
Contents

4 Numbers and Matrices page2
4.1 Integers 2
4.2 Rational Numbers 6
4.3 Floating Point Numbers 7
4.4 Algebraic Numbers 11
4.5 Vectors and Matrices 20

Bibliography 24

Index 25

1

4

Numbers and Matrices

Numbers are at the origin of computing. We all learn about integers, rationals, and real
numbers during our education. Unfortunately, the number typesint, float, anddoublepro-
vided by C++ are only crude approximations of their mathematical counterparts: there are
only finitely many numbers of each type and for floats and doubles the arithmetic incurs
rounding errors. LEDA offers the additional number typesinteger, rational, bigfloat, and
real. The first two are the exact realization of the correspondingmathematical types and
the latter two are better approximations of the real numbers. Vectors and matrices are one-
and two-dimensional arrays of numbers, respectively. Theyprovide the basic operations of
linear algebra.

4.1 Integers

C++ provides the integral typesshort, int, and long. All three types come in signed and
unsigned form. Letw be the word size of the machine and letm = 2w. Most current
workstations havew = 32 orw = 64. Unsigned ints and signed ints usew bits, shorts use
at most that many bits, and longs use at least that many bits.

The unsigned integers consist of the integers between 0 andm − 1 (both inclusive) and
arithmetic is modulom.

The signed integers form an interval [MININT,MAXINT], whereMININT andMAXINT are
predefined constants; under UNIX they are available in the systems filelimits.h. On most
machines signed integers are represented in two’s complement. ThenMININT= −2w−1 and
MAXINT = 2w−1 − 1. The conversion from signed ints to unsigned ints adds a suitable mul-
tiple of m so as to bring the number into the interval [0.. m−1]. If numbers are represented

2

4.1 Integers 3

in two’s complement this conversion does not change the bit pattern. The conversion from
unsigned int to signed int is machine dependent.

An arithmetic operation on signed integers may produce a result outside the range of
representable numbers; one says that the operation underflows or overflows. The treatment
of overflow and underflow is implementation dependent, in particular, it is not guaranteed
that they lead to a runtime error, in fact they usually do not.On the author’s workstations
the summationMAXINT + MAXINT has result−2, since adding 011. . .1 to itself yields
11. . .10, which is the representation of−2 in two’s complement. We give an example of
the disastrous effect that an undetected overflow might have.

Some network algorithms are easier to state if the integers are augmented by the value
∞. For example, in a shortest path algorithm it is convenient to initialize the distance
labels to∞. In an implementation it is tempting to useMAXINT as the implementation of
∞ and to forget that it does not quite have the properties of∞. In particular,MAXINT +
1 = MININT on the author’s workstations which is drastically different from mathematics’
∞+1 = ∞. This difference led to the following error in one of the firstauthor’s programs1.
He implemented Dijkstra’s shortest path algorithm (its working is discussed in Section 6.6)
as follows:

void DIJKSTRA(
onst graph& G, node s,
onst edge_array<int>&
ost,

node_array<int>& dist)

{ node_pq PQ(G);

node v; edge e;

forall_nodes(v,G) dist[v℄ = MAXINT;

dist[s℄ = 0;

forall_nodes(v,G) PQ.insert(v,dist[v℄);

while (!PQ.empty())

{ node v = PQ.delete_min();

forall_adj_edges(e,v)

{ node w = G.target(e);

if (dist[v℄ +
ost[e℄ < dist[w℄)

{ dist[w℄ = dist[v℄ +
ost[e℄;

PQ.de
rease_p(w,dist[w℄);

}

}

}

}

This program works fine when all nodes are reachable froms and all edge costs are in
[0 .. MAXINT/n], wheren is the number of nodes ofG. However, consider the execution on
the graph shown in Figure 4.1. When nodev is removed from the queue, we havedist[v] =
dist[w] = MAXINT. We computeMAXINT + 1 which isMININT and hence decreasew’s
distance toMININT, a serious error. A correct implementation inserts onlys into the queue
initially and replaces the innermost block by

1 The second author insists that he has never made this particular mistake.

4 Numbers and Matrices

s v w
1

Figure 4.1 An example, where the naive use ofMAXINT as a substitute for∞ in Dijkstra’s
algorithm has a disastrous effect.

int
 = dist[v℄ +
ost[e℄;

if (dist[w℄ == MAXINT) PQ.insert(w,
);

else PQ.de
rease_p(w,
);

dist[w℄ =
;

We come to the LEDA typeinteger. It realizes the mathematical type integer. The arith-
metic operations+, −, ∗, /, +=, −=, ∗=, /=, − (unary),++, −−, the modulus operation
(%, %=), bitwise AND (&&, && =), bitwise OR (||, ||=), the complement operator (∼),
the shift operators (≪, ≫), the comparison operators<, ≤, >, ≥, ==, !=, and the stream
operators are available. These operations never overflow and always yield the exact result.
Of course, they may run out of memory. The following program computes the product of
the firstn integers.

integer fa
torial(int n) //
omputes 1 * 2 * ... * n

{ integer fa
 = 1; //automati

onversion from int

for (int i = 2; i <= n; i++) fa
 = fa
*i;

return fa
;

}

Integers also provide some useful mathematical functions,e.g.,sqrt(a) returns⌊√a⌋, log(a)

returns⌊loga⌋, andgcd(a, b) returns the greatest common divisor ofa andb. We refer the
reader to the manual pages for a complete listing.

Integers are essentially implemented by a vector of unsigned longs. The sign and the
size are stored in extra variables. The implementation of integers is very efficient and com-
pares well with other implementations. This is particularly true on SPARC machines since
we have implemented several time critical functions not only in C++ but also in SPARC
assembler code. When integers are used on SPARC machines thefaster assembler code is
executed. The running time of addition is linear and the running time of multiplication is
O(L log 3), whereL is the length of the operands. The following program verifiesthe latter
fact experimentally. It repeatedly squares an integern and measures the time needed for
each squaring operation. In each iteration it prints the current length ofn (= number of
binary digits), the time needed for the iteration and the quotient of the running time of this
and the previous iteration.

