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13

On the Implementation of LEDA

This chapter deals with the implementation of LEDA. It givesthe details of the implemen-
tation of parameterized data types, implementation parameters, handle types, the memory
management, and iteration macros. We close the chapter witha comprehensive example
that illustrates all concepts discussed.

13.1 Parameterized Data Types

The definition of parameterized data types of LEDA has been discussed in Chapter 2. In the
next sections we describe how they are implemented. We first describe the C++ template
approach to parameterized data types using a simple list data type. Then we use the same
example to explain the basic idea of the LEDA solution for implementing parameterized
data types and discuss the reasons for choosing this solution. Finally, we extend the basic
solution and apply it to more advanced data types and developoptimizations for the case
where the actual type parameters are small (fit into one memory word) or are basic built-in
types.

13.2 A Simple List Data Type

We start this section by giving a very simple implementationfor a data typelist of singly
linked lists of integers. It offers about the same set of operations as the LEDAstackdata
type. There is apushoperation that inserts a given integer at the front of the list and apop
operation that removes the first element from the list and returns it. Operationheadreturns
the first element without changing the list, and finally, operation sizereturns the number
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13.2 A Simple List Data Type 3

of elements of the list. Of course, we also have to provide a constructor, destructor, copy
constructor and an assignment operator in order to makelist a fully equipped C++ data type.

Note that we use this simple type only as a first example for introducing some aspects
of the LEDA mechanism for implementing parameterized data types. Of course, LEDA
contains much more powerful and useful list types, see Section 3.2.

As usual, the declaration (or specification) of our list class is contained in a header file
called list.h and the implementations of its operations are contained in aseparate source
code file list.c. We let the file names start with, because we want to use the file names
without the underscore later in the section.

The header filelist.h might look as follows:

〈 list.h〉�

lass list {

stru
t list_elem

{ // a lo
al stru
ture for representing the elements of the list

int entry;

list_elem* su

;

list_elem(
onst int& x, list_elem* s) : entry(x), su

(s) {}

friend 
lass list;

};

list_elem* hd; // head of list

int sz; // size of list

publi
:

void push(int);

void pop(int&);

int head() 
onst;

int size() 
onst;

list();

~list();

list(
onst list&);

};

The corresponding source code filelist.c is as follows:

〈 list.c〉�
#in
lude "_list.h"

#define NULL 0

int list::head() 
onst { return hd->entry; }

void list::push(int x)

{ hd = new list_elem(x,hd);

sz++;

}

void list::pop(int& y)

{ y = hd->entry;

list_elem* p = hd;

hd = p->su

;

delete p;

sz--;



4 On the Implementation of LEDA

}

list::list()

{ // 
onstru
t an empty list

hd = NULL;

sz = 0;

}

list::list(
onst list& L)

{ // 
onstru
t a 
opy of L

hd = NULL;

sz = L.sz;

if (sz > 0)

{ hd = new list_elem(L.hd->entry,0); // first element

list_elem* q = hd;

// subsequent elements

for (list_elem* p = L.hd->su

; p != NULL; p = p->su

)

{ q->su

 = new list_elem(p->entry,NULL);

q = q->su

;

}

}

}

list::~list()

{ // destroy the list

while (hd)

{ list_elem* p = hd->su

;

delete hd;

hd = p;

}

}

13.3 The Template Approach

Most data types in LEDA are parameterized. LEDA does not onlyoffer lists of integers but
lists of an arbitrary element typeE. In this section we discuss the C++ standard approach
to parameterized data types. We explain the approach and discuss why we have not taken it
in LEDA. The solution which we adopted in LEDA is described inthe next section.

C++ supports parameterized classes by means of itstemplate feature. How can one obtain
lists of char from our implementation of lists ofint? It seems to be very simple. Replace
in files list.h and list.c all occurrences ofint by char. Well, that’s not quite true. Actually,
we should replace only those occurrences ofint that refer to the element type of the list.
So the declarations of variableszand the return type ofsize( ) stay unchanged. Since it is
completely mechanical to derive list of characters from lists of integers we might as well
ask the compiler to do it. All we have to do is to mark those occurrences ofint that are to
be replaced. The template feature of C++ is an elegant way to automate this transformation.
The following simple textual transformation changes the definition of our list class into the
definition of a parameterized list class:
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• Replace in list.h all occurrences ofint that refer to the element type of our lists by a
new class name, sayE.

• Prefix the definition of classlist in the file list.h and the definition of each member
function in the file list.c bytemplate<class E>. This informs the compiler thatE is
the name of a type parameter and not the name of a concrete type.

• Replace in list.c all occurrences oflist that refer to the name of the list class by
t list<E>. This replacement is not really necessary. We make it so thatwe can later
contrast classeslist andt list.

For concreteness, we include excerpts from the modified filest list.h and tlist.c.

〈t list.h〉�
template <
lass E>


lass t_list {

stru
t list_elem

{ E entry;

list_elem* su

;

list_elem(
onst E& x, list_elem* s) : entry(x), su

(s) {}

};

list_elem* hd; // head of list

int sz; // size of list

publi
:

void push(
onst E&);

void pop(E&);


onst E& head() 
onst;

int size() 
onst;

t_list();

t_list(
onst t_list<E>&);

~t_list();

};

and file t list.c is as follows:

〈t list.c〉�
#in
lude "t_list.h"

#define NULL 0

template <
lass E> t_list<E>::t_list()

{ hd = NULL;

sz = 0;

}

template <
lass E> 
onst E& t_list<E>::head() 
onst

{ return hd->entry; }

template <
lass E> void t_list<E>::push(
onst E& x)

{ hd = new list_elem(x,hd);

sz++;

}
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template <
lass E> void t_list<E>::pop(E& y)

{ y = hd->entry;

list_elem* p = hd;

hd = p->su

;

delete p;

sz--;

}

In an application program we can now write

t list<
har> L1;

t list<segment> L2;

to define a listL1 of char and a listL2 of line segments, respectively. When the compiler
encounters these definitions it constructs two versions of files list.c and list.h by substituting
E by char and bysegment, respectively, which it can then process in the standard way. Let
us summarize:

• The template feature is powerful and elegant. The implementer of a data type simply
prefixes his code bytemplate<class E> and otherwise writes his code as usual, and the
user of a parameterized data type only needs to specify the actual type parameter in
angular brackets.

• The template feature duplicates code. This increases code length and compilation time.
It has to duplicate code because the layout of the elements ofa list in memory (type
list elem) depends on the size of the objects of typeE and hence the code generating
new list elements depends on the size of the objects of the actual type parameter.

• Separate compilation is impossible. Since the code to be generated depends on the
actual type parameter one cannot precompile tlist.c to obtain an object file tlist.o.
Rather both files tlist.h and tlist.c have to be included in an application and have to
be compiled with the application. For an application, that uses many parameterized
data types from the library, this leads to a large source and therefore large compilation
times. Moreover, it forces the library designer to make his .c-files public.

• When we started this project, most C++ compilers did not support templates and, even
today, many do not support them fully. Some compilers use repositories of
precompiled object code to avoid multiple instantiations of the same template code.
However, there is no standard way for solving this problem.

We found in particular the drawback of large compilation times unacceptable and there-
fore decided against the strategy of implementing parameterized data types directly by the
template feature of C++.

The LEDA solution uses templates in a very restricted form. It allows separate com-
pilation, it allows us to keep the .c-files private, and it does not over-strain existing C++
compilers. We discuss it in the next section.

Let us summarize. The template feature is an elegant method to realize parameterized



13.4 The LEDA Solution 7

data types (from a user’s as well as an implementor’s point ofview). However, it also has a
certain weakness. It duplicates code, it does not allow us toprecompile the data types, and
it is only partially supported by compilers.

13.4 The LEDA Solution

In LEDA every parameterized data type is realized by a pair ofclasses: aclass for the ab-
stract data typeand aclass for the data structure, e.g., we have a dictionary class (= the data
type class) and a binary tree class (= the data structure class). Only the data type classes
use the template mechanism. All data type classes are specified in the header file directory
LEDAROOT/incl/LEDA and only their header files are to be included in application pro-
grams. All data structures are precompiled into the object code libraries (libL, libG, libP,
libW, . . . ) and are linked to application programs by the C++ linker. Instead of abstract data
type class we will also say data type class or data type template or abstract class and instead
of data structure class we will also say implementation class or concrete class.

Precompilation of a data structure is only possible if its implementation does not depend
on the actual type parameters of the corresponding parameterized data type. In particular:

• the layout of the data structure in memory must not depend on the size of the objects
stored in it. We achieve this (in a first step) by always storing pointers to objects
instead of the objects themselves in our data structures. Observe that the space
requirement of a pointer is independent of the type of the object pointed to. In a
second step (cf. Section 13.5.1) we show how to avoid this level of indirection in the
case of small types (types whose size in memory is at most the size of a pointer).

• all functions used in the implementation whose meaning depends on the actual type
parameters use the dynamic binding mechanism of C++, i.e., are realized as virtual
functions. A prime example is the comparison function in comparison based data
structures. The comparison function is defined as a virtual member function of the
implementation class, usually calledcmpkey. In the definition of the abstract data type
template we bindcmpkeyto a functioncomparethat defines the linear order on the
actual type parameter.

The remainder of this section is structured as follows. We first give the basic idea for pa-
rameterized data types in LEDA. Then we discuss the use of virtual functions and dynamic
binding for the implementation of assignment, copy constructor, default constructor, and
destruction. In the sections to follow we describe an improvement for so-called one-word
or small types, and show how implementation parameters are realized. Finally, we give the
full implementation of priority queues by Fibonacci heaps and illustrate all features in one
comprehensive example.
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x1 x2 x3

x1 x2 x3

Figure 13.1 A t list and alist: The top part shows at list<E> with three elementsx1, x2, x3. The
bottom part shows the correspondinglist data structure in the LEDA approach.

13.4.1 The Basic Idea
We introduce the basic idea for realizing parameterized data types in LEDA, the idea will
be refined in later sections:

• The data fields in the containers of all data structures are oftypevoid∗, the generic
pointer type of C++. They contain pointers to objects of the actual type parameters.
Consider a data structure whose containers have a slot for storing objects of a typeT ,
e.g., the typet list<T>.

• In the LEDA approach the objects of typeT are not stored directly in the containers of
the data structure but on the heap. The data slots of the containers have typevoid∗, the
generic pointer type of C++, and contain pointers to the objects on the heap. More
precisely, if a container has a slot of typeT in the template solution andt is the object
stored in it (at a particular time) then the corresponding container in the LEDA
solution will have a field of typevoid∗ and this field will contain a pointer tot . See
Figure 13.1 for an illustration.

• The abstract data type class uses the template mechanism andis derived from the
implementation class.

• Type casting is used to bridge the gap between the untyped world of the
implementation class (all data isvoid∗) and the typed world of the abstract class.

We use our singly linked list data type as a first example to illustrate our approach. We
saw an implementation of lists, calledt list, using the template approach in the preceding
section.

Our goal is to realize the parameterized data typelist<T> by a concrete data structure
list impl that stores pointers of typevoid∗. The definition oflist impl is straightforward. It
is essentially a list of typet list<void∗ >
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〈list impl.h〉�

lass list_impl {

stru
t list_impl_elem

{ void* entry;

list_impl_elem* su

;

list_impl_elem(void* x,list_impl_elem* s):entry(x),su

(s) {}

friend 
lass list_impl;

};

list_impl_elem* hd;

int sz;

prote
ted:

list_impl();

~list_impl();

void* head() 
onst;

void* pop();

void push(void* x);

void 
lear();

int size() 
onst;

};

and

〈list impl.c〉�
#in
lude "list_impl.h"

list_impl::list_impl() : hd(0), sz(0) {}

list_impl::~list_impl() { 
lear(); }

void* list_impl::head() 
onst { return hd->entry; }

void list_impl::push(void* x)

{ hd = new list_impl_elem(x,hd);

sz++;

}

void* list_impl::pop()

{ void* x = hd->entry;

list_impl_elem* p = hd;

hd = p->su

;

delete p;

sz--;

return x;

}

void list_impl::
lear() { while (hd) pop(); }

int list_impl::size() 
onst { return sz; }

We declared the member functions oflist impl protected so that they can only be used in
derived classes. We can now easily derive the data type templatelist<T> for arbitrary types
T from list impl. We makelist impl a private base class oflist<T> and implement the
member functions oflist<T> in terms of the member functions of the implementation class.
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Making the implementation class a private base class makes it invisible to the users of the
list<T> class. This guarantees type safety as we argue at the end of the section.

A member function oflist<T> with an argument of typeT first copies the argument into
the dynamic memory (also called heap), then casts a pointer to the copy tovoid∗, and finally
passes the pointer to the corresponding function of the implementation class.

All member functions oflist<T> that return a result of typeT call the corresponding
function of the implementation class (which returns a result of typevoid∗), cast the pointer
to T∗, and return the dereferenced pointer.

We next give the details.

template<
lass T>


lass list : private list impl {

publi
:

list() : list impl() {}

The constructor oflist<T> constructs an emptylist impl.

void push(
onst T& x) { list impl::push((void*) new T(x)); }

L.push(x) makes a copy ofx in dynamic memory (by calling the copy constructor ofT in
the context of thenewoperator) and passes a pointer to this copy (after casting itto void∗)
to list impl::push. The conversion fromT∗ to void∗ is a built-in conversion of C++ and
hence we may equivalently write

void push(
onst T& x) { list impl::push(new T(x)); }

Let us relatelist<T> ::push(x) to t list<T> ::push(x). The latter operation stores a copy of
x directly in the entry-field of a new list element and the former makes a copy ofx on the
heap and stores a pointer to the copy in entry-field.


onst T& head() 
onst { return *(T*)list impl::head(); }

L.head( ) casts thevoid∗ result oflist impl::head( ) to aT∗ pointer, dereferences the result,
and returns the object obtained as a const-reference. It thus returns the element of the list
that was pushed last.

