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Abstract 

Abstract Voronoi diagrams were introduced by R. Klein (1988) as an axiomatic basis of 

Voronoi diagrams. We show how to construct abstract Voronoi diagrams in time O(n log n) by 

a randomized algorithm, which is based on Clarkson and Shor’s randomized incremental 

construction technique (1989). The new algorithm has the following advantages over previous 

algorithms: 

l It can handle a much wider class of abstract Voronoi diagrams than the algorithms presented 

in by Klein (1989) and, Mehlhorn, Meiser and O’Dunlaing (1991). 

l It can be adapted to a concrete kind of Voronoi diagram by providing a single basic 

operation, namely the construction of a Voronoi diagram of five sites. Moreover, all geometric 

decisions are confined to the basic operation, and using this operation, abstract Voronoi 

diagrams can be constructed in a purely combinatorial manner. 

1. Introduction 

The Voronoi diagram of a set of sites in the plane partitions the plane into 
regions, called Voronoi regions, one to a site. The Voronoi region of a site s is 
the set of points in the plane for which s is the closest site among all the sites. 
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The Voronoi diagram has many applications in diverse fields, cf. Leven and 

Sharir [X3] or Aurenhammer [2] for a list of applications and a history of Voronoi 

diagrams. Different types of diagrams result from considering different notions of 

distance, e.g., Euclidean or &-norm or convex distance functions, and different 

sorts of sites, e.g., points, line segments, or circles. For many types of diagrams 

efficient construction algorithms have been found, which are either based on the 

divide-and-conquer technique due to Shamos and Hoey [21], the sweepline 

technique due to Fortune [lo], geometric transforms due to Brown [6] and 

Edelsbrunner and Seidel [9], or the randomized incremental construction 

technique due to Clarkson and Shor [9]. 

A unifying approach to Voronoi diagrams has been proposed by Klein [13-161, 

cf. [9] for a related approach. He does not use the concept of distance as the basic 

notion but rather the concept of bisecting curves, i.e., he assumes for each pair 

{p, q} of sites the existence of a bisector J(p, q), which is homeomorphic to a 

line and divides the plane into a p-region and a q-region. The intersection of all 

p-regions for different q’s is then the Voronoi region of site p. He also postulates 

that Voronoi regions are simply-connected and partition the plane. He shows that 

abstract Voronoi diagrams already have many of the properties of concrete 

Voronoi diagrams, cf. Section 2. 

At present there are two algorithms for the construction of abstract Voronoi 

diagrams. Both algorithms assume that certain elementary operations on bisecting 

curves, e.g., computation of the intersections, take O(1) time, and both 

algorithms can handle only subclasses of abstract Voronoi diagrams. 

Klein [16] presented an off-spring of the Shamos and Hoey divide-and-conquer 

algorithm. He has to assume that any set S of sites can be split in time O(lSl) into 

approximately equal sized subsets L and R such that the bisector between L and 

R (= the common boundary of regions in L with regions in R) is acyclic and, 

under this assumption, constructs the Voronoi diagrams of n sites in time 

O(n log n). There are cases, e.g., points with additive weights in the Euclidean 

plane, where it is not known if such partitions exist. 

Mehlhorn, Meiser and 6’Dunlaing [19] have presented an off-spring of the 

Clarkson and Shor randomized incremental algorithm. They have to assume that 

the set of bisectors is regular, i.e., no four of them share a point and any point of 

intersection of two bisectors is a proper crossing of the bisectors. Under these 

assumptions, their algorithm runs in expected time O(n log n), the average being 

taken over all permutations of the input. There are cases, e.g., point sites in the 

Manhattan metric, where this assumption does not hold. 

In this paper, we extend the randomized incremental algorithm and show that 

it can handle abstract Voronoi diagrams in (almost) their full generality, cf. the 

remark following Definition 1 in Section 2 for the minor restriction which we have 

to make. The algorithm runs in expected time O(n log n) and is as simple as the 

algorithm in [19]. However, its correctness proof and running time analysis are 

more involved. The algorithm is uniform in the sense that only a single operation, 
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namely the construction of a Voronoi diagram for 5 sites, depends on the specific 
type of Voronoi diagram and has to be programmed in order to adapt the 
algorithm to the type of the diagram. Moreover, all numerical operations take 
place within this particular operation. 

In particular, comparisons only take place between objects which are related in 
the topology of the diagram. The incremental algorithm of Guibas and Stolfi [12] 
for Euclidean diagrams also has this property but neither the Plane-Sweep- nor 
the Divide-and-Conquer-algorithm do. Both algorithms need to sort the sites by 
x-coordinates. Moreover, the Plane-Sweep-algorithm sorts the computed events 
by x-coordinates; the Divide-and-Conquer-algorithm sorts the nodes of the 
diagram by y-coordinates in its merge step. In both cases, objects that are not at 
all related in their topology are compared to each other. Therefore, it may 
be difficult to make geometric decisions in a consistent manner. From a 
programmer’s point of view, concentrating the numerical computations inside a 
single operation may facilitate the handling of approximate arithmetic. We want 
to emphasize that the fact that our basic operation operates on five sites does not 
imply that an implementation of the basic operation must use tests which involve 
five sites and therefore are likely to have high algebraic degree. We show in 
Section 6 that four sites suffice for simple families of bisectors, i.e., families of 
bisectors where the Voronoi diagram of any three sites has at most one vertex. 

As mentioned above, our algorithm is based on Clarkson and Shor’s ran- 
domized incremental construction technique [8]. We make use of the refinement 
proposed in [ll, 3, 5, 41; in particular, we use the notion of history graph instead 
of the original conflict graph. 

An earlier version of the algorithm, which uses a conflict graph instead of a 
history graph, was implemented by Zimmer [22]. We have used it to construct 
Powerdiagrams, Voronoi diagrams of line segments under the Euclidean metric, 
and Voronoi diagrams of points under both the Euclidean and the L,-metric. The 
general, diagram-independent part of the algorithm thereby comprises circa 2700 
lines of code. This should be compared to the amount of code needed to 
implement the diagram-specific part of the algorithm (basic operation and 
drawing routines). This part varies between 450 lines for points under the 
Euclidean metric and 3250 lines of code for line segment sites under the 
Euclidean metric. For Powerdiagrams and diagrams of points under the &-metric 
we needed 550 and 850 lines, respectively. Note that approximately one sixth of 
this is code for drawing the diagram on the screen. 

