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A
Numbersand Matrices

Numbers are at the origin of computing. We all learn abowgets, rationals, and real
numbers during our education. Unfortunately, the numbgedint, float, anddoublepro-
vided by G-+ are only crude approximations of their mathematical caoyates: there are
only finitely many numbers of each type and for floats and deaikihe arithmetic incurs
rounding errors. LEDA offers the additional number tyjragger, rational, bigfloat, and
real. The first two are the exact realization of the correspondmaghematical types and
the latter two are better approximations of the real numbégstors and matrices are one-
and two-dimensional arrays of numbers, respectively. Heyide the basic operations of
linear algebra.

4.1  Integers

C++ provides the integral typeshort, int, andlong. All three types come in signed and
unsigned form. Letv be the word size of the machine and fet= 2. Most current
workstations havey = 32 orw = 64. Unsigned ints and signed ints useits, shorts use
at most that many bits, and longs use at least that many bits.

The unsigned integers consist of the integers between ®randL (both inclusive) and
arithmetic is modulan.

The signed integers form an interv8ININT ,MAXINT], whereMININT andMAXINT are
predefined constants; under UNIX they are available in thtesys filelimits . h. On most
machines signed integers are represented in two’s complefieerMININT = —2*~! and
MAXINT = 2*~1 — 1. The conversion from signed ints to unsigned ints addstalsdaimul-
tiple of m so as to bring the number into the interval [th— 1]. If numbers are represented
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in two’s complement this conversion does not change thediiepn. The conversion from
unsigned int to signed int is machine dependent.

An arithmetic operation on signed integers may produce altresitside the range of
representable numbers; one says that the operation unvagedtcoverflows. The treatment
of overflow and underflow is implementation dependent, inigalar, it is not guaranteed
that they lead to a runtime error, in fact they usually do rion. the author’s workstations
the summatiorMAXINT + MAXINT has result—2, since adding 011 .1 to itself yields
11...10, which is the representation ef2 in two’'s complement. We give an example of
the disastrous effect that an undetected overflow might.have

Some network algorithms are easier to state if the integersagmented by the value
oco. For example, in a shortest path algorithm it is convenieninitialize the distance
labels toco. In an implementation it is tempting to uB&XINT as the implementation of
oo and to forget that it does not quite have the propertiescofin particular, MAXINT +
1 =MININT on the author's workstations which is drastically diffearéiom mathematics’
oo+ 1 = oo. This difference led to the following error in one of the fiasithor’s program's
He implemented Dijkstra’s shortest path algorithm (its kiog is discussed in Section 6.6)
as follows:

void DIJKSTRA(const graph& G, node s, const edge_array<int>& cost,
node_array<int>& dist)
{ node_pq PQ(G);
node v; edge e;
forall_nodes(v,G) dist[v] = MAXINT;
dist[s] = 0;
forall_nodes(v,G) PQ.insert(v,dist[v]);
while (!'PQ.empty())
{ node v = Pl.delete_min();
forall_adj_edges(e,v)
{ node w = G.target(e);
if (dist[v] + cost[e] < dist([w])
{ dist[w] = dist[v] + costl[e]l;
PQ.decrease_p(w,dist[w]);
}
}
}
}

This program works fine when all nodes are reachable fsommd all edge costs are in
[0..MAXINT/n], wheren is the number of nodes @. However, consider the execution on
the graph shown in Figure 4.1. When nadis removed from the queue, we hadisv] =
disfw] = MAXINT. We computeMAXINT + 1 which iSMININT and hence decreases
distance tMININT, a serious error. A correct implementation inserts anlyto the queue
initially and replaces the innermost block by

1 The second author insists that he has never made this gartinistake.
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© OO

Figure4.1 An example, where the naive useM#fXINT as a substitute faso in Dijkstra’s
algorithm has a disastrous effect.

int ¢ = dist[v] + cost[e];

if (dist[w] == MAXINT) PQ.insert(w,c);
else PQ.decrease_p(w,c);

dist[w] = c;

We come to the LEDA typ@nteger. It realizes the mathematical type integer. The arith-

metic operations-, —, %, /, +=, —=, x=, /=, — (unary),++, ——, the modulus operation
(%, %=), bitwise AND (&&, && =), bitwise OR (|, ||=), the complement operator,
the shift operators«, >>), the comparison operatoss <, >, >, ==, !=, and the stream

operators are available. These operations never overfldvalarays yield the exact result.
Of course, they may run out of memory. The following prograsmputes the product of
the firstn integers.
integer factorial(int n) // computes 1 * 2 * ... * n
{ integer fac = 1; //automatic conversion from int
for (int 1 = 2; i <= n; i++) fac = facx*i;
return fac;

}

Integers also provide some useful mathematical functgs,sqrt(a) returns|/aJ, log(a)
returns|loga], andgcd(a, b) returns the greatest common divisoraodndb. We refer the
reader to the manual pages for a complete listing.

Integers are essentially implemented by a vector of ungidoegs. The sign and the
size are stored in extra variables. The implementationtetjiers is very efficient and com-
pares well with other implementations. This is particylarte on SPARC machines since
we have implemented several time critical functions noyyanlC++ but also in SPARC
assembler code. When integers are used on SPARC machinfastiieassembler code is
executed. The running time of addition is linear and the mgtime of multiplication is
O(L'°93), wherelL is the length of the operands. The following program verifieslatter
fact experimentally. It repeatedly squares an integand measures the time needed for
each squaring operation. In each iteration it prints theerurlength ofn (= number of
binary digits), the time needed for the iteration and thetigmb of the running time of this
and the previous iteration.