〈multiplication times〉�
main()

{ integer n;

〈multiplication times: read n〉
int i;

4.1 Integers 5

n Running time T/T prev

167587 0.63 3

335173 1.88 2.984

670346 5.74 3.053

1340691 17.43 3.037

Table 4.1 The time required to multiply twon bit integers. The multiplication times demo
allows you to perform your own experiments.

for (i = 0; i < 11; i++) n = n * n;

float T_prev = 0;

for (i = 0; i <= 5; i++)

{ float T = used_time();

n = n * n;

T = used_time(T);

〈multiplication times: report times〉
T_prev = T;

}

}

Table 4.1 shows a sample output of this program. Sincen is squared in each iteration,
its lengthL essentially doubles in each iteration. Thus, if the runningtime of an iteration
is c · Lα for some constantsc andα then the running time of the next iteration isc · (2L)α

and hence the quotient isc · (2L)α/(c · Lα) = 2α. The measured quotient is about 3. Thus,
α ≈ log 3.

Integers are used a lot in LEDA’s geometric algorithms. We briefly hint at the use now
and treat it in detail in Chapter 8. Consider three pointsp, q, andr in the plane and letl
denote the line throughp andq and oriented fromp to q. For any points uses1 ands2 to
denote its Euclidean coordinates. The test of whetherr lies to the right ofl , on l , or to the
left of l is tantamount to determining the sign of the determinant

∣

∣

∣

∣

∣

∣

1 1 1
p1 q1 r1

p2 q2 r2

∣

∣

∣

∣

∣

∣

.

If the coordinates of our points are floating point numbers and the determinant2 is evaluated

2 Note that the determinant is zero if and only if the third column is a linear combination of the first two columns,
i.e., if there are realsλ andµ such thatλ + µ = 1 andr = λp + µq. In other words, ifr = p + µ(q − p) for
someµ. This shows that the determinant is zero if and only ifr lies on the line throughp andq. We still need to
argue that the sign distinguishes the two half-planes defined by the line. Consider two pointsr andr ′ and the line
segment fromr to r ′. The value of the determinant changes continuously as one moves fromr to r ′ and hence
assumes value 0 ifr andr ′ lie on different sides of the line and does not assume value 0 if r andr ′ lie on the same
side of the line. Since the determinant is a linear function we conclude that the two sides of the line are
distinguished by the sign of the determinant.

6 Numbers and Matrices

with floating point arithmetic we may incur rounding error and determine the sign of the de-
terminant incorrectly. This is a frequent source of error inthe implementation of geometric
algorithms, as we will see in Sections 4.4 and 8.6 . If the coordinates are integers then the
determinant can be evaluated exactly and the correct sign can be determined. This feature
facilitates the correct implementation of geometric algorithms enormously.

Exercises for 4.1
1 Write a procedurerandominteger(int L) that returns a random integer of lengthL.
2 The greatest common divisor of two numbersx andy with x ≥ y ≥ 0 can be computed

by the recursion gcd(x, y) = x if y = 0 and gcd(x, y) = gcd(y, x mody) if y > 0.
Implement this algorithm, run it on integers of various lengths, and count the number
of recursive calls. Relate the number of recursive calls to the length ofy. Prove that
the number of recursive calls is at most proportional to the length ofy. Hint: Assume
x > y and letx0 = x andx1 = y. For i > 1 andxi−1 6= 0 let xi = xi−2 modxi−1.
Let xk = 0 be the last element in the sequence just defined. Relate thissequence to the
gcd-algorithm. Show thatxk−1 > 0 andxi−2 ≥ xi−1 + xi for i < k. Conclude thatxk− j

is at least as large as thej -th Fibonacci number.
3 The standard algorithm for multiplying twoL-bit integers has running timeO(L2).

LEDA uses the so-called Karatsuba-method ([Kar63]) that runs in timeO(L log 3). In
order to multiply two numbersx andy it writes x = x1 ·2L/2+x2 andy = y1 ·2L/2+ y2,
wherex1, x2, y1, and y2 haveL/2 bits. Then it computesz = (x1 + x2) · (y1 + y2)

and observes thatx · y = x1 · y1 · 2L + (z − x1y1 − x2y2) · 2L/2 + x2y2. In this way
only three multiplications ofL/2-bit integers are needed to multiply twoL-bit integers.
The standard algorithm requires four. Implement Karatsuba’s algorithm and time it as
described in the text. Compare to the member functionoperator∗.

4 In program〈multiplication times.c〉 let n old be the value ofn before the assignment
n = n ∗ n. Extend the program such that it also computesn/n old andsqrt(n) in each
iteration. Measure the execution times and compute quotients of successive execution
times. Try to explain your findings.

5 Develop algorithms for integer division and integer square root based on Newton’s iter-
ation.

4.2 Rational Numbers

A rational number is the quotient of two integers. Well, thatis the mathematical definition
and it is also the definition in LEDA. The arithmetic operations +, −, ∗, /, +=, −=,
∗=, /=, − (unary),++, −− are available on rationals. In addition, there are functions
to extract the numerator and denominator, to cancel out the greatest common divisor of
numerator and denominator, to compute squares and powers, to round rationals to integers,
and many others.

LEDA’s rational numbers are not necessarily normalized, i.e., numerator and denomina-
tor of a rational number may have a common factor. A callp.normalize() normalizesp.

4.3 Floating Point Numbers 7

This involves a gcd-computation to find the common factor in numerator and denominator
and two divisions to remove them. Since normalization is a fairly costly process we do
not do it automatically. It is, however, advisable to do it once in a while in a computation
involving rational numbers.

Exercises for 4.2
1 Write a program to solve linear systems of equations using Gaussian elimination. Use

rational numbers as the underlying number type. Make two versions of the program: in
one version you keep all intermediate results in reduced form by callingx.normalize()

for each intermediate result and in the other version you make no attempt to keep the
numbers normalized. Run examples and determine the lengthsof the numerators and
denominators in the solution vector.

2 Investigate the question raised in the first item theoretically. Assume that all coefficients
of the linear system are integers of length at mostL and letn be the number of equations
in the system. Show that the entries of the solution vector can be expressed as rational
numbers in which the lengths of the numerator and the denominator are bounded by a
polynomial inn and L. (Hint: Show first that the value of ann by n determinant of
a matrix with integer entries of absolute value at most 2L is bounded byn!2nL. Then
use Cramer’s rule to express the entries of the solution vector as quotients of determi-
nants.) Extend the result to all intermediate results occurring in Gaussian elimination.
Conclude that Gaussian elimination has running time polynomial in n andL if all inter-
mediate values are normalized. Why does this not imply that Gaussian elimination runs
in polynomial time without normalization of intermediate results?

3 Implement Gaussian elimination with floating point arithmetic. Find examples where
the result of the floating point computation deviates widelyfrom the exact result. Use
the program of the first item to compute the exact result.

