An edge is said to beincidentto its endpoints. We also say that an edgee is an edge
out of source(e) andinto target(e). The edges out ofv are also called the edgesadjacentto
v. For an edgee with source nodev and target nodew we will write (v, w).

The declarations

graph G;

node v, w;

edge e, f;

declare variablesG, v, w, e and f of typegraph, node, andedge, respectively. The values
of these variables are graphs, nodes, and edges, respectively; G is initialized to the empty
graph, i.e., a graph with no node and no edge, and the initial values ofv, w, e, and f are
unspecified (since nodes and edges are pointer types). The special valuenil is not a node or

2

6.1 Getting Started 3

0 1

23

Figure 6.1 A directed graph.

edge of any graph and can be used to initialize nodes and edgeswith a definite value, as, for
example, in

node v = nil;

Graph algorithms frequently need to iterate over the nodes and edges of a graph and the
edges incident to a particular node. The iteration statement

forall nodes(v,G){ }

iterates over all nodes of a graph, i.e., the nodes ofG are successively assigned tov and the
body of the loop is executed once for each value ofv. Similarly,

forall edges(e,G){ }

iterates over all edgese of G. There are three ways to iterate over the edges incident to a
nodev. The iteration statements

forall out edges(e,v){ }

forall adj edges(e,v){ }

iterate over all edgese out ofv, i.e, all edges whose source node is equal tov,

forall in edges(e,v) { }

iterates over all edgese into v, i.e., over all edges whose target node is equal tov, and

forall inout edges(e,v){ }

iterates over all edgese into and out ofv. So

int s = 0;

forall edges(e,G) s++;

computes the number of edges ofG. This number is also available asG.numberof edges().
In many situations it is useful to associate additional information with the nodes and

edges of a graph. LEDA offers several ways to do so. We briefly discussnode arrays, edge
arrays, andparameterized graphs. We will give more details and also discuss node and
edge maps later.

4 Graphs and their Data Structures

The declarations

node array<string> name(G);

edge array<int> length(G,1);

introduce arraysnameand length indexed by the nodes and edges of theG, respectively.
The entries ofnameare strings and the entries oflengthare integers. All entries ofname
are initialized to the empty string (= the default value ofstring) and all entries oflengthare
initialized to 1. Ifv is a vertex ofG ande is an edge ofG we may now write

name[v℄ = "Saarbrue
ken";

length[e℄ = 5;

The following piece of code numbers the nodes of a graph with the integers 0 ton − 1,
wheren is the number of nodes ofG. As is customary in the literature on graph algorithms
we will usually writen for the number of nodes andm for the number of edges.

node array<int> number(G);

int
ount = 0;

forall nodes(v,G) number[v℄ =
ount++;

A second method to associate information with nodes and edges is to use so-calledpa-
rameterized graphs. The declaration

GRAPH<string,int> H;

declaresH as a parameterized graph where a string variable is associated with every vertex
of H and an integer is associated with every edge ofH . We may now write

H[v℄ = "Saarbrue
ken";

H[e℄ = 5;

to associate the string ”Saarbruecken” with v and the integer 5 withe. Of course, both
operations are only legal ifv ande actually denote a vertex and edge ofH , respectively.

There is an important difference between the two methods of associating information
with nodes and edges. Node and edge arrays work only for static graphs, i.e., when a new
node or edge is added to a graph it will not have a corresponding entry in the node and edge
arrays of the graph (in Section 6.3 this condition will be relaxed somewhat). Parameterized
graphs, on the contrary, are fully dynamic. Information canbe associated with new edges
and nodes without any restriction. In this sense, parameterized graphs are more flexible.
Also, the access to the information stored in the nodes and edges of a parameterized graph
is somewhat more efficient than the access to the informationstored in a node or edge array.
On the other hand, the great strength of node and edge arrays is that an arbitrary number of
them can be defined for a graph.

It’s time to learn how to build non-trivial graphs. A graph can be altered by adding and
deleting nodes and edges. For example,

graph G;

G.new node();

G.new node();

node v;

forall nodes(v,G)
out << G.outdeg(v);

6.1 Getting Started 5

makesG a graph with two nodes and no edge and then outputs the outdegree1 of all nodes,
i.e., outputs the number 0 twice. In order to add an edge we need to specify its source and
its target. For example,

node w = G.first node();

G.new edge(w,G.su

 node(w));

will add an edge whose source and target are the first and second node ofG respectively;
note that LEDA internally orders the nodes of a graph in the order in which they were added
to G. G.first node() returns the first node in this ordering andG.succnode(w) returns
the node added immediately afterw. There is a more interesting way to add edges. The
operationG.newnode() does not only add a new node to the graphG but also returns the
new node. We can remember the new node in a variable of typenode. So

graph G;

node v0 = G.new node();

node v1 = G.new node();

node v2 = G.new node();

node v3 = G.new node();

G.new edge(v0,v1); G.new edge(v0,v2);

G.new edge(v1,v2); G.new edge(v1,v3);

creates the graph of Figure 6.1.

Let us do something more ambitious next. Suppose that we created a graphG and that
we want to make an isomorphic copyH of it. Moreover, we want every node and edge ofH
to know its original inG. Here is an elegant way to do this. We use parameterized graphs,
node arrays and edge arrays.

void CopyGraph(GRAPH<node,edge>& H,
onst graph& G)

{ H.
lear(); // reset H to the empty graph

node array<node>
opy in H(G);

node v;

forall nodes(v,G)
opy in H[v℄ = H.new node(v);

edge e;

forall edges(e,G)

H.new edge(
opy in H[sour
e(e)℄,
opy in H[target(e)℄,e);

}

We defineH as a parameterized graph where a node can be associated with each node and
an edge can be associated with each edge. We also define a node arraycopyin H for G that
allows us to associate a node with every node ofG. We then iterate over the nodes ofG.
For every nodev of G the operationH.newnode(v) adds a new node toH and associates
v with the new node. Note that thenewnodeoperation for a parameterized graph has an
argument, namely the information that is to be associated with the new node. The operation
H.newnode(v) also returns the new node. We remember it incopyin H[v]. The overall
effect of theforall nodes-loop is to giveH as many nodes asG and to establish bidirectional

1 The outdegree of a vertexv is the number of edgese with source(e) = v.

6 Graphs and their Data Structures

v w

G H

copy in H[v]

H [w]

Figure 6.2 A graphG and an isomorphic copyH of it. Each nodev of G knows its partner inH
throughcopyin H[v] and each nodew of H knows its partner inG throughH [w].

links between the nodes ofG and H : in particular, we haveH [copyin H[v]] = v for all
nodesv of G andcopyin H[H [w]] = w for all nodesw of H , see Figure 6.2. It is now easy
to add the edges. We iterate over the edges ofG. For every edgee we add an edge toH
that runs fromcopyin H[source(e)] to copyin H[target(e)] and also makee the information
associated with the new edge. Observe thatH.newedge(x, y, inf) adds an edge from node
x to nodey and associates the informationinf with it.

Exercise for 6.1
1 Write a program that makes a copy of a graphG with all edges reversed, i.e., for every

edgee = (v, w) in G there should be an edge from the copy ofw to the copy ofv in H .

6.2 A First Example of a Graph Algorithm: Topological Ordering

A graph is calledacyclic if it contains no cycle. A cycle is a path that closes on itself,
i.e., a sequencee0, e1, . . . , ek of edges such thattarget(ei) = source(ei+1 modk+1) for all
i , 0 ≤ i ≤ k. The graph in Figure 6.1 is acyclic. The nodes of an acyclic graph can be
numbered such that all edges run from smaller to higher numbered nodes. The function

bool TOPSORT(
onst graph& G, node array<int>& ord);

returns true ifG is acyclic and false ifG contains a cycle. In the former case it also returns
a topological ordering of the nodes ofG in ord.

The procedure works by repeatedly removing nodes of indegree zero and numbering the
nodes in the order of their removal.

In the example of Figure 6.1 we first number node 0. Removing node 0 makes the inde-
gree of node 1 zero and hence this node is numbered next. Removal of node 1 makes the
indegree of node 2 zero,

For reasons of efficiency we keep track of the current indegree of all nodes and also
maintain the list of nodes whose current indegree is zero.

6.3 Node and Edge Arrays and Matrices 7

#in
lude <LEDA/graph.h>

#in
lude <LEDA/queue.h>

bool pro
edure TOPSORT(
onst graph& G,node array<int>& ord)

{ 〈initialization〉
〈removing nodes of indegree zero〉

}

In the initialization phase we determine the indegree of allnodes and initialize a queue of
nodes of indegree zero.

〈initialization〉�

node_array<int> INDEG(G);

queue<node> ZEROINDEG;

node v,w;

forall_nodes(v,G)

if ((INDEG[v℄ = G.indeg(v)) == 0) ZEROINDEG.append(v);

In the main phase of the algorithm we consider the nodes of indegree zero in turn. When
a vertexv is considered we number it and we decrease the indegrees of all adjacent nodes
by one. Nodes whose indegree becomes zero are added to the rear of ZEROINDEG.

〈removing nodes of indegree zero〉�

int
ount = 0;

node_array<int> node_ord(G);

while (!ZEROINDEG.empty())

{

v = ZEROINDEG.pop();

node_ord[v℄ = ++
ount;

forall_out_edges(e,v)

{ node w = G.target(e);

if (--INDEG[w℄ == 0) ZEROINDEG.append(w);

}

}

return (
ount == G.number_of_nodes());

TOPSORTconsiders every edge ofG only once and hence has running timeO(n + m).
In the section on depth-first search (see Section 7.3) we willsee an alternative program for
topological sorting.

6.3 Node and Edge Arrays and Matrices

Node and edge arrays and matrices are the main means of associating information with the
nodes and edges of a graph. The declarations

node array<E> A(G);

node array<E> B(G,E x);

8 Graphs and their Data Structures

0

1

A B

0

1

0

1

Figure 6.3 The realization of node arrays: Node arraysA andB are realized by regular arrays.
The nodes of a graph are numbered and the node numbers are usedas the indices into the arrays.

declare node arraysA and B for the nodes ofG, respectively. The elements ofA are
initialized with the default value ofE and the elements ofB are initialized tox. Edge
arrays are declared in a similar way. So

node array<bool> visited(G,false);

declares a node arrayvisitedand initializes all its entries to false. The cost of declaring a
node array forG is proportional to the number of nodes ofG and the cost of declaring an
edge array is proportional to the number of edges.

Node and edge arrays are a very flexible way of associating information with the nodes
and edges of a graph: any number of node or edge arrays can be defined for a graph and
they can be defined at any time during execution.