The present paper is not quite in line with a popular trend in computational 
geometry: to use symbolic perturbation to establish general position, then to use 
an algorithm which can only handle inputs in general position (e.g., the algorithm 
of [19]), and finally to produce the true output by a limit process (essentially by 
shrinking some edges and collapsing vertices). We cannot follow this approach for 
several reasons. Firstly, there is no efficient perturbation technique available for 
abstract Voronoi diagrams. Klein [15] showed that any admissible family of 
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Fig. 1. The Voronoi diagram for a degenerate and a perturbed input 

bisectors can be perturbed to general position, but his perturbation technique can 
require exponential time and needs to know the Voronoi diagram. Secondly, we 
did not want to use a perturbation technique which is outside our algorithm, e.g., 
one which uses properties of the particular kind of diagram under construction, 
because this would require programming the limit process for each particular kind 
of diagram. We believe that it is better to make the algorithm as uniform as 
possible and to confine the dependency on the particular kind of digram to a 
single subroutine (here, the construction of a five sites diagram). Thirdly, 
perturbation and limit process are not always a trivial task. Consider for example 
the Voronoi diagram of a point and four open line segments touching in this 
point, cf. Fig. 1. The perturbation is nontrivial, since it should not introduce 
intersections between the segments. The limit process is nontrivial, since it must 
collapse the point with the four endpoints of the segments. But these features are 
not directly linked in a typical data structure for the perturbed diagram. Finally, 
perturbation might increase the running time by more than a constant factor. The 
expected running time of one incremental step of our algorithm is proportional to 

where h is the expected number of edges in a diagram for a random subset of i 
sites from the II given sites. Since regions in abstract Voronoi diagrams may be 
empty, we may have fi = o(i). In such a situation, the running time of the 
algorithm can be o(n log n). Perturbation creates general position and may 
increase J to O(i). Finally, we believe that despite the handling of degenerate 
cases the algorithm presented in this paper is still very simple. Degenerate cases 
complicate the discussion of correctness and running time, but affect the 
algorithm itself only to a small extent. 

The paper is organized as follows: In Section 2 we introduce abstract Voronoi 
diagrams; we give the relevant definitions and state some properties. In Section 3 
we investigate the Voronoi diagram of five sites and present the basic operation 
of our algorithm. The algorithm is then given in Section 4. Section 5 contains the 
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analysis of the algorithm’s running time and space requirements. In Section 6 we 
inspect the basic operation for a subclass of abstract Voronoi diagrams in more 
detail. 

Throughout the paper, we use the following notation: For a subset X G [w2 the 
closure, boundary and interior of X are denoted by X, bdX and int X, 
respectively. 

2. Abstract Voronoi diagrams 

Let n E N, and for every pair of integers p, q such that 1 <p # q < n let 
D(p, q) be either empty or an open unbounded subset of [w* and let J(p, q) be 
the boundary of D(p, q). We postulate: 

(1) J(P, 9) =J(q, P) and for each p, q such that p #q the regions D(p, q), 
J(p, q) and D(q, p) form a partition of [w2 into three disjoint sets. 

(2) If O# D(p, q) # lR2 then J(p, q) is homeomorphic to the open interval 

(071). 
We call J(p, q) the bisecting curve for sites p and q and D(p, q) the region of 

dominance of p over q. Following [16], the abstract Voronoi diagram is now 
defined as follows. 

Definition 1. Let S = (1, . . . , n - l} and 

D(p, 4) U J(p, 4) 
R(P, q):={D(p, q) 

if p < 4, 

ifp >q, 

EWP, S):= J-I+~ WP, q), 

VR(p, S) : = int EVR(p, S), 

V(S) : = ,c;? bd EVR(p, 9, 

VR(p, S) is called the Voronoi region of p or p-region w.r.t. S, EVR(p, S) is 
called the extended Voronoi region of p w.r.t. S, and V(S) is called the Voronoi 
diagram of S. The elements of S are referred to as sites. 

We require the Voronoi regions and the bisecting curves to satisfy the following 
two conditions: 

(3) Any two bisecting curves intersect in only a finite number of connected 
components. 

(4) For all non-empty subset S’ of S 
(a) for all p E S’ for which EVR(p, S’) is non-empty: VR(p, S’) is 

non-empty and EVR(p, S’) and VR(p, S’) are path-connected, 
(b) [w2 = uPes, EVR(p, S’). 
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Fig. 2. A family of three bisectors for sites a, b and c, and the induced Voronoi diagram. For each 

bisector the two sites separated by the bisector are indicated near to the bisector. 

Abstract Voronoi diagrams include a large number of concrete Voronoi 
diagrams, e.g., Voronoi diagrams for point sites under any &-metric, 1 cp s m, 

or under any convex distance function, whose unit circle is semi-algebraic. They 
furthermore comprise Power-diagrams, and Voronoi diagrams for line segments 
or circles under the Euclidean metric. The line segments may even touch at their 
endpoints, thus possibly forming polygons, and the circles are allowed to 
intersect. Voronoi diagrams for disjoint convex figures under a convex distance 
function are also included, provided their bisectors satisfy our Condition 3. Of 
course, there are also negative examples; Euclidean Voronoi diagrams for point 
sets with multiplicative weights or Euclidean Voronoi diagrams for nonconvex 
figures, e.g., circular arcs. In both cases there may be circular bisecting curves 
violating our Condition 2. Figs. 2 and 3 show two abstract Voronoi diagrams. 

Abstract Voronoi diagrams are defined by means of bisecting curves. Depend- 
ing on the concrete Voronoi diagram, the complexity of the bisectors may vary 
considerably. For the sake of simplicity we assume however that bisectors are 
computationally simple (see Section 3). We will show that under these assump- 
tions abstract Voronoi diagrams can be constructed in time O(n log n) by a 
randomized algorithm. 

a 

Fig. 3. A family of three bisectors arising from two line segment sites u and c and one point site b 
under the Euclidean metric. The bisectors are drawn as thin curves, the segments are fat. 
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Fig. 4. A degenerate case. 

Remarks. (1) In [16] Condition 4b is shown to be equivalent to the following 
transitivity property: R(p, 4) n R(q, r) c R(p, r) f or any three pairwise distinct 
sites p, q, r E S. 

(2) The union in 4b is disjoint by the definition of Voronoi regions. 
(3) Our Definition of an abstract Voronoi diagram differs in two respects from 

Klein’s original definition in [16]. Firstly, we also allow empty Voronoi regions 
which does not harm Klein’s theory. Secondly, our Condition 4a is slightly more 
restrictive than the one in [16]. There, only the extended Voronoi regions are 
required to be path-connected, but not their interior. Fig. 4 shows a system of 
bisectors for three sites p, q, I which satisfies Klein’s assumptions if p <q and 
p < r. Our assumptions, however, exclude this example since its p-regions is 
disconnected. 

Definition 2. An edge e of V(S) . IS a maximal connected subset of V(S) such that 
every point x E e lies on bd VR(p, S) for exactly two sites p of S. The edge is said 
to separate the regions of these two sites. A vertex v of V(S) is a point x E V(S) 
which lies on bd VR(p, S) for at least three sites p of S. 

Fact 1 (piece of pie fact). (1) All but finitely many points of V(S) belong to an 
edge of V(S). 