4.3 Floating Point Numbers

Floating point numbers are the computer science version of mathematics’ real numbers.
C++ offers single (typefloat) and double (typedouble) precision floating point numbers and
LEDA offers in addition arbitrary precision floating point numbers (typebigfloat). Floating
point arithmetic on most workstations adheres to the so-called IEEE floating point stan-
dard [IEE87], which we review briefly.

A floating point number consists of a signs, a mantissam, and an exponente. In double
formats has one bit,m consists of 52 bitsm1, . . . , m52, ande consists of the remaining 11
bits of a double word. The number represented by the triple(s, m, e) is defined as follows:

• e is interpreted as an integer in [0.. 211 − 1] = [0 .. 2047].

• If m1 = . . . = m52 = 0 ande = 0 then the number is+0 or−0 depending ons.

• If 1 ≤ e ≤ 2046 then the number iss · (1 +
∑

1≤i≤52 mi 2−i) · 2e−1023.

8 Numbers and Matrices

• If somemi is non-zero ande = 0 then the number iss ·
∑

1≤i≤52 mi 2−i 2−1023. This is
a so-called denormalized number.

• If all mi are zero ande = 2047 then the number is+∞ or −∞ depending ons.

• In all other cases the triple represents NaN (= not a number).

The largest positive double (except for∞) is MAXDOUBLE = (2 − 2−52) · 21023 and the
smallest positive double isMINDOUBLE = 2−52 · 2−1023. Both constants are predefined in
the systems filevalue.h. Arithmetic on floating point numbers is only approximate. For
example,

float x = 123456789;

out << (x + 1) - x;

will output 0 and not 1, the reason being that a nine-digit decimal number does not fit into
a single precision floating point number. Thus,cout ≪ x will not reproduce 123456789.
Although floating point arithmetic is inherently inexact, the IEEE standard guarantees that
the result of any arithmetic operation is close to the exact result, usually as close as possible.
Consider, for example, an additionx + y. If one of the arguments is NaN or the addition
has no defined result, e.g.,−∞ + ∞, then the result is NaN. Otherwise letz be the exact
result. If |z| > MAXDOUBLE, as for example, in∞ + (−5) or in MAXDOUBLE+ 1, the result
is ±∞, if z < MINDOUBLE then the result is zero, and ifMINDOUBLE ≤ z ≤ MAXDOUBLE

then the result is a floating point numberz̃ which is closest toz. In particular,

|z− z̃| ≤ 2−53|z̃|

since the error is at most 1 in the 53rd position after the binary point. The numbereps=
2−53 is frequently called theprecisionof double precision floating point arithmetic.

There is a rich body of literature on floating point arithmetic, see, for example, [DH91,
Gol90, Gol91]. We do not pursue the properties of floats and doubles any further and turn
to bigfloats instead.

The LEDA typebigfloatextends the built-in floating point types. The mantissam and the
exponente of a bigfloat are arbitrary integers (typeinteger) and the number represented by
a pair(m, e) is m · 2e. In addition, there are the special values±0 , ±∞, and NaN (= not
a number). Arithmetic on bigfloats is governed by two parameters: themantissa lengthand
therounding mode. Both parameters can either be set globally or for a single operation.

bigfloat::set_global_pre
(212);

bigfloat::set_rounding_mode(TO_ZERO);

sets the mantissa length to 212 and the rounding mode toTO ZERO. The arithmetic on
bigfloats is defined as follows: letz be the exact result of an arithmetic operation. The
mantissa of the result is obtained by roundingz to the prescribed number of binary places
as dictated by the rounding mode. The available rounding modes areTO NEAREST (round to
the nearest representable number),TO P INF (round towards positive infinity),TO N INF

(round towards negative infinity),TO ZERO (round towards zero),TO INF (round away from

4.3 Floating Point Numbers 9

zero), andEXACT. For example3, if the mantissa length is 3 andz = 54371 then the rounded
value ofz is

54400 if the rounding mode isTO NEAREST or TO P INF or TO INF, is
54300 if the rounding mode isTO N INF or TO ZERO, and is
54371 if the rounding mode isEXACT.

The rounding modeEXACT applies only to addition, subtraction, and multiplication. In this
mode the precision parameter is ignored and no rounding takes place. Since the exponents
of bigfloats are arbitrary integers, arithmetic operationsnever underflow or overflow. How-
ever, exceptions may occur, e.g., division by zero or takingthe square root of a negative
number. They are handled according to the IEEE floating pointstandard, e.g., 5/0 evaluates
to ∞, −5/0 evaluates to−∞, ∞ + 5 evaluates to∞, and 0/0 evaluates to NaN.

The following inequality captures the essence of bigfloat arithmetic. If z is the exact
result of an arithmetic operation andz̃ is the computed value then

|z− z̃| ≤ 2−prec|z̃|,

whereprecis the mantissa length in use. With rounding modeTO NEAREST the error bound
is 2−prec−1|z̃|.

We illustrate bigfloats by a program that computes an approximation of Euler’s number
e ≈ 2.71. Letm be an integer. Our goal is to compute a bigfloatz such that|z− e| ≤ 2−m.
Euler’s number is defined as the value of the infinite series

∑

n≥0 1/n!. The simplest strategy
to approximatee is to sum a sufficiently large initial fragment of this sum with a sufficiently
long mantissa, so as to keep the total effect of the rounding errors under control. Assume
that we compute the sum of the firstn0 terms with a mantissa length ofprecbits for still to
be determined values ofn0 andprec, i.e., we execute the following program.

bigfloat::set_rounding_mode(TO_ZERO);

bigfloat::set_pre
ision(pre
);

bigfloat z = 2;

integer fa
 = 2;

int n = 2;

while (n < n0)

{ // fa
 = n! and z approximates 1/0! + ... + 1/(n-1)!

z = z + 1/bigfloat(fa
);

n++; fa
 = fa
 * n;

}

Let z0 be the final value ofz. Thenz0 is the value of
∑

n<n0
1/n! computed with bigfloat

arithmetic with a mantissa length ofprec binary places. We have incurred two kinds of
errors in this computation: a truncation error since we summed only an initial segment of
an infinite series and a rounding error since we used floating point arithmetic to sum the
initial segment. Thus,

|e− z0| ≤ |e−
∑

n<n0
1/n!| + |

∑

n<n0
1/n! − z0|

3 We use decimal notation instead of binary notation for this example.

10 Numbers and Matrices

=
∑

n≥n0

1/n! + |
∑

n<n0
1/n! − z0|

The first term is certainly bounded by 2/n0! since, for alln ≥ n0, n! = n0! ·(n0+1)·. . .·n ≥
n0! · 2n−n0 and hence

∑

n≥n0
1/n! ≤ 1/n0! · (1 + 1/2 + 1/4 + . . .) ≤ 2/n0!. What can

we say about the total rounding error? We observe that we use one floating point division
and one floating point addition per iteration and that there aren0 − 2 iterations. Also, since
we set the rounding mode toTO ZERO the value ofz always stays belowe and hence stays
bounded by 3. Thus, the results of all bigfloat operations arebounded by 3 and hence each
bigfloat operation incurs a rounding error of at most 3· 2−prec. Thus

|e− z0| ≤ 2/n0! + 2n0 · 3 · 2−prec.

