Reliable Algorithmic Software

Kurt Mehlhorn

MPI für Informatik
Saarbrücken
Germany
The Road Map

- Algorithms are at the heart of computer science; they make systems work.
The Road Map

- Algorithms are at the heart of computer science; they make systems work.
- The theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
The Road Map

- Algorithms are at the heart of computer science; they make systems work.
- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available
The Road Map

- Algorithms are at the heart of computer science; they make systems work.
- the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- however, for many basic algorithmic tasks no reliable implementations are available
- this is not just laziness on the side of implementers, is due to a lack of understanding (= theory)
The Road Map

- Algorithms are at the heart of computer science; they make systems work.

- The theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.

- However, for many basic algorithmic tasks no reliable implementations are available.

- This is not just laziness on the side of implementers, is due to a lack of understanding (= theory).

- The challenge is to remedy this situation.
Algorithms are at the heart of computer science; they make systems work.

the theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.

however, for many basic algorithmic tasks no reliable implementations are available

this is not just lazyness on the side of implementers, is due to a lack of understanding (= theory)

The challenge is to remedy this situation

- to work out the principles underlying reliable algorithmic software and
The Road Map

- Algorithms are at the heart of computer science; they make systems work.
- The theory of algorithms, i.e., their design and their analysis, is a highly developed part of computer science.
- However, for many basic algorithmic tasks no reliable implementations are available; this is not just laziness on the side of implementers, but due to a lack of understanding (= theory).
- **The challenge is to remedy this situation**
 - to work out the principles underlying reliable algorithmic software and
 - to create a comprehensive collection of reliable algorithmic software components.
State of the Art

- Popular algorithmic systems: Maple, Mathematica, STL, LEDA, CGAL, ACIS, LAPACK, MATLAB, CPLEX, Xpress, ILOG solver.

Can you trust any of them?

Most manuals evade the issue and avoid sentences which could be interpreted as guarantees.

- two basic algorithmic problems with no reliable implementation
 - Computer Aided Design (CAD), Boolean Operations on Solids
 - Linear Programming

- LEDA and CGAL are reliable: Belief or Fact?
 - LEDA = library of efficient algorithms and data types
 - CGAL = computational geometry algorithms library

- details on next slides
State of the Art: Boolean Operations on Solids

- The left-most picture shows a regular cylinder P, $n = 7$.
- The middle picture shows two copies of the cylinder: Q was obtained by rotating P by α degrees about its axis, $\alpha \approx 20^\circ$.
- The right-most picture shows the union of P and Q (= a cylinder whose base is a $4n$-gon).
existing CAD-systems are not reliable
construct a regular n-cylinder P,
obtain Q by rotating P by α degrees,
and compute the union of P and Q.

<table>
<thead>
<tr>
<th>System</th>
<th>n</th>
<th>α</th>
<th>time</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIS</td>
<td>1000</td>
<td>1.0e-4</td>
<td>5 min</td>
<td>correct</td>
</tr>
<tr>
<td>ACIS</td>
<td>1000</td>
<td>1.0e-6</td>
<td>30 sec</td>
<td>incorrect answer</td>
</tr>
<tr>
<td>Rhino3D</td>
<td>200</td>
<td>1.0e-2</td>
<td>15 sec</td>
<td>correct</td>
</tr>
<tr>
<td>Rhino3D</td>
<td>400</td>
<td>1.0e-2</td>
<td>–</td>
<td>CRASH</td>
</tr>
</tbody>
</table>

the situation is even worse for objects with curved boundaries
Linear Programming

maximize \(c^T x \) subject to \(Ax \leq b \) \(x \geq 0 \)

- linear programming is a most powerful algorithmic paradigm
- There is no linear programming solver that is guaranteed to solve large-scale linear programs to optimality. Every existing solver may return suboptimal or infeasible solutions. There are solvers that solve small problems to optimality.