(multiplicationtimes=

main()
{ integer n;
(multiplication times: read h

int i;
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n Running time T/T_prev

167587 0.63 3

335173 1.88 2.984

670346 5.74 3.053
1340691 17.43 3.037

Table 4.1 The time required to multiply twa bit integers. The multiplication times demo
allows you to perform your own experiments.

for (i = 0; i < 11; i++) n = n * n;
float T_prev = O;
for (i = 0; i <= 5; i++)
{ float T = used_time();
n=n *n;
T = used_time(T);
{multiplication times: report times
T_prev = T;

Table 4.1 shows a sample output of this program. Smgesquared in each iteration,
its lengthL essentially doubles in each iteration. Thus, if the runring of an iteration
isc - L for some constantsanda then the running time of the next iterationds (2L )*
and hence the quotientés (2L)¥/(c- L*) = 2*. The measured quotient is about 3. Thus,
a ~ log 3.

Integers are used a lot in LEDA's geometric algorithms. Wefly hint at the use now
and treat it in detail in Chapter 8. Consider three pojntsg|, andr in the plane and ldt
denote the line through andq and oriented fronp to g. For any points uses; ands, to
denote its Euclidean coordinates. The test of whatHis to the right ofl, onl, or to the
left of | is tantamount to determining the sign of the determinant

1 1 1

Pr 01 I
P2 02 I2

If the coordinates of our points are floating point numbesthe determinadis evaluated

2 Note that the determinant is zero if and only if the third eotuis a linear combination of the first two columns,
i.e., if there are reals andu such thath + © = 1 andr = Ap + nq. In other words, if = p+ u(q — p) for
somep. This shows that the determinant is zero if and onlylies on the line througlp andg. We still need to
argue that the sign distinguishes the two half-planes defiyethe line. Consider two pointsandr’ and the line
segment front tor’. The value of the determinant changes continuously as onvesrfoomr tor’ and hence
assumes value Oifandr’ lie on different sides of the line and does not assume valéie @rdr’ lie on the same
side of the line. Since the determinant is a linear functiencenclude that the two sides of the line are
distinguished by the sign of the determinant.
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with floating point arithmetic we may incur rounding errodadetermine the sign of the de-
terminant incorrectly. This is a frequent source of errathi@implementation of geometric
algorithms, as we will see in Sections 4.4 and 8.6 . If the dimates are integers then the
determinant can be evaluated exactly and the correct sigheaetermined. This feature
facilitates the correct implementation of geometric aildpons enormously.

Exercisesfor 4.1

1  Write a procedureandomintegerint L) that returns a random integer of lendth

2  The greatest common divisor of two numberandy with x > y > 0 can be computed
by the recursion gad, y) = x if y = 0 and gcdx, y) = gcdly, xmody) if y > 0.
Implement this algorithm, run it on integers of various l#1sy and count the number
of recursive calls. Relate the number of recursive callh&léngth ofy. Prove that
the number of recursive calls is at most proportional to émgth ofy. Hint: Assume
X > yandletxp = x andx; = y. Fori > 1 andx_; # O letx; = Xj_o modx;_s.
Let xx = O be the last element in the sequence just defined. Relatsdtjigence to the
gcd-algorithm. Show that,_1 > 0 andxj_> > Xj_1 + X; fori < k. Conclude thak._;
is at least as large as tlieth Fibonacci number.

3 The standard algorithm for multiplying twb-bit integers has running time(L?).
LEDA uses the so-called Karatsuba-method ([Kar63]) thasrim time O(L'°93). In
order to multiply two numbers andy it writes x = x; - 2-/24+x, andy = y;-2-/2 4 ys,
wherexi, Xz, y1, andy, havel /2 bits. Then it computes = (X1 + X2) - (Y1 + Y2)
and observes that- y = X1 - y1 - 2% 4 (Z — X1y1 — X2Y2) - 22 + Xayo. In this way
only three multiplications of. /2-bit integers are needed to multiply twebit integers.
The standard algorithm requires four. Implement Karatsudlgorithm and time it as
described in the text. Compare to the member funabijo@ratos:.

4 In program{multiplicationtimes.¢ let nold be the value oh before the assignment
n = n=xn. Extend the program such that it also computésold andsqrt(n) in each
iteration. Measure the execution times and compute qustnsuccessive execution
times. Try to explain your findings.

5 Develop algorithms for integer division and integer sguaot based on Newton’s iter-
ation.

4.2 Rational Numbers

A rational number is the quotient of two integers. Well, tisathe mathematical definition
and it is also the definition in LEDA. The arithmetic operasot, —, *, /, +=, —=,
*=, /=, — (unary),++, —— are available on rationals. In addition, there are funaion
to extract the numerator and denominator, to cancel out teatgst common divisor of
numerator and denominator, to compute squares and poweogird rationals to integers,
and many others.

LEDA's rational numbers are not necessarily normalized, humerator and denomina-
tor of a rational number may have a common factor. A palormalize ) normalizesp.
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This involves a gcd-computation to find the common factoriumerator and denominator
and two divisions to remove them. Since normalization isidyfaostly process we do
not do it automatically. It is, however, advisable to do itenn a while in a computation
involving rational numbers.

Exercisesfor 4.2

1  Write a program to solve linear systems of equations usiagsSian elimination. Use
rational numbers as the underlying number type. Make twsioes of the program: in
one version you keep all intermediate results in reduced toy callingx.normalize )
for each intermediate result and in the other version youewakattempt to keep the
numbers normalized. Run examples and determine the leo§the® numerators and
denominators in the solution vector.