T pop()

{ T* p = (T*)list impl::pop();

T x = *p;

delete p;

return x;

}

L.pop(x) casts and dereferences thevoid∗ result oflist impl::pop, assigns it to a local vari-
ablex, deletes the copy (made bylist<T> ::push), and returnsx. Observe that the assign-
ment tox makes a copy, and it is therefore OK to delete the copy made bypush. It is also
necessary to delete it, as we would have a memory leak otherwise.

int size() 
onst { return list impl::size(); }

void 
lear()

{ while (size() > 0) delete (T*)list impl::pop();
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list impl::
lear();

}

~list() { 
lear(); }

};

The implementations ofclear and of the destructor are subtle.Clear first empties the list
and then callslist impl::clear. The latter call is unnecessary as popping all elements from
the list already has the effect of clearing the list. We make the call for reasons of unifor-
mity (all clear functions of abstract classes in LEDA first destroy all objects contained in
the data structure and then call theclear function of the implementation). It is, however,
absolutely vital to destroy the objects stored in the list before calling list impl::clear. An
implementation

void 
lear() { list impl::
lear(); }

has a memory leak as it leaves the elements contained in the list as orphans on the heap.
The destructor first callsclear and then the destructor of the base class (the latter call

being automatically inserted by the compiler). The base class destructor∼list impl deletes
all list elements. Observe that it does not suffice to call this destructor as this will leave all
entries contained in the elements of the list on the heap.

If our list implementation class would support iteration inthe LEDA forall style an alter-
native implementation of the clear function would be

void 
lear()

{ void* p;

forall(p,*this) delete (T*)p;

list impl::
lear();

}

Let us assess our construction:

• The construction is non-trivial. Please read it several times to make sure that you
understand it and try to mimic the approach for other data types (see the exercises).
The construction is certainly more complicated than the pure template approach
presented in the preceding section.

• The data typelist<T> simulates the data typet list<T>. Suppose that we perform the
same sequence of operations on alist<T> Sand at list<T> TS. Assume thatx0, . . . ,
xt−1 are the entries ofTSafter performing the sequence. ThenSalso hast elements
and the corresponding entries contain pointers to copies ofx0 to xt−1 in dynamic
memory, see Figure 13.1.

• All operations oflist<T> are implemented by very simple inline member functions.
Except forpop, clear, and∼list( ) they do not produce any additional code. We will
show in the next section how the code forpopandclear can also be moved into the
data structure by the use of virtual functions. This will make the definition of the
abstract class cleaner.
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• The implementation class can be precompiled; see below.

• The above implementation of lists is incomplete. In particular, the definitions of the
copy constructor and of the assignment operator are missing. We will discuss them in
Section??.

The abstract data typelist<T> can be used in the usual way.

list<string> L;

L.push("fun");

L.push("is");

L.push("LEDA");

while (L.size() > 0) 
out << L.pop() << endl;

Separate Compilation: We defined two classes, the implementation classlist impl and the
abstract data type classlist<T>, in three files: the filelist impl.h contains the skeleton of
the class definition oflist impl, namely the definition of the private data of the class and the
declarations of the member functions, the filelist impl.c contains the implementation of all
member functions oflist impl and the filelist.h contains the definition of the abstract data
type and its implementation in terms of the implementation class. We have shown all three
files above. It is still worthwile to repeat their global structure.

〈list impl.h〉�

lass list_impl {

〈definition of private data〉
prote
ted:

〈declaration of member functions〉
};

The file list impl.c contains the implementations of all member functions. It must include
list impl.h

〈list impl.c〉�
#in
lude <list_impl.h>

〈implementation of all member functions〉

The abstract class templatelist<T> is defined in filelist.h. It is derived from classlist impl
and all member functions of the abstract class are realized by calling the corresponding
member function of the implementation class as described above. The calls also do the
appropriate type conversions from typeT to void∗ and vice versa. Since classlist impl is
only used to implement its derived classeslist<T> it is qualified as a private base class of
the list template. Of course, we have to includelist impl.h before usinglist impl as a base
class.
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〈list.h〉�
#in
lude "list_impl.h"

template<
lass T>


lass list : private list_impl {

publi
:

void push(
onst T& x) { list_impl::push(new T(x)); }


onst T& head() 
onst { return *(T*)list_impl::head(); }

void pop(T& x)

{ T* p = (T*)list_impl::pop();

x = *p;

delete p;

}

int size() 
onst { return list_impl::size(); }

void 
lear()

{ while (size() > 0) delete (T*)list_impl::pop();

list_impl::
lear();

}

list() : list_impl() {}

~list() { 
lear(); }

};

The file list impl.c can be compiled into the object code filelist impl.o. An application pro-
gram, saylist prog.c, using lists needs to includelist.h and can be compiled separately into
file list prog.o. Finally, list prog.o andlist impl.o can be linked to an executable program.

In the LEDA system the header files of implementation classesare collected in the
directory LEDAROOT/incl/LEDA/impl and the header files of abstract classes are col-
lected inLEDAROOT/incl/LEDA. All .c-files are contained in the various subdirectories
of LEDAROOT/src.

Type Safety: We next comment on the type safety of the construction described above.
The implementation classlist impl is untyped in the sense that anything can be pushed onto
a list of typelist impl, the classlist is typed in the sense that only objects of typeT can
be pushed onto a list of typelist<T>. In the definition of classlist we make the transition
from the safer (typed) world to a potentially unsafer (untyped) world. Since we declared all
operations oflist impl protected and madelist impl a private base class oflist, the untyped
world is completely encapsulated inside classlist and invisible to any application program.
Only the implementation classlist implworks in the untyped world; we designed it carefully
so as to avoid the dangers of the untyped world. We conclude that the construction is type
safe.

Efficiency: The construction is also efficient. Note that no code needs tobe generated for
the type conversions; the casts simply tell the compiler howthe entries of the list are to
be interpreted. Also all member functions of the abstract class are trivial inline functions
and their calls can be eliminated by optimizing compilers, i.e., there is, for example, no
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need first to call the abstract functionlist ::pushwhich in turn calls the concrete function
list impl::push. The compiler will directly call the concrete function.

Genericness:Finally, the construction is elegant, although not as elegant as the solution
relying completely on templates. The definition of the implementation class is completely
natural1, it is essentiallyt list<void∗>. The definition of the abstract class in terms of the
implementation class is somewhat inelegant because of the required type conversions. How-
ever, these type conversions follow a very simple rule. In-going values are converted to
void∗ and return-values are converted back to typeT .

13.4.2 Virtual Functions and Dynamic Binding
In the example of the preceding section the implementation class list impl required no
knowledge about the actual type argument of the data type template list<T>. This is an
exceptional situation; in most situations the implementation needs to have some knowledge
about the actual type argument. We give two examples.

The first example is a print operation for our list type that prints all elements to the
standard output. We want to realize this operation by aprint member function in the im-
plementation classlist impl. Of course, this function needs to know how to print an object
of the actual type parameter. The second example is comparison-based implementations
of dictionaries, e.g., binary search trees. Any comparison-based implementation of the
parameterized data typedictionary<K , I > (cf. Section 5.3) needs to know how to com-
pare keys. In LEDA, the linear order on a key typeK is defined by a global function
int compare(const K& , const K& ) (cf. Section 2.10) and hence the implementation class
must be able to call this function.

In both examples we need a mechanism to transfer functionality of the actual type pa-
rameters from the abstract data type template to the implementation class. The appropriate
C++ feature is dynamic binding and virtual functions. Detaileddiscussions of this concept
can be found in [Str91, ES90]. The following should be clear even without prior knowledge
of the concept.

In the first example, the classlist impl uses a virtual functionprint elem(void∗ p) to print
elements to standard output. This function is declared in the implementation class but its
implementation is left undefined by labeling it as pure virtual. Syntactically, pure virtual
functions are designated by the key wordvirtual and the assignment “=0” which replaces
the body. The implementation class may use the virtual function in its other member func-
tions, e.g.,list impl usesprint elemin a functionprint that prints the entire list.


lass list impl {

...

virtual void print elem(void*) 
onst = 0;

...

void print() 
onst

1 You may want to include atypedef void∗ T; to make it look even more natural.
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{ for(list impl elem* p = hd; p; p = p->su

) print elem(p->entry); }

...

};

The implementation ofprint elemis provided in the derived classlist<T>. It converts its
argument fromvoid∗ to T∗ (observe that this conversion makes sense on the level of the
data type template) and then hands the object pointed to to the output operator (≪) of type
T (assuming that this operator is defined forT).

template<
lass T>


lass list : private list impl {

...

void print elem(void* p) 
onst { 
out << *(T*)p << endl; }

void print() 
onst { list impl::print(); }

...

};

When a list is created, say through the declarationlist<char∗ > L; the definition ofprint elem
in terms ofoperator≪ (ostream& , char∗) is associated withL. In a callL.print( ) which
leads vialist impl::print( ) to a call oflist impl::print elemthe implementation ofprint elem
bound toL is used. In this way, information about the actual type parameter is transported
into the implementation class.

We turn to our second example. All implementations ofdictionary<K , I > use a virtual
member functionint cmpkey(void∗, void∗) for comparing keys. We discuss the implemen-
tation classbin tree. As in the previous example,cmpkeyis declared as pure virtual in the
implementation class. In the derived class templatedictionary<K , I > we definecmpkeyin
terms of the compare function of typeK . We have


lass bin tree {

...

virtual int 
mp key(void*,void*) 
onst = 0;

...

};

in the implementation class and

template<
lass K, 
lass I>


lass di
tionary: private bin tree {

...

int 
mp key(void* x, void* y) 
onst { return 
ompare(*(K*)x,*(K*)y); }

...

};

in the data type template (note the conversion fromvoid∗ to K∗ in the implementation of
cmpkey).

The construction associates the appropriate compare function with every dictionary, e.g.,
compare(const int& , const int& ) with dictionary<int, int>. Furthermore, the compare func-
tion is available in the implementation classbin treeand can be called by its member func-
tions (e.g. lookup).
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In the remainder of this section and in the next section we give more details of thebin tree
class. This will allow us to discuss further aspects of the LEDA approach to parameterized
data types.

The nodes of abin treeare realized by a classbin treenode. Each node contains a key and
an information, both of typevoid∗, and additional data members for building the actual tree.
For unbalanced trees the pointers to the two children suffice. For balanced trees additional
information needs to be maintained. All implementations ofbalanced trees in LEDA are
derived from thebin treeclass.

In the remainder of this chapter we will use the type nameGenPtrfor the generic pointer
typevoid∗.

typedef void* GenPtr;


lass bin tree node {

GenPtr key;

GenPtr inf;

bin tree node* left 
hild;

bin tree node* right 
hild;

// allow bin tree to a

ess all members

friend 
lass bin tree;

};

The classbin treecontains some private data, such as a pointer to the root of the tree. The
member functions realizing the usual dictionary operations are declared protected to make
them accessible for derived classes (e.g.,dictionary<K , I >) and thecmpkey function is
declared a private pure virtual function. Finally, we definethe item type (cf. Section 2.2.2)
for classbin tree(bin tree::item) to be equal to typebin treenode∗.


lass bin tree {

private:

bin tree node* root;

int 
mp key(GenPtr,GenPtr) 
onst = 0;

prote
ted:

typedef bin tree node* item;

item insert(GenPtr,GenPtr);

item lookup(GenPtr) 
onst;

void del item(item);

GenPtr key(item p) 
onst { return p->key; }

GenPtr inf(item p) 
onst { return p->inf; }

bin tree();

~bin tree();

};

The virtualcmpkeyfunction is used to compare keys, e.g., in thelookupmember function
that returns a pointer to the node storing a given keyk or nil if k is not present in the tree.

bin tree node* bin tree::lookup(GenPtr k) 
onst

{ bin tree node* p = root;

while (p)
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{ int 
 = 
mp key(k,p->key);

if (
 == 0) break;

p = (
 > 0) ? p->right 
hild : p->left 
hild;

}

return p;

}

In the definition of the data type templatedictionary<K , I > we definecmpkey in terms
of the compare function for typeK . The dictionary operations are realized by calling the
corresponding member functions ofbin tree. As in the list example, we also need to perform
the necessary type conversions. The item type of dictionaries (dic item) is defined to be
equal to the item type of the implementation classbin tree::item.

typedef bin tree::item di
 item;

template<
lass K, 
lass I>


lass di
tionary : private bin tree {

int 
mp key(GenPtr x, GenPtr y) 
onst

{ return 
ompare(*(K*)x,*(K*)y); }

publi
:


onst K& key(di
 item it) 
onst { return *(K*)bin tree::key(it); }


onst I& inf(di
 item it) 
onst { return *(I*)bin tree::inf(it); }

di
 item insert(
onst K& k 
onst I& i)

{ return bin tree::insert(new K(k), new I(i)); }

di
 item bin tree::lookup(
onst K& k) 
onst

{ return bin tree:lookup(&k); }

};

Observe thatbin tree::lookupexpects aGenPtrand hence we pass the address ofk to it.
The code for classesbin treeanddictionary<K , I > is distributed over the filesbin tree.h,

bin tree.c, anddictionary.h as described in the previous section: classesbin treenodeand
bin treeare defined inLEDA/impl/bin tree.h, the implementation ofbin treeis contained in
LEDAROOT/src/dict/bin tree.c, anddictionary<K , I > is defined inLEDA/dictionary.h.