(2) For each point x E V(S) there are arbitrarily small neighborhoods U of x 
having the following properties: V(S) n bd U consists of finitely many points. Let 

Wl, . . . ? w), denote these points us encountered in u clockwise traversal of bd U. 
Then h 3 2 and V(S) rl U is the union of curve segments /II, . . . , Ph where pi 
connects x to Wi and the pi’s are disjoint except at their common endpoint x. For 
each i, 1 s i G h, there is a site pi E S such that the open ‘piece of pie’ bordered by 
pit pi+1 (read indices mod h) is contained in VR(pi, S). Then pi #pi for i fj. For 
each pi there is u site qi E S, such thut pi -X c EVR(qi, S). We have qi < 

mink-,, pi>. The point x belongs to EWP, 9, where p = 

min{pIJ.. ,ph, 41,. . . , qh}. Also, only the extended Voronoi region of site p 
can be encountered more than once on the march around bd U. 

Fig. 5 illustrates Fact 1. Fact 1 is an immediate derivative of Theorem 2.3.5 of 
[16]. There only pi-1 #pi was claimed. The claim pi #pi for i #j made here 
follows from our strengthened Condition 4a and Lemma 2.2.4 of [16]. 
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a vertex x 
a point x on an edge z E EVR(p,S) and 

x E EVR(min{p,,pz}, S) P < min-kl,px) 

Fig. 5. Illustration of Fact 1 

For the sequel, it is helpful to restrict attention to the ‘finite part’ of V(S). Let 

r be a simple closed curve such that in the outer domain of r the curve segments 

of any two bisectors are either disjoint or identical. We add a site 00 to S, define 

J(p, ~0) = J(m, p) = r for all p, 1 sp < II, and D(w, p) to be the outer domain of 

rfor eachp, I<p<n. 

Fact 2. V(S) IS connected. The extended Voronoi region of a site p E S - (~0) is 

simply-connected, each non-empty Voronoi region VR(p, S), p E S - {m}, is 
homeomorphic to an open disc and its boundary is a simple closed curve. The 
Voronoi region of site 03 is not simply connected but it has only one hole being the 
inner domain of lY A Voronoi diagram can be represented as a planar graph in a 
lnatural way. The vertices and edges of the graph are the vertices and edges of 
V(S), respectively; the faces of the graph correspond to the non-empty Voronoi 
regions. We use V(S) also to denote this graph. 

For a proof of Fact 2 see Lemma 2.2.4 and Theorems 2.3.5 and 2.5.5 [16]. 

The extended Voronoi region EVR(p, S), for a site p E S - {m}, consists of its 

Voronoi region, some vertices and edges on the boundary of VR(p, S), and some 

other vertices and edges of V(S). The other edges and vertices form trees rooted 

at bdVR(p, S), cf. Fig. 6. 

We will next return to the example in Fig. 2 in order to illustrate the concepts 

Fig. 6. An extended Voronoi region EVR(p, S). 



Randomized incremental construction 16.5 

co 

e7 

00 

V(h b, m>> V({% f-3 c, m>) 

Fig. 7. The enclosing circle represents r. Edges e, and e3 are part of /(b, m) = r and J(a, m) = r, 
respectively. 

introduced so far. We will use this example as our running example throughout 
the paper. 

Example. Fig. 7 shows V({a, b, ~4)) and V({a, b, c, m}) for the bisectors defined 
in Fig. 2. Assume a <b <c < 00. Then edges e2 and e3 belong to 
EVR(u, {a, b, 03)) and edges e4, e5, e7 and e8 belong to EVR(a, {a, b, c, m}). 

Inserting a new site 

The algorithm presented in Section 4 constructs the Voronoi diagram V(S) by 
adding one site after the other. In this section we investigate the part of a 
Voronoi diagram that is ‘cut off’ by the insertion of a new site. For the remainder 
of the section, let R G S, ~0 E R, s E S -R, Y = VR(s, R U {s}), and 8 = V(R) fl 
9. Then, according to Fact 2, bd 9’ = bd 9 is a simple closed curve. 

Lemma 1. If 9’ # 0 then 8 is a non-empty connected set which intersects bd Y. 
Moreover, 8 is not just a single point. 

Proof. If 8 were empty, then L?‘G VR(p, R) for some p E R - {a)}. 
Consequently, VR(p, R U {s}) would not be simply connected. Now let 
5Z1, gz2, . . . , iTk be the connected components of 8 for some k. Observe that no gj 
can be entirely contained inside 9’ because otherwise V(R) would not be 
connected, a contradiction. 

Assume k 2 2. Then a path 9’ E 9 - 8 exists, connecting two points x and y on 
the boundary of 9 and separating Z$ from &, cf. Fig. 8. From $P fl 8 = 0 we have 
9 fl V(R) = 0 and thus 8 c VR(r, R) for a site r E R - {cc}. x, y E C?? implies that 
all sufficiently small neighborhoods U(x) and U(y) are entirely contained in 
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Fig. 8. Path S!J’ and two connected components of 8. 

VR(r, R). The points in the intersection of these neighborhoods with the 
complement of 9 thus lie in VR(r, R U {s}) and can be connected by a path 
$ G VR(r, R U {s}) E VR(r, R). The cycle P?o~! is therefore entirely contained in 
VR(r, R) and contains %i or ‘& in its interior. This is a contradiction. 

At this point we have shown that 8 is a non-empty connected set which 
intersects bd Y. Assume now that ‘8’ is a single point. This point, say 21, is either a 
vertex of V(R) or lies on an edge of V(R). In either case, one of the regions of 
V(R) incident to TV in V(R) is split by Y in a neighborhood of r~ and hence 
represented twice at u in V(R U {s}), cf. Fig. 9, a contradiction to the piece of pie 
fact. 0 

Note that Lemma 1 implies in particular, that if Y#0, then 9 intersects an 
edge of V(R). Lemma 2 discusses the various forms which an intersection 
between 9 and an edge e of V(R) can have. 

Lemma 2. Let e be an edge of V(R). If e II ?? # 0, then either e fl .J? = V(R) r-l?? 
and e n 9 is a single component or e - 9 is a single component (possibly empty). 

Proof. Assume first that e fig = V(R) tip. Since V(R) tl9 is connected accord- 
ing to Lemma 1, e flp is also connected. Assume next that e flp # V(R) tip. 
Then for every point x E e Cl 9 
endpoint of e must be contained 
e - ,C? is a single component. 0 

one of the subpaths of e connecting x to an 
in 9, since V(R) n Y is a connected set. Hence 

V r ‘ic r .Y 

V r 4 r 9 

Fig. 9. r-region is represented twice at u, a contradiction to Fact 1. 



Randomized incremental construction 167 

e e 

4 

(a> 
allowed 

e ‘T, 9 

0 e 
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(b) 
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63 9 

e 

t?Y 4 

not allowed 

Fig. 10. Four situations as allowed by Lemma 2 and an impossible one. 

Fig. 10 shows some possible and impossible configurations for e n 9 according 
to Lemma 2. Fig. 11, which also illustrates the following Definition 3, shows that 
cases (a) and (d) of Fig. 10 arise even for Euclidean diagrams of line segment 
sites. 

We close this section with some notations that we need in the forthcoming 
sections. 

