1 Warm-Up: Verifying the Number of Satisfying Assignments of a Boolean Formula

Let

\[\# \text{SAT} = \{ (\Phi, k); \Phi \text{ is a boolean formula with exactly } k \text{ satisfying assignments.} \} . \]

We will show \# \text{SAT} \in \text{IP}. The proof introduces the main technique needed to prove \text{QBF} \in \text{IP}.

Let \Phi be a boolean formula over the boolean variables \(x_1 \) to \(x_n \). We construct a polynomial \(p = A(\Phi) \) in real variables \(x_1 \) to \(x_n \) such that \(p(x) = \Phi(x) \) for boolean arguments. We call \(p \) the \text{arithmetization} of \(\Phi \). \(p \) is constructed inductively.

(a) If \(\Phi = \mathit{true} \) for a variable \(x \), then \(p = A(\Phi) = x. \)

(b) If \(\Phi = \neg \Phi_1 \), then \(p = A(\Phi) = 1 - A(\Phi') \).

(c) If \(\Phi = \Phi_1 \land \Phi_2 \), then \(p = A(\Phi) = A(\Phi_1) \cdot A(\Phi_2) \).

The rules are readily extended to other connectives, e.g., if \(\Phi = \Phi_1 \lor \Phi_2 \) then \(A(\Phi) = 1 - (1 - A(\Phi_1)) \cdot (1 - A(\Phi_2)) \).

We next define a sequence of specializations of \(p \). For \(0 \leq i \leq n \), let

\[
f_i(x_1, \ldots, x_i) = \sum_{a_{i+1}, \ldots, a_n \in \{0, 1\}} p(x_1, \ldots, x_i, a_{i+1}, \ldots, a_n).
\]

Then \(f_0 \) is the number of satisfying assignments of \(\Phi \), \(f_n = p \), \(\deg f_i \leq n \) for all \(i \), and we have the recursion

\[
f_i(x_1, \ldots, x_i) = f_{i+1}(x_1, \ldots, x_i, 0) + f_{i+1}(x_1, \ldots, x_i, 1).
\]

We are now ready for the interactive proof system for membership in \(\# \text{SAT} \). Let \((\Phi, k) \) be a pair consisting of a boolean formula and an integer. The prover P wants to convince the verifier V that \(\Phi \) has exactly \(k \) satisfying assignments. If \(\Phi \) has exactly \(k \) satisfying assignments, the prover will succeed. If \((\Phi, k) \not\in \# \text{SAT} \), the prover will succeed with probability at most \(n^2/2^n \).

Let \(q \) be a prime larger than \(2^n \). Arithmetic is in \(F_q \).

The protocol will consist of \(n \) rounds numbered 1 to \(n \). At the beginning of the \(i \)-th round, the verifer will keep a number \(y_{i-1} \). Also, it will have chosen \(i - 1 \) random numbers \(r_1 \) to \(r_{i-1} \). It will believe \((\Phi, k) \in \# \text{SAT} \) iff the prover convinces him that \(y_{i-1} = f_{i-1}(r_1, \ldots, r_{i-1}) \).

We start with \(y_0 = k \).

After the \(n \)-th round (= before the \((n + 1) \)-th round), the verifer has a number \(y_n \) and it will have chosen \(n \) numbers \(r_1 \) to \(r_n \). It will believe \((\Phi, k) \in \# \text{SAT} \) iff the prover convinces him that \(y_n = f_n(r_1, \ldots, r_n) \). However, there is no convincing to be done anymore, since \(f_n = p \). The verifer simply checks whether \(y_n = p(r_1, \ldots, r_n) \). It accepts if the equality holds and rejects otherwise.

We next describe the interaction in round \(i \).

Round \(i \).

1. The prover sends to \(V \) the coefficients of a polynomial \(q_i \) in one variable \(z \) of degree at most \(n \). Allegedly, these are the coefficients of \(f_i(r_1, \ldots, r_{i-1}, z) \in \mathbb{Z}_p[z] \).
(2) The verifier checks $y_{i-1} = q_i(0) + q_i(1)$. If this is not the case, it rejects. Otherwise, it choses a random r_i and sets $y_i = q_i(r_i)$. It sends r_i to the prover.

Theorem 1 If $(\Phi, k) \in \#\text{SAT}$, the prover can convince the verifier with certainty. If $(\Phi, k) \notin \#\text{SAT}$, the prover can fool the verifier with probability at most $n \cdot n/2^n$.