2 Investigate the question raised in the first item theaafljicAssume that all coefficients
of the linear system are integers of length at mioand letn be the number of equations
in the system. Show that the entries of the solution vectorbeaexpressed as rational
numbers in which the lengths of the numerator and the deratorimre bounded by a
polynomial inn andL. (Hint: Show first that the value of am by n determinant of
a matrix with integer entries of absolute value at mdsi2bounded by!2"t. Then
use Cramer’s rule to express the entries of the solutiorovexst quotients of determi-
nants.) Extend the result to all intermediate results agogiin Gaussian elimination.
Conclude that Gaussian elimination has running time patyiabin n andL if all inter-
mediate values are normalized. Why does this not imply tlzatsSian elimination runs
in polynomial time without normalization of intermediatsults?

3 Implement Gaussian elimination with floating point arititrn. Find examples where
the result of the floating point computation deviates widetyn the exact result. Use
the program of the first item to compute the exact result.

4.3 Floating Point Numbers

Floating point numbers are the computer science versionathematics’ real numbers.
C++ offers single (typdloat) and double (typeoublg precision floating point numbers and
LEDA offers in addition arbitrary precision floating pointimbers (typéigfloaf). Floating
point arithmetic on most workstations adheres to the sleddEEE floating point stan-
dard [IEE87], which we review briefly.

A floating point number consists of a sigha mantissan, and an exponer In double
formats has one bitm consists of 52 bitsny, ..., msy, ande consists of the remaining 11
bits of a double word. The number represented by the ttmlm, e) is defined as follows:

e eisinterpreted as an integer in [@! — 1] = [0.. 2047].
e Ifmy=...=ms;=0ande = 0 then the number i$-0 or —0 depending os.

e If1 <e <2046 thenthe numbers (1+ >, _gmi27") 2571028



8 Numbers and Matrices

e If somem; is non-zero an@ = O then the numberis- Y, _; ., m;27' 271923 This is
a so-called denormalized number.

e Ifall m; are zero an@ = 2047 then the number isco or —oo depending ors.
e Inall other cases the triple represents NaN ( = not a number).

The largest positive double (except fos) is MAXDOUBLE = (2 — 27°2) . 21923 gnd the
smallest positive double INDOUBLE = 2-°2. 271023 Both constants are predefined in
the systems filealue .h. Arithmetic on floating point numbers is only approximater F
example,

float x = 123456789;
cout << (x + 1) - x;

will output 0 and not 1, the reason being that a nine-digiirdatnumber does not fit into
a single precision floating point number. Thasut <« x will not reproduce 123456789.
Although floating point arithmetic is inherently inexadtetlEEE standard guarantees that
the result of any arithmetic operation is close to the exestlt, usually as close as possible.
Consider, for example, an addition+ y. If one of the arguments is NaN or the addition
has no defined result, e.g=00 + oo, then the result is NaN. Otherwise lebe the exact
result. If|z] > MAXDOUBLE, as for example, imo + (—5) or in MAXDOUBLE + 1, the result
is +o00, if Z < MINDOUBLE then the result is zero, andMINDOUBLE < z < MAXDOUBLE
then the result is a floating point numbiewhich is closest ta@. In particular,
lz—2] <2757

since the error is at most 1 in the 53rd position after thergipaint. The numbeeps=
2-53is frequently called therecisionof double precision floating point arithmetic.

There is a rich body of literature on floating point arithrogtiee, for example, [DH91,
Gol90, Gol91]. We do not pursue the properties of floats antblis any further and turn
to bigfloats instead.

The LEDA typebigfloatextends the built-in floating point types. The mantissand the
exponent of a bigfloat are arbitrary integers (typgegei and the number represented by
a pair(m, e) ism - 2¢. In addition, there are the special value8 , +-cc0, and NaN ( = not
a number). Arithmetic on bigfloats is governed by two pararsetthemantissa lengtland
therounding modeBoth parameters can either be set globally or for a singbeaijon.

bigfloat::set_global_prec(212);
bigfloat::set_rounding_mode(TO_ZERO) ;

sets the mantissa length to 212 and the rounding moden tBERD. The arithmetic on
bigfloats is defined as follows: letbe the exact result of an arithmetic operation. The
mantissa of the result is obtained by roundiniyp the prescribed number of binary places
as dictated by the rounding mode. The available roundingemadel0_NEAREST (round to
the nearest representable numberQ,P_INF (round towards positive infinity)JO_N_INF
(round towards negative infinityY0_ZERO (round towards zeroL0_INF (round away from
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zero), andEXACT. For exampl@, if the mantissa length is 3 arzd= 54371 then the rounded
value ofzis

54400 if the rounding mode [B)_NEAREST or TO_P_INF or TO_INF, is

54300 if the rounding mode BO_N_INF or TO_ZERQ, and is

54371 if the rounding mode BXACT.
The rounding mod&XACT applies only to addition, subtraction, and multiplicatiém this
mode the precision parameter is ignored and no rounding talkee. Since the exponents
of bigfloats are arbitrary integers, arithmetic operatioeger underflow or overflow. How-
ever, exceptions may occur, e.g., division by zero or takivegsquare root of a negative
number. They are handled according to the IEEE floating mbamdard, e.g.,/® evaluates
to oo, —5/0 evaluates te-o0, co + 5 evaluates teo, and G0 evaluates to NaN.

The following inequality captures the essence of bigflogharetic. If z is the exact
result of an arithmetic operation afids the computed value then

|z— 2| <2779z,

whereprecis the mantissa length in use. With rounding m@G@eNEAREST the error bound
is 27Prec1z).