Definition 3. Let e be an edge of V(R) and let v be an endpoint of e. Then: 
(1) s intersects e with respect to R iff e fl .Y? # 0. 
(2) s clips e at v with respect to R iff e f-19 contains a component incident to v. 

site s intersects edge e without clipping site s clips e at both endpoints 

Fig. 11. The Euclidean Voronoi diagram of two line segment sites and one point site. Two sites form 
an edge e. The third site s is inserted into the diagram of the other two sites and thereby intersects 

edge e. The Voronoi region of site s is shown shaded. 
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3. The basic operation 

Computing the intersection between an edge and the region of a new site is the 

fundamental operation in our algorithm. We have already seen in Lemma 2 that 

there are only a few types of such intersections. In this section we show that a 

particular type of intersection can be extracted from the Voronoi diagram of only 

five sites and therefore computed in constant time. The five sites involved are the 

newly added site and four sites ‘defining’ the edge. We first specify how sites 

‘define’ edges. As above let R G S and ~0 E R. 

Definition 4. Let p, q, r and t be sites in R. 
(1) A vertex u of V(R) is called a pqr-vertex (see Fig. 12), if ‘u is incident to 

the p-, q-, and r-regions, and there is a clockwise traversal of the regions incident 

to 21 which encounters p-region before q-region before r-region before p-region. 

(2) An edge e of V(R) is called a prqt-edge (see Fig. 12), if e separates p- and 

q-region, and its endpoints are prq- and qtp-vertices. 

Example (continued). We continue our running example. Let 2rl, v2, e,, e2, and 

e3 be defined as in the left picture of Fig. 7. Then the vertex v2 is an u&-vertex 

and the vertex v1 is a bum-vertex. Edge e, is a buma-edge, e2 is a bmaw-edge and 

e3 is an abwb-edge. 

Lemma 3. Let R G S and let p, q, r and t be sites in R. Then V(R) contains at 
most one pqr-vertex and at most one prqt-edge. 

Proof. We first show that there is at most one pqr-vertex. Assume otherwise 

that, say, v and w are two distinct pqr-vertices. Since VR(p, R) and VR(q, R) 
are path-connected, there are paths 9” and 9 connecting v and w and running 

completely (except at their endpoints) inside p- and q-regions, respectively. The 

cycle 9 0 $ then contains r-region in its interior and its exterior, a contradiction to 

the fact that VR(r, R) is homeomorphic to a disc. Thus there is at most one 

pqr-vertex. 
The existence of two prqt-edges clearly contradicts the existence of at most one 

prq-vertex. 0 

Fig. 12. A pqr-vertex and a prqt-edge 
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Four-tuples of sites not only allow us to distinguish between different edges of 
the same diagram, they furthermore capture all information necessary to compute 
the intersection of an edge with a new region. 

Lemma 4 (basic operation lemma). Let e be a prqt-edge of V(R). Then the point 
set e also constitutes a prqt-edge of V(R’) for all R’ with {p, r, q, t} G R’ G R. 
Moreover, e fl VR(s, R U {s}) = e n VR(s, R’ U {s}) for any s r$ R. 

Proof. Since VR(o, R’) 2 VR(o, R) for o E R’, the point set e is incident to the 
Voronoi regions of p, q, r and t w.r.t. R’, too. In particular the ordering of these 
Voronoi regions around e does not change. Thus e is a prqt-edge in V(R’) as well. 
Let s ES - R be arbitrary. Observe first that e nVR(s, R U {s})~e rl 
VR(s, R’ U {s}) follows from VR(s, R U {s}) G VR(s, R’ U {s}). For the con- 
verse, let x E e flVR(s, R’ U {s}) be arbitrary. Since e is an edge of V(R) 
separating p- and q-region with respect to R, there are arbitrarily small 
neighborhoods U of x such that U - e G VR(p, R) U VR(q, R). Since x E 
VR(s, R’ U {s}), for each such U there is a point y E U - e for which y E 
VR(s, R’ U {s}). On the other hand y E U-e implies y E VR(p, R’) U 
VR(q, R’). We conclude y E D(s, p) or y E D(s, q). Since y E VR(p, R) U 
VR(q, R) this implies y E VR(s, R U {s}). The claim x E VR(s, R U {s} follows 
because we can assume U to be arbitrarily small. q 

By Lemmata 3 and 4 a prqt-edge e of V(R) is also the unique prqt-edge of 
V{p, r, q, t}) and the intersection between e and the region of site s is the same 
in V(R U {s}) as in V({p, r, q, t, s}). We therefore define the following operation 
as the basic operation of our algorithm. 

Basic Operation 

Input: a five-tuple (p, r, q, t, s) such that 

(1) V({P, r, 4, t>) contains a prqt-edge e, and 

(2) s 4 {P, r, 4, t>. 

Output: The combinatorial structure of e tl VR(s, {p, r, t, s}), i.e., one of the 
following: 
(1) intersection is empty 
(2) intersection is non-empty and consists of a single component: 

(a) e itself 
(b) a segment of e adjacent to the prq-endpoint 
(c) a segment of e adjacent to the qtp-endpoint 
(d) a segment not adjacent to any endpoint of e 

(3) intersection is non-empty and consists of exactly two components. 

Each call of basic_op will be charged one time unit. Note that the input to the 
basic operation is a combinatorial object, namely the 5-tuple (p, r, q, t, s), and 
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that the output is a combinatorial object, namely a symbol in 
{ 1,2u, 2b, 2c, 2d, 3). Also note that the six cases specified exhaust all possible 
caes by Lemma 2 and that in case 3 the two components are incident to one 
endpoint of e each. We use basic_op(p, r, q, t, s) to denote the output of the 
basic operation on input (p, r, q, t, s). 

It is clear that the basic operation can also be used to decide whether an edge is 
intersected or clipped by a site. Let e be a prqt-edge of V(R) and s E S - R. Then 
s intersects e iff basic_op(p, r, q, t, s) E {2a, 2b, 2c, 2d, 3) and s clips e at the 
prq-endpoint iff basic_op(p, r, q, t, s) E (2~7, 2b, 3). 

Example (continued). In V(R), R = {a, b, a}, of Fig. 7 we have basic- 
op(b, m, a, 00, c) = 2b, basic_op(a, b, 00, b, c) = 2c and basic_op(b, a, ~0, a, c) = 1. 
Thus site c intersects edges e2 and e3 and clips edges e2 and e3 at their endpoint v2 
with respect to R = {a, b, m}. 

We have seen that four sites uniquely define an edge in the sense that there is 
no other edge defined by the same tuple of sites. However, an edge may in this 
way be defined by several different four-tuples of sites. In the analysis of our 
algorithm in Section 5 and for the presentation of the algorithm we need a 
stronger combinatorial characterization of edges. 

Definition 5. (1) Let e be an edge of V(R) separating p- and q-region. Let f, and 
gP be the edges preceding and following e in a clockwise traversal of the boundary 
of VR(p, R), and let f, and g, be the edges preceding and following e in a 
counter-clockwise traversal of the boundary of VR(q, R), cf. Fig. 13. Assume 
further that f, separates p- and r,,-region, g, separates p- and $,-region, and g, 
separates q- and &-region, and f, separates q- and r,-region. Then D,(e) = 

{(rq, 9, P, rP), (t,, P, 4, t,)) is called the description of e with respect to R. 