We want the right-hand side to be less than 2−m−1; it will become clear in a short while why
we want the error to be bounded by 2−m−1 and not just 2−m. This can be achieved by making
both terms less than 2−m−2. For the first term this amounts to 2/n0! ≤ 2−m−2. We choosen0

minimal with this property and observe that if we use the expressionfac.length() < m + 3
as the condition of our while loop then thisn0 will be the final value ofn; fac.length()

returns the number of bits in the binary representation offac. Fromn0! ≥ 2n0 and the fact
thatn0 is minimal with 2/n0! ≤ 2−m−2 we concluden0 ≤ m + 3 and hence 6n02−prec ≤
6(m + 3) · 2−prec ≤ 2−m−2 if prec ≥ 2m; actually,prec ≥ m + log(m + 3) + 5 suffices.
The following program implements this strategy and computes z0 with |e− z0| ≤ 2−m−1.

We could outputz0, butz0 is a number with 2m binary places and hence suggests a quality
of approximation which we are not guaranteeing. Therefore,we roundz0 to the nearest
number with a mantissa length ofm+ 3 bits. Sincez0 ≤ 3 this will introduce an additional
error of at most 3· 2−m−3 ≤ 2−m−1. We conclude that the program below computes the
desired approximation of Euler’s number. This program is available as Eulerdemo.

〈Euler demo〉�
main(){

int m;

〈Euler: read m〉
bigfloat::set_pre
ision(2*m);

bigfloat::set_rounding_mode(TO_ZERO);

bigfloat z = 2;

integer fa
 = 2;

int n = 2;

while (fa
.length() < m + 3)

{ // fa
 = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!

z = z + 1/bigfloat(fa
);

n++; fa
 = fa
 * n;

}

// |z - e| <= 2^{m-1} at this point

z = round(z,m+3,TO_NEAREST);

〈Euler: output z〉
}

4.4 Algebraic Numbers 11

Exercises for 4.3
1 Computeπ with an error less than 2−200.
2 Assume that fori , 1 ≤ i ≤ 8, xi is an integer with|xi | ≤ 220. Evaluate the expression

((x1 + x2) · (x3 + x4)) · x5 + (x6+ x7) · x8 with double precision floating point arithmetic.
Derive a bound for the maximal difference between the exact result and the computed
result.

4.4 Algebraic Numbers

The data typereal is LEDA’s best approximation to mathematics’ real numbers.It supports
exact computation withk-th roots for arbitrary natural numberk, the rational operators+,
−, ∗, and/, and the comparison operators==, !=, <, ≤, ≥, and>. Let us see a small
example.

real x = (sqrt(17) - sqrt(12)) * (sqrt(17) + sqrt(12)) - 5;

out << sign(x);

Note that the exact value of the expression definingx is 0. The distinctive feature of reals is
thatsign(x) actually evaluates to zero. More generally, ifE is any expression with integer
operands and operators+, −, ∗, /, and function callssqrt(x) androot(x, k) wherex is a
real andk is a positive integer then the data type real is able to determine the sign ofE. We
want tostress that reals compute the sign of an expression in the mathematical senseand
not the sign of an approximation of an expression. This is in sharp contrast to the evaluation
of an expression with floating point arithmetic. Floating point arithmetic incurs rounding
error and hence, in general, cannot compute the sign of an expression correctly.

Why are we so concerned about the sign of expressions?The reason is that many pro-
grams contain conditional statements that branch on the sign of an expression and that such
programs may go astray if the wrong decision about the sign ismade. We give two exam-
ples, both arising in computational geometry. Further examples can be found in Section 8.6.

In the first example we consider the lines

l1 : y = 9833· x/9454 and l2 : y = 9366· x/9005.

Both lines pass through the origin and the slope ofl1 is slightly larger than the slope ofl2,
see Figure 4.2. Atx = 9454· 9005 we havey1 = 9833· 9005= 9366· 9454+ 1 = y2 + 1.

The following program runs through multiples of 0.001 between 0 and 1 and computes
the correspondingy-valuesy1 andy2. It compares the twoy-values and, if the outcome of
the comparison is different than in the previous iteration,printsx together with the current
outcome.

int last_
omp = -1;

float a = 9833; float b = 9454;

float
 = 9366; float d = 9005;

for (float x = 0; x < 1; x = x + 0.001)

12 Numbers and Matrices

x

l1
l2

Figure 4.2 The linesl1 andl2: Both lines pass through the origin andl1 is slightly steeper than
l2.

{ float y1 = a*x/b; float y2 =
*x/d; // l1 is steeper

int
omp = (y1 < y2? -1 : (y1 == y2? 0 : +1));

if (
omp != last_
omp)

{
out <<"\nAt " << x << ": ";

if (
omp == -1)
out << "l1 is below l2";

if (
omp == 0)
out << "l1 interse
ts l2";

if (
omp == +1)
out << "l1 is above l2";

}

last_
omp =
omp;

}

Clearly, we should expect the program to print:

At 0.000: l1 interse
ts l2

At 0.001: l1 is above l2

Well, the actual output on the first author’s workstation contains the following lines4:

At 0.000: l1 interse
ts l2

At 0.003: l1 is above l2

At 0.004: l1 interse
ts l2

At 0.005: l1 is above l2

At 0.008: l1 interse
ts l2

At 0.009: l1 is below l2

...

At 0.993: l1 interse
ts l2

At 1.000: l1 is below l2

4 If the program is run on the same author’s notebook, it produces the correct result. The explanation for this
behavior is that on the notebook double precision arithmetic is used to implement floats. According to the C++

standard floats must not offer more precision than doubles; they are not required to provide less. You may use the
braided lines demo to find out how the program behaves on your machine.

