Kurt Mehlhorn, MPI fir Informatik

Reliable Algorithmic Software

Kurt Mehlhorn

MPI fur Informatik
Saarbriicken
Germany

Reliable Algorithmic Software — p.1/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, Is a
highly developed part of computer science.

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, Is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
Implementations are available

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, Is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
Implementations are available

this is not just lazyness on the side of implementers,
IS due to a lack of understanding (= theory)

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, Is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
Implementations are available

this is not just lazyness on the side of implementers,
IS due to a lack of understanding (= theory)

The challenge is to remedy this situation

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, Is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
Implementations are available

this is not just lazyness on the side of implementers,
IS due to a lack of understanding (= theory)

The challenge is to remedy this situation

to work out the principles underlying reliable algorithmic
software and

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

The Road Map

Algorithms are at the heart of computer science,;
they make systems work.

the theory of algorithms, i.e., their design and their analysis, Is a
highly developed part of computer science.

however, for many basic algorithmic tasks no reliable
Implementations are available

this is not just lazyness on the side of implementers,
IS due to a lack of understanding (= theory)
The challenge is to remedy this situation

to work out the principles underlying reliable algorithmic
software and

to create a comprehensive collection of reliable algorithmic
software components.

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.2/25

State of the Art

Popular algorithmic systems: Maple, Mathematica, STL, LEDA,
CGAL, ACIS, LAPACK, MATLAB, CPLEX, Xpress, ILOG solver.

Can you trust any of them?

Most manuals evade the issue and avoid sentences which could be
Interpreted as guarantees.

two basic algorithmic problems with no reliable implementation
Computer Aided Design (CAD), Boolean Operations on Solids
Linear Programming

LEDA and CGAL are reliable: Belief or Fact?
LEDA = library of efficient algorithms and data types
CGAL = computational geometry algorithms library

details on next slides

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.3/25

State of the Art: Boolean Operations on Solids

(*
T
ANCK-GESELLSCHAFT

* The left-most picture shows a regular cylinder P, n=7.

* The middle picture shows two copies of the cylinder: Q was
obtained by rotating P by a degrees about its axis, a ~ 20°.

* the right-most picture shows the union of P and Q (= a cylinder
whose base is a 4n-gon).

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.4/25

The State of the Art

existing CAD-systems are not reliable

construct a regular n-cylinder P, K

obtain Q by rotating P by a degrees, &

and compute the union of P and Q.

—

System n o time output
ACIS 1000 | 1.0e-4 | 5 min correct
ACIS 1000 | 1.0e-6 | 30 sec | incorrect answer
Rhino3D | 200 | 1.0e-2 | 15sec correct
Rhino3D | 400 | 1.0e-2 — CRASH

the situation is even worse for objects with curved boundaries

Kurt Mehlhorn, MPI fiir Informatik

Reliable Algorithmic Software — p.5/25

maximize c'x subjectto Ax<b x>0

Linear Programming

linear programming is a most powerful algorithmic paradigm

There is no linear programming solver that is guaranteed to solve
large-scale linear programs to optimality. Every existing solver may
return suboptimal or infeasible solutions. There are solvers that

solve small problems to optimality.

Problem CPLEX Exact Verification
Name C R NZ || T Res RelObjErr T
degen3 1504 | 1818 | 26230 || 8.08 0 opt 6.91e-16 8.79
etamacro 401 688 2489 || 0.13 | 10 | dfeas | 1.50e-16 1.11
fffff800 525 854 6235 || 0.09 opt 0.00e+00 4.41
pilot.we 737 | 2789 9218 || 3.8 opt 2.93e-11 1654.64
scsd6 148 | 1350 5666 || 0.1 13 | dfeas | 0.00e+00 0.52
scsd8 398 | 2750 | 11334 || 0.48 0 opt 7.54e-16 1.52

Krt Mehlhorn,IMPEfircnformatik ‘

Dhiflaoui/Funke/Kwappik/M/Seel/Schomer/Schulte/Weber: SODA 03

Reliable Algorithmic Software — p.6/25

Linear Programming ||

indicated vertex may be returned /

AN

optimization direction

Indicated vertex is not primal feasible since it violates a constraint

Indicated vertex is not dual feasible since it is not optimal for a
subset of the constraints.