Node and edge arrays are implemented as follows. The nodes and edges of a graph are
numbered in the order of their construction, starting at zero. We call the number of a node
or edge itsindex. The index of a nodev or edgee is available asindex(v) and index(e),
respectively. Node and edge arrays are realized by standardarrays. The node and edge
indices are used to index into the arrays, see Figure 6.3.

The access to an entryA[v] of a node arrayA (similarly, edge arrays) requires two
accesses to memory, first the structure representing the node v is accessed to determine
index(v) and second the entryA[index(v)] is accessed.

When the number of node and edge arrays that are needed for a graph is known, the
following alternative is possible. Assume thatn slotsnode arrays andeslotsedge arrays are
needed. The constructor

graph G(int n slots, int e slots);

constructs a graph where the structures representing nodeshave room for the entries of
n slotsnode arrays and the structures representing edges have roomfor the entries ofeslots
edge arrays. In order to use one of the slots for a particular array, one writes:

6.3 Node and Edge Arrays and Matrices 9

0 A[0] B[0]

1 A[1] B[1]

Figure 6.4 The alternative realization of node arrays: In a graphG constructed by
graph G(2, 0), every node has room for the entries of two node arrays.

node array<E> A;

A.use node data(G, E x);

This will reserve one of the slots in the node structures forA and initialize all entries of the
array tox. If no slot is available, the node array is realized by a standard array. Figure 6.4
illustrates the alternative. The alternative realizationof node and edge arrays is frequently,
but not always, faster (see the next section), as only one access to memory is needed to
access an entry of a node or edge array, but it is also less convenient, as the number of node
and edge arrays that can use the alternative is fixed at the time of the construction of the
graph.

We recommend that you experiment with the alternative design during the optimization
phase of program development.

Node and edge arrays, as discussed so far, are primarily useful for static graphs.

node array<int> dist(G);

node v = G.new node();

dist[v℄ = 5;

is illegal and produces the error message “nodearray[v] not defined forv”. We next discuss
node and edge arrays for dynamic graphs. We have to admit, though, that we hardly use
node and edge arrays for dynamic graphs ourselves. We prefernode and edge maps and
parameterized graphs.

node array<E> A(graph G, int n, E x);

declaresA as a node array of sizen for the nodes ofG and initializes all entries ofA to x;
x must be specified even if it is the default value ofE.

The constructor requires thatn ≥ |V |. The arrayA has room forn − |V | additional
nodes, i.e., for the nodes created by the nextn−|V | calls ofG.newnode(). In this way one

10 Graphs and their Data Structures

can have the convenience and efficiency of node arrays also for dynamic graphs. Deletion
of nodes is no problem for node arrays.

The following doubling and halving strategy is useful for node and edge arrays on dy-
namic graphs. Suppose thatn0 is the current number of nodes ofG and that we want to
create a node arrayA for G. We makeA an array of size 2n0 and initialize two counters
inscountanddelcountto zero. We incrementinscountfor everyG.newnode() operation
anddelcount for every G.delnode() operation. Wheninscount reachesn0 or delnode
reachesn0/2 we allocate a new arrayB of size 2(n0 + inscount− delcount) and move the
contents ofA to B. This scheme ensures that node arrays are always at least 25%utilized
and that the overhead for moving information around increases the running time by only a
constant factor (since the cost of moving isO(n0) and since there are�(n0) newnodeand
delnodeoperations between reorganizations of the node array).

We next turn to node matrices. The definition

node matrix<int> M(G,0);

definesM as a two-dimensional matrix indexed by pairs of nodes ofG and initializes all
entries ofG to zero. This takes timeO(n2), wheren is the number of nodes ofG. The
space requirement for a node matrix is quadratic in the number of nodes. So they should
only be used for small graphs.

M(v,w) = 1;

sets the entry for pair(v, w) to one.
A node matrix can also be viewed as a node array of node arrays,i.e., the typenodematrix<E>

is equivalent to the typenodearray<nodearray<E> >. This view is reflected in the opera-
tion

M[v℄;

which returns a node array.
We give an example of the use of node matrices. The following three-liner checks

whether a graph is bidirected (also called symmetric), i.e., whether for every edgee =

(v, w) the reversed edge(w, v) is also present.

node matrix<bool> M(G,false);

forall edges(e,G) M(G.sour
e(e),G.target(e)) = true;

forall edges(e,G)

{ if (!M(G.target(e),G.sour
e(e))) error handler(1,"not bidire
ted"); }

The program above has running time2(n2 + m), 2(n2) for initializing M and2(m) for
iterating over all edges twice. As we will see later there is also anO(m) algorithm for the
same task. It is available as

bool Is Bidire
ted(G);

6.4 Node and Edge Maps 11

6.4 Node and Edge Maps

Nodes and edge maps are an alternative to node arrays. The declarations

node map<E> A(G);

node map<E> B(G,E x);

declare node mapsA andB for the nodes ofG, respectively. The elements ofA are initial-
ized with the default value ofE and the elements ofB are initialized tox. Edge maps are
declared in a similar way. So

node map<bool> visited(G,false);

declares a node mapvisitedand initializes all its entries to false.

What is the difference between node and edge arrays and node and edge maps?Node
and edge maps use hashing (see Section 5.1.2). The declaration of a node or edge map has
constant cost (compare this to the linear cost for node and edge arrays) and the access to an
entry of a node or edge map has constant expected cost.

Table 6.1 compares three ways of associating information with the nodes of a graph, the
standard version of node arrays, the version of node arrays that makes use of a data slot
in the node, and node maps. The table was produced by the program below. We give the
complete program because the numbers in the table are somewhat surprising. We create a
graph withn nodes and no edge and iterateR times over the nodes of the graph. In each
iteration we access the information associated with the node. We iterate over the nodes once
in their natural order and once in random order.

〈nodearrays versusnodemaps〉�

main(){

〈node arrays versus node maps: read n and R〉

graph G; graph G1(1,0); node v; int j;

random_graph(G,n,0); random_graph(G1,n,0);

float T = used_time();

float TA, TB, TM, TAP, TBP, TMP;

{ node_array<int> A(G,0);

for (j = 0; j < R; j++)

forall_nodes(v,G) A[v℄++;

TA = used_time(T);

}

{ node_array<int> A;

A.use_node_data(G1,0);

for (j = 0; j < R; j++)

forall_nodes(v,G1) A[v℄++;

TB = used_time(T);

}

{ node_map<int> A(G,0);

for (j = 0; j < R; j++)

forall_nodes(v,G) A[v℄++;

TM = used_time(T);

12 Graphs and their Data Structures

Linear scan Random scan

array node data map array node data map

3.25 4.39 3.48 8.96 5.9 9.56

Table 6.1 Node arrays versus node maps: The table shows the output of the program
nodearraysversusnodemaps.c. We used a node array (columns one and four), a node data slot
(columns two and five), and a node map (columns three and six).We used a graph with one
million nodes andR = 10. The nodes were scanned in linear order and in random order. The
nodearray versusnodemaps demo allows you to perform your own experiments.

}

array<node> perm(n); array<node> perm1(n);

int i = 0;

forall_nodes(v,G) perm[i++℄ = v;

i = 0;

forall_nodes(v,G1) perm1[i++℄ = v;

perm.permute(); perm1.permute();

used_time(T);

{ node_array<int> A(G,0);

for (j = 0; j < R; j++)

for(i = 0; i < n; i++) A[perm[i℄℄++;

TAP = used_time(T);

}

{ node_array<int> A;

A.use_node_data(G1,0);

for (j = 0; j < R; j++)

for(i = 0; i < n; i++) A[perm1[i℄℄++;

TBP = used_time(T);

}

{ node_map<int> A(G,0);

for (j = 0; j < R; j++)

for(i = 0; i < n; i++) A[perm[i℄℄++;

TMP = used_time(T);

}

〈node arrays versus node maps: report running times〉
}

In the random scan over the nodes, node data slots outperformnode arrays which in turn
outperform node maps. This was to be expected, since node data slots avoid one level of
indirection, and since maps have the overhead of hashing. Maps are only slightly slower
than arrays due to our very efficient realization of maps, seeSection 5.1.2. In the linear
scan the situation is different. Node data slots are the slowest and maps are even closer
to arrays. We believe that this is due to caching. We compare node arrays and node data
slots. When node data slots are used, the node structures arelarger, and hence fewer of

6.5 Node Lists 13

them fit into a cache line. Node arrays use the cache more effectively in the linear scan
because they can use one cache line for node structures and one cache line for the array
itself and only the cache lines for the array itself are written. Thus the number of write-
faults reduces. A similar explanation applies to node maps.Since it requires knowledge of
the implementation of maps, we do not give it here.

We recommend to use node and edge maps in situations where a sparse map on nodes or
edges, respectively, has to be maintained. If more than halfof the entries are actually used,
it is better to use node arrays.

We next turn to two-dimensional node maps. The definition

node map2<int> M(G,0);

definesM as a two-dimensional map indexed by pairs of nodes ofG and initializes all
entries ofG to zero. This takes constant time.

M(v,w) = 1;

sets the entry for pair(v, w) to one. The space requirement for a two-dimensional node
map is proportional to the number of entries used.

We give an example for the use of two-dimensional node maps. The following three-liner
checks whether a graph is bidirected (also called symmetric), i.e., whether for every edge
e = (v, w) the reversed edge(w, v) is also present.

node map2<bool> M(G,false);

forall edges(e,G) M(G.sour
e(e),G.target(e)) = true;

forall edges(e,G)

{ if (!M(G.target(e),G.sour
e(e))) error handler(1,"not symmetri
"); }

The program above has running timeO(m), O(1) for initializing M andO(m) for iterating
over all edges twice. The space requirement isO(m). Observe, that this is much better than
what we obtained with node arrays in the preceding section ifm ≪ n2.

Exercises for 6.4
1 Write a program that checks whether a graph is symmetric and, if so, computes an edge

arrayreversalthat stores for each edge a reversal of the edge. The source ofreversal[e]
must be equal to the target ofe and vice versa.

2 Extend the program of the previous item so that it can also handle parallel edges. We
wantreversal[reversal[e]] = e for all edgese.