By set(D,(e)) we denote the set {p, q, rP, r4, tP, t,}. 

(2) Let D be the description of an edge e of V(R), and let s E S - set(D). Then 
site s intersects description D iff e fl VR(s, set(D) U {s}) # 0. 

Example (continued). In V(R), R = {a, b, m}, of Fig. 7 the edges have the 

following descriptions: D&e,) = {(a, b, ~0, a), (a, 03, b, a)}, D,(ez) = {(cc, b, a, a), 

(00, a, b, m)>, and &(e3) = {(b, a, m, b), (b, 00, a, b)). 

ffzi&+gg;p 
P 

Fig. 13. An edge with description {(r,, 4. P. rP), cl,,, P, 4. &,)I. 
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Remarks. (1) The basic operation lemma has the following consequence: An 
edge e of V(R) with description D is also an edge of V(set(D)), and site s E S - R 

intersects edge e with respect to R iff s intersects e with respect to set(D) iff s 
intersects D. Moreover, using our basic operation we can decide in constant time 
whether or not a site s E S - set(D) intersects description D. 

(2) In the case of general position, i.e., if Voronoi vertices have degree 3, the 
four-tuple ‘defining’ an edge and the description of the edge contain the same set 
of sites. In fact, in that case, the whole analysis could also be done with 
four-tuples as descriptions. Descriptions are only introduced for the handling of 
degenerate cases, especially in the analysis of the algorithm in Section 5. 

4. The incremental algorithm 

In this section, we describe the incremental construction algorithm. The 
algorithm starts with the set R3 = (00, p, q}, where p and q are chosen uniformly 
at random from S - {~a}, and then adds the remaining sites in random order, i.e., 
Rk+l = Rk U {s}, where s is chosen uniformly at random from S - Rk. The 
following data structures are maintained for the current set R = Rk of sites: 

(1) The Voronoi diagram V(R): It is stored as a planar map; with every face of 
V(R) the corresponding site in R is stored. 

(2) The history graph X(R): It is a directed acyclic graph with a single source. 
Its vertex set is given by 

{source} U ,<&J+ {L&(e) 1 e is an edge of V(R,)}. 
-_ 

The following history-graph invariants are maintained: 
(1) Every vertex of X(R) has outdegree at most 5 and the vertices in {D,(e) 1 e 

edge of V(R)} h ave outdegree 0, i.e., are leaves of the graph. 
(2) Every edge e of V(R) is linked to its corresponding description D,(e) of 

X(R) and vice versa. 
(3) For every site s E S - R and every leaf D of X(R) that is intersected by s 

there is a path from source to D whose vertices are all interested by s. 

We now discuss how to construct V(R U {s}) and X(R U {s}) from V(R) and 
X(R). To this aim let Es = {e 1 e is an edge of V(R) and e is intersected by s}. We 
first show how to construct Es (Step l), from X(R) and V(R) in time proportional 
to the number c of vertices of X(R) which are intersected by s. Given Es, it is 
then easy to construct V(R U {s}) (Step 2), and %‘(R U {s}) (Step 3) in time 

G(l&l). 

Step 1: Construction of E,. Starting at the source of X(R) we explore all 
descriptions in Z(R) which are intersected by s. Since the outdegree of X(R) is 
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bounded by 5, the number of visited vertices is proportional to c. Note that we 

can decide in constant time whether or not a description is intersected by a site by 

using our basic operation. Thus the search takes time O(c). Also, by the third 

history-graph invariant, it identifies all leaves of X(R) intersected by S. By the 

second history-graph invariant this set immediately gives the set of edges of V(R) 

whose descriptions are intersected by S. By the basic operation lemma this is set 

Es. We conclude the following. 

Lemma 5. The set Es can be computed in time O(c). 

Step 2: Construction of V(R U {s}). As above, let Y = VR(s, R U {s}). We 

know from Lemma 1 that .Y#0 iff Es # 0. So, V(R U {s}) = V(R) and X(R U 

{s}) = X(R) if Es = 0. We therefore assume from now on that E,s # 0. For an 

edge eEE,, e - 9 consists of at most two subsegments of e. Also, if e is a 

prqt-edge of V(R), basic_op(p, r, q, t, s) tells us the structure of e - 9. We call 

a point u an endpoint of e - 9 if it is an endpoint of one of the subsegments of e. 

In this way, e - .? may have 0, 2, or 4 endpoints. These endpoints are distinct by 

Lemma 2. We first characterize the vertices of V(R U {s}). Let V be the set of 

vertices of V(R) and let: 

V,,, = {v 1 IJ E V and all edges incident to Z.J are clipped at ZJ by s}, 

V unch = {v 1 u E V and no edge incident to v is clipped at Z.J by s}, 

V chang = {v 1 u E V and some but not all edges incident to IJ are clipped at u by s}, 

V “‘3V = {ZJ 1 u 4 V and u is endpoint of e - .!? for some e E Es}. 

Example (continued). Let R = {a, b, m} and s = c. Then Vdel = 0, Vunch = {v,}, 

V chang = {%I, and V”W = {% u4}. Note that our basic operation tells us that 

e2 - 9 connects IJ, and v3 and e3 - 9 connects v, and v4, cf. Fig. 14. 

‘u2 

‘\\ \ 
I \ 
, 
I 
8 
I 
I 
I 
I 

: 
: 

,’ 
I’ 

Fig. 14. V(R) f’l 9 is shown dashed. 
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Lemma 6. Every vertex v of V(R U {s}) is contained in Vunch U Vchang n VA,. 

Proof. For every vertex Y of V(R U (8)) there are two sites p and q different 
from s such that an edge e’ of V(R U {s}) separating p- and q-region is incident to 
v. Also, there is an edge e of V(R) with e’ E e. Thus v is either a vertex of V(R) 
or v lies on edge e of V(R). In the latter case, v is an endpoint of e - .5? and hence 

‘u l V”,,. In the former case, e is not clipped at v by s and hence v E Vunch U 
V chang. 0 

Lemma 7. v c vunch. Then U fl V(R) = U fl V(R U {s}) for all sufficiently 

small neighborhoods U of v; in particular, v is a vertex of V(R U {s}). 

Proof. If v e Vunch then no edge of V(R) incident to v is clipped at v by s. Thus 
U rl V(R) rip G v for all sufficiently small neighborhoods of v. Lemma 1 thus 
implies U fl V(R) n 9 = 0 and hence U fl V(R) = U n V(R U {s}). 0 

Lemma 8. Let v E vcha,,g. 

(1) In the clockwise ordering of edges of V(R) around v, there are edges f” and 
f’ (f’=f” p 61 ) is ossi e such that all edges between f” and f’ (inclusive) are not 
clipped at v by s and all edges between f’ and f” (exclusive) are clipped at v by s. 