The above implementation of dictionaries has a weakness (which we will overcome in the
next section). Consider the insert operation. According tothe specification of dictionaries
(see Section 5.3) a callD.insert(k, i ) adds a new item〈k, i 〉 to D when there is no item
with key k in D yet and otherwise replaces the information of the item with key k by i .
However, in the implementation given abovedictionary<K , I > ::insert(k, i ) makes a copy
of k and then passes a pointer to this copy tobin tree::insert. If k is already in the tree
bin tree::insertmust destroy the copy again (otherwise, there would be a memory leak). It
would be better to generate the copy ofk only when needed.

In the next section we show how to shift the responsibility for copying and deleting data
objects to the implementation class by means of virtual functions. We will also show how
to implement the missing copy constructor, assignment operator, and destructor.
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13.4.3 Copy Constructor, Assignment, and Destruction
Copying, assignment, and destruction are fundamental operations of every data type. In
C++ they are implemented by copy constructors, assignment operators, and destructors. Let
us see how they are realized in LEDA. As an example, consider the assignment operation
D1 = D2 for the data typedictionary<K , I >. A first approach would be to implement this
operation on the level of abstract types, i.e., in the data type templatedictionary<K , I >. We
could simply first clearD1 by a call ofD1.clear( ) and then insert the key/information pairs
for all itemsit of D2 by callingD1.insert(D2.key(it), D2.inf (it)) for every one of them. This
solution is inflexible and inefficient; the assignment wouldtake timeO(n logn) instead of
time O(n).

A second approach is to realize the operation on the level of the implementation class
bin tree. This requires thatbin tree knows how to copy a key and an information. In the
destructor it also needs to know how to destroy them. There are also many other reasons
why the implementation class should have these abilities, as we will see. In LEDA, we use
virtual functions and dynamic binding to provide this knowledge.

In the dictionary example, we have the following virtual member functions in addition to
cmpkey:

void copykey(GenPtr& x) andvoid copyinf (GenPtr& x) that make a copy of the object
pointed to byx and assign a pointer to this copy tox,

void clearkey(GenPtr x) andvoid clearinf (GenPtr x) that destroy the object pointed to
by x, and finally

void assignkey(GenPtr x, GenPtr y) andvoid assigninf (GenPtr x, GenPtr y) that as-
sign the object pointed to byy to the object pointed to byx.

We exemplify the use of the virtual copy and clear function intwo recursive member
functionscopysubtreeandclearsubtreeof bin tree that perform the actual copy and clear
operations for binary trees. The copy constructor, the assignment operator, the destruc-
tor, and theclear function of classbin treeare then realized in terms ofcopysubtreeand
clearsubtree. The use ofassigninf will be demonstrated later in the realization of the
operationchangeinf .

In the header filebin tree.h we extend classbin treeas follows.


lass bin tree {

private:

...

virtual void 
opy key(GenPtr&) 
onst = 0;

virtual void 
lear key(GenPtr) 
onst = 0;

virtual void assign key(GenPtr x, GenPtr y) 
onst =0;

virtual void 
opy inf(GenPtr&) 
onst = 0;

virtual void 
lear inf(GenPtr) 
onst = 0;

virtual void assign inf(GenPtr x, GenPtr y) 
onst =0;

void 
lear subtree(bin tree node* p);

// deletes subtree rooted at p

bin tree node* 
opy subtree(bin tree node* p);

// 
opies subtree rooted at p, returns 
opy of p
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prote
ted:

void 
lear();

bin tree(
onst bin tree& T);

bin tree& operator=(
onst bin tree& T);

~bin tree() { 
lear(); }

};

In the data type templatedictionary<K , I > we realize the virtual copy, assign, and clear
functions by type casting, dereferencing, and calling the new, assignment, or delete opera-
tors of the corresponding parameter typesK and I . Copy constructor, assignment operator,
and destructor of typedictionaryare implemented by calling the corresponding operations
of the base classbin tree.

template<
lass K, 
lass I>


lass di
tionary: private bin tree {

...

void 
opy key(GenPtr& x) 
onst { x = new K(*(K*)x); }

void 
opy inf(GenPtr& x) 
onst { x = new I(*(I*)x); }

void 
lear key(GenPtr x) 
onst { delete (K*)x); }

void 
lear inf(GenPtr x) 
onst { delete (I*)x); }

void assign key(GenPtr x, GenPtr y) 
onst { *(K*)x = *(K*)y; }

void assign inf(GenPtr x, GenPtr y) 
onst { *(I*)x = *(I*)y; }

...

publi
:

...

di
tionary(
onst di
tionary<K,I>& D) : bin tree(D) {}

di
tionary<K,I>& operator=(
onst di
tionary<K,I>& D)

{ bin tree::operator=(D); return *this; }

~di
tionary() { bin tree::
lear(); }

};

The functionsbin tree::copysubtree, bin tree::clearsubtree, bin tree::clear, the copy con-
structor, the destructor, and the assignment operator are implemented in bintree.c.

bin tree node* bin tree::
opy subtree(bin tree node* p) {

if (p == nil) return nil;

bin tree node* q = new bin tree node;

q->l 
hild = 
opy subtree(p->l 
hild);

q->r 
hild = 
opy subtree(p->r 
hild);

q->key = p->key;

q->inf = p->inf;


opy key(q->key);


opy inf(q->inf);

return q;

}

void bin tree::
lear subtree(bin tree node* p) {

if (p == nil) return;


lear subtree(p->l 
hild);


lear subtree(p->r 
hild);


lear key(p->key);


lear inf(p->inf);
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delete p;

}

void bin tree::
lear() {


lear subtree(root);

root = nil;

}

bin tree& bin tree::operator=(
onst bin tree& T) {

if (this != &T)

{ 
lear();

root = 
opy subtree(T.root);

}

return *this;

}

The implementation of the copy constructor is subtle. It is tempting to write (as in
operator=)

bin tree::bin tree(
onst bin tree& T) { root = 
opy subtree(T.root); }

This will not work. The correct implementation is

bin tree::bin tree(
onst bin tree& T) { root = T.
opy subtree(T.root); }

What is the difference? In the first case we callcopysubtreefor the object under con-
struction, and in the second case we callcopysubtreefor the existing treeT . The body of
copysubtreeseems to make no reference to eitherT or the object under construction. But
note that all member functions of a class have an implicit argument, namely the instance
to which they are applied. In particular, the functionscopykeyandcopyinf are eitherT ’s
versions of these functions or the new object’s versions. The point is that these versions are
different.

ObjectT belongs to classdictionary<K , I > and hence knows the correct interpretation
of copykeyandcopyinf . The object under construction does not know them yet. It knows
them only when the construction is completed. As long as it isunder construction the
functionscopykeyandcopyinf are as defined in classbin tree and not as defined in the
derived classdictionary<K , I >. In other words, when an object of typedictionary<K , I > is
constructed we first construct abin treeand then turn thebin tree into adictionary<K , I >.
The definitions of the virtual functions are overwritten when thebin tree is turned into a
dictionary<K , I >.

What will happen when the wrong definition of thecopysubtreefunction is used, i.e.,
when the copy constructor ofbin tree is defined as

bin tree::bin tree(
onst bin tree& T) { root = 
opy subtree(T.root); }

In this situation, the original definition ofcopykey is used. According to the specification
of C++ the effect of calling a virtual function directly or indirectly for the object being
constructed is undefined. The compilers that we use interpret a pure virtual function as a
function with an empty body and hence the program above will compile but no copies will
be made. One may guard against the inadvertent call of a pure virtual function by using a
virtual function whose call rises an error instead, e.g., one may define
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virtual void 
opy key(GenPtr&) { assert(false); return 0; }

Destructors give rise to the same problem as constructors. In a destructor of a base
class virtual member functions also have the meaning definedin the base class and not
the meaning given in a derived class. What does this mean for the destructor of class
dictionary<K , I >? It first callsbin tree::clear and then the destructor of the base class
bin tree(the latter call is generated by the compiler). The destructor of bin treeagain calls
bin tree::clear. So why do we need the first call at all? We need it because the second
call uses the “wrong” definitions of the virtual functionsclearkey andclear inf . When
bin tree::clear is called for the second time the object to be destroyed does not know any-
more that it was adictionary<K , I >. The second call of theclear is actually unnecessary.
We put it for reasons of uniformity; it incurs only very smalladditional cost.

Sincebin treenow knows how to copy and destroy the objects of typeK and I , respec-
tively, we can write correct implementations of the operationsdel item and insert on the
level of the implementation class, i.e., use precompiled versions of these functions, too.

void bin tree::del item(bin tree node* p) {

// remove p from the tree

...


lear key(p->key);


lear inf(p->inf);

delete p;

}

bin tree node* bin tree::insert(GenPtr k, GenPtr i) {

bin tree node* p = lookup(k);

if (p != nil) { // k already present


hange inf(p,i);

return p;

}


opy key(k);


opy inf(i);

p = new bin tree node();

p->key = k;

p->inf = i;

// insert p into tree

...

return p;

}

By using the virtualassigninf function we can realize thechangeinf operation on the level
of the implementation class, too.

void bin tree::
hange inf(bin tree node* p, GenPtr i) {

assign inf(p->inf,i);

}

With this modification the corresponding operations in thedictionary<K , I > template do
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not need to copy or destroy a key or an information anymore. They just pass the addresses
of their arguments of typeK and I to the member functions of classbin tree.

template<
lass K, 
lass I>


lass di
tionary: private bin tree {

...

publi
:

...

void del item(di
 item it) { bin tree::del item(it); }

void 
hange inf(di
 item it, 
onst I& i)

{ bin tree::
hange inf(it,&i); }

di
 item insert(
onst K& k, 
onst I& i) { bin tree::insert(&k,&i); }

13.4.4 Arrays and Default Construction
Some parameterized data types require that the actual element type has a default constructor,
i.e., a constructor taking no arguments, that initializes the object under construction to some
default value of the data type. The LEDA data typesarray andmapare examples for such
types.

The declaration

array<string> A(1,100);

creates an array of 100 variables of typestringand initializes every variable with the empty
string (using the default constructor of typestring).

The declaration

map<int,ve
tor> M;

creates a map with index typeint and element typevector, i.e., a mapping from the set of
all integers of typeint to the set of variables of typevector. All variables are initialized with
the vector of dimension zero (the default value of typevector).

Note that a default constructor does not necessarily need toinitialize the object under
construction to a unique default value. There are data typesthat have no natural default
value (for example, a line segment) and there are others where initialization to a default
value is not done for efficiency reasons. In these cases, the default constructor simply
constructs some arbitrary object of the data type. Examplesfor such types are the built-in
types of C++. The declaration

int x;

declaresx as a variable of typeint initialized to some unspecified integer, and the declaration

array<int> A(1,100);

creates an array of 100 variables of typeint each holding some arbitrary integer.
As for copying, assignment, and destruction, LEDA implements default initialization of

parameterized data types in the corresponding implementation class by virtual functions
and dynamic binding. We use the array data type as an example.
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The parameterized data typearray<T> is derived from the implementation classgenarray
of arrays for generic pointers. The classgenarray provides two operationsinit all entries
and clearall entrieswhich can be called to initialize or to destroy all entries ofthe ar-
ray, respectively. They use the virtual member functionsvoid init entry(GenPtr& ) and
void clearentry(GenPtr) to do the actual work, i.e., they use the first function to initial-
ize an array entry and the second function to destroy one.


lass gen array {

GenPtr* first;

GenPtr* last;

...

virtual void init entry(GenPtr& x) = 0;

virtual void 
lear entry(GenPtr x) = 0;

...

prote
ted:

...

void init all entries()

{ for(GenPtr* p = first; p <= last; p++) init entry(*p); }

void 
lear all entries()

{ for(GenPtr* p = first; p <= last; p++) 
lear entry(*p); }

};

In the data type classarray<T> we defineinit entryandclearentryby calling the new and
delete operator of typeT , respectively. The constructor ofarray<T> usesinit all entries
to initialize all elements of the array and the destructor usesclearall entriesto destroy all
objects stored in the array.

template <
lass T>


lass array : private gen array {

void init entry(GenPtr& x) { x = new T; }

void 
lear entry(GenPtr x) { delete (T*)x; }

publi
:

...

array(int l, int h) : gen array(l,h) { init all entries(); }

~array() { 
lear all entries(); }

};

We give one more example of default construction, thenewnodeandnewedgeoperations
of parameterized graphsGRAPH<vtype, etype>. There are two variants of these operations:
the first one takes an argument that is used to initialize the information associated with the
new object (node or edge).

node G.new node(
onst vtype&)

edge G.new edge(node, node, 
onst etype&)

The second one does not take such an argument. Here the information associated with the
object is initialized by the default constructor of the corresponding type (vtypeor etype).

node G.new node()

edge G.new edge(node v, node w)
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The following piece of code constructs a graph with two nodesv andw connected by an
edgee = (v, w). The nodes are labeled with the default value of typestring, i.e., the empty
string, and edgee is labeled with a vector of dimension zero, the default valueof type
vector.

GRAPH<string,ve
tor> G;

node v = G.new node();

node w = G.new node();

edge e = G.new edge(v,w);

Default initialization for nodes and edges is also used by LEDA’s various graph generators.
If G is a parameterized graph of typeGRAPH<vtype, etype>, a callrandomgraph(G, n, m)

constructs a random graph withn nodes andm edges where each node information is ini-
tialized by the default constructor of typevtypeand each edge information is initialized by
the default constructor of typeetype.

13.4.5 Some Useful Function Templates
In <LEDA/paramtypes.h> we define five function templates that are useful to define the
virtual functions required in the LEDA approach.

template <
lass T>

inline T& leda a

ess(
onst T*, 
onst GenPtr& p) { return *(T*)p; }

returns a reference to the object of typeT pointed to byp. The first argument of this
function template is a dummy pointer argument of typeT∗ that is used for selecting the
correct instantiation. For instance, to access an object oftypeT through a generic pointer
p we write ledaaccess((T∗)0, p). As an abbreviation LEDA provides the macro.