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.7/25

Are LEDA and CGAL Reliable?

| believe so:
the authors are trustworthy individuals at least most of the time
most programs are carefully documented but not all of them

extensively tested

underlying algorithms have been shown correct
number types give illusion of a Real RAM
geometry kernels are model of geometry
program result checking is used

In court the above is called circumstantial evidence

Am | willing to bet on correctness?
yes, in case of the sophisticated algorithms
definitely no, in case of support (graphics, windows, 10)

there are no formal proofs of correctness

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.8/25

First Summary

no reliable implementations exist for fundamental algorithmic
problems such as Linear Programming or Boolean Operations on
Solids

we are lacking principles: CPLEX and ACIS are state of the art.

CGAL and LEDA are a step forward,
but by far not the end of the story
abstract challenge:
work out the principles underlying reliable algorithmic software

create a comprehensive collection of reliable algorithmic
software components.

concrete challenges:
a correct and efficient CAD system
a correct and efficient LP solver
a certified LEDA
to meet either challenge will require new theory

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.9/25

Approaches

program verification

exact computation paradigm

program result checking

certifying algorithms

verification of checkers

cooperation of verification and checking
a posteriori analysis

test and repair

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.10/25

Program Verification

formal program verification is the obvious approach.

obstacles

the mathematics underlying the algorithms must be formalized

verification must be applicable to languages in which
algorithmicists want to formulate their algorithms

my opinion: the direct applicability of program verification is doubtful
for some time to come

but see below: verification of checkers

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.11/25

The Exact Computation Paradigm

Ay Circle: x> +y? =100
(V) Line: y = 1— 0.100000001 - X

existing systems approximate the coordinates (usually, 16 digits)
Xo = 9,99999999999999999500000000000049. ..
and hence cannot distinguish

und

Abstand < 1016

but geometric programs branch on this case distinction —- disaster
exact computation paradigm: implement an efficient Real RAM

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.12/25

A Separation Bound for Algebraic Expressmn &

Let E be an expression with operators +, —, x and va and mteger
operands. Let

u(E) = value of E after replacing — by +.
k(E) = number of distinct square roots in E.
Then (BEMS, BFMSS)

__ 1
E=0 or |E|> A

Theorem allows us to determine signs of algebraic expressions by
numerical computation with precision (2€E) —1)logu(E).

In preceding example: compute the first 25 decimal digits of X and you
know how Xy compares to 10.

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann
extensions: division, higher-order roots, roots of univariate polynomials

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.13/25

Discussion |

How small can A— B+/C be, if non-zero? A B,CeN.

) _|(A-BVC)(A+BVC)| _|A?-BC| 1 1
A-BVC|= A+B\/C |A+B\F\—|A+B\ﬂ—\A|+|B|\F

This Is a special case of the theorem

U(E) = |A|+|BIVC
k=1

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.14/25

Recent Progress |

efficient geometry ker- n a time | result
nels for linear objects 5000 | 6.175e-06 30s | correct
iIn CGAL and LEDA 20000 9.88e-07 141 s | correct
union of n-gons — 00 —0 | —»wsec | correct

CORE and LEDA offer reasonably efficient computations with radicals

ESOLID (Manocha): exact boundary evaluation of some curved
solids.

exact boolean operations on 2-dimensional curved objects of low
degree

1 min for n= 1000

Berberich, Eigenwillig, Hemmer,
Hert, M, Schomer: ESA 2002

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.15/25

Recent Progress Il

MAX-PLANCK-GESELLSCHAFT

* arrangements of ellipsoids

Geismman, Hemmer, Schomer: CompGeo 2001
Wolpert: PhD-thesis

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.16/25

Program Result Checking

verification = program works for every input
result checking = program worked for a specific input

Blum and Kannan (89): programs that check their work

a checker for a program computing a function f takes
an instance x and an output y, and
returns true if y = f(x) and return false, otherwise

hope: checking is simpler than computing

example
multiplication problem: compute y = X3 - Xp, given x; and Xo.

a (probabillistic) checker gets X1, X, and y, chooses a small
random prime p and

verifies that (x; mod p) - (x; mod p) mod p=y mod p.
program result checking is too restrictive to be practical

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.17/25

Certifying Algorithms

certifying algorithms return additional output (= a witness) that
simplifies checking.

on input X, a certifying program for a function f returns a value y and
additional information | that makes it easy to check that y = f(x).

“easy to check” has twofold meaning:

there is a simple program C that given x, y, and | checks
whether indeed y = f(x).

if y £ f(x) then there should be no | such that (x,y,1) passes
checking.

simple = correctness is “obvious”.

the running time of C on inputs X, y, and | should be no larger
than the time required to compute f(x) from scratch

preferably much much smaller
observe that certifying program and checker are designed together

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.18/25

Example of a Certifying Algorithms

planarity testing: given a graph G, decide whether it is planar

Tarjan (76): planarity can be tested in linear time

Chiba et al (85): planar embedding of a planar graph in linear
time

a story

Hundack/M/Naher (97): Kuratowski subgraph of a non-planar
graph in linear time

many more examples are discussed in LEDA book
In the LEDA system many programs are certifying.