Proof: If $(\Phi, k) \in \#\text{SAT}$, the prover sends $q_i = f_i(r_1, \ldots, r_{i-1}, z)$ in round i. Assume $(\Phi, k) \notin \#\text{SAT}$. Let q_1 to q_n be the sequence of polynomials sent by P. We claim

$$\text{prob}(y_{i-1} = f_{i-1}(r_1, \ldots, r_{i-1})) \leq (i - 1) \cdot n/2^n$$

for $0 \leq i \leq n$. This is true for $i = 1$, since $y_0 = k$ and $f_0 \neq k$. Assume now that $y_{i-1} \neq f_{i-1}(r_1, \ldots, r_{i-1})$. The prover sends a polynomial q_i and the verifier checks $y_{i-1} = q_i(0) + q_i(1)$.

If we not have equality, the verifier rejects and we are done. So assume otherwise. Then

$$q_i(0) + q_i(1) = y_{i-1} = f_{i-1}(r_1, \ldots, r_{i-1}) = f_i(r_1, \ldots, r_{i-1}, 0) + f_i(r_1, \ldots, r_{i-1}, 1)$$

and hence the polynomials $q_i(z)$ and $f_i(r_1, \ldots, r_{i-1}, x)$ are not identical. Hence there are at most n arguments on which they agree. Thus

$$\text{prob}(q(r_i) = f_i(r_1, \ldots, r_i) \mid y_{i-1} \neq f_{i-1}(r_1, \ldots, r_{i-1})) \leq n/2^n \text{ and hence}$$

$$\text{prob}(y_i = f_i(r_1, \ldots, r_i))$$

$$\leq \text{prob}(y_{i-1} = f_{i-1}(r_1, \ldots, r_{i-1})) + \text{prob}(y_i = f_i(r_1, \ldots, r_i) \mid y_{i-1} \neq f_{i-1}(r_1, \ldots, r_{i-1}))$$

$$\leq (i - 1) \cdot n/2^n + n/2^n = i \cdot n/2^n$$

\[\square \]

2 PSPACE \subseteq IP

We need to show that quantified boolean formula are in IP.

A First Approach. We proceed as in the preceding section. We first arithmetize the body of the quantified formula. This gives us a polynomial p in n variables. Then we eliminate the variables. We define

$$f_i(x_1, \ldots, x_i) = \begin{cases} 1 & \text{if } Q_{i+1} x_{i+1} \cdots Q_n x_n \Phi(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n) \text{ is true} \\ 0 & \text{otherwise.} \end{cases}$$

Then f_0 is the truth value of the quantified boolean formula, and we have the identities

- if $Q_{i+1} = \forall$: $f_i(x_1, \ldots, x_i) = f_{i+1}(x_1, \ldots, x_i, 0) \cdot f_{i+1}(x_1, \ldots, x_i, 1)$

- if $Q_{i+1} = \exists$: $f_i(x_1, \ldots, x_i) = f_{i+1}(x_1, \ldots, x_i, 0) \cdot f_{i+1}(x_1, \ldots, x_i, 1)$

where $a \cdot b = 1 - (1 - a) \cdot (1 - b)$. There is one problem here. Each quantifier might double the degree of the polynomial and hence we end up with polynomials of exponential degree. This is bad, as it would take exponential time for the prover to transfer the coefficients of such polynomials.
The Solution. We need one more technique: linearization. Let r be a polynomial in the variable z. Consider \hat{r} defined as
\[\hat{r}(z) = (1 - z)r(0) + zr(1). \]
Then \hat{r} is linear in z and agrees with r on binary arguments. It may agree with r on more arguments. However, if r is not affine, \hat{r} and r will disagree on most arguments.

Instead of $Q_1 x_1 \ldots Q_n x_n p$, we consider
\[Q_1 x_1 R_1 x_1 Q_2 x_2 R_2 x_2 \ldots Q_n x_n R_x x_1 \ldots R_x p; \]
here R stands for reduction or linearization. Let us write this as
\[S_1 x_1 \ldots S_m x_m p \]
where each S_i stands for \forall, \exists or R and each x_i stands for one of the original variables. This is really a misuse of notation.

Note that
\[R x_1 \ldots R x_n p = \sum_{(a_1, \ldots, a_n) \in \{0, 1\}^n} \prod_{i} x_i^{a_i} p(a_1, \ldots, a_n), \]
where $x_i^{a_i} = x_i$ if $a_i = 1$ and $x_i^{a_i} = 1 - x_i$ if $a_i = 0$, i.e., we really do disjunctive normal form.