3 Extend the program of the previous item so that it can also handle self-loops. We want
reversal[e] 6= e for all e.

6.5 Node Lists

A node list is a combination of a doubly linked list of nodes and a node map which gives,
for each node, its position in the list, see Figure 6.5.A node can be contained in a node list

14 Graphs and their Data Structures

a d

a b c d

c

Figure 6.5 Node lists: A node list for a graph with four nodesa, b, c, andd. The node list
contains the nodesa, c, andd in this order. The top part of the figure shows a doubly linked list
and the lower part of the figure indicates a node map. The node map maps each node contained
in the node list to the list item containing the node.
In asnodelist a singly linked list is used instead of a doubly linked list.

at most once. It can be contained in several node lists, but in each particular node list it can
appear only once.

node list L(G);

creates a node list for the graphG and initializes it with the empty list. Node lists offer all
the usual list operations, e.g.,append, push, pop, insert, head, tail, pred, succ, cyclicpred,
cyclicsucc, empty, and the possibility to iterate over the nodes in the list. Inaddition, node
lists offer constant time member ship test.

The related data typesnodelist is the combination of a singly linked list and a node map.
It offers all the operations of singly linked lists plus constant time member ship test.

A prime example for the use of node lists is breadth-first search. The goal is to explore
the nodes of a graph starting from some source nodes in order of increasing distance from
s. The distance of a nodev from s is the smallest number of edges in a path froms to v.

The following program realizes breadth-first search. We collect the nodes ofG in a
snodelist Q in the order in which they are reached. We always explore the edges out of
the first unprocessed node inQ. Whenever a node is encountered that has not been reached
before (= is not inQ) we add it to the rear ofQ.

snode list Q;

Q.append(s);

node v = Q.head();

while (v != nil)

{ edge e;

forall adj edges(e,v)

{ node w = G.target(e);

if (!Q.member(w)) Q.append(w);

}

v = Q.su

(v);

}

We will discuss breadth-first search in more detail in the chapter on graph algorithms.

6.6 Node Priority Queues and Shortest Paths 15

Exercises for 6.5
1 Give an implementation ofsnodelist that uses anodemap<node> succnode, two nodes

first nodeandlastnode, and an integersize.
2 Give an implementation ofnodelist that uses two maps from nodes to nodes, namely,

succnodeandprednode, two nodesfirst nodeandlast node, and an integersize.

6.6 Node Priority Queues and Shortest Paths

The declaration

node pq<P> Q(G);

declares anode priority queue Qwith priority type P for G and initializes it to the empty
queue. A node priority queue with priority typeP is a partial function from the nodes ofG
to the setP. The setP must be linearly ordered. IfQ(v) is defined we call it the priority of
nodev. We use domQ to denote the set of nodes for whichQ(v) is defined, thedomainof
Q. Node priority queues allow us to manipulate the functionQ by insertion, deletion, and
(restricted) modification of values, and they allow us to select a node with smallest priority.

We next discuss some of the operations available on node priority queues in more detail,
then show how to use them in an implementation of Dijkstra’s algorithm for the single-
source shortest-path problem, and finally show how node priority queues are implemented
in terms of node arrays and general priority queues.

We come to the operations available on node priority queues:

node Q.find min();

returns a nodev ∈ domQ with minimal associated priority (nil if Q is empty),

bool Q.member(node v);

checks whether nodev is contained in the queueQ, i.e., if v ∈ domQ,

void Q.insert(node v, P p);

adds the nodev with associated priorityp to the queueQ (the effect of this operation is
unspecified ifv is already contained inQ) and

void Q.de
rease p(node v, P p);

makesp the new priority of nodev (the effect of this operation is unspecified ifv is not
contained inQ or p is larger than the old priority associated withv).

The implementation of node priority queues is based on priority queues and node arrays.
The operationsfind min anddecreasep take constant time, all other operations take time
O(logs) wheres is the current size ofQ. The space requirement is proportional to the
number of nodes ofG. We give the details of the implementation at the end of the section.

16 Graphs and their Data Structures

We illustrate the use of node priority queues on Dijkstra’s single-source shortest-path
algorithm. LetG be a graph, letedgearray<NT> costbe a non-negative cost function2 on
the edges ofG, and lets be a node ofG. For any nodev of G let µ(v) be the cost of a
shortest path froms to v, where the cost (or length) of a path is the sum of the costs of its
edges; if there is no path froms to v thenµ(v) = ∞. We usecost(p) to denote the cost of
a pathp.

The task is to computeµ in a nodearray<NT> dist and anodearray<edge> predwhich
contains for each nodev 6= s the last edge of a shortest path froms to v. We need to be
more precise. Observe that not every number type has a representation for∞, and hence the
previous sentence does not specify how the algorithm shouldreport the fact thatµ(v) = ∞

for a nodev. We refine the specification to the following:

• If v is reachable froms thendist[v] = µ(v).

• pred[s] = nil.

• If v 6= s andv is reachable froms thenpred[v] is the last edge of a shortest path from
s to v.

• If v 6= s andv is not reachable froms thenpred[v] = nil.

Dijkstra’s algorithm [Dij59] “simulates” the following physical process. Imagine the
graph as a network of uni-directional wires, imagine that current is injected into the network
at nodes and time zero, and imagine that current spreads with unit speed. Thus current
requirescost[e] time units to spread across an edgee. In this model, the current will reach
every nodev at timeµ(v).

In order to carry out the simulation, we turn the nodes of the network into active compo-
nents. As soon as current reaches a nodeu, say at timet = µ(u), the node sends a message
to each nodev with e = (u, v) ∈ E with the content:

You will receive current through edgee at timet + cost[e].

Every nodev keeps track of all the messages sent to it. More precisely, a node keeps
track of the earliest time at which current will reach it, i.e., whenever a nodev receives a
message, it checks whether the message promises it an earlier delivery time and, if so, the
node updates its time estimate. In our implementation we keep the current time estimate of
nodev in dist[v] and we keep the edge through which the node will receive current at time
dist[v] in pred[v]. If v has received no message yet we havepred[v] = nil.

The simulation is driven by a global clock which we call wall time. At any timet there
will be a setS of nodes which have already been reached by the current and which have
accordinglysent messages to their neighbors, and there will be the setV \Sof the remaining
nodes which have not been reached yet by the current wave. Each node inV \Shas received
zero or more messages and keeps track of its earliest delivery time. Clearly, the node which

2 NT denotes an arbitrary number type.

6.6 Node Priority Queues and Shortest Paths 17

is reached next by the current is the nodeu ∈ V \ Swith the smallest delivery time, i.e., the
smallest valuedist[u]. It is the next node to send out messages.

In an implementation the crucial question is how to find the nodev with minimal dist-
value among the nodes inV \ S. The data type node priority queue is ideally suited for that
purpose. Simply have anodepq<NT> P with

domP = {v ; v ∈ V \ Sandpred[v] 6= nil }

and P(v) = dist[v] for any v ∈ domP, i.e., P contains all nodes outsideS which have
received at least one message and records, for each such node, the earliest delivery time to
the node. ThenP.delmin() returns the desired node and deletes it fromP. The complete
program follows.

〈dijkstra.t〉+�

template <
lass NT>

void DIJKSTRA_T(
onst graph& G, node s,
onst edge_array<NT>&
ost,

node_array<NT>& dist, node_array<edge>& pred)

{

node_pq<NT> PQ(G);

node v; edge e;

dist[s℄ = 0;

PQ.insert(s,0);

forall_nodes(v,G) pred[v℄ = nil;

while (!PQ.empty())

{ node u = PQ.del_min(); // add u to S

NT du = dist[u℄;

forall_adj_edges(e,u)

{ v = G.opposite(u,e); // makes it work for ugraphs

NT
 = du +
ost[e℄;

if (pred[v℄ == nil && v != s)

PQ.insert(v,
); // first message to v

else if (
 < dist[v℄) PQ.de
rease_p(v,
); // better path

else
ontinue;

dist[v℄ =
;

pred[v℄ = e;

}

}

}

The program runs in timeO(m + n logn) since every node is deleted from the queue at
most once anddelmin has costO(logn) and since every other operation is executed at
mostO(n + m) times and has constant amortized cost.

In the remainder of this section we show how to implement nodepriority queues in
terms of node arrays and priority queues. The construction is very simple. We realize a
nodeprio<P> NPQ for a graphG by ap queue<P, node> PQ and anodearray<pqitem>
itemof such that:

18 Graphs and their Data Structures

v

u

w

x

u

w

6

4

nil

Figure 6.6 A node priority queue for a graph with four nodesu, v, w, andx. The priority ofu is
6, the priority ofw is 4, andv andx have no entry in the queue.

• if a nodev is stored inNPQwith priority p then there is an itempit = 〈p, v〉 in PQ
anditemof [v] = pit.

• if a nodev is not contained inNPQthenitemof [v] = nil.

Figure 6.6 illustrates these invariants and nodepq.c shows the complete implementation.

〈nodepq.c〉�

#in
lude <LEDA/graph.h>

#in
lude <LEDA/p_queue.h>

template <
lass P>
lass node_pq {

private:

p_queue<P,node> PQ;

node_array<pq_item> item_of;

publi
:

node_pq(
onst graph& G): item_of(G,nil) { }

~node_pq() { }

void insert(node v, P p) { item_of[v℄= PQ.insert(p,v); }

P prio(node v) { return PQ.prio(item_of[v℄); }

void de
rease_p(node v, P p) { PQ.de
rease_p(item_of[v℄,p); }

void del(node v)

{ PQ.del_item(item_of[v℄);

item_of[v℄ = nil;

}

node find_min() { return PQ.inf(PQ.find_min()); }

node del_min()

{ node v= PQ.inf(PQ.find_min());

PQ.del_min();

item_of[v℄ = nil;

return v;

}

〈nodepq::other operations〉
};

6.7 Undirected Graphs 19

Only a few words are required to explain this code. We construct a nodepq<P> for a
graphG by constructing an empty priority queuePQ and a node arrayitemof for G and
by initializing all entries ofitemof to nil. The former is done by the default constructor
of priority queues and requires no code and the latter is achieved by the constructor call
itemof(G, nil). In order to insert a pair(v, p) we insert the pair(p, v) into PQ and store
the item that is returned initemof [v]. In order to look up the priority of a nodev we return
PQ.prio(itemof[v]),

Exercises for 6.6
1 Modify Dijkstra’s algorithm such that it does not start with a single source nodes but

with a setL of sources. It is supposed to computeµ(L, v) for all nodesv whereµ(L, v)

is the minimum distance from a node inL to v.
2 (Single sink shortest path). Lets andt be distinct nodes in a directed graph with non-

negative edge weights. The goal is to compute a shortest pathfrom s to t . Assume
that there is heuristic information available which gives for any nodev a lower bound
lb(v) for the length of a shortest path fromv to t . Modify Dijkstra’s algorithm such that
dist(v) + lb(v) is used as the priority of nodev.