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.19/25

Verification of Checkers

the checker should be so simple that its correctness is “obvious”.

we may hope to formally verify the correctness of the
Implementation of the checker

this iIs a much simpler task than verifying the solution algorithm

the mathematics required for the checker is usually much
simpler that the one underlying the algorithm for finding
solutions and withesses

checkers are simple programs

algorithmicists may be willing to code the checkers in
languages which ease verification

Remark: for a correct program, verification of the checker is as
good as verification of the program itself

Harald Ganzinger and | are exploring the idea

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.20/25

Cooperation of Verification and Checking (.~

a sorting routine working on a set S
(a) must not change Sand
(b) must produce a sorted output.

| learned the example from Gerhard Goos
the first property is hard to check (provably as hard as sorting)

but usually trivial to prove, e.qg.,
If the sorting algorithm uses a swap-subroutine to exchange items.

the second property is easy to check by a linear scan over the
output, but hard to prove (if the sorting algorithm is complex).

give other examples where a combination of verification and
checking does the job

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.21/25

A Posteriori Analysis

there will always be inexact algorithms.
a-posteriori analysis: analyze the quality of the solution
example: roots of a univariate polynomial f(x) of degree n

given approximate solutions X, ..., X,, compute
f(X .
O; = () for1<i<n.
[(% —Xj)

i = disk in the complex plane centered at x; with radius n|g;]|.
the union of the disks contains all roots of f

a connected component consisting of k disks contains exactly k
roots of f.

the g; are easily computed with controlled error using
multi-precision floating point arithmetic

analogous examples in the combinatorial world, e.g., in
approximation algs

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.22/25

Test and Repair

use solution returned by an inexact algorithm as starting point for an
exact algorithm

example: linear programming
maximize c'x subjectto Ax=h, x>0

Ais an mx n matrix with m < n and rank m (for simplicity)
a basic solution x = (xg,Xn) is defined by a mx m non-singular
sub-matrix B of A
Xg are the vars corresponding to cols in B, xy remaining vars
xy = 0 and xg = B~1b solve a linear system
a basic solution is primal feasible if xg > 0
a basic solution is dual feasible if ¢f — ¢ Az*Ay < 0.
it is optimal, if it is primal and dual feasible.

for medium-size linear programs, we can check (exactly !!!) for
primal or dual feasibility in reasonable time ()

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.23/25

An Exact LP-Solver

* use an inexact LP solver to determine an “optimal” basis B
» check the basis for optimality. If optimal, stop.

* If not, use the basis as a starting basis for an exact simplex
algorithm

* seems to work reasonably well
e turn this observation into a theorem
e extend to large scale linear programs

e general challenge for optimization problems

e design (exact) algorithms that start from a given solution Xg
towards an optimal solution.

e the running time should depend on some natural distance
measure between the initial and the optimal solution.

* go back to road map slide

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.24/25

An Example of a Distance Measure

LP is given as a set of inequalities in d variables, goal is to find the
top-vertex

difficulty of a vertex = number of facets whose top vertex is above
the given vertex.

Kalai (92):
1. given a vertex v, consider the d facets incident to it

2. If vis the top vertex of all of them, stop

3. among the facets incident to v whose top vertex is different from
v, choose one at random, say F

4. find the top vertex of F (by using the same algorithm
recursively), call it v, and go to step 1.

T(d,n), running time for a problem in dimension d and starting with
a vertex of difficulty n. Then

T(d,n) < exp(O(y/nlogd))

Kurt Mehlhorn, MPI fiir Informatik Reliable Algorithmic Software — p.25/25

	The Road Map
	State of the Art
	State of the Art: Boolean Operations on Solids
	The State of the Art
	Linear Programming
	Linear Programming II
	Are LEDA and CGAL Reliable?
	First Summary
	Approaches
	Program Verification
	The Exact Computation Paradigm
	A Separation Bound for Algebraic Expressions
	Discussion I
	Recent Progress I
	Recent Progress II
	Program Result Checking
	Certifying Algorithms
	Example of a Certifying Algorithms
	Verification of Checkers
	Cooperation of Verification and Checking
	A Posteriori Analysis
	Test and Repair
	An Exact LP-Solver
	An Example of a Distance Measure