We illustrate bigfloats by a program that computes an appration of Euler's number
e~ 2.71. Letm be an integer. Our goal is to compute a bigfloatich thatz — e <2 ™.
Euler's number is defined as the value of the infinite se¥igs, 1/n!. The simplest strategy
to approximate is to sum a sufficiently large initial fragment of this sumhvit sufficiently
long mantissa, so as to keep the total effect of the roundirayseunder control. Assume
that we compute the sum of the firgt terms with a mantissa length pfecbits for still to
be determined values of andpreg i.e., we execute the following program.

bigfloat::set_rounding_mode(TO_ZERO) ;

bigfloat::set_precision(prec);

bigfloat z = 2;

integer fac = 2;

int n = 2;

while (n < nO)

{ // fac = n! and z approximates 1/0! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * n;

}

Let 2 be the final value of. Thenz is the value of _, _, 1/n! computed with bigfloat
arithmetic with a mantissa length pfec binary places. We have incurred two kinds of
errors in this computation: a truncation error since we sechonly an initial segment of
an infinite series and a rounding error since we used floatiigt @rithmetic to sum the
initial segment. Thus,

le—20l <= hon /N + 12 0on, /0! = 2o

3 We use decimal notation instead of binary notation for thizneple.
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=Y yn 4 Y, /0t — 2|
n>np

The first term is certainly bounded by 2! since, for alln > ng, n! = ng!-(Ng+1)-...-n >
No! - 2"~ and henc&y ., 1/n! < 1/ng! - (1 +1/2+1/4+...) < 2/ng!. What can
we say about the total rounding error? We observe that we nsdl@ating point division
and one floating point addition per iteration and that theesg— 2 iterations. Also, since
we set the rounding mode T _ZERD the value ofz always stays below and hence stays
bounded by 3. Thus, the results of all bigfloat operationdatmded by 3 and hence each
bigfloat operation incurs a rounding error of at mos@3P"¢¢. Thus

e —zg| <2/ng! +2ng-3-27PreC,

We want the right-hand side to be less thafi"2!; it will become clear in a short while why
we want the error to be bounded by"2! and not just 2™. This can be achieved by making
both terms less tharr2-2. For the first term this amounts tg2,! < 2-™-2. We choos@g
minimal with this property and observe that if we use the egpiorfaclengthl ) < m+ 3
as the condition of our while loop then thig will be the final value ofn; faclength( )
returns the number of bits in the binary representatiofaaf Fromng! > 2" and the fact
thatng is minimal with 2/ng! < 2-™-2 we concludeny < m + 3 and hence 2 P¢¢ <
6(m 4+ 3) - 27Prec < 2-M=2 jf prec > 2m; actually,prec > m + log(m + 3) + 5 suffices.
The following program implements this strategy and compmavith |e — zp| < 2-™1.

We could outputy, butzg is a number with &1 binary places and hence suggests a quality
of approximation which we are not guaranteeing. Therefaeroundz, to the nearest
number with a mantissa length wf+ 3 bits. Sincezg < 3 this will introduce an additional
error of at most 32-™-3 < 2-™-1 We conclude that the program below computes the
desired approximation of Euler’s number. This program &lable as Euledemo.

(Euler.demo=

main(){
int m;
(Euler: read m
bigfloat::set_precision(2+*m);
bigfloat::set_rounding_mode(TO_ZERO) ;
bigfloat z = 2;
integer fac = 2;
int n = 2;
while ( fac.length() <m + 3 )
{ // fac = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * n;
}
// 1z - el <= 2°{m-1} at this point
z = round(z,m+3,TO_NEAREST) ;

(Euler: output z
}
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Exercisesfor 4.3

1 Computer with an error less than 2%,

2 Assume that for, 1 < i < 8, is an integer withx;| < 2?°. Evaluate the expression
(X1 +X2) - (X3+ Xa)) - X5+ (Xg + X7) - Xg With double precision floating point arithmetic.
Derive a bound for the maximal difference between the exesailt and the computed
result.

4.4 Algebraic Numbers

The data typeeal is LEDA's best approximation to mathematics’ real numbérsupports
exact computation witlk-th roots for arbitrary natural numbé&r the rational operators,
—, %, and/, and the comparison operatets=, !=, <, <, >, and>. Let us see a small
example.

real x = (sqrt(17) - sqrt(12)) * (sqrt(17) + sqrt(12)) - 5;

cout << sign(x);

Note that the exact value of the expression definxig0. The distinctive feature of reals is
thatsign(x) actually evaluates to zero. More generallyEiiis any expression with integer
operands and operato#s —, %, /, and function callsqrt(x) androot(x, k) wherex is a
real andk is a positive integer then the data type real is able to déterthe sign ofe. We
want tostress that reals compute the sign of an expression in thBenstical sensand
not the sign of an approximation of an expression. This isars contrast to the evaluation
of an expression with floating point arithmetic. Floatingrmarithmetic incurs rounding
error and hence, in general, cannot compute the sign of aessipn correctly.

Why are we so concerned about the sign of expressidi&?reason is that many pro-
grams contain conditional statements that branch on timec$ign expression and that such
programs may go astray if the wrong decision about the sigmide. We give two exam-
ples, both arising in computational geometry. Further gdascan be found in Section 8.6.

In the first example we consider the lines
l;: y=9833-x/9454 and lo: y=9366-x/9005

Both lines pass through the origin and the slopé a$ slightly larger than the slope &f,
see Figure 4.2. At = 9454. 9005 we have/; = 9833- 9005= 9366- 9454+ 1 = y, + 1.