<table>
<thead>
<tr>
<th>Problem</th>
<th>C</th>
<th>R</th>
<th>NZ</th>
<th>T</th>
<th>V</th>
<th>Res</th>
<th>RelObjErr</th>
<th>Exact Verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>degen3</td>
<td>1504</td>
<td>1818</td>
<td>26230</td>
<td>8.08</td>
<td>0</td>
<td>opt</td>
<td>6.91e-16</td>
<td></td>
</tr>
<tr>
<td>etamacro</td>
<td>401</td>
<td>688</td>
<td>2489</td>
<td>0.13</td>
<td>10</td>
<td>dfeas</td>
<td>1.50e-16</td>
<td>8.79</td>
</tr>
<tr>
<td>fffff800</td>
<td>525</td>
<td>854</td>
<td>6235</td>
<td>0.09</td>
<td>0</td>
<td>opt</td>
<td>0.00e+00</td>
<td>1.11</td>
</tr>
<tr>
<td>pilot.we</td>
<td>737</td>
<td>2789</td>
<td>9218</td>
<td>3.8</td>
<td>0</td>
<td>opt</td>
<td>2.93e-11</td>
<td>4.41</td>
</tr>
<tr>
<td>scsd6</td>
<td>148</td>
<td>1350</td>
<td>5666</td>
<td>0.1</td>
<td>13</td>
<td>dfeas</td>
<td>0.00e+00</td>
<td>0.52</td>
</tr>
<tr>
<td>scsd8</td>
<td>398</td>
<td>2750</td>
<td>11334</td>
<td>0.48</td>
<td>0</td>
<td>opt</td>
<td>7.54e-16</td>
<td>1.52</td>
</tr>
</tbody>
</table>

Dhifaoui/Funke/Kwappik/M/Seel/Schömer/Schulte/Weber: SODA 03

continue with exact LP-solver
indicated vertex may be returned

- indicated vertex is not primal feasible since it violates a constraint
- indicated vertex is not dual feasible since it is not optimal for a subset of the constraints.
Are LEDA and CGAL Reliable?

- I believe so:
 - the authors are trustworthy individuals at least most of the time
 - most programs are carefully documented but not all of them
 - extensively tested
 - underlying algorithms have been shown correct
 - number types give illusion of a Real RAM
 - geometry kernels are model of geometry
 - program result checking is used

- in court the above is called circumstantial evidence

- Am I willing to bet on correctness?
 - yes, in case of the sophisticated algorithms
 - definitely no, in case of support (graphics, windows, IO)

- there are no formal proofs of correctness
First Summary

• no reliable implementations exist for fundamental algorithmic problems such as Linear Programming or Boolean Operations on Solids

• we are lacking principles: CPLEX and ACIS are state of the art.

• CGAL and LEDA are a step forward, but by far not the end of the story

• abstract challenge:
 • work out the principles underlying reliable algorithmic software
 • create a comprehensive collection of reliable algorithmic software components.

• concrete challenges:
 • a correct and efficient CAD system
 • a correct and efficient LP solver
 • a certified LEDA
 • to meet either challenge will require new theory
Approaches

- program verification
- exact computation paradigm
- program result checking
- certifying algorithms
- verification of checkers
- cooperation of verification and checking
- a posteriori analysis
- test and repair
Program Verification

- formal program verification is the obvious approach.
- obstacles
 - the mathematics underlying the algorithms must be formalized
 - verification must be applicable to languages in which algorithmicists want to formulate their algorithms
- my opinion: the direct applicability of program verification is doubtful for some time to come
- but see below: verification of checkers
The Exact Computation Paradigm

Circle: \(x^2 + y^2 = 100 \)

Line: \(y = 1 - 0.10000000000000049 \cdot x \)

existing systems approximate the coordinates (usually, 16 digits)

\[x_0 = 9,9999999999999999950000000000049 \ldots \]

and hence cannot distinguish

\[\text{Abstand} < 10^{-16} \]

but geometric programs branch on this case distinction \(\longrightarrow \) disaster

• exact computation paradigm: implement an efficient Real RAM
A Separation Bound for Algebraic Expressions

Let E be an expression with operators $+,-,\ast$ and $\sqrt{}$ and integer operands. Let

- $u(E) =$ value of E after replacing $-$ by $+$.
- $k(E) =$ number of distinct square roots in E.