(2) Let e’ be the edge following f’ and let err be the edge preceding f” in the 
clockwise ordering of edges of V(R) around v, cf. Fig. 15. Let f’ and e’ border 

p-region and err and f” border q-region. Then v is a vertex of V(R U {s}) incident 
to the following edges: all edges between f” and f’ (inclusive), an edge separating 
p- and s-region, and an edge separating s- and q-region. 

Proof. (1) Since some but not all edges incident to v are clipped at v by s, v 
must lie on bd 9’. Since bd Y is a simple closed curve passing through v, the edges 
clipped at v by s and the edges not clipped at v by s must form contiguous 
subsequences in the clockwise ordering of edges around v. This proves (1). 

(2) This is an immediate consequence of part (1) and the piece of pie fact. Cl 

bd 9 
Fig. 15. A node u E VCIEhang. 
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v3 

I) 

v4 

V(R) n 7 

Fig. 16. On the left, for each vertex u E Vc,,._ U V,,, the two new edges incident to u are indicated by 
dots. The deleted part of V(R) is shown on the right. 

Lemma 9. Let v E V,,, and let v lie on an edge e of V(R) separating p- and 
q-region. Then v is a vertex of degree three in V(R U {s}). The three edges incident 
to v separate p- and q-, q- and s-, and s- , and p-region respectively. 

Proof. Obvious. 0 

Example (continued). By Lemmas 6 to 9, the vertices v2, v3 and v4 become 

incident to two new edges each, cf. Fig. 16. 

At this point, we have characterized the vertex set of V(R U {s}) and also the 

set of edges incident to each vertex of V(R U {s}) in their clockwise ordering 

around v. It remains to link the two occurrences of each edge. As above, let 

%=V(R)ng. 

We know an embedding of 2~5 into the plane. The boundary of the outer face of 

2? is a closed curve since 8 is connected. Also, the vertices on bd Y lie on 8 and 

bd Y is a simple closed curve. Hence a clockwise traversal of the boundary of the 

outer face of 8 yields the cyclic ordering of the ‘half-edges’ of bd Y, cf. Fig. 17. 

This allows us to link the two occurrences of each edge. We conclude the 

following. 

Lemma 10. Given ES, V(R U {s}) can be constructed from V(R) in time O(l E,[). 

Proof. Given ES, one can determine the sets VdC,, Vchang, and V,,, in time 

O(lESl). In the same time bound, one can update the cyclic adjacency lists of 

these vertices. Finally the traversal of 8 takes time 0(1&l). 0 
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bd .f 

Fig. 17. Walking along the boundary of the outer face of ‘6%‘. 

Example (continued). The clockwise march around 8 and joining the two 
occurrences of each edge yields V(R U {c}) as in Fig. 7. 

Step 3: Computation of X(R U {s}). We first characterize the set of vertices 
X(R U {s}) h’ h w K are not already vertices of X(R). Call an edge e of V(R U {s}) 
new if it is not a subset of any edge of V(R), shortened if it is a proper subset of 
some edge of V(R), affected if e is an edge of V(R) and there is a vertex v E Vchang 
such that e is one of the edges f’ or f” defined in Lemma 8, cf. Fig. 18. 

Lemma 11. Let V,(R) and V,(R U {s}) be the vertex sets of X(R) and 
X(R U {s}) respectively. Then V,(R U {s}) - Vx(R) = {DRuCsl(e) 1 e is a new, 
shortened, or affected edge of V(R U {s})}. 

Proof. Let e be an edge of V(R U {s}) which is neither new, shortened, nor 
affected. Then e has already been an edge of V(R) and hence its endpoints must 
lie in Vunch U Vchang. Also, if an endpoint v of e belongs to Vchang then e lies strictly 
between the edges f” and f’ defined in Lemma 8. Thus e’s descriptions with 
respect to V(R) and V(R U {s}) are identical. 

Conversely, if e is new, shortened or affected, then s contributes to e’s 
description D and therefore D cannot be contained in V,(R). 0 

Fig. 18. A characterization of edges. 
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We next discuss which edges have to be added to X(R U {s}) in order to 
maintain the history-graph invariants. 

Lemma 12. Let e be a shortened or affected edge of V(R U {s}), let e’ be the edge 
of V(R) with e c e’, and let t E S - R - {s} intersect e with respect to R U {s}. 
Then t intersects e’ with respect to R. 

Proof. The lemma follows immediately from e fl VR(t, R U {s, t}) c e’ n 
VR(t, R U {t}). q 

Thus for each shortened or affected edge e we add the edge (&(e’), D,,(,)(e)) 
to the history graph, where e’ is the edge of V(R) with e c e’. 

For a new edge e of V(R U {s}) the situation is more complicated. We show 
that it is sufficient to make e a child of all edges traversed during e’s construction. 
To this end, let x1 and x2 be the endpoints of e, and let p E R be such that e 
separates p- and s-region in V(R U {s}). By Lemma 1 there must be a path 9 in 
V(R) II 9 connecting x1 and x2. Without loss of generality we may assume that B 
is part of bd VR(p, R). P? is the part of V(R) fl9 traversed during the 
construction of e. Furthermore define the edges e, and e2 of V(R) as follows. If 

Xl E Kew, then let e, be the edge of bd VR(p, R) containing x1. If xi E VChang, then 
let e, be the edge of bd VR(p, R) incident to x1 and not contained in 9’. The edge 
e2 is defined analogously with respect to x2. The reader may think of e, and e2 as 
prolongations of 9 outside 9’. See Fig. 19 for an illustration of these definitions. 

Lemma 13. Let e, el, e2 and B be defined as above. Let t E S - R - {s} intersect e 
w.r. t. R U {s}. Then there is an edge g E e, U 9 U e2 such that t intersects g with 
respect to R. 

Proof. We assume for the sake of a contradiction that t does not intersect any 
edge g E e, U P U e2. By the definition of el and e2 there are unique edges e; and 
ei of V(R U {s}) such that e; c e, and e; G e2. 

VRCP, RI 

Fig. 19. The path B and edges e, and e2 
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Claim 1. t does not clip e, e; or e; at x1 or x2 with respect to R U {s}. 

Proof. We first deal with edge e. Assume the contrary, say t clips e at 

x1 w.r.t. R U {s}. Assume first that x1 E V,,,. Then e, is the edge of 

V(R) containing xi and x1 E e, tl VR(t, R U {s, t}) c e, fl VR(t, R U {t}) 
and hence t intersects e,, a contradiction. Assume next that x1 E Vchang. Then 

x1 E VR(t, R U {s, t}) G VR(r, R U {t}). In V(R), f thus clips one of the two 

edges of bd VR(p, R) incident to xi, because VR(t, R U {t}) cannot contain an 

isolated point x1, due to Lemma 1. Since both edges belong to e, U 9, we have a 

contradiction. 

Since ei E e, and e; c e2 and because t does not intersect e, or e2 by 

assumption, f cannot clip e; or e;. 0 

Claim 2. B E 9 and there is a point x E e fl VR(t, R U {s, t)) which does not lie on 
PP. 