4.4 Algebraic Numbers 13

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 4.3 y1 is equal toy2 for x = 0.001· i andi equal to 0, 1, and 2, is larger fori equal to 3,
is equal fori equal to 4, is larger fori equal to 5, 6, and 7, is equal fori equal to 8, and is smaller
for i equal to 9.

l1 l2

Figure 4.4 Lines as step functions and their multiple intersections.

We conclude that the lines intersect many times and are interlaced as shown in Figure 4.3.
Observe that floating point arithmetic gives the wrong relationship betweeny1 and y2 not
only for x close to zero but even for fairly large values ofx. Thus the lines behave very
differently from mathematical lines. Lyle Ramshaw coined the nameverzopfte Geraden
(braided lines)for the effect. Figure 4.4 explains the effect. The typefloat consists of only
a finite number of values and hence a line is really a step function as shown in the figure.
The width of the steps of our two linesl1 andl2 are distinct and hence the lines intersect.

The problem of braided lines is easily removed by the use of anexact number type; e.g.,
if float is replaced byrational in the program above, the output becomes what it should be:

14 Numbers and Matrices

Figure 4.5 The Voronoi diagram of two linesl1 andl2 and a pointp. The Voronoi diagram
consists of parts of the angular bisector ofl1 andl2 and of parts of the parabolas defined byp
andl1 andl2, respectively. The Voronoi vertices are centers of circlespassing through the point
and touching the lines.

0/1: l1 interse
ts l2

1/1000: l1 is above l2

The second example goes beyond rational arithmetic and arises in the computation of
Voronoi diagrams of line segments and points. Voronoi diagrams of line segments will be
discussed in Section 9.5.5, and we assume for this paragraphthat the reader has an intuitive
understanding of Voronoi diagrams. Fori , 1 ≤ i ≤ 2, let l i : ai x + bi y + ci = 0 be a
line in two-dimensional space and letp = (0, 0) be the origin, cf. Figure 4.5. There are
two circles passing throughp and touchingl1 and l2. These circles have centersv1,2 =
(xv1,2/zv, yv1,2/zv) where5

xv1,2 = a1c2 + a2c1 ±
√

2c1c2(
√

N + D)

5 The reader may compute these coordinates by solving the following equations forxv/zv andyv/zv .

(xv/zv)2 + (yv/zv)2 = (a1xv/zv + b1yv/zv + c1)
2/(a2

1 + b2
1)

(xv/zv)2 + (yv/zv)2 = (a2xv/zv + b2yv/zv + c2)
2/(a2

2 + b2
2)

4.4 Algebraic Numbers 15

yv1,2 = b1c2 + b2c1 ± sign(S)

√

2c1c2(
√

N − D)

zv =
√

N − a1a2 − b1b2

andS= a1b2 + a2b1, N = (a2
1 + b2

1)(a
2
2 + b2

2), andD = a1a2 − b1b2; in these expressions
the+ in ± corresponds tov1 and the− corresponds tov2. Consider now a third linel and
let v be one ofv1 or v2. The test of whetherl intersects the circle centered atv is crucial
for most algorithms computing Voronoi diagrams. Consider,for example, an incremental
algorithm that adds the lines and points one by one and updates the diagram after every
addition. Assume that such an algorithm has already constructed the diagram forp, l1 and
l2 and next wants to addl . In the updated diagram the vertexv will not exist if l intersects
the interior of the circle centered atv, v will exist and have degree four ifl touches the
circle centered atv, andv will exist and have the same incident edges ifl does not intersect
the circle centered atv. The question of whetherl intersects, touches, or misses the circle
centered atv is tantamount to comparingdist(v, p) with dist(v, l). We may also compare
the squares of these numbers instead. The square ofdist(v, p) is (x2

v +y2
v)/z2

v and the square
of dist(v, l) is (axv/zv + byv/zv + c)2/(a2 + b2). In other words, we need to compute the
sign of the expression

R = (axv + byv + czv)
2 − (a2 + b2)(x2

v + y2
v).

The following procedure takes inputsa1, b1, . . . , c and pm ∈ {−1, +1} and performs this
comparison;pm is used to select one ofv1 andv2.

int INCIRCLE(integer a1, integer b1, integer
1, integer a2,

integer b2, integer
2, integer a, integer b, integer
, int pm)

{ real RN = sqrt((a1 * a1 + b1 * b1) * (a2 * a2 + b2 * b2));

real A = a1 *
2 + a2 *
1;

real B = b1 *
2 + b2 *
1;

real C = 2 *
1 *
2;

real D = a1 * a2 - b1 * b2;

real S = a1 * b2 + a2 * b1;

real xv = A + pm * sqrt(C * (RN + D));

real yv = B + pm * sign(S) * sqrt(C * (RN - D));

real zv = RN - (a1 * a2 + b1 * b2);

real P = a * xv + b * yv +
 * zv;

real R = P * P - (a * a + b * b) * (xv * xv + yv * yv);

return sign(R);

}

How do reals work?The sign computation is based on the concept of aseparation bound.
A separation bound for an expressionE is aneasily computablenumbersep(E) such that

val(E) 6= 0 implies|val(E)| ≥ sep(E),

whereval(E) denotes the value ofE. Thus|val(E)| < sep(E) impliesval(E) = 0. Given
a separation bound there is a simple strategy to determine the sign ofval(E):

16 Numbers and Matrices

• Compute an approximationA of val(E) with |A − val(E)| < sep(E)/2 by evaluating
E with bigfloatarithmetic with sufficient mantissa length. The required mantissa
length can be determined by an error analysis in the same way,as we determined the
mantissa length required for the computation of Euler’s number with an error less than
2−m in the preceding section. We stress that this error analysisis automated in the data
typereal and is invisible to the user.

• If |A| ≥ sep(E)/2 then return the sign ofA and if |A| < sep(E)/2 then return zero.

The correctness of this approach can be seen as follows:
If |A| ≥ sep(E)/2 then|A − val(E)| < sep(E)/2 implies thatval(E) and A have the

same sign.
If |A| < sep(E)/2 then|A − val(E)| < sep(E)/2 implies |val(E)| < sep(E). Thus,

val(E) = 0 by the definition of a separation bound.