#define LEDA ACCESS(T,p) leda a

ess((T*)0,p)

The function template

template <
lass T>

inline GenPtr leda 
reate(
onst T*) { return new T; }

returns a generic pointer to an object of typeT initialized with the default value of typeT .
Again, there is a dummy pointer argument of typeT∗.

The function template

template<
lass T>

inline GenPtr leda 
opy(
onst T& x) { return new T(x); }

returns a generic pointer to an object of typeT initialized with a copy ofx.
The function template

template <
lass T>

inline void leda 
lear(T& x) { T* p = &x; delete p; }

destroys the object stored atx and the function template
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template <
lass T>

inline GenPtr leda 
ast(
onst T& x) { return (GenPtr)&x; }

returns the address ofx casted to a generic pointer.

Given these function pointers it is easy to define the virtualfunction required in the LEDA
approach in a generic way for every type parameterT .

void 
reate T(GenPtr& p) { p = leda 
reate((T*)0); }

void 
opy T (GenPtr& p) { p = leda 
opy(LEDA ACCESS(T,p)); }

void 
lear T (GenPtr p) { leda 
lear(LEDA ACCESS(T,p)); }

void assign T(GenPtr& p, GenPtr q)

{ LEDA ACCESS(T,p) = LEDA ACCESS(T,q); }

We return to the dictionary and array data type templates to demonstrate the use of the
above defined function templates and macros. We have


lass di
tionary : publi
 bin tree {

int 
mp(GenPtr x, GenPtr y) 
onst

{ return 
ompare(LEDA ACCESS(K,x), LEDA ACCESS(K,x,y); }

void 
lear key(GenPtr& x) 
onst { leda 
lear(LEDA ACCESS(K,x)); }

void 
lear inf(GenPtr& x) 
onst { leda 
lear(LEDA ACCESS(I,x)); }

void 
opy key(GenPtr& x) 
onst { x = leda 
opy(LEDA ACCESS(K,x)); }

void 
opy inf(GenPtr& x) 
onst { x = leda 
opy(LEDA ACCESS(I,x)); }

void assign inf(GenPtr& x, GenPtr y) 
onst

{ LEDA ACCESS(I,x) = LEDA ACCESS(I,y); }

publi
:

...

K key(di
 item it) 
onst

{ return LEDA ACCESS(K,bin tree::key(it)); }

I inf(di
 item it) 
onst

{ return LEDA ACCESS(I,bin tree::inf(it)); }

di
 item insert(
onst K& k, 
onst I& i)

{ return bin tree::insert(leda 
ast(k),leda 
ast(i)); }

di
 item lookup(
onst K& k) 
onst

{ return bin tree::lookup(leda 
ast(k)); }

void 
hange inf(di
 item it, 
onst I& i)

{ bin tree::
hange inf(it,leda 
ast(i)); }

...

};

and

template <
lass T>


lass array : private gen array {

void init entry(GenPtr& x) { x = leda 
reate((T*)0); }

void 
lear entry(GenPtr x) { leda 
lear(LEDA ACCESS(T,x)); }

...

};
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13.4.6 Further Uses of Virtual Functions
There are many other situations where LEDA uses virtual functions for transferring func-
tionality of actual type arguments from the data type class to the implementation class.
Examples are:

• Printing and Reading

• Hashing

• Id-Numbers

• Type Information (see the next section)

• Rebalancing of binary trees

We touched upon printing and reading in Section 5.7.3, an example of the use of id-
numbers can be found in Section 5.1.2, and we will see type information in Section 13.5.3.

Exercises for 13.4
1 Write a template implementation of the LEDA data typequeue.
2 Is it correct to change the interface ofpopto 
onst T& pop()?
3 The implementation oflist<T> ::clear which simply callslist impl::clear has a memory

leak, as it leaves the entries contained in the elements of the list as orphans on the heap.
Why doest list<T> ::clear not have a memory leak?

4 Define a classdlist<T> that implements doubly linked lists for elements of typeT . Use
the template approach and convert the solution to the LEDA approach.

5 Add an operationpop(T& x) to the list data type that returns the result of the pop oper-
ation in the reference parameterx.

6 In the text we established a relationship between corresponding states oft list<T> and
list<T>. Argue that the implementations of the various functions ofthe list data type
leave this correspondence invariant.

7 Consider the following skeleton for the functionbin tree::insert.

bin tree node* insert(void* k, void* i)

{ bin tree node *p = root, *q = nil; // q is always the parent of p

int 
;

while (p)

{ 
 = 
mp key(k,p->key);

if (
 == 0)

{ // something is missing here

return p;

}

q = p;

p = (
 > 0) ? p->right 
hild : p->left 
hild;

}

if ( 
 > 0 ) return q->right 
hild = new bin tree node(k,i);

else return q->left 
hild) = new bin tree node(k,i);

}

Complete the code. Make sure that your implementation has nomemory leak.
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13.5 Optimizations

In this section we describe some optimizations that can be applied to special type arguments
of parameterized data types.

13.5.1 Small Types
The LEDA solution for parameterized data types presented inthe preceding sections uses
one additional (generic) pointer field for every value or object that is stored in the data
type. The method incurs overhead in space and time, in space for the additional pointer
and in time for the additional indirection. We show how to avoid the overhead for types
whose values are no larger than a pointer. In C++ the space requirement of a type is easily
detemined:sizeof(T) returns the size of the objects of typeT in bytes. We call a typeT
small if sizeof(T) ≤ sizeof(GenPtr) and large otherwise. By definition, all pointer types
are small. On 32 bit systems the built-in typeschar, short, int, long, float are small as well,
and typedoubleis big. On 64 bit systems even the typedoubleis small. Note that class
types can be small too, e.g., a class containing a single pointer data member. An example
for small class types are the LEDAhandle typesthat will be discussed in Section 13.7.

Values of any small typeT can be stored directly in a data field of typevoid∗ or GenPtr
by using thein-place new operatorof C++. If p is a pointer of typevoid∗

new(p) T(x);

calls the copy constructor of typeT to construct a copy ofx at the address in memory that
p points to, in other words withthis = p. Similarly,

new(p) T;

calls the default constructor of typeT (if defined) to construct the default value of typeT
at the location thatp points to.

We use the in-place new operator as follows. Ify is a variable corresponding to a data
field of some container andT is a small type then

new(&y) T(x);

new(&y) T;

constuct a copy ofx and the default value ofT directly in y.
Of course, small objects have to be destroyed too. For this purpose we will use theexplicit

destructor callof C++. If z is a variable of some typeT ,

z.~T()

calls the destructor ofT for the object stored inz. Destructor calls for named objects are
constructed automatically in C++ when the scope of the object ends, and therefore few C++

programmers ever need to make an explicit destructor call.
We have to. Observe that we construct objects of typeT in variables of typevoid∗ and

therefore cannot rely on the compiler to generate the destructor call. We destroy an object
of typeT stored in a variabley of typevoid∗ by casting the address ofy to a pointer of type
T∗ and calling the destructor explicitly as in
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((T*)&y)->~T();

To access the value of a small typeT stored in avoid∗ data fieldy we take the address of
y, cast it into aT∗ pointer, and dereference this pointer.

*((T*)&y)

13.5.2 Summary of LEDA Approach to Parameterized Data Types
We summarize the LEDA approach to parameterized data types.We store values of arbitrary
typesT in data fields of typevoid∗ (also calledGenPtr). We distinguish between small and
large types.

For objects of a large typeT (sizeof(T) > sizeof(GenPtr)) we make copies in the dy-
namic memory using thenewoperator and store pointers to the copies.

For objects of a small typeT (sizeof(T) ≤ sizeof(GenPtr)) we avoid the overhead of an
extra level of indirection by copying the value directly into thevoid∗ data field using the
“in-place” variant of thenewoperator.

We next give versions ofledacopy, ledacreate, ledaclear, ledaaccess, and ledacast
that can handle small and large types. The functions are defined in LEDA/paramtypes.h.

GenPtr ledacopy(const T& x) makes a copy ofx and returns it as a generic pointer of type
GenPtr. If T is a small type, the copy ofx is constructed directly in aGenPtrvariable using
the in-place new operator ofT , and if T is a big type, the copy ofx is constructed in the
dynamic memory (using the default new operator) and a pointer to this copy is returned.

template<
lass T>

inline GenPtr leda 
opy(
onst T& x)

{ GenPtr p;

if (sizeof(T) <= sizeof(GenPtr)) new(&p) T(x);

if (sizeof(T) > sizeof(GenPtr)) p = new T(x);

return p;

}

GenPtr ledacreate(const T∗) constructs the default value of typeT by a call of either the
in-place new or the normal new operator ofT .

template <
lass T>

inline GenPtr leda 
reate(
onst T*)

{ GenPtr p;

if (sizeof(T) <= sizeof(GenPtr)) new(&p) T;

if (sizeof(T) > sizeof(GenPtr)) p = new T;

return p;

}

void ledaclear(T& x) destroys the object stored inx either by calling the destructor ofT
explicitly or by calling thedeleteoperator on the address ofx.

template <
lass T>

inline void leda 
lear(T& x)

{ T* p = &x;
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if (sizeof(T) <= sizeof(GenPtr)) p->~T();

if (sizeof(T) > sizeof(GenPtr)) delete p;

}

T& ledaaccess(const T∗, const GenPtr& p) returns a reference to the object of typeT
stored inp or pointed to byp respectively.

template <
lass T>

inline T& leda a

ess(
onst T*, 
onst GenPtr& p)

{ if (sizeof(T) <= sizeof(GenPtr)) return *(T*)&p;

if (sizeof(T) > sizeof(GenPtr)) return *(T*)p;

}

GenPtr ledacast(const T& x) either returns the value ofx or the address ofx casted to a
generic pointer.

template <
lass T>

inline GenPtr leda 
ast(
onst T& x)

{ GenPtr p;

if (sizeof(T) <= sizeof(GenPtr)) *(T*)&p = x;

if (sizeof(T) > sizeof(GenPtr)) p = (GenPtr)&x;

return p;

}

The functions above incur no overhead at run time. Note that all comparisons between
the size ofT and the size of a pointer can be evaluated at compile-time when instantiating
the corresponding function template and therefore do not cause any overhead at run time.

13.5.3 Optimizations for Built-in Types
Our method of implementing parameterized data types storesthe objects of the data type in
void∗ data fields and uses virtual member functions for passing type-specific functionality
from the data type template to the implementation class.

In a previous section we already showed how to avoid the spaceoverhead of an additional
pointer for small types. However, there is also an overhead in time. Every type-dependent
operation, such as comparing two keys in a dictionary, is realized by a virtual member
function. Calling such a function, e.g., in the inner loop when searching down a tree, can
be very expensive compared to the cost of applying a built-incomparison operator.

LEDA has a mechanism for telling the implementation class that an actual type parameter
is one of the built-in types in order to avoid this overhead. For the identification of these
types we use an enumeration. For every built-in typexyz this enumeration contains an
elementXYZTYPEID. There is also anUNKNOWNTYPEID member used for indicating
that the corresponding type is unknown, i.e., is not one of the built-in types.

enum { UNKNOWN TYPE ID, CHAR TYPE ID, SHORT TYPE ID, INT TYPE ID,

LONG TYPE ID, FLOAT TYPE ID, DOUBLE TYPE ID };

To compute the type identification for a given type we use a global functionledatypeid.
Given a pointer to some typeT this function returns the corresponding type identification,
e.g., ifT = int, it will return INT TYPEID, if T is not one of the recognized types, the result
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is UNKNOWNTYPEID. We first define a default function template returning the special
valueUNKNOWNTYPEID and then define specializations for all built-in types.

template <
lass T>

inline int leda type id(
onst T*) { return UNKNOWN TYPE ID; }

inline int leda type id(
onst 
har*) { return CHAR TYPE ID; }

inline int leda type id(
onst int*) { return INT TYPE ID; }

inline int leda type id(
onst long*) { return LONG TYPE ID; }

inline int leda type id(
onst double*){ return DOUBLE TYPE ID; }

...

Now we can add a virtual functionkeytypeid to the dictionary implementation and de-
fine it in the corresponding data type template by calling theledatypeid function with an
appropriate pointer value.


lass bin tree {

...

virtual int key type id() = 0;

...

};

template <
lass K, 
lass I>


lass di
tionary {

...

int key type id() { return leda type id((K*)0); }

...

};

In the implementation of the various dictionary operations(in bin tree.c) we can now
determine whether the actual key type is one of the basic types and choose between different
optimizations. We use thebin tree::searchmember function as an example. Let us assume
we want to write a special version of this function for the built-in type int that does not call
the expensivecmpkey function but compares keys directly. First we calltypeid( ) to get
the actual key type id and in the case ofINT TYPEID we use a special searching loop that
compares keys using theLEDAACCESSmacro and the built-in comparison operators for
type int.

bin tree node* bin tree::sear
h(GenPtr x) 
onst

{

bin tree node* p = root;

swit
h ( type id() ) {


ase INT TYPE ID: {

int x int = LEDA ACCESS(int,x);

while (p)

{ int p int = LEDA ACCESS(int,p->k);

if (x int == p int) break;

p = (x int < p int) ? p->left 
hild : p->right 
hild;

}

break;

}

default: {
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n myint int

1000000 6.74 0.68

Table 13.1 The effect of the optimization for built-in types. The time to sort an array ofn
random elements is shown. The table was generated with the program
built in typesoptimization in directory LEDAROOT/demo/book/Impl.

while (p)

{ int 
 = 
mp(x,p->k);

if (
 == 0) break;

p = (
 < 0) ? p->left 
hild : p->right 
hild;

}

break;

}

}

return p;

}

The above piece of code is easily extended to other built-in types.