3 Use the algorithm of the previous item to compute shortest paths in graphs embedded
into the plane, e.g., Delaunay diagrams (see Section 10.4).Define the cost of an edge
as the Euclidean distance between its endpoints and letlb(v) for any nodev be the
Euclidean distance betweenv andt . Which improvement in running time results from
the use of heuristic information?

4 Implement operationsmember, clear, size, andemptyof nodepq.

6.7 Undirected Graphs

In anundirectedgraph the edges have no direction. Mathematically speaking, an edge in an
undirected graph is an unordered pair{v, w} of nodes and an edge in a directed graph is an
ordered pair(v, w) of nodes. As for directed graphs, we callv andw the endpoints of the
edge. The endpoints of an edge in an undirected graph must be distinct (since an edge is a
set of vertices of cardinality two).

6.7.1 Viewing Directed Graphs as Undirected Graphs
Every directed graph without self-loops can be viewed as an undirected graph.

For an edgee and an endpointv of e

G.opposite(v,e)

returns the other endpoint ofe, i.e., returnstarget(e) if v = source(e) and returnssource(e)
otherwise.

The iteration statement

forall inout edges(e,v){ }

20 Graphs and their Data Structures

iterates over all edgese havingv as one of their endpoints. It iterates first over all edges out
of v and then over all edges intov.

The iterationforall inoutedgesand the functionoppositecan also be applied to graphs
with self-loops. Observe, however, that the iteration statement will consider a self-loop
e = (v, v) twice, once as an edge, whose source is equal tov, and once as an edge, whose
target is equal tov.

It is our experience that the two statements above suffice to deal with undirected graphs.
We can foresee one situation where they do not suffice: if one wants to iterate over the edges
incident tov in some mixed order, first some edges out ofv, then some edges intov, then
again some edges out ofv, We will see in Section 6.11 that the order of the out-edges
and the order of the in-edges can be modified. Nevertheless, out-edges always come before
in-edges in theforall inoutedgesiteration. If a more flexible scanning order is required, the
following operation is useful:

G.make undire
ted();

appends for every nodev the list of in-edges ofv to the list of out-edges ofv and removes
all self-loops. All edges incident to any node are now in a single list and hence can be
rearranged freely using the operations to be described in Section 6.11.

G.make dire
ted();

partially reverses the operation above. It moves, for everynodev, all edgesewith target(e) =

v from the list of out-edges ofv to the list of in-edges ofv. Note that the operation does not
reinsert self-loops.

6.7.2 The Data Type ugraph
We also have a data typeugraph. We use it very rarely. Ugraphs offer the same operations
as graphs but thenewedgeoperation is interpreted differently. For example,

ugraph G;

node v = G.new node(); node w = G.new node();

edge e = G.new edge(v,w);

creates an undirected graph with two nodes and one edge. The edgee is inserted into the
out-lists ofv andw (which in this context is better called the list of adjacent edges). Thus

e == G.first adj edge(v) && e == G.first adj edge(w)

evaluates to true. As for directed graphs the functionssource() andtarget() yield the two
endpoints of an edge, soG.source(e) returnsv andG.target(e) returnsw. Note that the
role of the two nodesv andw in the definition of the edgee is not symmetric:v is made
the source ofe because it is mentioned first, andw is made the target ofe because it is
mentioned second.

6.8 Node Partitions and Minimum Spanning Trees 21

v

u

z

x

w

y

Figure 6.7 A node partition for a graph with six nodesu, v, w, x, y, andz: u, v, andz are in the
same block,w andy are in the same block andx is a block of its own.

6.8 Node Partitions and Minimum Spanning Trees

We discuss node partitions. We first discuss their functionality and then illustrate their use
in Kruskal’s minimum spanning tree algorithm.

A node partitionis a partition of the nodes of a graphG, i.e., a family of pairwise disjoint
sets (calledblocks) whose union is the set of nodes ofG, see Figure 6.7 for an example.

node partition P(G);

declaresP as a node partition forG and initializes it to the finest partition ofG, i.e., every
nodev of G forms its own block{v}. Node partitions offer the following operations:

bool P.same blo
k(node v,node w);

returnstrue iff v andw belong to the same block ofP,

void P.union blo
ks(node v,node w);

combines the blocks containingv andw. Each block has acanonical representative. The
canonical representative of a block is some element in the block; it is not specified which.
The operations

node P.find(node v);

node P(node v);

return the canonical representative of the block containing v. So, in the example of Fig-
ure 6.7,P.find(x) returnsx (for the singleton block there is no choice of canonical element)
and P.find(u) and P.find(v) return the same element of block{u, v, z} (it is not specified
which). When the functional notationP(v) is used for the find operation it is convenient to
name the partition after the name for the canonical element;for example, in the matching
algorithm of Section 7.7 we will call the node partitionbase. After a union operation the
data structure chooses the canonical representative of theblock formed (among the elements
of the block). We can makev the canonical representative of the block containingv by

void P.make rep(node v);

22 Graphs and their Data Structures

The operation

void P.split(list<node> T);

splits the blocks containing the nodes inT into singleton blocks. The operation requires
thatT is a union of blocks ofP. So, in the example of Figure 6.7 we can apply split with
the argument{u, v, z, x} but not with the argument{u, y} and not with the argument{u, v}.

The implementation of node partitions is based on the data typespartitionandnodearray.
A sequence ofm operations (except for split) on a node partition ofn nodes takes time
O((n+m)α(n)) whereα is the functional inverse of the Ackermann function. The function
α is extremely slowly growing, in particularα(n) ≤ 5 for n ≤ 10100. The running time of
node partitions is therefore linear for all practical purposes. A split takes time proportional
to the size ofT .

We turn to Kruskal’s minimum spanning tree algorithm.
Let G be a graph whose edges have an associated cost of some number type and letcmp

be a function that compares edges according to their cost, i.e., cmp(e1, e2) returns−1, 0,
and+1, respectively, if the cost ofe1 is smaller than, equal to, or larger than the cost of
e2. A subsetT of the edges ofG is called aspanning forestof G if any two nodes that
are connected inG are also connected using only edges inT and if the subgraph(V, T) is
acyclic. A spanning forest of a connected graph is a tree. Thecost of a spanning forest is the
sum of the costs of its edges. Aminimum spanning forestis a spanning forest of minimal
cost, see Figure 6.8 for an example. Kruskal [Kru56] discovered a very simple method for
computing minimum cost spanning forests; it is customary torefer to his algorithm as a
spanning tree algorithm although it will not compute a tree on a graph consisting of more
than one connected component.

Kruskal’s algorithm starts with an empty setT of edges and considers the edges ofG in
order of increasing cost. When considering an edgee = {u, v} it checks whether addition
of e to T would close a cycle. If it does not close a cycle thene is added toT and if it closes
a cycle thene is discarded. In this way,T gradually evolves into a minimum spanning
forest.

We give a proof. Less mathematically inclined readers may skip the proof. For the
following argument lete1, e2, . . . , em be the sequence of edges ofG ordered in order of
increasing cost and letF0 be the lexicographically smallest minimum spanning forest3. We
show thatT ∩ {e1, . . . , ei } = F0 ∩ {e1, . . . , ei } for all i , 0 ≤ i ≤ m, by induction on
i . This is clearly true fori = 0. Consideri > 0. If ei closes a cycle with respect to
T ∩ {e1, . . . , ei } then it closes a cycle with respect toF0 and henceei belongs to neither of
the two sets. Ifei does not close a cycle with respect toT ∩ {e1, . . . , ei } then it is added
to T . We need to showei ∈ F0. SinceF0 is a spanning forest there must be a pathp in
F0 connecting the endpoints ofei and since the endpoints ofei are not connected by the
edges inT ∩ {e1, . . . , ei−1} = F0 ∩ {e1, . . . , ei−1} there must be an edgeej with j ≥ i in

3 We may view a spanning forest as a string over{0, 1} of lengthm where a 1 in thei -th position indicates thatei
belongs to the spanning forest and a 0 indicates that it does not. The lexicographic ordering on these strings
defines an ordering on spanning forests.

6.8 Node Partitions and Minimum Spanning Trees 23

0

1

2

3

4

5

6

25

1331

18

22

13

11

18

26

28

23

Figure 6.8 A minimum spanning forest in a graphG. The edges in the minimum are indicated
in bold. The cost of each edge is indicated. This figure was generated with the spanning tree
demo in xlman.

p. If j = i we are done. So assumej > i and considerF ′ = F0 \ ej ∪ ei . The cost
of F ′ is at most the cost ofF0, F ′ is a spanning forest (since the removal ofej splits one
component ofF0 into two components each containing one of the endpoints ofei and hence
the addition ofei glues them together again), andF ′ is lexicographically smaller thanF0, a
contradiction. Thusj = i .

In an implementation the crucial question is how to check whether an edgee should be
added toT . The data typenodepartition is ideally suited for that purpose. We maintain the
connected components ofT as a node partitionP, i.e., two nodes ofG belong to the same
block of P iff they are connected by a path of edges ofT . Then an edgee = {u, v} closes a
cycle with respect toT iff u andv belong to the same block ofP, i.e., if P.sameblock(u, v).
If e does not close a cycle we adde to T and updateP by uniting the blocks containingu
andv (P.unionblocks(u, v)). We obtain the following algorithm:

24 Graphs and their Data Structures

〈Kruskal.c〉�

#in
lude <LEDA/graph.h>

#in
lude <LEDA/node_partition.h>

list<edge> MIN_SPANNING_TREE(
onst graph& G,

int (*
mp)(
onst edge&,
onst edge&))

{

list<edge> T;

node_partition P(G);

list<edge> L = G.all_edges();

L.sort(
mp);

edge e;

forall(e,L)

{ node u = sour
e(e);

node v = target(e);

if (! P.same_blo
k(u,v))

{ T.append(e);

P.union_blo
ks(u,v);

}

}

return T;

}

The running time of Kruskal’s algorithm isO((n + m) log(n + m)), wherem is the num-
ber of edges ofG, since it takes timeO(m logm) to sort the edges by cost and since the
forall edges-loop has costO((n+ m)α(n)) = O((n+ m) log(n+ m)). Kruskal’s algorithm
is efficient, but there are asymptotically more efficient algorithms known. In particular,
there is a randomized algorithm with linear running time [KKT95].

The algorithm in LEDA combines Kruskal’s algorithm with a heuristic and works in
three phases. In the first phase it selects the 3n cheapest edges and runs Kruskal’s algorithm
on them. This yields a forestT . In the second phase it goes through the remaining edges
and discards all edges that do not connect distinct components of T ; this amounts to a
sameblockoperation for each edge. In the third phase the still remaining edges are sorted by
cost and are considered for inclusion inT in order of increasing cost. The hope underlying
this heuristic is that the 3n edges selected in the first phase will already form a large part
of the spanning tree and hence most remaining edges are discarded in the second phase. A
saving results since the edges discarded in the second phasedo not have to be sorted. In
particular, if the third phase is empty the running time isO((n + m)α(n)).