Next, we give the separation bound that is used in LEDA. First, we need to define pre-
cisely what we mean by an expression. For simplicity, we dealonly with expressions with-
out divisions, althoughrealsalso handle divisions. An expressionE is an acyclic directed
graph (dag) in which each node has indegree at most two, in which each node of indegree 0
is labeled by a non-negative integer, each node of indegree 1is labeled either by− (unary
minus) or byrootk for some natural numberk, and each node of indegree 2 is labeled by
either a+ or a∗. Figure 4.6 shows an expression. We define thedegree deg(E) of E as the
product of thek’s over all nodes labeled by root operations. The expressionof Figure 4.6 has
degree 4. We define thebound b(E) of E as the value of the expressionÊ which is obtained
from E by removing all nodes labeled with a unary minus and connecting their input node
directly to their outputs. In our example, we haveb(E) = (

√
17+

√
12)(

√
17+

√
12) + 5.

Theorem 1 ([BRMS97]) Let E be an expression. Then val(E) ≤ b(E) and either

val(E) = 0 or |val(E)| ≥ b(E)1−deg(E).

We give a proof of a special case. Assume thatA, B, andC are natural numbers. How close
to zero canA

√
B − C be, if non-zero? We have

|A
√

B − C| = |A
√

B − C| · (A
√

B + C)/(A
√

B + C)

= |A2B − C2|/(A
√

B + C)

≥ 1/(A
√

B + C),

where the last inequality follows from the assumption that the value of our expression is
different from zero and from the fact thatA2B − C2 is an integer. The expression above
has degree 2 and itsb-value is equal toA

√
B + C. Thus, the derived bound corresponds

precisely to the statement of the theorem.
It is worthwhile to restate the theorem in terms of the binaryrepresentation ofval(E).

Let L = logb(E). Then|val(E)| ≤ 2L and, ifval(E) 6= 0, |val(E)| ≥ 2L·(1−deg(E)). Thus,
if val(E) 6= 0, then the binary representation ofval(E) either contains a non-zero digit in

4.4 Algebraic Numbers 17

+

∗

+ +

−

√√

17 12 5

−

Figure 4.6 An expression dagE. The expression has degree 4 and computes
(
√

17+
√

12) · (
√

17−
√

12) − 5.

the L digits before the binary point or a non-zero digit in the first(deg(E) − 1) · L digits
after the binary point. Conversely, if all of these digits are zero thenval(E) is zero. In the
sequel we will rephrase this statement as: It suffices to inspect the firstdeg(E) · L bits of
the binary representation ofval(E).

We give two applications of the theorem above. They are illustrated by the two real
number demos, respectively.

First, letx be an arbitrary integer and consider the expression

E1 = (
√

x + 5 +
√

x)(
√

x + 5 −
√

x) − 5.

Thendeg(E1) = 4 andb(E1) < 4(x + 5)+ 5. LetL1 = log(4(x + 5)+ 5). By the theorem
above it therefore suffices to inspect the first 4L1 bits of the binary representation ofval(E1)

in order to determine its sign. So ifx has 100 binary digits it certainly suffices to inspect
412 digits ofval(E1). This is illustrated by the program below. It asks for an integer L
and then constructs a random integerx with L decimal digits. It then computes the signs of
E1 + 5 andE1.

18 Numbers and Matrices

L 80 160 320 640 1280 2560 5120

A 0.01 0.01 0.03 0.05 0.14 0.41 1.47

B 0.04 0.07 0.21 0.66 2.24 8.03 29.73

Table 4.2 The running times for computing the signs ofA = (
√

x + 5 + √
x)(

√
x + 5 − √

x)

andB = A − 5 for x being a random integer withL decimal digits. Note that the time for
computing the sign ofA is much smaller than the time for computing the sign ofB. This reflects
the fact that a crude approximation ofA allows us to conclude thatA is positive and that about
4L digits of B need to be computed in order to allow the conclusion thatB is zero. You may
perform your own experiments by calling the first real numberdemo.

〈real demo1〉�
〈real demo1: read L〉
integer x = 0;

while (L > 0)

{ x = x*10 + rand_int(0,9);

L--;

}

float T = used_time();

real X = x;

real SX = sqrt(X);

real SXP = sqrt(X+5);

real A = (SXP + SX) * (SXP - SX);

real B = A - 5;

int A_sign = A.sign(); float TA = used_time(T);

int B_sign = B.sign(); float TB = used_time(T);

〈real demo1: output signs and report running times〉

Table 4.2 shows the running times of this program forL = 80, 160, 320, and so on.
Next, consider the expression

E2 = (22k + 1)2−k − 2,

i.e., the number 2 is squaredk times, 1 is added , square roots are takenk times, and finally
2 is subtracted. This yields a number slightly above 0. In fact6,

val(E2) = (22k + 1)2−k − 2 = 2((1 + 2−2k
)2−k − 1)

= 2(exp(2−k ln(1 + 2−2k
)) − 1) ≈ 2(exp(2−k2−2k

) − 1)

≈ 2(1 + 2−k2−2k − 1) = 21−k−2k
,

i.e., the first non-zero bit in the binary expansion ofval(E2) is aboutk+2k positions after the
binary point. What does the theorem above say? We havedeg(E2) = 2k andb(E2) ≤ 5 and
hence by the theorem it suffices to inspect the first 2k log 5 bits of the binary representation

6 We use the estimates ln(1 + x) ≈ x andex ≈ 1 + x for x close to zero.

4.4 Algebraic Numbers 19

of val(E2). That’s an overestimate by about a factor of two. The following program chunk
illustrates this example. It asks for an integerk and then computes the sign of the expression
E2. It also shows thebigfloatapproximation ofE2 that is computed in the sign computation.

〈real demo2〉�
int k = I.read_int("k = ");

float T = used_time();

real E = 2;

int i;

for (i = 0; i < k; i++) { E = E*E; }

E = E + 1;

for (i = 0; i < k; i++) { E = sqrt(E); }

E = E - 2;

I.write_demo("The sign of E is ",E.sign(),".");

I.write_demo("This took ",used_time(T)," se
onds.");

I.write_demo("An approximation of E: " + to_string(E.to_bigfloat()));

We close this section with a brief discussion of the implementation of reals. The data
type real stores objects of type real by their expression dags, i.e., every operation on reals
adds a node to the expression dag and records the arithmetic operation to be performed at
the node and the inputs to the node. Thus the dag of Figure 4.6 is built for the expression
(
√

17+
√

12)(
√

17−
√

12) − 5. Whenever the sign of a real number has to be determined,
a separation bound is computed as described in Theorem 1 and then a bigfloat computation
is performed to determine the sign.