The following program runs through multiples o001 between 0 and 1 and computes
the corresponding-valuesy; andy,. It compares the twg-values and, if the outcome of
the comparison is different than in the previous iteratfmmts x together with the current
outcome.

int last_comp = -1;
float a = 9833; float b = 9454;
float ¢ = 9366; float d = 9005;

for (float x = 0; x < 1; x =x + 0.001)
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Figure4.2 The linesl; andl,: Both lines pass through the origin ahds slightly steeper than
l5.

{ float y1 = a*x/b; float y2 = c*x/d; // 11 is steeper

int comp = (yl1 < y27?7 -1 : (y1 == y2?7 0 : +1));
if (comp != last_comp)
{ cout <<"\nAt " << x << ": ";

if (comp == -1) cout << "11 is below 12";
if (comp == 0) cout << "1l1 intersects 12";
if (comp == +1) cout << "1l1 is above 12";

}

last_comp = comp;

}
Clearly, we should expect the program to print:

At 0.000: 11 intersects 12
At 0.001: 11 is above 12

Well, the actual output on the first author’s workstationtedms the following line&

At 0.000: 11 intersects 12

At 0.003: 11 is above 12
At 0.004: 11 intersects 12
At 0.005: 11 is above 12
At 0.008: 11 intersects 12
At 0.009: 11 is below 12

At 0.993: 11 intersects 12
At 1.000: 11 is below 12

If the program is run on the same author’s notebook, it predube correct result. The explanation for this
behavior is that on the notebook double precision aritheristised to implement floats. According to the+C
standard floats must not offer more precision than douliies; are not required to provide less. You may use the
braided lines demo to find out how the program behaves on yaahine.
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0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure4.3 y; is equal toy, for x = 0.001-i andi equal to 0, 1, and 2, is larger foequal to 3,
is equal fori equal to 4, is larger for equal to 5, 6, and 7, is equal foequal to 8, and is smaller

fori equal to 9.
I1 I2

Figure4.4 Lines as step functions and their multiple intersections.

We conclude that the lines intersect many times and ardactst as shown in Figure 4.3.

Observe that floating point arithmetic gives the wrong fetethip betweery; andy, not

only for x close to zero but even for fairly large valuesxaf Thus the lines behave very

differently from mathematical lines. Lyle Ramshaw coinbd hameverzopfte Geraden

(braided lines)or the effect. Figure 4.4 explains the effect. The tylpat consists of only

a finite number of values and hence a line is really a step iflumets shown in the figure.

The width of the steps of our two linésandl, are distinct and hence the lines intersect.
The problem of braided lines is easily removed by the use @xact number type; e.g.,

if floatis replaced byational in the program above, the output becomes what it should be:
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Figure 4.5 The Voronoi diagram of two linelg andl, and a pointp. The Voronoi diagram
consists of parts of the angular bisectotpéndl» and of parts of the parabolas defined oy
andl; andl», respectively. The Voronoi vertices are centers of cirpessing through the point
and touching the lines.

0/1: 11 intersects 12
1/1000: 11 is above 12

The second example goes beyond rational arithmetic andsairisthe computation of
Voronoi diagrams of line segments and points. Voronoi diagg of line segments will be
discussed in Section 9.5.5, and we assume for this paratirapthe reader has an intuitive
understanding of Voronoi diagrams. Horl < i < 2, letl; : ax+by+c¢ =0bea
line in two-dimensional space and Ipt= (0, 0) be the origin, cf. Figure 4.5. There are
two circles passing througp and touchind; andl,. These circles have centers, =
(Xu12/20s Yo1,/2Z0) Where

Xy, = A1C2 4+ apCy £+ \/2C1C2(\/ N + D)
5 The reader may compute these coordinates by solving trefioly equations fok, /z, andy,/z, .

(%0/20)? + (Yo/20)® = (@1%/Zv + b1Yu/2Zs + C1)?/(a2 + b2)
%o /20)% + (Yo/20)? = (8X/Zv + boYy /2y + C2)%/ (85 + b3)
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Yoo = b1C2 4 bocy £ Sigr(S)\/chcz(\/— - D)

z, = VN — aya; — by,

andS = ajb, + asby, N = (a2 + b?)(a3 + b2), andD = aya, — b1by; in these expressions
the+ in & corresponds to; and the— corresponds te,. Consider now a third lineand
let v be one ofv; or vo. The test of whethdr intersects the circle centered:ats crucial
for most algorithms computing Voronoi diagrams. Considlarexample, an incremental
algorithm that adds the lines and points one by one and upda¢ediagram after every
addition. Assume that such an algorithm has already cartetiithe diagram fop, I; and

I, and next wants to add In the updated diagram the vertexvill not exist if | intersects
the interior of the circle centered at v will exist and have degree four iftouches the
circle centered at, andv will exist and have the same incident edgdsdbes not intersect
the circle centered at. The question of whethérintersects, touches, or misses the circle
centered ab is tantamount to comparindjst(v, p) with dist(v, ). We may also compare
the squares of these numbers instead. The squadistef, p) is (x>+Yy?)/z? and the square
of dist(v, |) is (ax,/z, + by, /z, + ¢)?/(a% + b?). In other words, we need to compute the
sign of the expression

R = (ax, + by, +¢z,)? — (@ + b?) (X% + y?).