Table 6.2 shows some running times of the minimum spanning tree algorithm.

Exercises for 6.8
1 Experiment with the following modification of Kruskal’s algorithm. First select thecn

edges of smallest cost for some small constantc, sayc = 3. Run Kruskal’s algorithm
on them. Then scan through the remaining edges and discard all edges that close a
cycle. Sort the remaining edges in order of increasing cost and proceed with Kruskal’s
algorithm.

2 Implement Prim’s minimum spanning tree algorithm. LetG be a connected graph and

6.9 Graph Generators 25

n m Time

25000 250000 2.843
50000 500000 6.414

100000 1000000 13.83

Table 6.2 Running time of minimum spanning tree algorithm: For eachn andm we generated
10 random graphs withn andm edges and random edge weights in [0.. 100000] and ran
MIN SPANNING TREE on them. You may perform your own experiments by runningthe
minspantreetime demo.

let s be an arbitrary node ofG. Prim’s algorithm grows a minimum spanning tree froms.
It maintains a subsetSof the nodes ofG and a setT of edges that comprise a minimum
spanning tree ofS. Initially, S = {s} and T = ∅. For each nodev 6∈ S let dist(v)

be the smallest cost of an edge connectingv to a node inS. In each iteration Prim’s
algorithm selects the nodev 6∈ S with the smallestdist-value and adds it toS. What is
an appropriate data structure for thedist-values and how can thedist-values be updated
upon the addition of a node toS?

3 Implementnodepartitions.

6.9 Graph Generators

Constructing graphs by a sequence ofnewnodeandnewedgeoperations is a boring process,
at least for humans. LEDA offers somegraph generators.

omplete graph(graph& G, int n);

makesG the complete graph onn nodes. A graphG is completeif for every pair(v, w)

of distinct nodes there is an edgee with source(e) = v andtarget(e) = w. A complete
graph onn nodes hasn(n − 1) edges.

random graph(graph& G, int n, int m, bool no anti parallel edges,

bool loopfree, bool no parallel edges);

makesG a random graph withn nodes andm edges in the so-calledGn,m-model of random
graphs. A graph in this model consists ofn nodes andm random edges. A random edge is
generated by selecting a random element from a candidate setC defined as follows:

• C is initialized to the set of alln2 pairs(v, w) of nodes, ifloopfreeis false, and to the
set of alln(n − 1) pairs of distinct nodes, ifloopfreeis true.

• Upon selection of a pair(v, w) from C the pair is removed fromC, when
noparallel edgesis true, and the reversed pair(w, v) is removed fromC, when
noanti parallel edgesis true.

26 Graphs and their Data Structures

(v,w1) (v,w3)(v,w2)

Figure 6.9 The storage layout of a graph generated byrandomgraphnoncompact. Memory is
indicated as a horizontal band with low addresses at the leftand high addresses at the right.
Observe that the edges contained in any adjacency list spread over a large area of memory.

Several special cases ofrandomgraph are available. The following pairs of calls are
equivalent:

random graph(G,n,m);

random graph(G,n,m,false,false,false);

random simple graph(G,n,m);

random graph(G,n,m,false,false,true);

random simple loopfree graph(G,n,m);

random graph(G,n,m,false,true,true);

random simple undire
ted graph(G,n,m);

random graph(G,n,m,true,true,true);

We give two implementations ofrandomgraph. The first implementation works only for
the case that all flags are set to false. The second implementation is to be preferred and we
give the first implementation mainly for didactic reasons. The first implementation makes
n calls ofnewnodeand thenm calls ofnewedge(v, w) for random nodesv andw.

〈randomgraph.c〉+�

void random_graph_non
ompa
t(graph& G, int n, int m)

{

node* V = new node[n℄;

int i;

G.
lear();

for(i=0; i<n; i++) V[i℄ = G.new_node();

for(i = 0; i < m; i++)

G.new_edge(V[rand_int(0,n-1)℄,V[rand_int(0,n-1)℄);

delete[℄ V;

}

Figure 6.9 indicates the storage layout generated byrandomgraphnoncompact. The edges
are stored in the order in which they are generated. This implies that the edges belonging
to any particular adjacency list are spread over a large areaof memory and hence makes
the layout not well suited for the most frequent iteration statement in graph algorithms:
the iteration over the edges out of a node. A compact layout, which stores for each node
all edges out of the node consecutively, is much better. A quantitative comparison will be
given later in the section.

We turn to the functionrandomgraphcompactthat generates a representation where all
edges out of any node are stored consecutively. It also supports the flagsnoanti parallel edges,

6.9 Graph Generators 27

. . . (v,w1) (v,w2) . . .(v,w3)

Figure 6.10 The storage layout of a graph generated byrandomgraphcompact. Memory is
indicated as a horizontal band with low addresses at the leftand high addresses at the right.
Observe that the edges contained in any adjacency list are stored next to each other.

loopfree, andnoparallel edges. In the generation process we distinguish cases according to
whether the candidate setC is modified during the generation process or not.

We first deal with the simple case that the candidate setC is not modified by the process.
We choose the edges in two phases. In the first phase we choose the source node of each
edge and hence determine the out-degree of each node. In the second phase we iterate over
the nodes of the graph and generate for each node the requirednumber of outgoing edges. In
this way all edges out of a node are generated consecutively.The running time isO(n+m).

〈randomgraph.c〉+�

void random_graph_
ompa
t(graph& G, int n, int m,

bool no_anti_parallel_edges,

bool loopfree, bool no_parallel_edges)

{ if (n == 0 && m > 0)

error_handler(1,"random graph: m to big");

if (n == 1 && m > 0 && loopfree)

error_handler(1,"random graph: m to big");

node* V = new node[n℄;

int* deg = new int[n℄;

int i;

G.
lear();

for (i = 0; i < n; i++) { V[i℄ = G.new_node();

deg[i℄ = 0;

}

if (!no_anti_parallel_edges && !no_parallel_edges)

{

for (i = 0; i < m; i++) deg[rand_int(0,n-1)℄++;

for (i = 0; i < n; i++)

{ node v = V[i℄;

int d = deg[i℄;

while (d > 0)

{ int j = rand_int(0,n-1);

if (loopfree && j == i)
ontinue;

G.new_edge(v,V[j℄);

d--;

}

}

}

else { 〈random graph: difficult case〉 }

28 Graphs and their Data Structures

delete[℄ V;

delete[℄ deg;

}

We come to the case where the candidate setC is modified during the generation process.
In this situation we have to work harder.

We first check whetherm is too large. If only parallel edges are forbidden thenm can be
at mostn2, if parallel edges and self-loops are forbidden thenm can be at mostn(n − 1),
if parallel and anti-parallel edges are forbidden thenm can be at mostn + n(n − 1)/2, and
if parallel edges and anti-parallel edges and self-loops are forbidden thenm can be at most
n(n − 1)/2.

For the generation process we maintain anodemap2<bool> C with the following prop-
erties:

• If loopfreeis false thenC(v, w) = true iff (v, w) ∈ C.

• If loopfreeis true then for allv andw with v 6= w: C(v, w) = true iff (v, w) ∈ C, i.e.,
the mapC is equal to the setC except on the diagonal. This relaxed “equality”
removes the obligation to setC(v, v) to false for allv.

We build the graph as follows. We generate a random pair(v, w) of nodes. If it does not
belong to the candidate set, we discard it, and if it belongs to the candidate set, we add it to
the graph and update the candidate set accordingly. We buildthe graph temporarily as an
arrayE of lists of nodes. Once we have constructed all edges of the graph inE we actually
constructG.

〈random graph: difficult case〉�

〈random graph: check whether m is too big〉

node_map2<bool> C(G,true);

array<list<node> > E(n);

int i = m;

while (i > 0)

{ int vi = rand_int(0,n-1);

node v = V[vi℄;

node w = V[rand_int(0,n-1)℄;

if ((v == w && loopfree) || !C(v,w))
ontinue;

E[vi℄.append(w);

if (no_parallel_edges) C(v,w) = false;

if (no_anti_parallel_edges) C(w,v) = false;

i--;

}

for (i = 0; i < n; i++)

{ node v = V[i℄;

node w;

forall(w,E[i℄) G.new_edge(v,w);

}

6.9 Graph Generators 29

Random Simple Simple loopfree Simple undirected

10.97 21.05 20.98 24.24

Table 6.3 Running time of random graph generation: We generated a random graph with
n = 105 nodes andm = 106 edges. The first column shows the running time with all flags set to
false, and the other columns show the time to generate a simple graph, a simple loopfree graph,
and a simple undirected graph, respectively. You may perform you own experiments using the
random graph demo.

What is the running time of the generation process? The less mathematically inclined reader
may skip the remainder of this section. We do the analysis forthe case that no parallel edges
are allowed and leave the other cases to the reader. In this situation the maximal number
of edges isM = n2 and each edge generated decreases the number of candidate edges by
one. Thus there areM − j candidate edges whenj edges have already been generated, and
hence an expected number ofM/(M − j) iterations are needed to generate a candidate. We
conclude that the expected total number of iterations required to generatem edges is

∑

0≤ j <m

M/(M − j).

If m > M/2 this sum is less than (we use the estimate
∑

1≤ j ≤k 1/j ≈ ln k)

2m
∑

M−m+1≤ j ≤M

1/j = O(m(ln M − ln(M − m))) = O(m ln(M/(M − m)))

and ifm < M/2 this sum isO(m). In either case the running time isO(m(1+ ln(M/(M −

m)))).

We still need to implement the check of whetherm is too big. This check is non-trivial to
implement due to the danger of overflow. Note thatn2 may be a number which does not fit
into anint. We therefore cannot simply compute the upper bound for the number of edges
in a variable of typeint. We use a variable of typedoubleinstead. This will work as long
asn ≤ 226, which is safe for some time to come. We only show one case of the check.

〈random graph: check whether m is too big〉�

double md = m; double nd = n;

if (no_parallel_edges && !loopfree &&

!no_anti_parallel_edges && md > nd*nd)

error_handler(1,"random graph: m too big");

〈random graph: more checks whether m is too big〉

Table 6.3 shows the running time of our random graph generators.