We sketch how the bigfloat computation is performed; for details we refer the reader
to [BMS96].We set a parameterl to some small integer and compute an approximationA
of val(E) with |A − val(E)| < 2−l . In order to compute such an approximation an error
analysis along the lines of the preceding section is performed (this is fully automated) and
then a bigfloat computation with the appropriate mantissa length is performed. If|A| ≥
2 · 2−l thenval(E) and A have the same sign and we may return the sign ofA. If |A| <

2 · 2−l we doublel and repeat. We continue in this fashion until 2−l ≤ sep(E)/2, where
sep(E) is the separation bound. Table 4.2 illustrates the effect ofthis optimization: For
the expressionA a crude approximation allows us to decide the sign and hencesign(A) is
computed quickly, however, for expressionB one has to go all the way to the quality of
approximation prescribed by the separation bound.

We close with a warning. Reals are not a panacea. Although they allow in principle to
compute the sign of any expression involving addition, subtraction, multiplication, division,
and arbitrary roots, you may have to wait a long time for the answer when the expression is
complex. The paper [?] discusses the use ofreals in geometric computations.

Exercises for 4.4
1 Compute the sign ofE = (22k +1)2−k −2 for different values ofk. You may use program

real demo2 for this purpose. Don’t be too ambitious. Try to predict the growth rate of
the running time before performing the experiment.

20 Numbers and Matrices

2 Let E = E1 + E2 and assume that you want an approximationA of val(E) such that
|val(E) − A| ≤ ε. Determineε1 andε2 and a precisionprecsuch that computation of
bigfloat approximationsAi of val(Ei) with an error|Ai − val(Ei)| ≤ εi and summation
of A1 andA2 with precisionprecyields the desired approximationA of val(E).

3 As above forE = E1 · E2, E = E1/E2, andE =
√

E1. Solutions to exercises 2. and 3.
can be found in [BMS96].

4 Let p1 and p2 be two points in the plane, letl be a line, and consider the circle passing
throughp1 and p2 and touchingl . Write a procedure that determines the position of a
third point p3 with respect to this circle.

4.5 Vectors and Matrices

Vectors and matrices are one- and two-dimensional arrays ofnumbers, respectively. Let
n andm be integers. Ann-dimensional vectorv is a one-dimensional arrangement ofn
variables of some number typeN; the variables are indexed from 0 ton − 1 andv[i]
denotes the variable with indexi . An n × m matrix M is a two-dimensional arrangement
of n · m variables of some number typeN; the variables are indexed by pairs(i , j) with
0 ≤ i ≤ n − 1 and 0≤ j ≤ m − 1. We useM(i , j) to denote the variable indexed byi and
j and calln andm the number of rows and columns ofM, respectively. Observe that as for
two-dimensional arrays we use round brackets for the subscript operator in matrices. We
have currently vectors and matrices with entries of typedouble(typesvectorandmatrix)
and typeinteger (types integervector and integermatrix). Vectors and matrices over an
arbitrary number type are part of the LEP for higher-dimensional geometry. We use the
latter types in all our examples. The definitions

integer_ve
tor v(m);

integer_matrix M(n,m);

define anm-vectorv and ann × m-matrix M, respectively. All entries ofv and M are
initialized to zero. The following procedure multiplies a matrix M by a vectorv.

integer_ve
tor integer_matrix::operator*(
onst integer_matrix& M,

onst integer_ve
tor& v)

{ int n = M.dim1(); // # of rows of M

int m = M.dim2(); // # of
olumns of M

if (m != v.dim()) error_handler(1, "in
ompatible dimensions");

integer_ve
tor result(n);

for (int i = 0; i < n; i++)

for (int j = 0; j < m; j++) result[i℄ += M(i,j) * v[j℄;

return result;

}

In the context of

integer_ve
tor v(5);

integer_ve
tor r; // a 0 - dimensional ve
tor

integer_matrix M(3, 5);

4.5 Vectors and Matrices 21

we may now write

r = M * v.

Note that we definedr as an empty vector. The assignmentr = M ∗ v assigns the result
of the multiplicationM ∗ v to r . This involves allocation of memory (for three variables of
type integer) and component-wise assignment. Vectors are internally represented as a pair
consisting of an intdim, containing the dimension of the vector, and a pointerv to a C++
array containing the components of the vector. The code for the assignment operator is as
follows:

integer_ve
tor& integer_ve
tor::operator=(
onst integer_ve
tor& ve
)

{ if (dim != ve
.dim())

{ /* this ve
tor does not yet have the right dimension */

delete v;

dim = ve
.dim();

v = new integer[dim℄;

}

for (int i = 0; i < dim; i++) v[i℄ = ve
[i℄;

return *this;

}

Vectors and matrices are similar to one- and two-dimensional C++ arrays of numbers, re-
spectively. The main differences are as follows:

• Vectors and matrices know their dimension(s). Assignment is component-wise
assignment. It allocates space automatically.

• Vectors and matrices check whether indices are legal. The checks can be turned off.

• Vectors and matrices are somewhat slower than their C++ counterparts.

• Vectors and matrices offer a large number of operations of linear algebra.

The basic operations of linear algebra are vector and matrixaddition and multiplication,
and multiplication by a scalar. For example,M+N denotes the component-wise addition of
two matricesM andN, M ∗ N denotes matrix multiplication,M ∗ v denotes matrix-vector
product,v ∗ w is the scalar product of two vectors, andv ∗ 5 multiplies each entry ofv by
the scalar 5.

We turn to the more advanced functions of linear algebra. LetM be ann × m integer
matrix and letb be ann integer vector. Letx be an integer vector and letD be an integer
variable. The call

linear_solver(M,b,x,D);

returns true if the linear systemM · z = b has a solution and returns false otherwise. If the
system is solvable then the vector(1/D) · x is a solution of the system. Why do we return
the solution in this strange format? The solution vector of the systemM · z = b has rational

22 Numbers and Matrices

entries. We provide a common denominator inD and the numerator inx. For example, the
system

3z0 + z1 = 5
z0 + z1 = 2

has the solutionz = (3/2, 1/2). We return this solution asx = (3, 1) andD = 2.
The main use of linear algebra within LEDA is the exact implementation of geometric

primitives; e.g., we solve a linear system to determine the equation of a hyperplane through
a set of points and we compute a determinant to determine the orientation of a sequence of
points. We use matrices and vectors over integers for that purpose. We hardly use vectors
and matrices over doubles within LEDA and therefore have notoptimized the robustness of
our linear system solver. We do not recommend to use our procedures for serious numerical
analysis. Much better codes are available in the numerical analysis literature. A good source
of codes is the book [FPTV88].