Proof. g s 9 holds by definition. Since t intersects e but does not clip e at x1 or 

x2, the intersection e fl VR(t, R U {s, t}) is a non-empty subsegment of e not 

extending to either endpoint of e. This subsegment must contain a point x not in 

9 since t does not intersect any edge on path 9’. 0 

Now consider the wedge at x1 formed by e and e;. According to the above 

claim, t does not clip e at x1 in V(R U {s}). Thus all points in the wedge belong to 

VR(p, R U {s, t}). Th e same holds true for the wedge at x2. Since VR(p, R U 
{s, t}) is connected, there is a path !2 from x1 to x2 running completely inside 

VR(p, R U {s, t}) E VR(p, R U {t}) expect at the endpoints, cf. Fig. 20. We may 

assume that 9 does not touch bd Y (and therefore x does not lie on 9). Thus x 

lies in the interior of the cycle x1 0 9~~~~9; otherwise VR(p, R) would not be 

simply connected. The point x belongs to VR(t, R U {t}). Since VR(p, R U {t}) is 

simply connected, the region VR(t, R U {t}) cannot be contained in the cycle 

x10 B0x~o.9. Since 9 rl VR(t, R U {t}) = 0, we conclude 9 fl VR(t, R U {t}) # 0. 
The intersection cannot consists of a single point and hence t must intersect an 

edge g E e, U P U e2, a contradiction. This completes the proof of Lemma 13. 0 

Fig. 20. The path 9 and the wedges at x, and x2. 
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In view of Lemma 13 we add edges (&(e’), DRurS)(e)) for any new edge e of 
V(RU{s})andalle’~e,UBUe,. 

Lemma 14. The history-graph invariants hold for X(R U {s}). 

Proof. Part (3) of the history-graph invariant is maintained by Lemmas 12 and 
13. Part (2) is trivial. For part (1) first observe that only leaves of X(R) can get 
new children. Thus the outdegree of inner nodes of X(R) does not change. We 
now show that a leaf of X(R) gets at most five children. We distinguish several 
cases. Let e’ be an edge of V(R). If e’ is also an edge of V(R U {s}) and 
D&e’) = DRUIsj(e’), then no edges out of &(e’) have been added to the history 
graph. Otherwise, either e’ 5 9 or there is a shortened or affected edge e of 
V(R U {s}) with e c e’. In the former case, e’ belongs to at most two paths 9’. In 
the latter case, e’ assumes the role of el or e2 at most four times and is also parent 
of e, i.e., the outdegree of e’ is at most 5. It remains to prove that the 
desccriptions of edges in V(R U {s}) are leaves of X(R U {s}). This follows from 
the fact that only those leaves of X(R) get children that are no longer 
descriptions of edges of V(R). 0 

Fig. 21 shows a situation where the outdegree is actually 5. 

Lemma 15. Given ES, X(R U {s}) can be constructed from V(R) and X(R) in 

time O(lESl). 

Proof. Follows from the discussion above. 0 

V(R) VCR ” {s>) 
Fig. 21. &(e’) has five children in the history graph. e, c e’ is a shortened edge. e,, , e4 are new 

edges on bd 9’. Observe that e2 # e3 is possible. 
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We summarize the following. 

Theorem 1. (a) Let m E R and s ES - R. Then V(R U {s}) and X(R U {s}) can 
be constructed from V(R) and X(R) in time O(c) where c is the number of vertices 
of X(R) intersected by s. 

(b) For R E S, (RI = 3 and ~0 E R, the data structures V(R) and X(R) can be set 
up in time O(1). 

Proof. (a) Comprises Lemmas 5, 10 and 15. 
(b) The Voronoi diagram V(R) for three sites CQ, p and q has the structure 

shown in Fig. 22. The history graph X({m, p, q}) for these three sites simply 
consists of a node for the source and each of the three edges of V({w, p, q}). The 
descriptions of the 3 edges of V({m, p, q}) are made children of the source. Both 
structures can certainly be set up in time O(1). 0 

5. Analysis 

The analysis of randomized incremental algorithms is always done in terms of 
objects, regions and conflicts between them. In our case the objects are the sites 
and the regions are descriptions. 

Definition 6. Let R E S. 
(1) A description D over R is a set {(rq, q, p, rP), (t,, p, q, t,)}, where 

{P, q, rPj rs, tP, t,> E R, and V({p, q, rP, r4, tP, t,}) contains a bounded edge 
with description D. 9(R) denotes the set of all descriptions over R and set(D) 
denotes the set {p, q, rP, rq, tP, t,}. 

(2) Let D be a description over R and let s ES - set(D) be a site. Site s 
conflicts with D iff there is no bounded edge in V(set(D) U {s}) with description 
D. Define 2$(R) = {D E 9(R) 1 D d oes not conflict with any site s E R - set(o)}. 

If a site s intersects a description D, then it also conflicts with description D. 
The converse is not true. Namely, if in Fig. 13 a site s clips any of the edges g,, 
g,, fp, f4 at their common endpoint with e, then s conflicts with D,(e). The sole 

W{P, Q, WI) 

Fig. 22. Initialization of Voronoi diagram and history graph 
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motivation for defining the notion of conflict is the following bijections lemma. It 

makes the general results about randomized incremental constructions available 

for the analysis of our algorithm. 

Lemma 16 (bijection lemma). Let m E R c S. Then e ++ DR(e) is a bijection 
between the edges of V(R) and the descriptions in S”(R). 

Proof. Note first that all edges of V(R) are bounded since w E R. Let e be an 

edge of V(R), let D = D,(e), and let s E R - set(D). By the basic operation 

lemma, e is also an edge of V(set(D)) and V(set(D) U {s}). The same argument 

shows that the description of e in V(set(D)) and V(set(D) U {s}) is still D. In 

particular s does not conflict with D, i.e., D E SO(R). We have now shown that 

the mapping e H D,(e) maps the set of edges of V(R) into 5$(R). The mapping is 

injective since the existence of two different edges with the same description 

clearly contradicts Lemma 3. It remains to show surjectivity. 

Let D E SO(R) be arbitrary. We show that there is an edge in V(R) with 

description D. Assume the contrary. Then there are a set R’, set(D) E R’ E R, 
and a site s E R - R’ such that V(R’) contains an edge e with description D, but 

V(R’ U {s}) does not. Since D E &b(R) there is an edge with description D in 

V(set(D)) as well as in V(set(D) U {s}). By the basic operation lemma both edges 

are equal to edge e. We now consider e with respect to V(R’) and distinguish 

several cases according to whether or not s intersects e w.r.t. R’. Thus let 

e nVR(s, R’ U {s}) # 0. By the basic operation lemma we have e n 

VR(s, set(D) U {s}) # 0 . m contradiction to the claim that e is edge of V(set(D) U 
{s}). Thus let now e nVR(s, R’ U {s}) = 0. Then e is also edge of V(R’ U {s}). 
But then the description of e w.r.t. R’ U {s} must be different from D, say D’. By 

the basic operation lemma e then also has the description D’ in V(set(D) U {s}), 
a contradiction. 0 

Let sl, s2, . . . , s, be the sequence in which the algorithm processes the sites 

and let R, = {sl, s2, . . . , s,}, for 14 r c PZ. The bijection lemma provides an 

alternative characterization of the vertex set of the history graph. 

