set up non-certifying and certifying planarity demo. Let the non-certifying demo run during introduction
Certifying Algorithms
Algorithms Explaining their Work
Algorithmics meets Software Engineering

Kurt Mehlhorn
Outline of Talk

- problem definition and certifying algorithms
- examples of certifying algorithms
 - testing bipartiteness
 - matchings in graphs
 - planarity testing
 - convex hulls
 - further examples
- advantages of certifying algorithms
- universality
- formal verification and certifying algorithms
- summary
The Problem

- A user feeds x to the program, the program returns y.
- How can the user be sure that, indeed,

\[y = f(x) \]

The user has no way to know.
Warning Examples

- LEDA 2.0 planarity test was incorrect
- Rhino3d (a CAD systems) fails to compute correct intersection of two cylinders and two spheres
- CPLEX (a linear programming solver) fails on benchmark problem \textit{etamacro}.
- Mathematica 4.2 (a mathematics systems) fails to solve a small integer linear program

\begin{verbatim}
In[1] := ConstrainedMin[x , \{x==1,x==2\} , \{x\}]
Out[1] = \{2, \{x->2\}\}

In[1] := ConstrainedMax[x , \{x==1,x==2\} , \{x\}]
ConstrainedMax::"lpsub": "The problem is unbounded."
Out[2] = \{Infinity, \{x -> Indeterminate\}\}
\end{verbatim}
The Problem

A user feeds x to the program, the program returns y.

How can the user be sure that, indeed,

$$y = f(x)?$$

The user has no way to know.

How do we behave when we delegate a task to a personal assistant?

The Proposal

A program should justify (prove) its answers in a way that is easily checked by the user of the program.
The Problem

A user feeds x to the program, the program returns y.

How can the user be sure that, indeed,

$$y = f(x)?$$

The user has no way to know.

How do we behave when we delegate a task to a personal assistant?

The Proposal

A program should justify (prove) its answers in a way that is easily checked by the user of the program.
A Certifying Program for a Function f

On input x, a certifying program returns
the function value y and a certificate (witness) w

- w proves $y = f(x)$ even to a dummy,
- and there is a simple program C, the checker, that verifies
 the validity of the proof.
A First Example: Testing Bipartiteness of Graphs

A graph is **bipartite** if its vertices can be colored black and white such that the endpoints of each edge have distinct colors.

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs

- a two-coloring in the YES-case
- an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices
A First Example: Testing Bipartiteness of Graphs

A graph is **bipartite** if its vertices can be colored black and white such that the endpoints of each edge have distinct colors.

Conventional algorithm outputs YES or NO

Certifying Algorithm outputs
- a two-coloring in the YES-case
- an odd cycle in the NO-case

Remark: simple modification of the standard algorithm suffices
Bipartite Graphs: An Algorithm

- construct a spanning tree of G
- use it to color the vertices with colors red and blue
- check for all non-tree edges: do endpoints have distinct colors?
- if yes, the graph is bipartite and the coloring proves it.
- if no, declare the graph non-bipartite: Let $e = \{ u, v \}$ be a non-tree edge with equal colored endpoints.

Note that the tree path from u to v is an odd cycle.

Let e together with the tree path from u to v is an odd cycle.
Note that the tree path has even length since u and v have the same color.
Bipartite Graphs: An Algorithm

- construct a spanning tree of G
- use it to color the vertices with colors red and blue
- check for all non-tree edges: do endpoints have distinct colors?
- if yes, the graph is bipartite and the coloring proves it.
- if no, declare the graph non-bipartite: Let $e = \{ u, v \}$ be a non-tree edge with equal colored endpoints

e together with the tree path from u to v is an odd cycle. Note that the tree path has even length since u and v have the same color.
Examples

Planarity Testing
Maximum Cardinality Matchings
Further Examples
Example II: Planarity Testing

- Given a graph G, decide whether it is planar
- Tarjan (76): planarity can be tested in linear time
- A story and a demo
- Combinatorial planar embedding is a witness for planarity

 Chiba et al (85): planar embedding of a planar G in linear time

- Kuratowski subgraph is a witness for non-planarity

 Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time, LEDAbook, Chapter 9
Example III: Maximum Cardinality Matchings

- A matching M is a set of edges no two of which share an endpoint.

- The blue edges form a matching of maximum cardinality; this is non-obvious as two vertices are unmatched.