Then (BFMS, BFMSS)

$$E = 0 \quad \text{or} \quad |E| \geq \frac{1}{u(E)^{2k(E)} - 1}$$

Theorem allows us to determine signs of algebraic expressions by numerical computation with precision $(2^{k(E)} - 1) \log u(E)$.

in preceding example: compute the first 25 decimal digits of x_0 and you know how x_0 compares to 10.

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann

extensions: division, higher-order roots, roots of univariate polynomials
Discussion I

How small can $A - B\sqrt{C}$ be, if non-zero? $A, B, C \in \mathbb{N}$.

$$|A - B\sqrt{C}| = \left| \frac{(A - B\sqrt{C})(A + B\sqrt{C})}{A + B\sqrt{C}} \right| = \frac{|A^2 - B^2C|}{|A + B\sqrt{C}|} \geq \frac{1}{|A + B\sqrt{C}|} \geq \frac{1}{|A| + |B|\sqrt{C}}$$

This is a special case of the theorem

- $u(E) = |A| + |B|\sqrt{C}$
- $k = 1$
Recent Progress I

- efficient geometry kernels for linear objects in CGAL and LEDA

<table>
<thead>
<tr>
<th>n</th>
<th>α</th>
<th>time</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>6.175e-06</td>
<td>30 s</td>
<td>correct</td>
</tr>
<tr>
<td>20000</td>
<td>9.88e-07</td>
<td>141 s</td>
<td>correct</td>
</tr>
<tr>
<td>$\rightarrow \infty$</td>
<td>$\rightarrow 0$</td>
<td>$\rightarrow \infty$ sec</td>
<td>correct</td>
</tr>
</tbody>
</table>

- CORE and LEDA offer reasonably efficient computations with radicals
- ESOLID (Manocha): exact boundary evaluation of some curved solids.
- exact boolean operations on 2-dimensional curved objects of low degree

1 min for $n = 1000$

Berberich, Eigenwillig, Hemmer, Hert, M, Schömer: ESA 2002
Recent Progress II

• arrangements of ellipsoids

Geismman, Hemmer, Schömer: CompGeo 2001
Wolpert: PhD-thesis
Program Result Checking

- verification = program works for every input
 result checking = program worked for a specific input

- Blum and Kannan (89): programs that check their work

- a checker for a program computing a function f takes
 - an instance x and an output y, and
 - returns true if $y = f(x)$ and return false, otherwise

- hope: checking is simpler than computing

- example
 - multiplication problem: compute $y = x_1 \cdot x_2$, given x_1 and x_2.
 - a (probabilistic) checker gets x_1, x_2, and y, chooses a small random prime p and
 - verifies that $(x_1 \mod p) \cdot (x_1 \mod p) \mod p = y \mod p$.

- program result checking is too restrictive to be practical
Certifying Algorithms

- certifying algorithms return additional output (= a witness) that simplifies checking.
- on input x, a certifying program for a function f returns a value y and additional information I that makes it easy to check that $y = f(x)$.
- “easy to check” has twofold meaning:
 - there is a simple program C that given x, y, and I checks whether indeed $y = f(x)$.
 - if $y \neq f(x)$ then there should be no I such that (x, y, I) passes checking.
 - simple = correctness is “obvious”.
 - the running time of C on inputs x, y, and I should be no larger than the time required to compute $f(x)$ from scratch
 - preferably much much smaller
- observe that certifying program and checker are designed together
Example of a Certifying Algorithms

- planarity testing: given a graph G, decide whether it is planar
 - Tarjan (76): planarity can be tested in linear time
 - Chiba et al (85): planar embedding of a planar graph in linear time
 - a story
 - Hundack/M/Näher (97): Kuratowski subgraph of a non-planar graph in linear time

- many more examples are discussed in LEDA book
- in the LEDA system many programs are certifying.
Verification of Checkers

• the checker should be so simple that its correctness is “obvious”.
• we may hope to formally verify the correctness of the implementation of the checker

this is a much simpler task than verifying the solution algorithm
 • the mathematics required for the checker is usually much simpler that the one underlying the algorithm for finding solutions and witnesses
 • checkers are simple programs
 • algorithmicists may be willing to code the checkers in languages which ease verification

• **Remark:** for a correct program, verification of the checker is as good as verification of the program itself

• Harald Ganzinger and I are exploring the idea
Cooperation of Verification and Checking

• a sorting routine working on a set S
 (a) must not change S and
 (b) must produce a sorted output.