The following procedure takes inpuds, by, ..., candpm e {—1, +1} and performs this
comparisonpmis used to select one of andv,.

int INCIRCLE(integer al, integer bl, integer cl, integer a2,
integer b2, integer c2, integer a, integer b, integer c, int pm)

{ real RN = sqrt((al * al + bl * bl) * (a2 * a2 + b2 * b2));
real A = al *x c2 + a2 * ci;
real B = bl * c2 + b2 * cl;
real C = 2 * cl *x c2;
real D = al * a2 - bl * b2;
real S = al * b2 + a2 * bi;
real xv = A + pm * sqrt(C * (RN + D));
real yv = B + pm * sign(S) * sqrt(C * (RN - D));
real zv = RN - (al * a2 + bl * b2);
real P = a *x xv + b * yv + c * zv;
real R =P *P - (a*a+bx*xb) * (xv*xv+yv*yv);

return sign(R);

}

How do reals work?T'he sign computation is based on the conceptsafzaration bound
A separation bound for an expressiins aneasily computableumbersed E) such that

val(E) # 0 implies|val(E)| > sedE),

whereval(E) denotes the value d&. Thus|val(E)| < se@dE) impliesval(E) = 0. Given
a separation bound there is a simple strategy to determéngidgh ofval(E):
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e Compute an approximatiof of val(E) with | A — val(E)| < sedE)/2 by evaluating
E with bigfloatarithmetic with sufficient mantissa length. The requiredhtissa
length can be determined by an error analysis in the sameasaye determined the
mantissa length required for the computation of Euler’'s benwith an error less than
2-Min the preceding section. We stress that this error analysistomated in the data
typereal and is invisible to the user.

e If |[A] > sefgE)/2 then return the sign oh and if |A| < se@E)/2 then return zero.

The correctness of this approach can be seen as follows:

If |A|] > sedE)/2 then|A—val(E)| < sedE)/2 implies thatval(E) and A have the
same sign.

If |Al < sedE)/2 then|A—val(E)| < sedE)/2 implies|val(E)| < se@E). Thus,
val(E) = 0 by the definition of a separation bound.

Next, we give the separation bound that is used in LEDA. Fivst need to define pre-
cisely what we mean by an expression. For simplicity, we dagl with expressions with-
out divisions, althoughealsalso handle divisions. An expressi&nis an acyclic directed
graph (dag) in which each node has indegree at most two, ichsd@ch node of indegree 0
is labeled by a non-negative integer, each node of indegreéabeled either by- (unary
minus) or byrooty for some natural numbds¢, and each node of indegree 2 is labeled by
either a+ or ax. Figure 4.6 shows an expression. We definedtbgree de¢E) of E as the
product of thek’s over all nodes labeled by root operations. The expresHibigure 4.6 has
degree 4. We define thmund KE) of E as the value of the expressiénwhich is obtained
from E by removing all nodes labeled with a unary minus and conngdtieir input node
directly to their outputs. In our example, we hau&) = (v17+ v12)(v/17+ +/12) + 5.

Theorem 1 ([BRMS97]) Let E be an expression. Then (&) < b(E) and either
VaI(E) =0 or |Va|(E)| > b(E)l_degE)'

We give a proof of a special case. Assume thaB, andC are natural numbers. How close
to zero canAv/B — C be, if non-zero? We have
IAWVB—C| = |AVB-C|-(AVB+C)/(AVB+C)
= |A2B—C?|/(AVB+C)
1/(AVB +C),

\Y

where the last inequality follows from the assumption tinat value of our expression is
different from zero and from the fact th&fB — C? is an integer. The expression above
has degree 2 and itsvalue is equal toAv'B + C. Thus, the derived bound corresponds
precisely to the statement of the theorem.

It is worthwhile to restate the theorem in terms of the binagresentation ofal(E).
Let L = logb(E). Then|val(E)| < 2* and, ifval(E) # 0, [val(E)| > 2L--(1-9edE) Thys,
if val(E) # 0, then the binary representationvafl(E) either contains a non-zero digit in
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v )
é ®
Figure4.6 An expression dag. The expression has degree 4 and computes

W17+ 12 (V17- V12 -5.

the L digits before the binary point or a non-zero digit in the fide¢g E) — 1) - L digits
after the binary point. Conversely, if all of these digite @aero therval(E) is zero. In the
sequel we will rephrase this statement as: It suffices toeicisiine firstdeg E) - L bits of
the binary representation @él(E).

We give two applications of the theorem above. They aretitiisd by the two real
number demaos, respectively.

First, letx be an arbitrary integer and consider the expression

E1 = (WX +5+VX)(VXx+5-4x) —5.

Thendeg E;) = 4 andb(E;) < 4(x+5)+ 5. LetL; = log(4(x + 5) + 5). By the theorem
above it therefore suffices to inspect the firsg dits of the binary representationdl(E)

in order to determine its sign. Soxfhas 100 binary digits it certainly suffices to inspect
412 digits ofval(E;). This is illustrated by the program below. It asks for an getel
and then constructs a random integevith L decimal digits. It then computes the signs of
E; + 5 andE;.
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L 80 160 320 640 1280 2560 5120

A 001 001 003 005 014 041 1.47

B 004 007 021 066 224 8.03 29.73

Table 4.2 The running times for computing the signs®f= (v/X + 5+ /X)(v/X + 5 — /X)
andB = A — 5 for x being a random integer with decimal digits. Note that the time for
computing the sign oA is much smaller than the time for computing the sigrBofThis reflects
the fact that a crude approximation Afallows us to conclude tha& is positive and that about
4L digits of B need to be computed in order to allow the conclusion Bi& zero. You may
perform your own experiments by calling the first real nunidbemo.