The storage representation of a graph can have significant impact on the running time of
graph algorithms. We give an example. We generate a random graph with either one of the

30 Graphs and their Data Structures

n m Compact Non-compact

100000 1000000 0.34 0.85

Table 6.4 Influence of representation on running time: We generated a random graph withn
nodes andm edges with our two random graph generators and then ran〈determine number of
edges〉 on both of them. Observe that the running time is more than double for the non-compact
representation. You may perform your own experiments by running the
compactversusnoncompactrepresentation demo.

two generators above and then count the number of edges in thegraph by iterating over all
the edges out of all nodes.

〈determine the number of edges〉�

ount = 0;

forall_nodes(v,G)

forall_adj_edges(e,v)
ount++;

Table 6.4 shows the running times for the compact and the non-compact representation.
The difference is huge. The running time for the non-compactrepresentation is more than
double the running time for the compact representation. Similar but not as striking dif-
ferences can be obtained for other graph algorithms. The effect is less pronounced for
other graph algorithms because they usually do more than incrementing a counter in the
forall adj edges-loop.

The difference in speed is due to the influence of cache memory. It makes access to
consecutive locations faster than access to random locations. We discuss the influence of
cache memory on running time in some detail in Section 3.2.2.

In earlier versions of LEDA we usedrandomgraphnoncompactas our random graph
generator. When we moved torandomgraphcompactthe running time of all our graph
algorithms improved significantly.

random graph(graph& G, int n, double p);

makesG a random graph withn nodes and an expected number ofp · n · (n − 1) edges.
The graph is generated by the following experiment. Firstn nodes are created and then for
any pair(v, w) of distinct nodes the edge(v, w) is added toG with probability p. In the
graph literature this model of random graphs is called theGn,p-model. The running time is
O(n2). Graphs generated according to theGn,p-model behave similar to graphs generated
according to theGn,pn(n−1)-model.

random bigraph(graph& G, int a, int b, int m,

list<node>& A, list<node>& B);

makesG a random bipartite graph witha nodes on the one side,b nodes on the other side,
andm edges directed from theA-side to theB-side. The nodes on the two sides are returned
in A andB.

6.10 Input and Output 31

The generators for planar graphs are treated in the chapter on embedded graphs, see
Section 8.9.

Exercises for 6.9
1 Compare the compact and the non-compact representation ofgraphs for other graph

algorithms.
2 Let o = (o0, . . . , on−1) andi = (i0, . . . , in−1) be vectors of non-negative integers with

∑

0≤ j <n o j =
∑

0≤ j <n i j . Show that there is a graph withn nodes ando j edges out of
node j and i j edges into nodej for all j , 0 ≤ j ≤ n − 1. Generate a random graph
of this kind. Hint: Use the classdynamicrandomvariateof Section 3.5. Set up random
variatesS andT according to the weight vectorso andi , respectively. UseS to choose
sources andT to choose targets. After every generation of an edge decrement the weight
of its source and its target.

3 Userandomgraph(G, n, m) to generate a random graph and test the graph for simplicity
(usingIs Simple(G)). Try to find the value ofm (in relation ton) where about 50% of
the generated graphs are simple. If you want to understand the experiment, read up on
the so-called Birthday paradox, see for example [Fel68] or [MR95].

4 Write a O(n + m) generator for random graphs in theGn,p-model. Hint: Reduce the
problem to generating a graph in theGn,m-model. Letpm be the probability that a ran-
dom graph in theGn,p-model hasm edges. Show that the probability is maximal for
m ≈ pn(n − 1) by considering the quotientpm/pm+1. Also show that the probability
falls off quickly as one goes away fromm ≈ pn(n − 1). The idea is now to generate
m according to the distribution given by thepm’s and to callrandomgraph(G, n, m)

afterwards. The problem with this approach is that thepm’s are numbers with long
representations. A possible way around this problem is to write eachpm as a sum
pm,1 + pm,2 + . . . where for eachm the pm,i decrease exponentially ini . Consider the
collection

{

pm,i ; 0 ≤ m ≤ n(n − 1), i ≥ 0
}

and order it approximately by size. Gener-
atem according to this distribution and then callrandomgraph(G, n, m). Provide your
solution as an LEP.

6.10 Input and Output

We discuss how to write graphs to a file (or standard output) and how to read graphs from
a file. We support two formats, the format shown in Figure 6.11(henceforth called the
standard representation) and the GML-format [Him97]. We will not formally define either
format.

G.write();

writes the standard representation ofG on standard output.

G.write(string s);

writesG onto the file with names and

32 Graphs and their Data Structures

LEDA.GRAPH

void

void

4

|{}|

|{}|

|{}|

|{}|

5

1 2 0 |{}|

1 3 0 |{}|

2 3 0 |{}|

2 4 0 |{}|

3 4 0 |{}|

Figure 6.11 The standard representation of the graph of Figure 6.1. In the case of a
parameterized graph the node and edge labels are enclosed inthe angular brackets.

G.write gml(string s,...);

writesG in gml-format. The additional arguments ofwrite gmlcan be used to fine-tune the
way nodes and edges are output.

G.read(string s);

G.read gml(string s, ...);

read a graphG from the file with names. Either the standard representation or the GML-
representation is expected.

The following piece of code is useful during the debugging phase of a graph algorithm.

while (true)

{ generate G;

G.write("graph.gw");

run graph algorithm on G;

he
k result and abort if in
orre
t;

}

If the program aborts, a witness that falsifies the algorithmcan be found in the file with
name graph.gw.

There are several ways to inspect the witness graph:

• One can visually inspect the file to which the graph was written. This is tedious even
for very small graphs.

• One can load the graph into a graph window. This is the most convenient method and
we give more details below.

• One can send it through a graph drawing algorithm, see Section 8.1, and display the
result.

6.11 Iteration Statements 33

We give more details on how to load a graph into a graph window,see Chapter?? for
more information about the graphwin type. The following piece of code assumes that the
graph written has an integer node label and an integer edge label and that a parameterized
graph was used. We define a graphGRAPH<int, int> G and read it from the file. We then
define aGraphWin gwfor G. We tellgw that we want the so-called data labels of the nodes
and edges displayed, we open the display and putgw into edit mode4. When this program
is executed, a window will pop up in which the graphG is displayed. The nodes ofG will
appear at random positions. The layout can be modified by dragging nodes around.

〈simplevisualization.c〉�

#in
lude <LEDA/graphwin.h>

main()

{

GRAPH<int,int> G;

G.read("graph.gw");

GraphWin gw(G);

node v; edge e;

gw.set_node_label_type(data_label);

gw.set_edge_label_type(data_label);

gw.display();

gw.edit();

}

Actually, there is no need even to write the program above. Call any of the programs starting
with “gw” in xlman and use the file menu to load the graph.

6.11 Iteration Statements

Iterating over the nodes and edges of a graph or all the edges incident to a particular node
is an essential component of any graph algorithm. Accordingly, we have seen iteration
statements already many times in this chapter. In this section we treat them in detail. We
first give a precise definition of the semantics, then discussthe possibility of hiding and
unhiding edges and the possibilities of changing the order of iteration, and finally discuss
which modifications of a graph are legal during iteration.

6.11.1 Basics
In order to understand the iteration statements we need to learn a bit about the representation
of graphs in LEDA. A graph is a collection of nodes and edges which are arranged into
several lists:

• The nodes are arranged into a list of nodes.

4 If the statementgw.edit() is omitted, the program will briefly flash the graph and then terminate.

34 Graphs and their Data Structures

• The edges are arranged into a list of edges.

• In directed graphs two lists of edges are associated with every nodev:

adj edges(v) = {e ∈ E ; v = source(e)} ,

i.e., the list of edges starting inv, and

in edges(v) = {e ∈ E ; v = target(e)} ,

i.e., the list of edges ending inv. The listadj edges(v) is called the adjacency list of
nodev. For directed graphs we often useoutedges(v) as a synonym foradj edges(v).

• In undirected graphs only the listadj edges(v) is defined for every nodev. Here it
contains all edges incident tov, i.e.,

adj edges(v) = {e ∈ E ; v ∈ {source(e), target(e)}} .

An undirected graph must not contain self-loops, i.e., it must not contain an edge
whose source is equal to its target.

The semantics of the iteration statements for graphs now reduces to the semantics of the
iteration statements for lists.

forall nodes(v,G) { }

forall rev nodes(v,G) { }

iterate over the list of nodes in either forward or backward direction,

forall edges(e,G) { }

forall rev edges(e,G) { }

iterate over the list of edges in either forward or backward direction,

forall adj edges(e,v) { }

forall out edges(e,v) { }

forall in edges(e,v) { }

forall inout edges(e,v) { }

iterate over the listsadj edges(v), outedges(v), in edges(v), andoutedges(v) followed by
in edges(v), respectively, and

forall adj nodes(u,v) { }

iterates over the other endpoint, i.e.,G.opposite(v, e), of all edgese in adj edges(v).

6.11.2 Modification during Iteration
The rules are simple:

• It is unsafe to modify an object while iterating over it.

• However, the item under the iterator can be removed from the object.

6.11 Iteration Statements 35

In our experience the exception covers most of the situations where one wants to perform
modifications during an iteration.

The following piece of code iterates over the edges of a graphand deletes all edges whose
cost is negative.

forall edges(e,G) if (
ost[e℄ < 0) G.del edge(e);

The following piece of code is an infinite loop as new edges areappended to the list of
edges during iteration.

forall edges(e, G) G.new edge(G.target(e), G.sour
e(e));

A safe way to add the reversal of every edge toG is to write:

list<edge> L = G.all edges();

forall(e, L) G.new edge(G.target(e), G.sour
e(e));

6.11.3 Hiding and Restoring Edges
Sometimes it is convenient to remove edges only temporarilyfrom a graph. For this purpose
we have the concept of a hidden edge.

G.hide edge(e);

removese temporarily fromG until restored by

G.restore edge(e);

The implementation is simple.Hideedge(e) deletese from G and stores it in a list of hidden
edges andrestoreedge(e) removese from the list of hidden edges and puts it back into the
list of real edges. The list of all hidden edges is available as G.hiddenedges(), one can ask
whether an edgee is hidden (G.is hidden(e)),

The following lines of code hides all edges with negative cost, then runs some graph
algorithm on the resulting graph, and finally restores all edges.

forall edges(e,G) if (
ost[e℄ < 0) G.hide edge(e);

// some graph algorithm

G.restore all edges();

The operationshideedgeandrestoreedgechange the order of the adjacency lists and hence
should be used withextreme care on embedded graphs.

6.11.4 Rearranging Nodes and Edges
The lists of nodes and edges may be arranged by sorting. Thereare many different ways
to sort. We go through the possibilities for nodes and remarkthat a similar set of sorting
routines exists for edges.