- A conventional algorithm outputs the set of blue edges.
Edmonds’ Theorem: Let M be a matching in a graph G and let ℓ be a labelling of the vertices with non-negative integers such that for each edge $e = (u, v)$ either $\ell(u) = \ell(v) \geq 2$ or $1 \in \{ \ell(u), \ell(v) \}$. Then

$$|M| \leq n_1 + \sum_{i \geq 2} \lfloor n_i / 2 \rfloor,$$

where n_i is the number of vertices labelled i.
Maximum Cardinality Matching: A Certifying Alg

Edmonds’ Theorem: Let M be a matching in a graph G and let ℓ be a labelling of the vertices with non-negative integers such that for each edge $e = (u, v)$ either $\ell(u) = \ell(v) \geq 2$ or $1 \in \{\ell(u), \ell(v)\}$. Then

$$|M| \leq n_1 + \sum_{i \geq 2} \left\lfloor \frac{n_i}{2} \right\rfloor,$$

where n_i is the number of vertices labelled i.

- $n_1 = 4$, $n_2 = 3$, $n_3 = 3$.
- no matching has more than $4 + \left\lfloor \frac{3}{2} \right\rfloor + \left\lfloor \frac{3}{2} \right\rfloor = 6$ edges.
- $|M| = 6$
Edmonds’ Theorem: Let M be a matching in a graph G and let ℓ be a labelling of the vertices with non-negative integers such that for each edge $e = (u, v)$ either $\ell(u) = \ell(v) \geq 2$ or $1 \in \{\ell(u), \ell(v)\}$. Then

$$|M| \leq n_1 + \sum_{i \geq 2} \left\lfloor n_i/2 \right\rfloor,$$

where n_i is the number of vertices labelled i.

- Let M_1 be the edges in M having at least one endpoint labelled 1 and, for $i \geq 2$, let M_i be the edges in M having both endpoints labelled i.
- $M = M_1 \cup M_2 \cup M_3 \cup \ldots$
- $|M_1| \leq n_1$ and $|M_i| \leq n_i/2$ for $i \geq 2$.
Further Examples

- biconnectivity, strong connectivity, flows, . . . ,
- Convex Hulls
- Schmidt, Mehlhorn/Neumann/Schmidt: Three-Connectivity of Graphs
- Georgiadis/Tarjan: Dominators in Digraphs
- Wang: Arrangements of Algebraic Curves
- Mehlhorn/Sagraloff/Wang: Root Isolation for Real Polynomials
- Althaus/Dumitriu: Certifying feasibility and objective value of linear programs
- Hauenstein/Sottile: alphaCertified: certifying solutions to polynomial systems
- Cook et al: Traveling Salesman Tours
- Cheung/Gleixner/Steffy: Verifying Integer Programming Results
I do not claim that I invented the concept; it is an old concept:
- al-Kwarizmi: multiplication
- extended Euclid: gcd
- primal-dual algorithms in combinatorial optimization
- Blum et al.: Programs that check their work

I do claim that Näher and I were the first (1995) to adopt the concept as the design principle for a large library project: LEDA

(Library of Efficient Data Types and Algorithms)

- Kratsch/McConnell/M/Spinrad (SODA 2003) coin name
- McConnell/M/Näher/Schweitzer (2010): 80 page survey
How I got interested?

- till ’83: only theoretical work in algorithms and complexity
- ’83 – ’89: participation in a project on VLSI design: implementation work proceeds very slowly
- since ’89: LEDA, library of efficient data types and algorithms
- many implementations incorrect
- ’95: adopt exact computation paradigm (computational geometry) and certifying algorithms as design principles
- since ’00: additional certifying algorithms
- ’10: 80 page survey paper
- since ’12: formal verification of checkers
The Advantages of Certifying Algorithms

- Certifying algs can be tested on
 - any input
 - and not just on inputs for which the result is known.

- Certifying algorithms are reliable:
 - Either give the correct answer
 - or notice that they have erred \(\Rightarrow \) confinement of error

- Computation as a service
 - There is no need to understand the program, understanding the witness property and the checking program suffices.
 - One may even keep the program secret and only publish the checker
The Advantages of Certifying Algorithms

- Certifying algs can be tested on
 - any input
 - and not just on inputs for which the result is known.