(real_.demol=

(real demol: read L

integer x = 0;

while (L > 0)

{ x = x¥10 + rand_int(0,9);
L--;

}

float T = used_time();

real X = x;

real SX = sqrt(X);

real SXP = sqrt(X+5);

real A = (SXP + SX) * (SXP - SX);

real B = A - 5;

int A_sign = A.sign(); float TA = used_time(T);
int B_sign = B.sign(); float TB = used_time(T);

(real demol: output signs and report running times

Table 4.2 shows the running times of this programlifos 80, 160, 320, and so on.
Next, consider the expression

E,= (2% + 12"~ 2

i.e., the number 2 is squar&dimes, 1 is added , square roots are také¢imes, and finally
2 is subtracted. This yields a number slightly above 0. Itffac
val(Ey) = 2 +12 -2 = 2(1+2729 1
= 2exp2 ¥ In1+22) —1) ~ 2exp2k27%) -1
~ 2142k 1) = 2K
i.e., the first non-zero bit in the binary expansiowak E») is aboutk+2* positions after the

binary point. What does the theorem above say? We tegé&,) = 2¢ andb(E;) < 5 and
hence by the theorem it suffices to inspect the fif$0g 5 bits of the binary representation

6 We use the estimates(th+ x) ~ x andeX ~ 1+ x for x close to zero.
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of val(Ey). That's an overestimate by about a factor of two. The foltayyprogram chunk
illustrates this example. It asks for an integemnd then computes the sign of the expression
E». It also shows theigfloatapproximation o, that is computed in the sign computation.

(real_demo2=
int k = I.read_int("k = ");
float T = used_time();

real E = 2;

int i;

for (i = 0; i < k; i++) { E = ExE; }
E=E+ 1;

for (i = 0; i < k; i++) { E = sqrt(E); }
E=E - 2;

I.write_demo("The sign of E is ",E.sign(),".");
I.write_demo("This took ",used_time(T)," seconds.");
I.write_demo("An approximation of E: " + to_string(E.to_bigfloat()));

We close this section with a brief discussion of the impletagon of reals. The data
typereal stores objects of type real by their expression dags, veryeperation on reals
adds a node to the expression dag and records the arithrpetiatmn to be performed at
the node and the inputs to the node. Thus the dag of Figures 4uilt for the expression
(V17+ V/12)(v/17— v/12) — 5. Whenever the sign of a real number has to be determined,
a separation bound is computed as described in Theorem hana bigfloat computation
is performed to determine the sign.

We sketch how the bigfloat computation is performed; for ittetae refer the reader
to [BMS96].We set a parameteto some small integer and compute an approxima#fion
of val(E) with |A —val(E)| < 2~'. In order to compute such an approximation an error
analysis along the lines of the preceding section is perdr(this is fully automated) and
then a bigfloat computation with the appropriate mantisegtleis performed. IfA| >
2.2 thenval(E) and A have the same sign and we may return the sigA.off |A| <
2. 27" we doublel and repeat. We continue in this fashion until 2< segE)/2, where
sefE) is the separation bound. Table 4.2 illustrates the effecthisfoptimization: For
the expressiom\ a crude approximation allows us to decide the sign and heigegA) is
computed quickly, however, for expressi@one has to go all the way to the quality of
approximation prescribed by the separation bound.

We close with a warning. Reals are not a panacea. Althoughat@v in principle to
compute the sign of any expression involving addition, saditon, multiplication, division,
and arbitrary roots, you may have to wait a long time for th&ngr when the expression is
complex. The papef?] discusses the use ofalsin geometric computations.

Exercisesfor 4.4

1  Computethe sign & = (22k+1)27k — 2 for different values ok. You may use program
realdemo? for this purpose. Don’t be too ambitious. Try to pretlie growth rate of
the running time before performing the experiment.
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2 Let E = E; + E; and assume that you want an approximatfonf val(E) such that
[val(E) — A| < ¢. Determines; ande, and a precisiomprec such that computation of
bigfloat approximationgy of val(E;) with an errorf A; — val(E;)| < & and summation
of A; and A with precisionprecyields the desired approximatiohof val(E).

3  AsabovefolE = E; - E,, E = E;/E;, andE = /E;. Solutions to exercises 2. and 3.
can be found in [BMS96].

4  Let p1 and py be two points in the plane, Iétbe a line, and consider the circle passing
through p; and p, and touchind. Write a procedure that determines the position of a
third point ps with respect to this circle.

45 Vectorsand Matrices

Vectors and matrices are one- and two-dimensional arraysimibers, respectively. Let
n andm be integers. Am-dimensional vectop is a one-dimensional arrangementrof
variables of some number type; the variables are indexed from O tb— 1 anduv[i]
denotes the variable with indéx An n x m matrix M is a two-dimensional arrangement
of n - m variables of some number typé; the variables are indexed by paliis j) with
O<i<n-1landO< j <m-1. WeuseM(i, j) to denote the variable indexed bwand
j and calln andm the number of rows and columns Bf, respectively. Observe that as for
two-dimensional arrays we use round brackets for the sigtsmwerator in matrices. We
have currently vectors and matrices with entries of tgpable(typesvectorand matrix)
and typeinteger (typesintegervector andintegermatrix). Vectors and matrices over an
arbitrary number type are part of the LEP for higher-dimenal geometry. We use the
latter types in all our examples. The definitions
integer_vector v(m);
integer_matrix M(n,m) ;
define anm-vectorv and ann x m-matrix M, respectively. All entries o and M are
initialized to zero. The following procedure multiplies atrix M by a vector.
integer_vector integer_matrix::operator*(const integer_matrix& M,
const integer_vector& v)
{ int n = M.dim1(); // # of rows of M
int m = M.dim2(); // # of columns of M
if (m !'= v.dim()) error_handler(1l, "incompatible dimensions");
integer_vector result(n);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) result[i] += M(i,j) * v[j];
return result;

}
In the context of

integer_vector v(5);
integer_vector r; // a 0 - dimensional vector
integer_matrix M(3, 5);
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we may now write
r =M =* v.