Table 13.1 shows the effect of the optimization. We defined a classmyint that encapsu-
lates anint

〈class myint〉�

lass myint {

int x;

publi
:

myint() {}

myint(
onst int _x): x(_x) {}

myint(
onst myint& p) { x = p.x; }

friend void operator>>(istream& is, myint& p) { is >> p.x; };

friend ostream& operator<<(ostream& os, myint& p)

{ os << p.x; return os; };

friend int 
ompare(
onst myint&,
onst myint&);

};

int 
ompare(
onst myint& p,
onst myint& q)

{

if (p.x == q.x) return 0;

if (p.x < q.x) return -1; else return +1;

}

and then built two arrays of sizen, one filled with randomints and the other one filled with
the samemyints. We then sorted both arrays. Table 13.1 shows that the optimization leads
to a considerable reduction in running time.
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Exercise for 13.5
1 Extend the search procedure for binary trees such that it uses the optimization also for

doubles.

13.6 Implementation Parameters

There are many implementations of dictionaries: binary trees, skiplists, hashing, sorted
arrays, self-adjusting lists, . . . . Which implementation should be included in a library?

If one provides only one implementation, then this implementation should clearly be the
“best” possible. This was the direction taken in the first versions of LEDA. In the case of
the dictionary data type, we included red-black trees because they are asymptotically as
efficient as any other implementation. But, of course, only asymptotically. Also, there are
better implementations for special cases, e.g., for integer keys from a bounded universe.
For other data types, e.g., range trees, there are implementations with vastly differing per-
formance parameters (time-space tradeoff) and so there is not even an asymptotically best
implementation. All of this implies that providing only oneimplementation for each data
type is not satisfactory.

So, one has to provide many and allow for the possibility of adding more. What properties
should a mechanism for choosing between different implementations have?

(1) There should be a simple syntax for choosing between different implementations. In
LEDA, the declaration

di
tionary<K,I,rb tree> D;

creates an empty dictionary with key typeK and information typeI and selects red-black
trees as the implementation variant,dictionary<K , I , impl> selects the implementation
impl. The actual type parameter forimpl has to be a dictionary implementation, i.e., must be
a class that provides a certain set of operations and uses virtual functions for type dependent
operations. This will be discussed below. The declaration

di
tionary<K,I> D;

selects the default implementation (skiplists in the current version).
Remark: Because templates cannot be overloaded in C++ we have to use different names

dictionaryand dictionary. The general rule is that the data type variant with implementation
parameter starts with an underscore.

(2) Applications can be written that work with any implementation. For example, ap-
plications that use a dictionary are written as functions with an additional parameter of the
abstract dictionary type. Then the function can be called with any implementation of the
dictionary type. We illustrate this feature with the word-count example.

void WORD COUNT(
onst list<string>& L, di
tionary<string,int>& D)

{ string s;

forall(s,L)
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Figure 13.2 Multiple inheritance combines abstract data types and datastructures to concrete
data types.

{ di
 item it = D.lookup(s);

if (it == nil)

D.insert(s,1);

else

D.
hange inf(it,D.inf(it)+1);

}

di
 item it;

forall items(it,D)


out << D.key(it) << " appeared " << D.inf(it) << " times.";

}

In the context of the declarations

di
tionary<string, int> SL D; // skiplists

di
tionary<string, int, rb tree> RB D; // red-bla
k trees

di
tionary<string, int, my impl> MY D; // user implementation

the calls

WORD COUNT(L,SL D);

WORD COUNT(L,RB D);

WORD COUNT(L,MY D);

are now possible.

The realization of the implementation parameter mechanismmakes use of multiple in-
heritance, cf. Figure 13.2. Every concrete data type, say dictionary with the rbtree imple-
mentation, is derived from the abstract data type and the data structure used to implement it.
In the abstract data type class, all functions are virtual, i.e., have unspecified implementa-
tions. In the data structure class the details of the implementation are given and the classes
in the bottom line of Figure 13.2 are used to match the abstract functions with the concrete
implementations.
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template<
lass K,
lass I> 
lass di
tionary : private default impl

{

int 
mp key(GenPtr x, GenPtr y)

{ return 
ompare(LEDA ACCESS(K,x), LEDA ACCESS(K,y)); }

void 
lear key(GenPtr x) { leda 
lear(LEDA ACCESS(K,x)); }

publi
:

virtual K key(di
 item it) = 0;

virtual di
 item lookup(K y) = 0;

virtual di
 item insert(K x, I y) = 0;

virtual void del(K y) = 0;

...

};

Dictionaries with implementation parameter can now be derived from the abstract dictionary
class.

template<
lass K, 
lass I,
lass IMPL>


lass di
tionary : private IMPL, publi
 di
tionary<K,I>

{

publi
:

K key(di
 item it) { return LEAD ACCESS(K,IMPL::key(it)); }

di
 item lookup(K y) { return IMPL::lookup(leda 
ast(y)); }

di
 item insert(K x, I y)

{ return IMPL::insert(leda 
ast(x),leda 
ast(y)); }

void del(K y) { IMPL::del(leda 
ast(y)); }

...

};

Of course, an implementation classIMPL can be used as actual implementation parame-
ter of a parameterized data type only if it provides all necessary operations and definitions
and calls type-dependent functions through the appropriate virtual member functions. For
item-based types, it must in addition define a local typeitem representing the items of the
data type. In the case of dictionaries, any classdic impl with the following definitions and
declarations can be used as implementation class.


lass di
 impl {

// type dependent fun
tions

virtual int 
mp(GenPtr, GenPtr) 
onst = 0;

virtual int type id() 
onst = 0;

virtual void 
lear key(GenPtr&) 
onst = 0;

virtual void 
lear inf(GenPtr&) 
onst = 0;

virtual void 
opy key(GenPtr&) 
onst = 0;

virtual void 
opy inf(GenPtr&) 
onst = 0;

virtual void assign inf(GenPtr&, GenPtr) 
onst = 0;

publi
:

// definition of the item type

typedef ... item;

// 
onstru
tion, destru
tion, 
opying

di
 impl();
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di
 impl(
onst di
 impl&);

~di
 impl();

di
 impl& operator=(
onst di
 impl&);

// di
tionary operations

GenPtr key(item) 
onst;

GenPtr inf(item) 
onst;

item insert(GenPtr,GenPtr);

item lookup(GenPtr) 
onst;

void 
hange inf(item,GenPtr);

void del item(item);

void del(GenPtr);

void 
lear();

int size() 
onst;

// iteration

item first item() 
onst;

item next item(item) 
onst;

};

For most of its parameterized data types LEDA provides several implementation classes.
Before using an implementation classxyzthe corresponding header file<LEDA/impl/xyz.h>
has to be included. The following dictionary implementations are currently available: AVL-
Trees (avl tree), (a,b)-Trees (abtree), BB[α]-Trees (bbtree), Skiplists (skiplist), Red-Black-
Trees (rb tree), Randomized Search Trees (rs tree), Dynamic Perfect Hashing (dphashing),
and Hashing with Chaining (chhashing).

Section “Available Implementations” of the LEDA user manual gives the complete list of
all available implementations.

Exercises for 13.6
1 Write an implementation class for dictionaries based on the sosetclass of Section 3.2.
2 Write an implementation class for priority queues.

13.7 Independent Item Types (Handle Types)

All independent item types of LEDA (cf. Section 2.2.2) are implemented by so-calledhan-
dle types. Basically, a handle typeH is a pointer (or handle) to some representation class
H rep that contains all data members used for the representation of objects of typeH . As-
signment and copy operations translate to simple pointer assignments and the test for iden-
tity translates to the equality test for pointers. Thus assignment, copy operations, and iden-
tity functions are easily handled, but destruction of representation objects causes a problem.

A representation object has to be destroyed as soon as no handle is pointing to it anymore.
To detect this situation we use a technique calledreference counting. Every representation
object has a reference counterref count that contains the number of handles which are
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still in scope and point to the object. The counters are updated in the copy constructor,
assignment operator, and destructor of the corresponding handle class.

We use a two-dimensional point classpoint as an example. The representation class
point rephas three data members, a pair of floating-point coordinates(x, y) and a reference
counterref count. A constructor initializing the coordinates to two given values and setting
the reference counter to one is the only member function.


lass point rep {

double x, y;

int ref 
ount;

point rep(double a, double b) :x(a),y(b),ref 
ount(1) {}

};

Now we could implement points by pointers to the representation classpoint rep. However,
just using the typepoint rep∗ for representing points, as in

typedef point rep* point;

would not make reference counting work automatically when variables of typepoint are
created, assigned to each other, or destroyed. Thereforepoint has to be implemented by a
real C++ class with constructors, destructor, and assignment operator.

The only data member of classpoint is a pointer to the corresponding representation class
point rep.


lass point {

point rep* ptr;

publi
:

point(double,double);

point(
onst point&);

point& operator=(
onst point&);

~point();

double x
oord() 
onst;

double y
oord() 
onst;

point translate() 
onst;

friend bool identi
al(
onst point& x, 
onst point& y);

};

The constructor of classpoint creates a new representation object (withref countequal
to one) in the dynamic memory and assigns the pointer toptr. The copy constructor copies
the corresponding pointer and increases the reference counter of the representation object
by one. The destructor decreases the corresponding reference counter by one and deletes
the representation object if the new value of the counter is zero.

point::point(double x, double y) { ptr = new point rep(x,y); }

point::point(
onst point& p)

{ ptr = p.ptr;

ptr->
ount++;

}

point::~point() { if (--ptr->ref 
ount == 0) delete ptr; }
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In an assignment operationq = p we first increase the reference counter of the repre-
sentation object pointed to byp and then decrease the counter of the representation object
pointed to byq. If the counter of the representation object pointed to byq is zero afterwards
thenq was the only handle pointing to the representation object and we have to delete it.
Note that in the case thatp andq are identical the same reference counter is first increased
and then decreased and hence is unchanged in the end.

point& point::operator=(
onst point& p)

{ p.ptr->
ount++;

if (--ptr->
ount == 0) delete ptr;

ptr = x.ptr;

return *this;

}

Two handles are identical if they share a common representation object, i.e., theidentical
function reduces to pointer equality.

bool identi
al(
onst point& x, 
onst point& y)

{ return x.ptr == y.ptr; }

The above defined member functions and operators are common to all handle types. We
will show how to put them in a common base class for all handle types below.

In order to complete the definition ofpoints, we still have to implement the individual
operations specific to them. For example,

double point::x
oord() 
onst { return ptr->x; }

double point::y
oord() 
onst { return ptr->y; }

point point::translate(double dx, double dy) 
onst

{ return point(ptr->x+dx, ptr->y+dy); }

Classes handlerep and handle base: As mentioned above, there is a group of opera-
tions that is the same for all handle types (copy constructor, assignment, destructor, iden-
tity). LEDA encapsulates these operations in two classeshandlerep andhandlebase(see
<LEDA/handletypes.h>). Concrete handle types and their representation classes are de-
rived from them. This will be demonstrated for thepoint type at the end of this section.

Thehandlerepbase class contains a reference counter of typeint as its only data member,
a constructor initializing the counter to 1, and a trivial destructor. Later we will derive
representation classes of particular handle types (e.g.,point rep) from this base class adding
type specific individual data members (e.g.,x- andy-coordinates of typedouble).


lass handle rep {

int ref 
ount;

handle rep() : ref 
ount(1) {}

virtual ~handle rep() {}

friend 
lass handle base;

};
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Thehandlebaseclass has a data memberPTRof typehandlerep∗, a copy constructor, an
assignment operator, and a destructor. Furthermore, it defines a friend functionidenticalthat
declares twohandlebaseobjects identical if and only if theirPTRfields point to the same
representation object. Specific handle types (e.g.,point) derived fromhandlebaseuse the
PTRfield for storing pointers to the corresponding representation objects (e.g.,point rep)
derived fromhandlerep.


lass handle base {

handle rep* PTR;

handle base(
onst handle base& x)

{ PTR = x.PTR;

PTR->ref 
ount++;

}

handle base& operator=(
onst handle base& x)

{ x.PTR->ref 
ount++;

if (--PTR->ref 
ount == 0) delete PTR;

PTR = x.PTR;

return *this;

}

~handle base() { if (--PTR->ref 
ount == 0) delete PTR; }

friend bool identi
al(
onst handle base& x, 
onst handle base& y)

{ return x.PTR == y.PTR; }

};

This completes the definition of classeshandlebaseandhandlerep. We can now derive an
independent item typeT from handlebaseand the corresponding representation classT rep
from handlerep. We demonstrate the technique using the point example.

point rep is derived fromhandlerepadding two data members for thex- andy-coordinates
and a constructor initializing these members.


lass point rep : publi
 handle rep {

double x, y;

point rep(double a, double b) x(a), y(b) { }

~point rep() {}

};

We will next derive classpoint from handlebase. The classpoint uses the inherited
PTRfield for storingpointerrep∗ pointers. The constructor constructs a new object of type
point rep in the dynamic memory and stores a pointer to it in thePTRfield, and copy con-
structor and assignment reduce to the corresponding function of the base class. In order to
access the representation object we castPTRto point rep∗. This is safe sincePTRalways
points to apoint rep. For convenience, we add an inline member functionptr( ) that per-
forms this casting. Now we can writeptr( ) wherever we usedptr in the originalpointclass
at the beginning of this section. The full class definition isas follows:
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lass point : publi
 handle base

{

point rep* ptr() 
onst { return (point rep*)PTR; }

publi
:

point(double x=0, double y=0) { PTR = new point rep(x,y); }

point(
onst point& p) : handle base(p) {}

~point() {}

point& operator=(
onst point& p)

{ handle base::operator=(p); return *this; }

double x
oord() 
onst { return ptr()->x; }

double y
oord() 
onst { return ptr()->y; }

point translate(double dx, double dy) 
onst

{ return point(x
oord() + dx, y
oord() + dy); }

};

Note that all the “routine work” (copy construction, assignment, destruction) is done by the
corresponding functions of the base classhandlebase.