- Certifying algorithms are reliable:
 - Either give the correct answer
 - or notice that they have erred \(\Rightarrow \) confinement of error

- Computation as a service
 - There is no need to understand the program, understanding the witness property and the checking program suffices.
 - One may even keep the program secret and only publish the checker
The Advantages of Certifying Algorithms

- Certifying algs can be tested on
 - any input
 - and not just on inputs for which the result is known.

- Certifying algorithms are reliable:
 - Either give the correct answer
 - or notice that they have erred \(\Rightarrow \) confinement of error

- Computation as a service
 - There is no need to understand the program, understanding the witness property and the checking program suffices.
 - One may even keep the program secret and only publish the checker
Odds and Ends

- General techniques
 - Linear programming duality
 - Characterization theorems
 - Program composition
- Probabilistic programs and checkers
- Reactive Systems (data structures)
- does apply to problems in NP (and beyond), e.g., SAT
 - output a satisfying assignment of satisfiable inputs or
 - output a resolution proof for unsatisfiability.
Universality

- Does every problem have a certifying algorithm? Can every program be converted into a certifying one?
 - I know 100+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (CS Review), in particular, all text-book algorithms can be made certifying
 - most programs in LEDA are certifying, and
 - checking a solution is never harder than finding it.
Universality

- Does every problem have a certifying algorithm? Can every program be converted into a certifying one?

- I know 100+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (CS Review), in particular, all text-book algorithms can be made certifying
 - most programs in LEDA are certifying, and
 - checking a solution is never harder than finding it.
Universality

- Does every problem have a certifying algorithm? Can every program be converted into a certifying one?

- I know 100+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (CS Review), in particular, all text-book algorithms can be made certifying

- most programs in LEDA are certifying, and

- checking a solution is never harder than finding it.
Does every problem have a certifying algorithm? Can every program be converted into a certifying one?

I know 100+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (CS Review), in particular, all text-book algorithms can be made certifying.

- most programs in LEDA are certifying, and
- checking a solution is never harder than finding it.
A Certifying Program for a Function f

- On input x, a **certifying program** returns the function value y and a certificate (witness) w
 - w proves $y = f(x)$ even to a dummy,
 - and there is a simple program C, the **checker**, that verifies the validity of the proof.

Let us have a closer look at the checker programs.
Edmonds' Theorem: Let M be a matching in a graph $G = (V, E)$ and let $\ell: V \to \mathbb{N}$ such that for each edge $e = (u, v)$ of G either $\ell(u) = \ell(v) \geq 2$ or $1 \in \{\ell(u), \ell(v)\}$. Then

$$|M| \leq n_1 + \sum_{i \geq 2} \left\lfloor \frac{n_i}{2} \right\rfloor,$$

where n_i is the number of vertices labelled i.

The Checker Program has input $G, M,$ and ℓ:

- checks that $M \subseteq E$,
- checks that M is a matching,
- checks that ℓ satisfies the hypothesis of the theorem, and
- checks that $|M| = n_1 + \sum_{i \geq 2} \left\lfloor \frac{n_i}{2} \right\rfloor$

set $c[v] = 0$ for all $v \in V$;
for all $e = (u, v) \in M$: increment $c[u]$ and $c[v]$;
if some counter reaches 2, M is not a matching.
How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL

Nipkow/Paulson

- formal mathematics
- proof are machine-checked
- only kernel needs to be trusted
Who Checks the Checker?

How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL
Nipkow/Paulson

- formal mathematics
- proof are machine-checked
- only kernel needs to be trusted
Who Checks the Checker?

How can we be sure that the checker programs are correct?

My answer up to 2011: Because they are so simple.

Because we can prove their correctness in a formal system

Isabelle/HOL

Nipkow/Paulson

- formal mathematics
- proof are machine-checked
- only kernel needs to be trusted

definition disjoint-edges :: (α, β) pre-graph $\Rightarrow \beta \Rightarrow \beta \Rightarrow \text{bool}$ where

disjoint-edges $G \ e_1 \ e_2 = (\$

\begin{align*}
\text{start } G \ e_1 & \neq \text{start } G \ e_2 \land \text{start } G \ e_1 & \neq \text{target } G \ e_2 \land \\
\text{target } G \ e_1 & \neq \text{start } G \ e_2 \land \text{target } G \ e_1 & \neq \text{target } G \ e_2
\end{align*}$)$