Note that we defined as an empty vector. The assignment= M % v assigns the result
of the multiplicationM % v tor. This involves allocation of memory (for three variables of
typeintegen and component-wise assignment. Vectors are interngsesented as a pair
consisting of an intdim, containing the dimension of the vector, and a pointéo a G-+
array containing the components of the vector. The codehfmassignment operator is as
follows:
integer_vector& integer_vector::operator=(const integer_vector& vec)
{ if (dim '= vec.dim())
{ /* this vector does not yet have the right dimension */
delete v;
dim = vec.dim();
v = new integer[dim];
}
for (int i = 0; i < dim; i++) v[i] = vec[il;
return *this;

}

Vectors and matrices are similar to one- and two-dimensiGra arrays of numbers, re-
spectively. The main differences are as follows:

e \ectors and matrices know their dimension(s). Assignmenbmponent-wise
assignment. It allocates space automatically.

e \Vectors and matrices check whether indices are legal. Teeksitan be turned off.
e \ectors and matrices are somewhat slower than theiré@@unterparts.
e \Vectors and matrices offer a large number of operationsiegli algebra.

The basic operations of linear algebra are vector and maddition and multiplication,
and multiplication by a scalar. For exampl+ N denotes the component-wise addition of
two matricesM andN, M x N denotes matrix multiplicatioriyl * v denotes matrix-vector
product,v * w is the scalar product of two vectors, andg 5 multiplies each entry of by
the scalar 5.

We turn to the more advanced functions of linear algebra. NLdie ann x m integer
matrix and letb be ann integer vector. Lek be an integer vector and I& be an integer
variable. The call

linear_solver(M,b,x,D);

returns true if the linear systeM - z = b has a solution and returns false otherwise. If the
system is solvable then the vectdy D) - x is a solution of the system. Why do we return
the solution in this strange format? The solution vectohefgystenM - z = b has rational
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entries. We provide a common denominatobirand the numerator ir. For example, the
system

320+2z1 =5
n+z21 =2

has the solutioz = (3/2, 1/2). We return this solution as = (3, 1) andD = 2.

The main use of linear algebra within LEDA is the exact impbatation of geometric
primitives; e.g., we solve a linear system to determine thexon of a hyperplane through
a set of points and we compute a determinant to determinerigatation of a sequence of
points. We use matrices and vectors over integers for thaiose. We hardly use vectors
and matrices over doubles within LEDA and therefore haveoptimized the robustness of
our linear system solver. We do not recommend to use our guses for serious numerical
analysis. Much better codes are available in the numernizdyais literature. A good source
of codes is the book [FPTV88].

A linear systemM - z = b may have more than one solution, may have exactly one
solution, or no solution at all. The cdilhear.solverM, b, x, D, svecs c) gives complete
information about the solution space of the systdmz = b:

e If the system is unsolvable theris ann-vector such that™ - M = 0 andc™ - b # 0,
i.e., c specifies a linear combination of the equations such thdefixand side of the
resulting equation is identically zero and the right-haidé $s non-zero. For example,
for the system

Zo+z1 =5
220+ 2727 =4

the vectorc = (—2, 1)T provesthat the system is unsolvable.

e |Ifthe system is solvable thgii/D) - x is a solution andivecsis anm x d matrix for
somed whose columns span the solution space of the correspondimgdeneous
systemM - z = 0. Letcol; denote thg -th column ofsvecs Then any solution to
M - z = b can be written as

(1/D)-x+ > 2j-col,
o<j<d

for some reals.j, 0 < j < d. You may extract thg-th column ofsvecsby
svecscol(j).

The rank of a matrix is the maximal number of linearly indegemt rows (or columns).
The call

rank (M) ;

returns the rank oM.

From now on we assume thdd is a square matrix, i.e., am x n matrix for some
n. A square matrix is callethvertible or non-singularif there is a matrixN such that
M-N = N-M = |, wherel is then x n identity matrix; the matrixN is called the inverse
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of M and is usually denoted byl~1. A matrix without an inverse is callesingular. A
matrix is singular if and only if its determinant is equal &ra. The call

integer D = determinant(M);

returns the determinant dfl. The inverse of an integer matrix has, in general, rational
entries.

integer_matrix N = inverse(M,D);

assigns a common denominator of the entries of the inverBeand returns the matrix of
numeratorsimN, i.e, (1/D) - N is the inverse oM. The functioninverserequires thai is
non-singular and hence should only be used ifs known to be non-singular. The call

inverse(M,N,D,c);

returns true ifM has an inverse and false otherwise. In the former ¢45P) - N is the
inverse ofM and in the latter caseis a non-zero vector witb" - M = 0. Note that such a
vector proves thai is singular.

The LU-decomposition of a matrix is the decomposition asapct of a lower and an
upper diagonal matrix.

LU_decomposition(M,L,U,q);

computes a lower diagonal matrix an upper diagonal matrid, and a permutatioq of
[0..n— 1] (represented as aaray<int>) such that for all, 0 <i < n, theq[i]-th column
of L - M is equal to the-th column ofU.

Exercisesfor 4.5

1  Write a procedure that determines whether a homogenemeesr Isystem has a non-
trivial solution.

2 Write a function that computes the equation of a hyperptassing through a given set
of d points ind-dimensional Euclidean space.
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