Exercises for 13.7
1 Explain why the destructorhandlerep::∼handlerep( ) is declaredvirtual.
2 How would the above code have to be changed if it were notvirtual?
3 Implement astring handle type using the mechanism described above.
4 Add an array subscript operatorchar& string::operator[](int i ) to your string class.

What kind of problem is caused by this operator and how can yousolve it?

13.8 Memory Management

Many LEDA data types are implemented by collections of smallobjects or nodes in the
dynamic memory, e.g., lists consist of list elements, graphs consist of nodes and edges, and
handle types are realized by pointers to small representation objects.

Most of these data types are dynamic and thus spend considerable time for the creation
and destruction of these small objects by calling thenewanddeleteoperators.

Typically, the C++ defaultnewoperator is implemented by calling themallocfunction of
theC standard library

void* operator new(size t bytes) { return mallo
(bytes) }

and the defaultdeleteoperator by calling thefree library function

void operator delete(void* p) { free(p); }

Unfortunately,mallocandfreeare rather expensive system calls on most systems.

LEDA offers an efficient memory manager that is used for all node, edge and item types.
The manager can easily be applied to a user defined classT by adding the macro call
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“LEDA MEMORY(T)” to the declaration of the classT . This redefines the new and delete
operators for typeT , such that they allocate and deallocate memory using LEDA’sinternal
memory manager.

The basic idea in the implementation of the memory manager isto amortize the expen-
sive system calls tomalloc and free over a large sequence of requests (calls ofnewand
delete) for small pieces of memory. For this purpose, LEDA usesmalloc only for the al-
location of large memory blocks of a fixed size (e.g., 4 kbytes). These blocks are sliced
into chunks of the requested size and the chunks are maintained in a singly linked list. The
strategy just outlined is efficient if the size of the chunks is small compared to the size of
a block. Therefore the memory manager applies this strategyonly to requests for memory
pieces up to a certain size. Requests for larger pieces of memory (often called vectors)
are directly mapped tomalloccalls. The maximal size of memory chunks handled by the
manager can be specified in the constructor. For the standardmemory manager used in the
LEDAMEMORYmacros this upper bound is set to 255 bytes.

The heads of all lists of free memory chunks are stored in a table freelist[256]. Whenever
an application asks for a piece of memory of sizesz< 256 the manager first checks whether
the corresponding listfreelist[sz] is empty. If the list is non-empty, the first element of the
list is returned, and if the list is empty, it is filled by allocating a new block and slicing it as
described above. Freeing a piece of memory of sizesz< 256 in a call of thedeleteoperator
is realized by inserting it at the front of listfreelist[sz].

Applications can call the global functionprint statisticsto get a summary of the current
state of the standard memory manager. It prints for every chunk size that has been used in
the program the number of free and still used memory chunks.

The following example illustrates the effect of the memory manager. We defined a class
pair and a classdumbpair. The definitions of the two classes are identical except that
dumbpair does not use the LEDA memory manager.

〈class pair〉�

lass pair {

double x, y;

publi
:

pair(double a=0, double b=0) : x(a), y(b) { }

pair(
onst pair& p) : x(p.x), y(p.y) { }

friend ostream& operator<<(ostream& ostr, 
onst pair&) {return ostr;}

friend istream& operator>>(istream& istr, pair&) { return istr; }

LEDA_MEMORY(pair) // not present in dumb_pair

};

We then built a list ofn pairs or dumb pairs, respectively, and cleared them again. Table 13.2
shows the difference in running time. We also printed the memory statistics before and after
theclear operation.
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n LEDA memory C++ memory

1000000 0.94 2.77

Table 13.2 The effect of the memory manager. We built and destroyed a list of n pairs or dumb
pairs, respectively. Pairs use the LEDA memory manager and dumb pairs do not. The table was
generated with program memmgrtest.c in LEDAROOT/demo/book/Impl.

〈timing for dumb pair〉�
list<dumb_pair> DL;

for (i = 0; i < n; i++ ) DL.append(dumb_pair());

print_statisti
s();

DL.
lear();

print_statisti
s();

UT = used_time(T);

13.9 Iteration

For most of its item-based data types LEDA provides iteration macros . These macros can
be used to iterate over the items or elements of lists, arrays, sets, dictionaries, and priority
queues or over the nodes and edges of graphs. Iteration macros can be used similarly to the
C++ for-statement. We give some examples.

For all item-based data types:

forall items(it,D) { ... }

iterates over the itemsit of D and

forall rev items(it,D) { ... }

iterates over the itemsit of D in reverse order.

For sets, lists and arrays:

forall(x,D) { ... }

iterates over the elementsx of D and

forall rev(x,D) { ... }

iterates over the elementsx of D in reverse order.

For graphs:

forall nodes(v,G) { ... }

iterates over the nodesv of G,
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STD_MEMORY_MGR (memory status)

+--------------------------------------------------+

| size used free blo
ks bytes |

+--------------------------------------------------+

| 12 1000001 388 1469 12004668 |

| 16 1000000 110 1961 16001760 |

| 20 29 379 1 8160 |

| 28 1 290 1 8148 |

| 40 2 201 1 8120 |

| > 255 - - 1 300 |

+--------------------------------------------------+

| time: 0.64 se
 spa
e:27450.88 kb |

+--------------------------------------------------+

STD_MEMORY_MGR (memory status)

+--------------------------------------------------+

| size used free blo
ks bytes |

+--------------------------------------------------+

| 12 1 1000388 1469 12004668 |

| 16 0 1000110 1961 16001760 |

| 20 29 379 1 8160 |

| 28 1 290 1 8148 |

| 40 2 201 1 8120 |

| > 255 - - 1 300 |

+--------------------------------------------------+

| time: 0.98 se
 spa
e:27450.88 kb |

+--------------------------------------------------+

Figure 13.3 Statistic of memory usage. We built a list ofn = 106 pairs of doubles. A list ofn
pairs requiresn list items of 12 bytes each andn pairs of 16 bytes each. The upper statistic
shows the situation before the clear operations and the lower statistic shows the situation after
the clear operations. The figure was generated with program memmgrtest.c in
LEDAROOT/demo/book/Impl.

forall edges(e,G) { ... }

iterates over the edgese of G,

forall adj edges(e,v) { ... }

iterates over all edgese adjacent tov, and

forall adj nodes(u,v) { ... }

iterates over all nodese adjacent tov.

Inside the body of a forall loop insertions into or deletionsfrom the collection iterated
over are not allowed, with one exception, the current item orobject of the iteration may be
removed, as in

// remove self-loops

forall edges(e,G) { if (G.sour
e(e) == G.target(e)) G.del edge(e); }
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Theforall item(it, S) iteration macro can be applied to instancesSof all item-based data
typesT that defineT ::itemas the corresponding item type and that provide the following
member functions:

T::item S.first item()

returns the first item ofSandnil if S is empty

T::item S.next item(T::item it)

returns the successor of itemit in S (nil if it = S.last item( ) or it = nil).
The forall revitems(it, S) macro can be used if the following member functions are de-

fined:

T::item S.last item()

returns the last item ofSandnil if S is empty, and

T::item S.pred item(T::item it)

returns the predecessor of itemit in S (nil if it = S.first item( ) or it = nil).
The forall(x, S) andforall rev(x, S) iteration macros in addition require that the opera-

tion S.inf (T ::item it) is defined and returns the information associated with itemit.
A first try of an implementation of theforall itemsmacro could be

#define forall items(it,S)\

for(it = S.first item(); it != nil; it = S.next item(it))

However, with this implementation the current item of the iteration cannot be removed from
S. To allow this operation we use a temporary variablep always containing the successor
item of the current itemit. Since our macro has to work for all item-based LEDA data types,
the item type (e.g.,dic item for dictionaries) is not known explicitly, but is given implicitly
by the type of the variableit. We therefore use a temporary iteratorp of typevoid∗ and a
function templateLoopAssign(itemtype& it, void∗ p) to copy the contents ofp to it before
each execution of the for-loop body. The details are given bythe following piece of code.

template <
lass T>

inline bool LoopAssign(T& it, void* p) { it = (T)p; }

#define forall items(it,S)\

for( void* p = S.first item(); \

LoopAssign(it,p), p = S.next item(it), it != nil; )

#define forall rev items(it,S)\

for( void* p = S.last item(); \

LoopAssign(it,p), p = S.pred item(it), it != nil; )

With the above implementation of theforall itemsloop the current item (but not its succes-
sor) may be deleted. There are many situations where this is desirable.

The following piece of code deletes all occurrences of a given numberx from a list L of
integers:
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list item it;

forall items(it,L) if (L[it℄ == x) L.del item(it);

The following piece of code removes self-loops from a graphG:

edge e;

forall adj edges(e,G) if (sour
e(e) == target(e)) G.del edge(e);

Exercises for 13.9
1 Design a forall macro allowing insertions at the end of the collection.
2 Implement an iteration macro for the binary tree classbin tree traversing the nodes in

in-order.

13.10 Priority Queues by Fibonacci Heaps (A Complete Example)

We give a comprehensive example that illustrates most of theconcepts introduced in this
chapter, the implementation of the priority queue data typep queue<P, I > by Fibonacci
heaps. The data typep queue<P, I > was discussed in Section 5.4 and is defined in the
header file<LEDA/p queue.h>. We show the header file below, but without the manual
comments that generate the manual page.

We call the implementation classPRIOIMPL. There is one slight anomaly in the deriva-
tion of p queue<P, I > from PRIOIMPL: What is calledpriority in the data type template
is calledkeyin the implementation class, since in the first version of LEDA priorities were
called keys and this still shows in the implementation class.

13.10.1The Data Type Template
We start with the data type template.

〈p queue.h〉�
#define PRIO_IMPL f_heap

typedef PRIO_IMPL::item pq_item;

template<
lass P, 
lass I>


lass p_queue: private PRIO_IMPL

{

int key_type_id() 
onst { return leda_type_id((P*)0); }

int 
mp(GenPtr x, GenPtr y) 
onst

{ return 
ompare(LEDA_ACCESS(P,x),LEDA_ACCESS(P,y)); }

void 
lear_key(GenPtr& x) 
onst { leda_
lear(LEDA_ACCESS(P,x)); }

void 
lear_inf(GenPtr& x) 
onst { leda_
lear(LEDA_ACCESS(I,x)); }

void 
opy_key(GenPtr& x) 
onst { x = leda_
opy(LEDA_ACCESS(P,x)); }

void 
opy_inf(GenPtr& x) 
onst { x = leda_
opy(LEDA_ACCESS(I,x)); }

publi
:

p_queue() {}
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p_queue(
onst p_queue<P,I>& Q):PRIO_IMPL(Q) {}

~p_queue() { PRIO_IMPL::
lear(); }

p_queue<P,I>& operator=(
onst p_queue<P,I>& Q)

{ PRIO_IMPL::operator=(Q); return *this; }

P prio(pq_item it) 
onst

{ return LEDA_CONST_ACCESS(P,PRIO_IMPL::key(it)); }

I inf(pq_item it) 
onst

{ return LEDA_CONST_ACCESS(I,PRIO_IMPL::inf(it)); }

pq_item find_min() 
onst { return PRIO_IMPL::find_min(); }

void del_min() { PRIO_IMPL::del_min(); }

void del_item(pq_item it) { PRIO_IMPL::del_item(it); }

pq_item insert(
onst P& x, 
onst I& i)

{ return PRIO_IMPL::insert(leda_
ast(x),leda_
ast(i)); }

void 
hange_inf(pq_item it, 
onst I& i)

{ PRIO_IMPL::
hange_inf(it,leda_
ast(i)); }

void de
rease_p(pq_item it, 
onst P& x)

{ PRIO_IMPL::de
rease_key(it,leda_
ast(x)); }

int size() 
onst { return PRIO_IMPL::size(); }

bool empty() 
onst { return (size()==0) ? true : false; }

void 
lear() { PRIO_IMPL::
lear(); }

pq_item first_item() 
onst { return PRIO_IMPL::first_item(); }

pq_item next_item(pq_item it) 
onst { return PRIO_IMPL::next_item(it); }

};

Every implementation classPRIOIMPL for p queue<P, I > has to provide the following
operations and definitions.


lass PRIO IMPL

{

virtual int key type id() 
onst = 0;

virtual int 
mp(GenPtr, GenPtr) 
onst = 0;

virtual void 
lear key(GenPtr&) 
onst = 0;

virtual void 
lear inf(GenPtr&) 
onst = 0;

virtual void 
opy key(GenPtr&) 
onst = 0;

virtual void 
opy inf(GenPtr&) 
onst = 0;

publi
:

typedef ... item;

prote
ted:

PRIO IMPL();

PRIO IMPL(
onst PRIO IMPL&);

virtual ~PRIO IMPL();

PRIO IMPL& operator=(
onst PRIO IMPL&);

item insert(GenPtr,GenPtr);

item find min() 
onst;

GenPtr key(item) 
onst;

GenPtr inf(item) 
onst;

void del min();

void del item(item);
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Figure 13.4 A heap-ordered forest.

void de
rease key(item,GenPtr);

void 
hange inf(item,GenPtr);

void 
lear();

int size() 
onst;

//iteration

item first item() 
onst;

item next item(item) 
onst;

};

13.10.2Fibonacci Heaps
In the remainder of this section we give the Fibonacci heap realization ofPRIOIMPL.