A linear systemM · z = b may have more than one solution, may have exactly one
solution, or no solution at all. The calllinear solver(M, b, x, D, svecs, c) gives complete
information about the solution space of the systemM · z = b:

• If the system is unsolvable thenc is ann-vector such thatcT · M = 0 andcT · b 6= 0,
i.e.,c specifies a linear combination of the equations such that theleft-hand side of the
resulting equation is identically zero and the right-hand side is non-zero. For example,
for the system

z0 + z1 = 5
2z0 + 2z1 = 4

the vectorc = (−2, 1)T provesthat the system is unsolvable.

• If the system is solvable then(1/D) · x is a solution andsvecsis anm × d matrix for
somed whose columns span the solution space of the corresponding homogeneous
systemM · z = 0. Letcol j denote thej -th column ofsvecs. Then any solution to
M · z = b can be written as

(1/D) · x +
∑

o≤ j <d

λ j · col j

for some realsλ j , 0 ≤ j < d. You may extract thej -th column ofsvecsby
svecs.col(j).

The rank of a matrix is the maximal number of linearly independent rows (or columns).
The call

rank(M);

returns the rank ofM.
From now on we assume thatM is a square matrix, i.e., ann × n matrix for some

n. A square matrix is calledinvertible or non-singularif there is a matrixN such that
M · N = N · M = I , whereI is then× n identity matrix; the matrixN is called the inverse

4.5 Vectors and Matrices 23

of M and is usually denoted byM−1. A matrix without an inverse is calledsingular. A
matrix is singular if and only if its determinant is equal to zero. The call

integer D = determinant(M);

returns the determinant ofM. The inverse of an integer matrix has, in general, rational
entries.

integer_matrix N = inverse(M,D);

assigns a common denominator of the entries of the inverse toD and returns the matrix of
numerators inN, i.e,(1/D) · N is the inverse ofM. The functioninverserequires thatM is
non-singular and hence should only be used ifM is known to be non-singular. The call

inverse(M,N,D,
);

returns true ifM has an inverse and false otherwise. In the former case(1/D) · N is the
inverse ofM and in the latter casec is a non-zero vector withcT · M = 0. Note that such a
vector proves thatM is singular.

The LU-decomposition of a matrix is the decomposition as a product of a lower and an
upper diagonal matrix.

LU_de
omposition(M,L,U,q);

computes a lower diagonal matrixL, an upper diagonal matrixU , and a permutationq of
[0 .. n − 1] (represented as anarray<int>) such that for alli , 0 ≤ i < n, theq[i]-th column
of L · M is equal to thei -th column ofU .

Exercises for 4.5
1 Write a procedure that determines whether a homogeneous linear system has a non-

trivial solution.
2 Write a function that computes the equation of a hyperplanepassing through a given set

of d points ind-dimensional Euclidean space.

Bibliography

[BMS96] C. Burnikel, K. Mehlhorn, and S. Schirra.
The LEDA class real number. Technical Report
MPI-I-96-1-001, Max-Planck-Institut für
Informatik, Saarbrücken, January 1996.

[BRMS97] Ch. Burnikel, R.Fleischer, K. Mehlhorn,
and S. Schirra. A strong and easily computable
separation bound for arithmetic expressions
involving square roots(ps). InProc. SODA 97,
pages 702–709, 1997.

[DH91] P. Deuflhard and A. Hohmann.Numerische
Mathematik: Eine algorithmisch orientierte
Einführung. Walter de Gruyter, 1991.

[FPTV88] Brian P. Flannery, William H. Press,
Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C : The Art of Scientific
Computing. Cambridge University Press, 1988.

[Gol90] David Goldberg. What every computer
scientist should know about floating-point
arithmetic.ACM Computing Surveys,
23(1):5–48, March 1990.

[Gol91] David Goldberg. Corrigendum: “What
every computer scientist should know about
floating-point arithmetic”.ACM Computing
Surveys, 23(3):413–413, September 1991.

[IEE87] IEEE standard 754-1985 for binary
floating-point arithmetic.SIGPLAN Notices,
2:9–25, 1987.

[Kar63] A. Karatsuba.Soviet Physics-Doklady,
7:595–596, 1963.

24

Index

algebraic numbers,seenumber types
arithmetic,seenumber types
assignment

for vectors, 21

bigfloat, seenumber types
bigints,see integer
braided lines, 13

demos
braided lines, 11
Euler’s number, 10
exact arithmetic, 17
integer multiplication, 4, 5
real numbers, 17, 18

determinant, 23
DIJKSTRA, 3
double, seenumber types

error analysis, 9
errors

braided lines, 11
overflow and Dijkstra’s algorithm, 3

float, seenumber types
floating point filter

in reals, 15

Gaussian elimination, 7, 23

IEEE standard, 7
index out of bounds check, 21
infinity and MAXINT, 3
int, 2, seenumber types
integer, 4, seenumber types
integer matrix, 20–23
integer vector, 20–23
inverse of a matrix, 23

Karatsuba integer multiplication, 6

linear algebra, 21, 22
linear system of equations, 7, 21
long, 2, seenumber types
LU decomposition, 23

machine precision, 8
matrix, 20–23
MAXDOUBLE, 8
MAXINT, 2
MAXINT and infinity, 3
MINDOUBLE, 8
MININT, 2
multiplication of large integers, 4, 6

NaN (not a number), 8
normalization, 6
number types, 2–20

algebraic numbers, 11–20
demo, 17
efficiency, 17
example for use, 14
implementation, 19
real, 11
separation bound, 15

floating point numbers, 7–11
definition, 7
error analysis, 9
Euler’s number, 9
exponent, 7
IEEE standard, 7
mantissa, 7, 8
NaN (not a number), 8
precision, 8
rounding error, 8
rounding mode, 8

integers, 2–6
int, 2

25

26 Index

integer, 4
multiplication, 4
overflow, 3
two-complement representation, 2
underflow, 3

rational numbers, 6–7
vectors and matrices, 20–23

rank of a matrix, 22
rational, 6, seenumber types
real, 11,seenumber types
root operation, 4, 11,seenumber types
rounding error, 8
rounding mode, 8
running time

integer multiplication, 5

real numbers, 18

separation bound, 15
short, 2, seenumber types
sign of an expression, 11
signed int, 2
square root operation, 11,seenumber types

two-complement representation, 2

unsigned int, 2

vector, 20–23
Voronoi diagrams

diagram of line segments, 14