We now define a sequence of polynomials f_0 to f_m. f_m has n variables and is the arithmetization of Φ. If S_i is equal to \forall or \exists, then f_{i-1} has one less variable than f_i and
\[f_{i-1}(\ldots) = \begin{cases} f_i(\ldots, 0) \cdot f_i(\ldots, 1) & \text{if } S_i = \forall, \\ f_i(\ldots, 0) \ast f_i(\ldots, 1) & \text{if } S_i = \exists. \end{cases} \]
If S_i is equal to R, f_{i-1} has the same number of variables as f_i and
\[f_{i-1}(\ldots, z) = (1 - z) f_i(\ldots, 0) + z f_i(\ldots, 1). \]
Then $f_0 = 1$ if and only if the quantified boolean formula is true, $f_0 = 0$ otherwise. Note that p, the arithmetization of Φ has degree at most n. We then do n linearization steps bringing all the degrees down to 1. Forall and exists-Quantors increase the degree again to 2. Note that the rules for \forall and \exists square the degrees of the remaining variables, i.e, if Q is equal to \forall or \exists, we obtain a quadratic polynomial which we linearize then by reductions on all variables.

The protocol is quite similar to the protocol above. Initially, the verifier sets $y_0 = 1$. The prover wants to convince the verifier that $y_0 = f_0$. We proceed in rounds.

Consider the round corresponding to $S_i x_i$. f_{i-1} has a certain number of variables. The verifier has already chosen the corresponding number of random values r_1, \ldots. It also has a value y_{i-1}. The prover still has to convince the verifier that $y_{i-1} = f_{i-1}(r_1, \ldots)$.

[[V believes $y_{i-1} = f_{i-1}(r_1, \ldots)$ if he believes $y_i = f_i(r_1, \ldots, r)$. In other words: V believes that y_{i-1} is correct if he/she believes that y_i is correct.]]

The prover sends the coefficients of some univariate polynomial $q(z)$ of degree at most n. In an exchange corresponding to a true input, this is $f_i(r_1, \ldots, z)$. The verifier checks that q satisfies
the recurrence formulae for the f_i’s where the left hand side is replaced by y_{i-1}. $y_{i-1} = q(0) \cdot q(1)$ if $S_i = \forall$, and

$$y_{i-1} = q(0) \ast q(1) \text{ if } S_i = \exists.$$

$y_{i-1} = (1 - r)q(0) + rq(1)$ if $S_i = R$. In the last case, the last random value in the sequence of chosen random values is denoted as r. If the check fails, V rejects.

Otherwise, V chooses a random value r, sets y_i to $q(r)$, and sends r to P. The r either extends the sequence of random values (if S_i is a quantifier) or replaces the last random value (if $S_i = R$).

Once we have worked through the prefix, V checks whether $f_m(r_1, \ldots, r_n) = y_m$. It accepts if the equality holds.

Theorem 2 $TQBF \in IP$.

Proof: If the formula is true, the prover plays according to the rules.

If the formula is false, we have $y_0 \neq f_0$. If the verifier accepts, we have $f_m(r_1, \ldots, r_n) = y_m$. Hence there must be an i such that $y_{i-1} \neq f_{i-1}(r_1, \ldots)$ and $y_i = f_i(r_1, \ldots, r).

If $S_i = \forall$ or \exists, we have (\oplus stands for \cdot or \ast)

$$q(0) \oplus q(1) = y_{i-1} \neq f_{i-1}(r_1, \ldots) = f_i(r_1, \ldots, 0) \oplus f_i(r_1, \ldots, 1)$$

and hence $q(z)$ and $f_i(r_1, \ldots, z)$ are distinct as polynomials in z. Thus the probability that $y_i = f_i(r_1, \ldots, r)$ is at most $n/\text{size of the field}.$

If $S_i = R$, we have

$$(1 - r)q(\ldots, 0) + rq(\ldots, 1) = y_{i-1} \neq f_{i-1}(r_1, \ldots, r) = (1 - r)f_i(r_1, \ldots, 0) + rf_i(r_1, \ldots, 1)$$

and hence $q(z)$ and $f_i(r_1, \ldots, z)$ are distinct as polynomials in z. Thus the probability that $y_i = f_i(r_1, \ldots, r)$ is at most $n/\text{size of the field}.$