Definition and Header File: Fibonacci heaps (classf heap) are one of the best realizations
of priority queues [FT87]. They represent priority queues as heap-ordered forests. The
items of the priority queue are in one-to-one correspondence to thenodesof the forest; so it
makes sense to talk about the key and the information of a node. A forest isheap-ordered
if each tree in the forest isheap-ordered, and a tree is heap-ordered if the key of every non-
root node is no less than the key of the parent of the node. In other words, the sequence of
keys along any root to leaf path is non-decreasing. Figure 13.4 shows a heap-ordered forest.

In the storage representation off heaps every node contains a pointer to its parent (the
parent pointer of a root isnil) and to one of its children. The child-pointer isnil if a node
has no children. The children of each node and also the roots of the trees in af heapform
a doubly-linked circular list (pointersleft andright). In addition, every node contains the
four fieldsrank, marked, next, andpred. Therank field of each node contains the number
of children of the node and themarkedfield is a boolean flag whose purpose will be made
clear below. Thenextandpred fields are used to keep all nodes of a Fibonacci heap in a
doubly-linked linear list. This list is needed for theforall items-iteration. Anf heap-item
(typeF heap::item) is a pointer to a node. Figure 13.5 shows the storage representation of
the heap-ordered forest of Figure 13.4.

The constructor of classf heapnodecreates a new node〈k, i 〉 and initializes some of the
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Figure 13.5 The storage representation of the heap-ordered forest of Figure 13.4. Thekey, rank,
marked, next, andpredfields are not shown, informations are integers and nil-pointers are shown
as pointing to “ground”.

fields to their obvious values. It also adds the new item to thefront of the list of all items of
the heap. The LEDA memory management is used forf heapnodes (cf. Section 13.8).

〈f heap.h〉�
#in
lude <LEDA/basi
.h>


lass f_heap_node;

typedef f_heap_node* f_heap_item;


lass f_heap_node {

friend 
lass f_heap;

f_heap_item left; // left and right siblings (
ir
ular list)

f_heap_item right;

f_heap_item parent; // parent node

f_heap_item 
hild; // a 
hild

f_heap_item next; // list of all items

f_heap_item pred;

int rank; // number of 
hildren

bool marked; // mark bit

GenPtr key; // key

GenPtr inf; // information

f_heap_node(GenPtr k, GenPtr info, f_heap_item n)

{



48 On the Implementation of LEDA

// the third argument n is always the first item in the list

// of all items of a Fibona

i heap. The new item is added

// at the front of the list

key = k;

inf = info;

rank = 0;

marked = false;

parent = 
hild = nil;

next = n;

if (n) n->pred = this;

}

LEDA_MEMORY(f_heap_node)

};

The storage representation of anf heapconsists of five fields:
numberof nodes the number of nodes in the heap
power the smallest power of two greater than or equal tonumberof nodes
logp the binary logarithm of power
minptr a pointer to a root with minimum key
nodelist first element in the list of all nodes

〈f heap.h〉+�

lass f_heap {

int number_of_nodes;

int power;

int logp;

f_heap_item minptr;

f_heap_item node_list;

〈virtual functions related to keys and infs〉
〈auxiliary functions〉

publi
:

typedef f_heap_item item;

prote
ted:

// 
onstru
tors, destru
tor, assignment

f_heap();

f_heap(
onst f_heap&);

f_heap& operator=(
onst f_heap&);

virtual ~f_heap();

// priority queue operations

f_heap_item insert(GenPtr, GenPtr);

f_heap_item find_min() 
onst;

void del_min();

void de
rease_key(f_heap_item,GenPtr);

void 
hange_inf(f_heap_item,GenPtr);

void del_item(f_heap_item);

void 
lear();

GenPtr key(f_heap_item) 
onst;

GenPtr inf(f_heap_item) 
onst;
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int size() 
onst;

bool empty() 
onst;

// iteration

f_heap_item first_item() 
onst;

f_heap_item next_item(f_heap_item) 
onst;

};

We turn to the implementation of the member functions. The file f heap.c contains the
implementations of all operations onf heaps.

Construction: To create an emptyf heapsetnumberof nodesto zero,powerto one,logp
to zero, andminptr andnodelist to nil.

〈 f heap.c〉�
#in
lude <LEDA/basi
.h>

#in
lude "f_heap.h"

f_heap::f_heap()

{ number_of_nodes = 0;

power = 1;

logp = 0;

minptr = nil;

node_list = nil;

}

Simple Operations on Heaps:We discuss create, findmin, size, empty, key, inf, and
changekey. A findmin operation simply returns the item pointed to byminptr. The empty
operation comparesnumberof nodesto zero, and thesizeoperation returnsnumberof nodes.
Both operations take constant time.

Thekeyandinf operations apply to an item and return the appropriate component of the
item.

Thechangeinf operations applies to an itemx and an informationinf and changes the
information associated withx to a copy ofinf . It also clears the memory used for the old
information.

〈 f heap.c〉+�
f_heap_item f_heap::find_min() 
onst { return minptr; }

int f_heap::size() 
onst { return number_of_nodes; }

bool f_heap::empty() 
onst

{ return number_of_nodes == 0; }

GenPtr f_heap::key(f_heap_item x) 
onst { return x->key; }

GenPtr f_heap::inf(f_heap_item x) 
onst { return x->inf; }

void f_heap::
hange_inf(f_heap_item x, GenPtr i)

{ 
lear_inf(x->inf);


opy_inf(i);

x->inf = i;

}
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We have used functionsclearkeyandcopykeywithout defining them. Both functions be-
long to the set of virtual functions of classf heapwhich we need to makef heapa param-
eterized data structure. We declare these functions as purevirtual and define them in the
definition of the classp queue<K , I > as discussed in Section 13.4.

The six virtual functions are:cmpcompares two keys (of typeP), clearkeyandclear inf
deallocate a key and an information, respectively,copykeyandcopyinf return a copy of
their argument, andkeytypeid( ) determines whether its argument belongs to a built-in
type as discussed in Section 13.5. It is used to bypass the calls to compare function for such
types.

〈virtual functions related to keys and infs〉�
virtual int 
mp(GenPtr,GenPtr) 
onst = 0;

virtual void 
lear_key(GenPtr&) 
onst = 0;

virtual void 
lear_inf(GenPtr&) 
onst = 0;

virtual GenPtr 
opy_key(GenPtr&) 
onst = 0;

virtual GenPtr 
opy_inf(GenPtr&) 
onst = 0;

virtual int key_type_id() 
onst = 0;

Some Theory: The non-trivial operations areinsert, decreaseinf anddelmin. We discuss
them in some detail now. The discussion will be on the level ofheap-ordered forests. All
implementation details will be given later.

An insert adds a new single node tree to the Fibonacci heap and, if necessary, adjusts the
minptr. So a sequence ofn inserts into an initially empty heap will simply createn single
node trees. The cost of an insert is clearlyO(1).

A delmin operation removes the node indicated byminptr. This turns all children of
the removed node into roots. We then scan the set of roots (oldand new) to find the new
minimum. To find the new minimum we need to inspect all roots (old and new), a potentially
very costly process. We make the process even more expensive(by a constant factor) by
doing some useful work on the side, namely combining trees ofequal rank into larger
trees. A simple method to combine trees of equal rank is as follows. Let maxrank be
the maximal rank of any node. Maintain a set of buckets, initially empty and numbered
from 0 tomaxrank. Then step through the list of old and new roots. When a root ofrank i
is considered inspect thei -th bucket. If thei -th bucket is empty then put the root there. If
the bucket is non-empty then combine the two trees into one (by making the root with the
larger information a child of the other root). This empties the i -th bucket and creates a root
of rank i + 1. Try to throw the new tree into thei + 1st bucket. If it is occupied, combine
. . . . When all roots have been processed in this way, we have a collection of trees whose
roots have pairwise distinct ranks. What is the running timeof thedelminoperation?

Let K denote the number of roots before the call ofdelmin. The cost of the operation is
O(K + maxrank) (since the deleted node has at mostmaxrank children and hence there
are at mostK + maxrank roots to start with. Moreover, every combine reduces the number
of roots by one). After the call there will be at mostmaxrank roots (since they all have
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B0 B1 B2 B3 B4

Figure 13.6 Binomial trees. Deletion of the high-lighted node and all high-lighted edges
decomposesB4 into binomial trees.

different ranks) and hence the number of roots decreases by at leastK − maxrank. Thus,
if we use the potential function81 with

81 = number of roots

then the amortized cost of adeletemin operation isO(maxrank). The amortized cost of
an insert isO(1); note thatn inserts increase the potential81 by one. We will extend the
potential by a second term82 below.

What can we say about the maximal rank of a node in a Fibonacci heap? Let us consider
a very simple situation first. Suppose that we perform a sequence of inserts followed by
a singledelmin. In this situation, we start with a certain number of single node trees and
all trees formed by combining are so-calledbinomial treesas shown in Figure 13.6. The
binomial treeB0 consists of a single node and the binomial treeBi+1 is obtained by joining
two copies of the treeBi . This implies that the root of the treeBi has ranki and that the
tree Bi contains exactly 2i nodes. We conclude that the maximal rank in a binomial tree
is logarithmic in the size of the tree. If we could guarantee in general that the maximal
rank of any node is logarithmic in the size of the tree then theamortized cost of thedelmin
operation would be logarithmic.

We turn to thedecreasekeyoperation next. It is given a nodev and a new information
newkeyand decreases the information ofv to newkey. Of course,newkeymust not be larger
than the old information associated withv. Decreasing the information associated withv

will in general destroy the heap property. In order to maintain the heap property we delete
the edge connectingv to its parent and turnv into a root. This has the side effect that for
any ancestorw of v different fromv’s parent the size ofw’s subtree decreases by one but
w’s rank is unchanged. Thus, if we want to maintain the property that the maximal rank of
any node is logarithmic in the size of the subtree rooted at the node, we need to do more
than just cuttingv’s link to its parent.

An old solution suggested by Vuillemin [Vui78] is to keep alltrees in the heap binomial.
This can be done as follows: for any proper ancestorz of v delete the edge intoz on the
path fromv to z, call it e, and all edges intoz that were created later thane. In Figure 13.6 a
node and a set of edges is high-lighted in the treeB4. If all high-lighted edges are removed
thenB4 decomposes into two copies ofB0 and one copy each ofB1, B2, andB3. It is not
too hard to see that at mostk edges are removed when aBk is disassembled (since aBk
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Figure 13.7 A decrease key onx is performed andy andz are marked butu is not;x, y, andz
become roots, roots are unmarked, andu becomes marked. Marked nodes are shown shaded. A
dashed edge stands for a path of edges.

decomposes into twoB j ’s and one each ofB j +1, . . . , Bk−1 for somej , with 0 ≤ j ≤ k−1)
and hence this strategy gives a logarithmic time bound for thedecreasekeyoperation.

In some graph algorithms thedecreasekeyoperation is executed far more often than the
other priority queue operations, e.g., Dijkstra’s shortest-path algorithm (cf. Section 6.6)
executesm decreasekeys and onlyn inserts anddelmins, wherem andn are the number of
edges and nodes of the graph, respectively. Sincem might be as large asn2 it is desirable
to make thedecreasekeyoperation cheaper than the other operations. Fredman and Tarjan
showed how to decrease its cost toO(1) without increasing the cost of the other operations.
Their solution is surprisingly simple and we describe it next.

When a nodex loses a child becausedecreasekey is applied to the child the nodex is
marked; this assumes thatx has not already been marked. When a marked nodex loses a
child, we turnx into a root, remove the mark fromx and attempt to markx’s parent. If
x’s parent is marked already then . . . . In other words, supposethat we applydecreasekey
to a nodev and that thek-nearest ancestors ofv are marked, then turnv and thek-nearest
ancestors ofv into roots and mark thek + 1st-nearest ancestor ofv (if it is not a root).
Also unmark all the nodes that were turned into roots, cf. Figure 13.7. Why is this a good
strategy?

First, adecreasekeymarks at most one node and unmarks some numberk of nodes. No
other operation marks a node and hence in an amortized sensek can be at most one (we
cannot unmark more nodes than we mark). However, we also increase the number of roots
by k which in turn increases the potential81 by k and therefore we have to argue more
carefully. Let

82 = 2 · number of marked nodes

and let8 = 81 + 82. A decreasekeyoperation where the nodev hask marked ancestors
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has actual costO(k + 1) and decreases the potential by at least 2(k − 1) − (k + 1) = k − 3.
Note that the number of marked nodes is decreased by at leastk − 1 (at leastk nodes are
unmarked and at most one node is marked) and that the number ofroots is increased by
k + 1. The amortized cost of adecreasekey is thereforeO(1). inserts do not change82

anddelmins do not increase82 (it may decrease it because the marked children of the
removed node become unmarked roots) and hence their amortized cost does not increase by
the introduction of82.

How does the strategy affect the maximal rank. We show that itstays logarithmic. In
order to do so we need some notation. LetF0 = 0, F1 = 1, andFi = Fi−1 + Fi−2 for i ≥ 2
be the sequence of Fibonacci numbers. It is well-known thatFi+1 ≥ (1+

√
5/2)i ≥ 1.618i

for all i ≥ 0.

Lemma 1Letv be any node in a Fibonacci heap and let i be the rank ofv. Then the subtree
rooted atv contains at least Fi+2 nodes. In a Fibonacci heap with n nodes all ranks are
bounded by1.4404 logn.