G.sort nodes(int (*
mp)(
onst node&,
onst node&));

sorts the nodes according to the compare functioncmpand

G.sort nodes(
onst node array<NT>& A);

36 Graphs and their Data Structures

sorts the nodes according to the values in the node arrayA (the typeNT must be a number
type). The running time of both functions isO(n logn).

G.sort nodes(
onst list<node>& vl);

assumes thatvl is a permutation of the nodes ofG. This permutation is taken as the new
node ordering. The running time is linear.

G.bu
ket sort nodes(int (*ord)(
onst node&));

uses bucket sort to sort the nodes according to the values of the functionord(v). The
running time isO(n + (b − a + 1)) wherea andb are the minimal and maximal values of
ord, respectively.

void bu
ket sort nodes(
onst node array<int>& A);

uses bucket sort with the ordering functionord(v) = A[v].
Sorting the set of nodes rearranges the list of nodes. Subsequentforall nodesloops iterate

over the nodes in the modified order.
Sorting the set of edges rearranges the list of edges and the adjacency lists of all nodes.

Subsequentforall edges, forall adj edgesand forall outedgesloops iterate over the nodes
in the modified order.

For example, ifcostis an edge array that assigns an integer or double valued costto every
edge, then

G.sort edges(
ost);

rearranges the list of all edges and also the adjacency listsof all nodes in order of increasing
cost.

6.12 Basic Graph Properties and their Algorithms

We define some basic graph properties and give the algorithmsthat decide them. For some
of the algorithms we give the implementation. Many of the functions discussed in this
section are illustrated by Figure 6.12 and by the submenu “test” of menu “graph” of any
xlman-demo starting with the characters “gw”.

6.12.1 Functionality
The function

void CopyGraph(GRAPH<node,edge>& H,
onst graph& G);

constructs an isomorphic copyH of G. For each nodev of H the corresponding node inG
is stored inH [v] and for each edgee of H the corresponding edge ofG is stored inH [e].
The mappingv −→ H [v] is a bijection from the nodes ofH to the nodes ofG and for each

6.12 Basic Graph Properties and their Algorithms 37

(a)

(c) (d)

(b)

e

f

Figure 6.12 Illustration of basic graph properties: The graph (a) is notsimple (the edgese and
f are parallel) and has a self-looph. The graph (b) is simple and bidirected. The graph (c) is
connected but not biconnected (the full node is an articulation point). The graph (d) is
biconnected but not triconnected (the full nodes form a split pair).

edgee = (v, w) of H we havesource(H [e]) = H [v] and target(H [e]) = H [w]. We have
already seen the implementation ofCopyGraphin Section 6.1.

A graph is calledsimpleiff is has no parallel edges, i.e., no two distinct edgese and f
with the same source and sink, and a graph is calledloopfreeif it has no self-loop, i.e., no
edge whose source is equal to its sink.

bool Is Simple(
onst graph& G);

returns true ifG is simple and returns false otherwise.
A directed graphG = (V, E) is calledbidirectedif for every edgee the reversed edge

(target(e), source(e)) also belongs toG, more precisely, if there is a bijectionrev : E −→ E
such that:

• source(e) = target(rev(e)) andtarget(e) = source(rev(e)) for everye ∈ E and

• rev(e) 6= e for everye ∈ E.

The conditionrev(e) 6= e ensures that a self-loop cannot be its own reversal. A bidi-
rected graph has an even number of edges. The main use of bidirected graphs is in the
representation of embedded graphs, the topic of Chapter 8.

The calls

bool Is Bidire
ted(
onst graph& G);

bool Is Bidire
ted(
onst graph& G, edge array<edge>& rev);

38 Graphs and their Data Structures

check whetherG is bidirected. The second version also computes an appropriate bijection
between the edges ofG (if it exists).

void Make Bidire
ted(graph& G, list<edge>& R)

list<edge> Make Bidire
ted(graph& G)

adds edges toG to make it bidirected. The added edges are returned inR or as the result of
the function. An alternative toMakeBidirectedare the member functionsG.makebidirected
andG.makemap() which are discussed in Section 8.2.

bool Is A
y
li
(
onst graph& G);

bool Is A
y
li
(
onst graph& G, list<edge>& L);

return true if theG is acyclic and return false otherwise. The second version also returns
a list of edges whose removal makesG acyclic. We have already seen an implementation
of the first version ofIs Acyclic in Section 6.2. The second version performs a depth-first
search onG (see Section 7.3) and returns the list of back edges.

A path in a directed graphis a sequence

[v0, e1, v1, e2, v2, . . . , vk−1, ek, vk]

of nodes and edges such thatsource(ei) = vi−1 andtarget(ei) = vi for all i , 1 ≤ i ≤ k. We
call v0 the source of the path andvk the target of the path. The number of edges in the path
is called the cardinality or length of the path. We will frequently abuse notation and write

[e1, e2, . . . , ek]

or

[v0, v1, v2, . . . , vk−1, vk]

instead of the more verbose notation above. A path issimpleif all nodes (except maybe for
the source and the target of the path) are pairwise distinct.A cycleis a path whose source
is equal to its target.

A path in an undirected graphis a sequence

[v0, e1, v1, e2, v2, . . . , vk−1, ek, vk]

of nodes and edges such that{source(ei), target(ei)} = {vi−1, vi } for all i , 1 ≤ i ≤ k and
ei−1 6= ei for all i , 1 < i ≤ k. We callv0 andvk the endpoints of the path. The number
of edges in the path is called the cardinality or length of thepath. We will frequently abuse
notation and write

[v0, v1, v2, . . . , vk−1, vk]

instead of the more verbose notation above.
If G is a graph ande is an edge ofG thenG \ e is the graph that results from removinge

from G. If v is a node ofG thenG \ v denotes the graph that results from removingv and
all edges incident tov from G.

6.12 Basic Graph Properties and their Algorithms 39

An undirected graphG is connectedif for any two nodesv andw of G there is a path
from v to w in G. An articulation pointof an undirected graphG is any node ofG such that
G \ v is not connected. An undirected graph is calledbiconnectedif is has no articulation
point. A split pair of an undirected graph is a pair{s1, s2} of nodes such thatG \ {s1, s2} is
not connected.

bool Is Conne
ted(
onst graph& G);

returns true ifG (viewed as an undirected graph) is connected and returns false otherwise.

void Make Conne
ted(graph& G,list<edge>& L);

list<edge> Make Conne
ted(graph& G);

makeG connected by adding edges and return the list of inserted edges. The number of
edges added is minimal.

void Make Bi
onne
ted(graph& G,list<edge>& L);

list<edge> Make Bi
onne
ted(graph& G);

makeG biconnected by adding edges and return the list of inserted edges.

bool Is Bi
onne
ted(
onst graph& G);

bool Is Bi
onne
ted(
onst graph& G, node& s);

test whetherG is biconnected. The second version returns an articulationpoint in s if the
graph is not biconnected.

A (directed or undirected) graph isbipartite if the nodes of the graph can be colored with
two colors such that every edge ofG connects nodes with different colors.

bool Is Bipartite(
onst graph& G);

bool Is Bipartite(
onst graph& G, list<node>& A, list<node>& B);

return true ifG is bipartite and return false otherwise. The second versionalso returns a
bipartition of the nodes ofG in A andB (if the graph is bipartite).

A graph isplanar if it can be drawn into the plane such that all nodes are placedat distinct
points in the plane and such that no two edges cross.

bool Is Planar(
onst graph& G);

returns true ifG is planar and returns false otherwise. We will see a lot more of planar
graphs in Chapter 8.

All functions above have linear running timeO(n + m).

bool Is Tri
onne
ted(
onst graph& G);

bool Is Tri
onne
ted(
onst graph& G, node& s1, node& s2);

returns true ifG (viewed as an undirected graph) is triconnected and returnsfalse otherwise.
The second version returns a split pair ins1 ands2 if the graph is not triconnected. The
running time isO(n(n + m)).

Table 6.5 reports some running times of the basic graph algorithms.

40 Graphs and their Data Structures

n G L C B S D A N T

1000 0.07 0.01 0.01 0.03 0.04 0.1 0.01 0 17.9

10000 1.08 0.03 0.29 0.63 0.48 1.85 0.28 0.01 3342

Table 6.5 Speed of basic graph algorithms: We generated a random graphwith n nodes and
m = 10n edges and then ran various graph algorithms on it:
G = generation of random graph,
L = time for removing self-loops,
C = time for testing connectedness,
B = time for testing biconnectedness,
S = time for testing simplicity,
D = time for testing bidirectedness,
A = time for testing acyclicity,
N = time for testing bipartiteness,
T = time for testing triconnectivity.
The time for testing bipartiteness is so small because a violation to bipartiteness is found very
quickly in a random graph. For bipartite graphs the running time will be about the time to test
connectedness. You may perform your own experiments by running the speed of basic graph
algorithms demo.

6.12.2 Implementations
We give the implementation of the functionIs Bidirected.

We make two copies of the edges ofG in listsESTandETSand sort both lists.
In the sorted version ofEST the edges are sorted by their source node, and edges with

equal source node are sorted by their target node, i.e., all edges out of the first node come
first, then all out of the second node, Within each group of edges the ordering is by
target node.

In the sorted version ofETSthe edges are sorted by their target node, and edges with
equal target node are sorted by their source node, i.e., all edges into the first node come
first, then all into the second node,

We use bucket sort for both sorts. This will play a role below.
Figure 6.13 shows an example. After having sorted the two lists thei -th edge ofEST is

the reversal of thei -th edge ofETSfor all i (if G is bidirected).
Self-loops cause a small problem. As described so far, a self-loop can be matched with

itself. There is a simple remedy. We use the fact that bucket sort is stable, i.e., the relative
order of parallel edges is not changed.

Suppose now that we reverseETSbefore the sorting step. Consider all self-loops incident
to a particular nodev, saye1, e2, . . . , ek. In ESTthey will appear exactly in the same order
as in the original list of edges and inETSthey will appear in the reversed order. We match
the i -th edge of one sequence with thei -th edge of the other sequence. Whenk is even we
obtain a legal matching and whenk is odd we will attempt to match one of the edges with
itself. This leads to the following program.

6.12 Basic Graph Properties and their Algorithms 41

1 2

a

c
d

b

Figure 6.13 The listsESTandETSin the implementation of IsBidirected: It is assumed that
the original edge list ofG is E = (a, b, c, d). Observe that the edgesb andd are parallel. In
ESTthe edges are sorted by source, and edges with equal source are sorted by target. Parallel
edges appear in the same order as inE. ThusEST= (a, c, b, d). In ETSthe edges are sorted by
target, and edges with equal source are sorted by source. Parallel edges appear in the reverse
order as inE. ThusEST= (c, a, d, b).