Definition matching :: (α, β) pre-graph $\Rightarrow \beta \ set \Rightarrow \text{bool}$ where

matching $G \ M = (M \subseteq \text{edges } G \land ($$

\forall e_1 \in M. \forall e_2 \in M. e_1 & \neq e_2 \rightarrow \text{disjoint-edges } G \ e_1 \ e_2))$

Definition edge-as-set :: $\beta \Rightarrow \alpha \ set$ where

edge-as-set $e \equiv \{\text{tail } G \ e, \text{head } G \ e\}$

Lemma matching_disjointness:

assumes $\text{matching } G \ M$

assumes $e_1 \in M$ assumes $e_2 \in M$ assumes $e_1 & \neq e_2$

shows $\text{edge-as-set } e_1 \cap \text{edge-as-set } e_2 = \{\}$

using assms

by (auto simp add: edge-as-set_def disjoint-edges_def matching_def)
What do we Formally Verify and How?

- Edmonds’ theorem
- Checker always halts and either rejects or accepts.
- Checker accepts a triple \((G, M, \ell)\) iff is satisfies the assumptions of Edmonds’ theorem.

- we prove Edmonds’ theorem in Isabelle
- we translate checkers from C to I-Monads with AutoCorres (NICTA)
- I-Monads is a programming language defined in Isabelle
- we prove items 2 and 3 for the resulting I-Monads program in Isabelle
- since NICTA-tools are verified, this verifies the C-code of the checker
- verification revealed that one of the checkers in LEDA was incomplete
What do we Formally Verify and How?

- Edmonds’ theorem
- Checker always halts and either rejects or accepts.
- Checker accepts a triple \((G, M, \ell)\) iff is satisfies the assumptions of Edmonds’ theorem.

- we prove Edmonds’ theorem in Isabelle
- we translate checkers from C to I-Monads with AutoCorres (NICTA)
- I-Monads is a programming language defined in Isabelle
- we prove items 2 and 3 for the resulting I-Monads program in Isabelle
- since NICTA-tools are verified, this verifies the C-code of the checker
- verification revealed that one of the checkers in LEDA was incomplete
Formal Verification: Summary

Formal Instance Correctness

If a formally verified checker accepts a triple \((x, y, w)\), we have a formal proof that \(y\) is the correct output for input \(x\).

- a high level of trust (only Isabelle kernel needs to be trusted)
- a way to build large libraries of trusted algorithms

Alkassar/Böhme/M/Rizkallah: Verification of Certifying Computations, JAR 2014

Noshinski/Rizkallah/M: Verification of Certifying Computations through AutoCorres and SimPl, NASA Formal Methods Symposium 2014
Summary

- **Only certifying algs are good algs**
 - Certifying algs have many advantages over standard algs:
 - every run is a test
 - notice when they erred
 - can be relied on without knowing code
 - are a way to computation as a service
 - Formal verification of checkers and formal proof of witness property are feasible
 - Most programs in the LEDA system are certifying.

When you design your next algorithm, make it certifying.
Summary

- Only certifying algs are good algs
- Certifying algs have many advantages over standard algs:
 - every run is a test
 - notice when they erred
 - can be relied on without knowing code
 - are a way to computation as a service
- Formal verification of checkers and formal proof of witness property are feasible
- Most programs in the LEDA system are certifying.

When you design your next algorithm, make it certifying.
Summary

- **Only certifying algs are good algs**
 - Certifying algs have many advantages over standard algs:
 - every run is a test
 - notice when they erred
 - can be relied on without knowing code
 - are a way to computation as a service
 - Formal verification of checkers and formal proof of witness property are feasible
 - Most programs in the LEDA system are certifying.

When you design your next algorithm, make it certifying.
Summary

- Only certifying algs are good algs
- Certifying algs have many advantages over standard algs:
 - every run is a test
 - notice when they erred
 - can be relied on without knowing code
 - are a way to computation as a service
- Formal verification of checkers and formal proof of witness property are feasible
- Most programs in the LEDA system are certifying.

When you design your next algorithm, make it certifying.
Summary

- Only certifying algs are good algs

Certifying algs have many advantages over standard algs:

- every run is a test
- notice when they erred
- can be relied on without knowing code
- are a way to computation as a service

- Formal verification of checkers and formal proof of witness property are feasible

- Most programs in the LEDA system are certifying.

When you design your next algorithm, make it certifying.