Proof Consider an arbitrary nodev of rank i . Order the children ofv by the time at which
they were made children ofv. Let w j be the j -th child, 1 ≤ j ≤ i . Whenw j was made
child of v both nodes had the same rank. Also, since at least the nodesw1, . . . , w j −1 were
nodes ofv at that time, the rank ofv was at leastj −1 at the time whenw j was made a child
of v. The rank ofw j has decreased by at most 1 since then because otherwisew j would be
a root. Thus the current rank ofw j is at leastj − 2.

We can now set up a recurrence for the minimal numberSi of nodes in a tree whose root
has ranki . ClearlyS0 = 1, S1 = 2, andSi ≥ 2 + S0 + S1 + . . . + Si−2. The last inequality
follows from the fact that forj ≥ 2, the number of nodes in the subtree with rootw j is
at leastSj −2, and that we can also count the nodesv andw1. The recurrence above (with
= instead of≥) generates the sequence 1, 2, 3, 5, 8,. . . which is identical to the Fibonacci
sequence (minus its first two elements).

Let’s verify this by induction. LetT0 = 1, T1 = 2, andTi = 2 + T0 + . . . + Ti−2 for
i ≥ 2. Then, fori ≥ 2, Ti+1 − Ti = 2+ T0 + . . . + Ti−1 − 2− T0 − . . . − Ti−2 = Ti−1, i.e.,
Ti+1 = Ti + Ti−1. This provesTi = Fi+2.

For the second claim, we only have to observe thatFi+2 ≤ n impliesi · log(1+
√

5/2) ≤
logn which in turn impliesi ≤ 1.4404 logn.

This concludes our theoretical treatment of Fibonacci heaps. We have shown the follow-
ing time bounds: aninsert and adecreasekeytake constant amortized time and adelmin
takes logarithmic amortized time. The operationssize, empty, andfindmin take constant
time.

We now return to the implementation.

Insertions: An insertoperation takes a keyk and an informationi and creates a new heap-
ordered tree consisting of a single node〈k, i 〉. In order to maintain the representation invari-



54 On the Implementation of LEDA

ant it must also add the new node to the circular list of roots,incrementnumberof nodes,
and may bepowerand logp, and changeminptr if k is smaller than the current minimum
key in the queue.

〈 f heap.c〉+�
f_heap_item f_heap::insert(GenPtr k, GenPtr i)

{

k = 
opy_key(k);

i = 
opy_inf(i);

f_heap_item new_item = new f_heap_node(k,i,node_list);

if ( number_of_nodes == 0 )

{ // insertion into empty queue

minptr = new_item;

// build trivial 
ir
ular list

new_item->right = new_item;

new_item->left = new_item;

// power and logp have already the 
orre
t value

}

else

{ // insertion into non-empty queue;

// we first add to the list of roots

new_item->left = minptr;

new_item->right = minptr->right;

minptr->right->left = new_item;

minptr->right = new_item;

if ( 
mp(k,minptr->key) < 0 ) minptr = new_item; // new minimum

if ( number_of_nodes >= power) // log number_of_nodes grows by one

{ power = power * 2;

logp = logp + 1;

}

}

number_of_nodes++;

return new_item;

}

Deletemin: A delmin operation removes the item pointed to byminptr, i.e., an item of
minimumkey. This turns all children of the removed node into roots. We then scan the set
of roots (old and new) to find the new minimum.

〈 f heap.c〉+�
void f_heap::del_min()

{ // removes the item pointed to by minptr

if ( minptr == nil )

error_handler(1,"f_heap: deletion from empty heap");

number_of_nodes--;

if ( number_of_nodes==0 )

{ // removal of the only node

// power and logp do not have to be 
hanged.
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lear_key(minptr->key);


lear_inf(minptr->inf);

delete minptr;

minptr = nil;

node_list = nil;

return;

}

/* removal from a queue with more than one item. */

〈turn children of minptr into roots〉;
〈combine trees of equal rank and compute new minimum〉;
〈remove old minimum〉;

}

We now discuss the removal of a node of minimumkeyfrom anf heapwith more than
one item. Recall thatnumberof nodesalready has its new value. We first updatepowerand
logp (if necessary) and then turn all children ofminptr into roots (by setting their parent
pointer to nil and their mark bit to false and combining the list of children ofminptr with
the list of roots). We do not deleteminptr yet. It is convenient to keep it as a sentinel.

The cost of turning the children of theminptr into roots isO(maxrank);
Note that the body of the loop is executed for each child of thenodeminptr and that, in

addition, to the children ofminptr we accessminptr and its right sibling.

〈turn children of minptr into roots〉�
if ( 2 * number_of_nodes <= power )

{ power = power / 2;

logp = logp - 1;

}

f_heap_item r1 = minptr->right;

f_heap_item r2 = minptr->
hild;

if ( r2 )

{ // minptr has 
hildren

while ( r2->parent )

{ // visit them all and make them roots

r2->parent = nil;

r2->marked = false;

r2 = r2->right;

}

// 
ombine the lists, i.e. 
ut r2's list between r2 and its left

// neighbor and spli
e r2 to minptr and its left neighbor to r1

r2->left->right = r1;

r1->left = r2->left;

minptr->right = r2;

r2->left = minptr;

}

The task of the combining phase is to combine roots of equal rank into larger trees. The
combining phase uses a procedurelink which combines two trees of equal rank and returns
the resulting tree.
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〈 f heap.c〉+�
f_heap_item f_heap::link(f_heap_item r1, f_heap_item r2)

{

// r1 and r2 are roots of equal rank, both different from minptr;

// the two trees are 
ombined and the resulting tree is returned.

f_heap_item h1;

f_heap_item h2;

if (
mp(r1->inf,r2->inf) <= 0)

{ // r2 be
omes a 
hild of r1

h1 = r1;

h2 = r2;

}

else

{ // r1 be
omes a 
hild of r2

h1 = r2;

h2 = r1;

}

// we now make h2 a 
hild of h1. We first remove h2 from

// the list of roots.

h2->left->right = h2->right;

h2->right->left = h2->left;

/* we next add h2 into the 
ir
ular list of 
hildren of h1 */

if ( h1->
hild == nil )

{ // h1 has no 
hildren yet; so we make h2 its only 
hild

h1->
hild = h2;

h2->left = h2;

h2->right = h2;

}

else

{ // add h2 to the list of 
hildren of h1

h2->left = h1->
hild;

h2->right = h1->
hild->right;

h1->
hild->right->left = h2;

h1->
hild->right = h2;

}

h2->parent = h1;

h1->rank++;

return h1;

}

Let’s not forget to add the declaration of link to the set of auxiliary functions ofclass fheap.

〈auxiliary functions〉�
f_heap_item link(f_heap_item, f_heap_item);

Next comes the code to combine trees of equal rank. The task isto step through the list of
old and new roots, to combine roots of equal rank, and to determine the node of minimum
key. We solve this task iteratively. We maintain an arrayrankarray of lengthmaxrank
of pointers to roots:rankarray[i ] points to a root of ranki , if any and tonil otherwise.
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Initially all entries point tonil. When a root of rankr is inspected andrankarray[r ] is
nil, storer there. If it is non-empty, combiner with the array entry and replacer by the
combined tree. The combined tree has rank one higher. We declarerankarray as an array
of length 12∗ sizeof(int). This is a save choice since the number of nodes in a heap is
certainly bounded byMAXINT = 28∗sizeof(int). Hencemaxrank≤ 1.5 ∗ log(MAXINT) =
12∗ sizeof(int).

There is a small subtlety in the following piece of code. We are running over the list of
roots and simultaneously modifying it. This is potentiallydangerous, but our strategy is
safe. Imagine the list of roots drawn with theminptr at the far right. Thencurrentpoints
to the leftmost element initially. At a general step of the iterationcurrent points at some
arbitrary list element. All modifications of the list by calls of link take place strictly to the
left of current. For this reason it is important to advancecurrent at the beginning of the
loop.

〈combine trees of equal rank and compute new minimum〉�
f_heap_item rank_array[12*sizeof(int)℄;

for (int i = (int)1.5*logp; i >= 0; i--) rank_array[i℄ = nil;

f_heap_item new_min = minptr->right;

f_heap_item 
urrent = new_min;

while (
urrent != minptr)

{ // old min is used as a sentinel

r1 = 
urrent;

int rank = r1->rank;

// it's important to advan
e 
urrent already here


urrent = 
urrent->right;

while (r2 = rank_array[rank℄)

{ rank_array[rank℄ = nil;

// link 
ombines trees r1 and r2 into a tree of rank one higher

r1 = link(r1,r2);

rank++;

}

rank_array[rank℄ = r1;

if ( 
mp(r1->inf,new_min->inf) <= 0 ) new_min = r1;

}

We complete the operation by actually deleting the old minimum and settingminptr to its
new value.

〈remove old minimum〉�
minptr->left->right = minptr->right;

minptr->right->left = minptr->left;


lear_key(minptr->key);


lear_inf(minptr->inf);

r1 = minptr->pred;

r2 = minptr->next;

if (r2) r2->pred = r1;
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if (r1) r1->next = r2; else node_list = r2;

delete minptr;

minptr = new_min;

Decreasekey, Clear, and Del item: decreasekeymakes use of an auxiliary functioncut(x)

that turns a non-root nodex into a root and returns its old parent.

〈auxiliary functions〉+�
f_heap_item 
ut(f_heap_item);

〈 f heap.c〉+�
f_heap_item f_heap::
ut(f_heap_item x)

{

f_heap_item y = x->parent;

if ( y->rank == 1 ) y->
hild = nil; // only 
hild

else

{ /* y has more than one 
hild. We first make sure that its 
hildptr

does not point to x and then delete x from the list of 
hildren */

if ( y->
hild == x ) y->
hild = x->right;

x->left->right = x->right;

x->right->left = x->left;

}

y->rank--;

x->parent = nil;

x->marked = false;

// add to 
ir
ular list of roots

x->left = minptr;

x->right = minptr->right;

minptr->right->left = x;

minptr->right = x;

return y;

}

Now we can give the implementation ofdecreasekey.

〈 f heap.c〉+�
void f_heap::de
rease_key(f_heap_item v, GenPtr newkey)

{

/* 
hanges the key of f_heap_item v to newkey;

newkey must be no larger than the old key;

if newkey is no larger than the minimum key

then v be
omes the target of the minptr */

if (
mp(newkey,v->key) > 0)

error_handler(1,"f_heap: key too large in de
rease_key.");

// 
hange v's key


lear_key(v->key);

v->key = 
opy_key(newkey);
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if ( v->parent )

{ f_heap_item x = 
ut(v); // make v a root

while (x->marked) x = 
ut(x); // a marked f_heap_node

// is a non-root

if (x->parent) x->marked = true; // mark x if it not a root

}

// update minptr (if ne
essary)

if (
mp(newkey,minptr->key) <= 0) minptr = v;

}

To clear a heap simply remove the minimum until the heap is empty. The cost ofclear
is bounded byn times the cost ofdelmin. We can also useclear as the destructor of class
f heap.

〈 f heap.c〉+�
void f_heap::
lear() { while (number_of_nodes > 0) del_min(); }

f_heap::~f_heap() { 
lear(); }

To remove an arbitrary item from a heap, we first decrease itskeyto the minimum key
(this makes the item the target of theminptr) and then remove the minimum. The cost of
removing an item is therefore bounded byO(1) plus the cost ofdecreasekeyplus the cost
of delmin.

〈 f heap.c〉+�
void f_heap::del_item(f_heap_item x)

{ de
rease_key(x,minptr->key); // the minptr now points to x

del_min();

}

Assignment, Iteration, and Copy Constructor: Next comes the assignment operator. In
order to executeS = H we simply step through all the items ofH and insert their key and
information intoS. We must guard against the trivial assignmentH = H .

〈 f heap.c〉+�
f_heap& f_heap::operator=(
onst f_heap& H)

{ if (this != &H)

{ 
lear();

for (f_heap_item p = H.first_item(); p; p = H.next_item(p))

insert(p->key,p->inf);

}

return *this;

}

The assignment operator makes use of the two functionsfirst itemandnextitem. They allow
us to iterate over all items of a heap. We use these functions in the assignment operator,
the copy constructor, and theforall items-iteration. The last use forces us to make both
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functions public members of the class. However, we do not list them in the manual and so
they are only semi-public. For this reasonnextitemdoes not check whether its argument is
distinct fromnil.

〈 f heap.c〉+�
f_heap_item f_heap::first_item() 
onst { return node_list; }

f_heap_node* f_heap::next_item(f_heap_node* p) 
onst

{ return p ? p->next : 0; }

The last operation to implement is the copy constructor. It makes a copy of its argument
H . The strategy is simple. For each item ofH we create a single node tree with the same
key and information.

There is a subtle point in the implementation. When a virtualfunction is applied to an
object under construction then the default implementationof the function is used and not
the overriding definition in the derived class. It is therefore important in the code below to
call the virtual functionscopykey, copyinf andcmpthrough the already existing objectH ;
leaving out the prefixH. would select the default definitions (which do not do anything).

〈 f heap.c〉+�
f_heap::f_heap(
onst f_heap& H)

{ number_of_nodes = H.size();

minptr = nil;

node_list = nil;

f_heap_item first_node = nil;

for(f_heap_item p = H.first_item(); p; p = H.next_item(p))

{ GenPtr k = H.
opy_key(p->key);

GenPtr i = H.
opy_inf(p->inf);

f_heap_item q = new f_heap_node(k,i,node_list);

q->right = node_list->next;

if (node_list->next) node_list->next->left = q;

if (minptr == nil) { minptr = q; first_node = q; }

else if ( H.
mp(k,minptr->key) < 0 ) minptr = q;

}

first_node->right = node_list;

node_list->left = first_node;

}
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