Lemma 17. The set of nodes of X(R,) equals {source} U U3s-iGr So(Ri). 

Proof. Obvious. Cl 

Lemma 17 characterizes the vertex set of the history graph as a set of 

combinatorial objects defined by a small number of input sites. We can therefore 

apply the results of [8,4,7] to the analysis of our algorithm. To do so assume that 

the algorithm processes the sites in random order. [8,4,7] give bounds on the 

expected size of the history graph and the number of its vertices in conflict with a 

input site in terms of fr, the expected size of SO(R) for a random subset R E S, 
JR1 =r. 
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Lemma 18 ([7], Theorems 3 and 41). (1) The expected size of X(R,) is 

O(Ci~,Jl+ 

(2) The expected number of vertices of X(R,_,) in conflict with site s, is 

O(C+Jli(i - 1)). 

Since a Voronoi diagram of i sites has at most 3i - 6 edges the bijection lemma 
implies f; = O(i). 

Theorem 2. An abstract Voronoi diagram of n sites can be computed by a 
randomized algorithm in expected time O(n log n) and expected space O(n). 
Moreover, the expected time for inserting the r-th object is O(log r). Randomiza- 
tion here only concerns the order in which the sites are inserted. 

Proof. At any time the size of the history graph clearly dominates the size of the 
Voronoi diagram. Thus the expected space used by the algorithm is O(n) by 
Lemma 18. 

By Theorem 1 the time needed to insert the r-th site s, is proportional to the 
number c, of vertices in X(R,_,) which are intersected by s,. Since each 
intersection implies a conflict we have c, = O(log r) by Lemma 18. This yields the 
claimed time bounds. 0 

6. Simple Voronoi diagrams 

In this section we introduce a subclass of abstract Voronoi diagrams for which 
the basic operation can be replaced by two operations each requiring only four 
sites as input. 

Definition 7. A system of bisectors is called simple if for any three (finite) sites 
the induced Voronoi diagram contains at most one vertex. 

Observe that in general three sites p, q and r can produce two vertices, a pqr- 
and a prq-vertex, see Fig. 3 for an example. Simple systems of bisectors are 
generated, for instance, by point sites under the Euclidean metric or under the 
&-metric (as defined by Lee [17]), and by Powerdiagrams (see [l]). 

Now consider a Voronoi diagram V(R), 00 E R E S, generated by a simple 
system of bisectors. As in the previous sections let s E S - R. We investigate again 
the type of intersection between an edge of V(R) and site s. For this investigation 
edges on Fmust be treated separately. 

To this purpose, let e be a prqt-edge of V(R) not on r, i.e., p, q #m. Since 
V({p, q, s}) contains at most one vertex, cases 2d and 3 of our basic operation 
are excluded. Furthermore cases 1, 2a, 2b, and 2c can be distinguished simply by 
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Fig. 23. s clips e at the prq-endpoint. 

deciding whether s clips e at its prq-or qtp-endpoint (see Fig. 23). 

f-1 iff s does not clip e at either endpoint, 

basic_op(p, r, q, t, s) = 
2a iff s clips e at both endpoints, 

2b iff s clips e only at the prq-endpoint, 

iff s clips e only at the qtp-endpoint. 

However, clipping can be decided by looking at only four sites. 

Lemma 19. Let e be a prqt-edge of V(R) and let s E S - R. Let e’ be the unique 

edge of V({p, q, 4) incident to the prq-vertex of V({p, q, r}) and separating 
p-region from q-region. Then e c e’ and s clips e at the prq-endpoint w.r.t. R iff 
s clips e’ at the prq-endpoint w.r. t. {p, q, r}. 

Proof. First observe that by the basic operation lemma e is also a prqt-edge of 

V({p, q, r, t>) and that c nVR(s, {P, q, r, s, t}) = e fl VR(s, R U {s}). By re- 

moving t from {p, q, r, t} edge e cannot shrink, but possibly grow at its 

qtp-endpoint. Thus e 5 e’. For the remaining claim note that t has no influence on 

whether s clips e at its prq-endpoint or not. 0 

Thus, for edges not on r the basic operation on five sites is reduced to a four 

sites clipping operation. 

Let us now turn to edges on r. For these edges cases 2d and 3 of our basic 

operation are also possible. Thus the basic operation cannot be reduced to 

clipping as before. However, for all these edges, one of the four ‘defining’ sites is 

always ~0. Moreover, if e is a prqt-edge on r then either p = CC or q = ~0. Since each 

prqt-edge is also a qtpr-edge, we can assume p = ~0. Computing the outcome of 

the basic operation for a prqt-edge on r can thus be handled by a special 

basic-op.-r operation that inputs only the four sites q, r, t and s. 

To give an impression of the amount of programming hidden inside the basic 

operation, we sketch the implementation for a Voronoi diagram of points under 
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Fig. 24. Site s intersects an edge e on r 

the Euclidean metric. Let e be a prqt-edge not on r, and furthermore let r # to. 
Then s clips e at its prq-endpoint iff s lies inside the circumcircle of p, r and q, or 
s lies on the circumcircle of p, r and q, and p, q and s form a rightturn. If r = m 
then e is an ‘unbounded’ edge of V(R - {a}). The circumcircle of p, r and q then 
becomes the ‘infinite circle’ through p, w and q, i.e., the line through p and q; 
point s lies inside the ‘infinite circle’ iff s lies to the right of the line through p and 
q directed from p to q. Furthermore, if s lies on the line through p and q then s 
clips iff s lies between p and q. 

Let e now be an w-qt-edge on F. Cases 2d and 3 of our basic operation can 
occur only if r = t and q, r and s are collinear, see Fig. 24. If r # t or q, r and s are 
not collinear then the outcome of the basic operation is once again completely 
determined by the way s clips e at its endpoints. Here s clips e at its mrq-endpoint 
iff r, q and s form a rightturn, or s lies on the line through r and q between r and 

4. 
The test whether a point lies inside, on, or outside the circumcircle of three 

other points, and the test whether three points are collinear, or form a left- or 
rightturn are fundamental tests in computational geometry. Observe that all 
algorithms which use only the incircle-test do not handle four cocircular or three 
collinear points. 

For Powerdiagrams the implementation is very similar, for diagrams of points 
under the &-metric it is more involved. 

7. Conclusion 

We have shown that the construction of abstract Voronoi diagrams can be 
reduced efficiently and purely combinatorially to the construction of abstract 
Voronoi diagrams for five sites, respectively four sites in some cases. This is also 
true for furthest site abstract Voronoi diagrams, see [20]. Many previously 
considered types of Voronoi diagrams can thus be handled by the same simple 
algorithm. 
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