• I learned the example from Gerhard Goos

• the first property is hard to check (provably as hard as sorting)
 but usually trivial to prove, e.g.,
 if the sorting algorithm uses a swap-subroutine to exchange items.

• the second property is easy to check by a linear scan over the output, but hard to prove (if the sorting algorithm is complex).

• give other examples where a combination of verification and checking does the job
A Posteriori Analysis

- there will always be inexact algorithms.
- a-posteriori analysis: analyze the quality of the solution
- example: roots of a univariate polynomial $f(x)$ of degree n

 - given approximate solutions x_1, \ldots, x_n, compute

 $$\sigma_i = \frac{f(x_i)}{\prod_{j \neq i} (x_i - x_j)} \text{ for } 1 \leq i \leq n.$$

 - $\Gamma_i = \text{disk in the complex plane centered at } x_i \text{ with radius } n|\sigma_i|.$
 - the union of the disks contains all roots of f
 - a connected component consisting of k disks contains exactly k roots of f.
 - the σ_i are easily computed with controlled error using multi-precision floating point arithmetic

- analogous examples in the combinatorial world, e.g., in approximation algs
Test and Repair

• use solution returned by an inexact algorithm as starting point for an exact algorithm

• example: linear programming

\[
\text{maximize } \quad c^T x \quad \text{subject to } \quad Ax = b, \quad x \geq 0
\]

\(A\) is an \(m \times n\) matrix with \(m < n\) and rank \(m\) (for simplicity)

• a basic solution \(x = (x_B, x_N)\) is defined by a \(m \times m\) non-singular sub-matrix \(B\) of \(A\)
 • \(x_B\) are the vars corresponding to cols in \(B\), \(x_N\) remaining vars
 • \(x_N = 0\) and \(x_B = B^{-1}b\)

• a basic solution is \textit{primal feasible} if \(x_B \geq 0\)

• a basic solution is \textit{dual feasible} if \(c_B^T x_B - c_N^T A_B A_N^{-1} A_N \leq 0\).

• it is optimal, if it is primal and dual feasible.

• for medium-size linear programs, we can check (exactly !!!!) for primal or dual feasibility in reasonable time (\textbf{details})
An Exact LP-Solver

- use an inexact LP solver to determine an “optimal” basis B
- check the basis for optimality. If optimal, stop.
- if not, use the basis as a starting basis for an exact simplex algorithm
- seems to work reasonably well
- turn this observation into a theorem
- extend to large scale linear programs

- general challenge for optimization problems
 - design (exact) algorithms that start from a given solution x_0 towards an optimal solution.
 - the running time should depend on some natural distance measure between the initial and the optimal solution.

- go back to road map slide
An Example of a Distance Measure

- LP is given as a set of inequalities in \(d \) variables, goal is to find the top-vertex.
- Difficulty of a vertex = number of facets whose top vertex is above the given vertex.
- Kalai (92):
 1. Given a vertex \(v \), consider the \(d \) facets incident to it.
 2. If \(v \) is the top vertex of all of them, stop.
 3. Among the facets incident to \(v \) whose top vertex is different from \(v \), choose one at random, say \(F \).
 4. Find the top vertex of \(F \) (by using the same algorithm recursively), call it \(v \), and go to step 1.
- \(T(d,n) \), running time for a problem in dimension \(d \) and starting with a vertex of difficulty \(n \). Then

\[
T(d,n) \leq \exp(O(\sqrt{n \log d}))
\]