The program uses the fact that the nodes of a graph are internally numbered and that
index(v) returns the number of a nodev.

stati
 int edge ord1(
onst edge& e) { return index(sour
e(e)); }

stati
 int edge ord2(
onst edge& e) { return index(target(e)); }

bool Is Bidire
ted(
onst graph& G, edge array<edge>& reversal)

{

int n = G.max node index();

edge e,r;

list<edge> EST = G.all edges();

EST.bu
ket sort(0,n,&edge ord2);

EST.bu
ket sort(0,n,&edge ord1);

list<edge> ETS = G.all edges();

ETS.reverse(); //
ru
ial

ETS.bu
ket sort(0,n,&edge ord1);

ETS.bu
ket sort(0,n,&edge ord2);

// merge EST and ETS to find
orresponding edges

while (! EST.empty() && ! ETS.empty())

{ e = EST.pop();

r = ETS.pop();

if (target(r) == sour
e(e) && sour
e(r) == target(e)

&& e != r)

reversal[e℄ = r;

else return false;

}

return true;

}

Exercises for 6.12
1 Give an implementation of the functionIs Simple. Use anodemap2.

42 Graphs and their Data Structures

2 Implement a function that tests whether a graph has a self-loop.
3 Implement the functionMakeAcyclic. Read Section 7.3 first.
4 As above, but for functionIs Connected.
5 As above, but for functionMakeConnected.
6 Provide a better implementation of the triconnectedness test. A linear time algorithm is

described in [HT73]. Provide it as an LEP.

6.13 Parameterized Graphs

Parameterized graphs are another convenient way to associate information with the nodes
and edges of a graph.

GRAPH<vtype,etype> G;

declaresG as a parameterized graph and initializesG to the empty graph. With every node
of G a variable of typevtype is associated and with every edge ofG a variable of type
etypeis associated. The variables associated with nodes or edgescan be accessed using
array notation, i.e.,G[v] and G[e] return the variables associated with nodev and edge
e, respectively. We have illustrated the use of parameterized types already in Section 6.1.
We will see extensive use of parameterized graphs in the chapters on embedded graphs and
on geometry. Here we want to discuss the relationship between parameterized graphs and
graphs.

All operations defined on instances of the data typegraphare also defined on instances
of any parameterized graph typeGRAPH<vtype, etype>, i.e., instances of a parameterized
graph type can be used wherever an instance of the data typegraph can be used, in par-
ticular, as arguments to functions with formal parameters of type graph&. If a function
f (graph& G) is called with an argumentQ of type GRAPH<vtype, etype> then inside f
only the basic graph structure ofQ (the adjacency lists) can be accessed. The node and
edge entries are hidden.

The operations

node array<vtype>& G.node data()

edge array<etype>& G.edge data()

make the information associated with the nodes (edges) ofG available as a node array (edge
array) of typenodearray<vtype> (edgearray<etype>). These operations are extremely use-
ful when one wants to run a graph algorithm that requires a node or edge array as a parameter
on a parameterized graph where one has stored the appropriate information in the nodes and
edges, respectively. For example,

GRAPH<int,int> G;

node array<edge> pred(G);

DIJKSTRA(G,G.first node(), G.edge data(), G.node data(), pred);

6.14 Space and Time Complexity 43

runs Dijkstra’s algorithm onG taking the edge data ofG as the edge costs and storing the
node distances in the nodes ofG.

We have four different ways to associate information with the nodes, and similarly with
the edges, of a graph in this section: node arrays, node data slots, node maps, and param-
eterized graphs. We use all four of them in our own work. We useparameterized graphs
when the node information is an essential part of the graph. For example, we use the type
GRAPH<point,...> for graphs embedded into the plane; the position of any nodev is given
asG[v]. If the information is only temporarily associated with the node, as, for example, in
a graph algorithm, we use node arrays and node maps. We use node maps for sparse arrays,
where only a fraction of the nodes need an entry, and we use node arrays for dense arrays.
We use node data slots, if speed is of utmost importance and node information is accessed
many times and in random order, and we use standard node arrays otherwise. Standard
node arrays are the most convenient and most widely used way to associate information
with nodes.

6.14 Space and Time Complexity

Graphs are represented in their adjacency lists representation and hence the space require-
ment isO(n + m), wheren andm are the number of nodes and edges of the graph, respec-
tively. Most operations on graphs take constant time except, of course, those which change
or inspect the entire graph. The iterators take time proportional to the number of objects
they iterate over, soforall edges(e, G) takes timeO(m). We give some more information
about the constant factors involved.

The space requirement of agraph or GRAPH with n nodes andm edges isO(1) +

44m+ 52n bytes, i.e., a graph with 104 nodes and 105 edges needs about 5 megabytes. For
GRAPH<T1, T2>where an object of typeT1or T2needs more than one word of storage one
also has to account for the information associated with the nodes and edges. For example,
a point requires 8 bytes and hence aGRAPH<point, int> requires an additional 8n bytes.

There is a trade-off between the space requirement of graphsand the functionality offered
by them. We give some examples. Our graphs are fully dynamic,i.e., nodes and edges can
be added and deleted at any time, and hence the adjacency information of every node is
stored in a doubly linked list. For static graphs the adjacency information could be stored
in an array. Our graphs support the dynamic addition of additional node and edge labels (in
the form of node and edge arrays and maps) and hence every nodeor edge needs to have an
integer index. This index could be saved if all node and edge labels have to be declared at
the time of the construction of the graph.

We turn to running time. There is a large number of tables withrunning times of graph
algorithms in this book. The tables prove that it is possibleto solve problems on fairly

44 Graphs and their Data Structures

large graphs using our algorithms. Moreover, the time bounds achieved by (most of) our
algorithms are competitive with what other researchers report.

Exercises for 6.14
1 Implement a version of directed graphs where each node onlyknows about its outgoing

edges but not about its incoming edges and where the adjacency lists are stored as singly
linked lists and hence can only be traversed from front to rear. Make the graph class
compatible with LEDA’s graphs and provide it as an LEP.

2 Implement static directed graphs where all edges are stored in a single array, all edges in
a adjacency list are stored consecutively, and each node hastwo pointers into the array,
one to the first edge of its adjacency list, and one to the edge after the last edge of its
adjacency list.

Bibliography

[Dij59] E.W. Dijkstra. A note on two problems in
connection with graphs.Num. Math.,
1:269–271, 1959.

[Fel68] W. Feller.An Introduction to Probability
Theory and its Applications. John Wiley &
Sons, 1968.

[Him97] M. Himsolt. The graphlet system.Lecture
Notes in Computer Science, 1190:233–??, 1997.

[HT73] J. E. Hopcroft and R. E. Tarjan. Dividing a
graph into triconnected components.SIAM
Journal on Computing, 2(3):135–158, ????
1973.

[KKT95] David Karger, Philip N. Klein, and
Robert E. Tarjan. A randomized linear-time
algorithm for finding minimum spanning trees.
J. Assoc. Comput. Mach., 42:321–329, 1995.

[Kru56] J.B. Kruskal. On the shortest spanning
subtree of a graph and the travelling salesman
problem. InProceedings of the American
Mathematical Society, pages 48–50, 1956.

[MR95] Rajeev Motwani and Prabhakar Raghavan.
Randomized Algorithms. Cambridge University
Press, 1995.

45

Index

acyclic graph, 6
adjacency list, 34
array

edge array, 8
node array, 8

articulation point, 39

biconnected graph, 39
bidirected graph, 37
bidirectedness, test for, 41
bipartite graph, 39
breadth-first search, 14

cache effects, 30
complete graph, 25
connected graph, 39
CopyGraph, 5, 36
copying a graph, 5

demo
programs

basic graph algorithms, 40
minimum spanning trees, 23

DIJKSTRA, 17
directed graph, 2

edge, 2
array, 8
map, 11
matrix, 8

generation of random graphs, 27
GML-format, 31
graph, 2–44

acyclic, 6
adjacency list, 34
articulation point, 39
associating information with nodes and edges, 8–13
basics, 2–7

biconnected, 39
bidirected, 37
bipartite, 39
breadth-first search, 14
connected, 39
degree, 5
directed, 2
edge, 2

data, 8
map, 11

forall, 3, 33
hiding edges, 35
I/O, 31–33
isomorphic copy, 5
iteration, 3, 33–36
list

of edges, 34
of nodes, 33

loopfree, 37
makedirected, 20
makeundirected, 20
node, 2

array, 8
data, 8
list, 14–15
map, 11
matrix, 8, 11
partition, 21–25
priority queue, 15–19

opposite node, 19
parameterized, 42
path, 38
planar graph, 39
priority queue, 15
random graph generators, 25
read, 32
rearranging nodes and edges, 35
representation, 30, 34

46

Index 47

restoring edges, 35
running time, 12
simple, 37
sorting, 35
source node, 2
space requirement, 43
split pair, 39
subgraph, 35
target node, 2
time complexity, 43
topological sorting, 6
triconnected, 39
undirected graph, 19–20
visualization, 33
write, 31

graph algorithms
breadth-first search, 14
copying a graph, 5
generation of random graphs, 27
minimum spanning tree, 22
test for bidirectedness, 41
topological sorting, 6

graph generators, 25–31
complete graph, 25
random graphs, 25

hiding edges of a graph, 35

I/O
for graphs, 31–33

Is Acyclic, 38
Is Biconnected, 39
Is Bidirected, 10, 37
Is Bipartite, 39
Is Connected, 39
Is Planar, 39
Is Simple, 37
Is Triconnected, 39
iteration

addition of objects, 35
deletion of object under iterator, 34
for graphs, 3, 33–36

Kruskal’s algorithm, 22

MakeBiconnected, 39
MakeBidirected, 38
MakeConnected, 39
map(data type)

edge map, 11
node map, 11

MIN SPANNINGTREE, 23
minimum spanning tree, 22

node, 2
array, 8
list, 14
map, 11
matrix, 8
partition, 21
priority queue, 15

parameterized graph, 42
partition

node partition, 21
path, 38
planar graph, 39
p queue

node priority queue, 15

random graph, 25
randombigraph, 30
randomgraph, 25
restoring the edges of a graph, 35
running time experiments

arrays vs maps, 12
basic graph algorithms, 40
compact vs non-compact graph representation, 30
minimum spanning trees, 25
random graph generation, 29

shortest paths
non-negative edge costs, 17

sorting
topological sorting, 6

source node, 2
subgraph, 35

target node, 2
topological sorting, 6
TOPSORT, 6
triconnected graph, 39

ugraph, 20
undirected graph, 19–20

visualizing a graph, 33

