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Overview

• The Real-RAM Model and the Innocent Years (till 85)

• Sobering Experiences (85 – 90)

• Floating Point Arithmetic and Geometry

• Numerical Analysis versus Computational Geometry

• Approaches to Reliable Geometric Computing (90 – today)
• Make Floating Point Arithmetic Work
• Exact Computation Paradigm

• Exact Computation Paradigm: State of the Art
• Examples of what can be done
• A powerful theme: exact decisions based on approximate

computation

• CGAL, the Computational Geometry Algorithms Library

• Outlook
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The Real RAM

The computation model we shall refer to is
that of a random access machine (RAM)
in the sense of Aho, Hopcroft, and Ullman,
with the only modification that real number
arithmetic replaces integer arithmetic.

F. Preparata and S.J. Hong, Convex hulls of finite sets of points in
two and three dimensions, CACM, 20, 2, (Feb 77), p.88:
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Remarks

It is the natural model for CG, as the

parameters (point coordinates, line coeffi-

cients, radii of circles, . . . ) are real values.

Numerical analysis used it successfully;

so it seemed like an innocent assumption.

The Real-RAM is key to the success of the

field
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Remarks

One can buy RAMs, one cannot buy a

Real-RAM.

Computers offer bounded length integer

and floating point arithmetic in hardware

and arbitrary precision arithmetic in soft-

ware.
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Remarks

The research community developed and

analyzed algorithms, it was not interested

in implementation.

It was common belief that floating point

arithmetic would be a good enough substi-

tute for real arithmetic, as it is in numerical

analysis.
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Sobering Experiences (85 – 90)

• In the mid 80s, the CG community and others began to implement
geometric algorithms (line segment intersection, Delaunay and
Voronoi diagrams, arrangements of lines and hyperplanes).

Real RAM = RAM + floating point arithmetic
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Sobering Experiences (85 – 90)

• In the mid 80s, the CG community and others began to implement
geometric algorithms (line segment intersection, Delaunay and
Voronoi diagrams, arrangements of lines and hyperplanes).

Real RAM = RAM + floating point arithmetic

• Floating point arithmetic is a poor
substitute for real arithmetic. Most
implementations did not work.

• Degenerate cases were cumbersome.

• Debugging was a nightmare.

• I had asked a student to implement
Voronoi diagrams of line segments:

we found a few examples on which the
implementation worked.

Kurt Mehlhorn, MPI for Informatics and Saarland University Geometric ComputingThe Science of Making Geometric Algorithms Work – p.5/29



Sobering Experiences (85 – 90)

• In the mid 80s, the CG community and others began to implement
geometric algorithms (line segment intersection, Delaunay and
Voronoi diagrams, arrangements of lines and hyperplanes).

Real RAM = RAM + floating point arithmetic

• Floating point arithmetic is a poor
substitute for real arithmetic. Most
implementations did not work.

• Degenerate cases were cumbersome.

• Debugging was a nightmare.

• I had asked a student to implement
Voronoi diagrams of line segments:

we found a few examples on which the
implementation worked.

• Starting in the late 80s, implementation of geometric algorithm
became an area of research (Fortune, Guibas, Milenkovic, Stolfi, Sugihara, Yap)
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The Intersection of Four Simple Solids

c1
s1

c2
s2

output is not a
set, but a com-
binatorial object
plus coordinates

Rhino3D: (((s1 ∩ s2) ∩ c2) ∩ c1) → successful

(((c1 ∩ c2) ∩ s1) ∩ s2) → “Boolean operation failed”

geometric problems are non-continuous functions from input to output
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Geometry and Floating Point Arithmetic

•
Orientation Predicate: three points p, q, and
r in the plane either lie on a common line or
form a left or right turn

orient(p,q, r) = 0, +1, −1
−1

+1

• analytically

orient(p,q, r) = sign(det




1 px py

1 qx qy

1 rx ry


)

• float_orient(p,q, r) is the result of evaluating orient(p,q, r) in floating
point arithmetic.

• Observe: we formulate our algorithms in terms of geometric
predicates, we use arithmetic to implement these predicates.
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Geometry of Float-Orient

p = (0.5,0.5), q = (12,12) and r = (24,24)

0.5 0.5+255·2−53

picture shows

float_orient((px +xu, py +yu),q, r)

for 0≤ x,y≤ 255, where u = 2−53.

the line ℓ(q, r) is shown in black

near the line many points are mis-classified
Kettner/Mehlhorn/Pion/Schirra/Yap: ESA 2004, CGTA 2008
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A Simple Convex Hull Algorithm

• alg considers the points one by one, maintains vertices of current
hull in counter-clockwise order

Initialize hull with first three points.
for all r ∈ Sdo

if there is an edge e visible from r then
compute the sequence (vi, . . . ,v j) of edges visible from r
and replace the subsequence (vi+1, . . . ,v j−1) by r.

r

vi

v j

of course: the visible edges form a contiguous subsequence
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An Output of this Algorithm
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Small Errors, Large Effects

p1, p5

p2 p3

p4

p1, p5

p2 p3

p4

p6

p1 p5 p1 p5

• the hull of p1 to p4 is
correctly computed

• p5 lies close to p1, lies
inside the hull of the
first four points, but
float-sees the edge
(p1, p4).
Concave corner at p5.

• point p6 sees the edges
(p1, p2) and (p4, p5), but
does not see the edge
(p5, p1).

• we obtain ...
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Numerical Analysis versus Computational Geometry

• Numerical analysis mainly computes continuous functions, e.g., the
eigenvalues of a matrix.

• Algorithms of numerical analysis are self-correcting.

• We are to a large extent interested in non-continuous functions,
e.g., the convex hull of a set of points.

The output is a combinatorial object (sequence of vertices) not a
set.

• Numerical analysis calls such problems ill-posed or at least
ill-conditioned.

• We use arithmetic to make yes/no decisions, e.g.,

does p lie on ℓ or not?

• Our algorithms are not self-correcting.
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Approaches to Reliable Geometric Computing

• Reliable = program does what it claims to do.

• Make Floating Point Arithmetic Work

• The Exact Geometric Computation Paradigm (ECG) Yap, 93
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Approaches to Reliable Geometric Computing

• Reliable = program does what it claims to do.

• Make Floating Point Arithmetic Work
• redefine the problem: approximation instead of true output
• modify algorithms to cope with imprecise arithmetic
• restrict inputs, e.g., integer coordinates in [−220..220].
• solutions are algorithm specific, not generic
• Milenkovic, Sugihara, Shewchuck, Halperin, Mehlhorn, Osbild,

Sagraloff

• The Exact Geometric Computation Paradigm (ECG) Yap, 93
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Approaches to Reliable Geometric Computing

• Reliable = program does what it claims to do.

• Make Floating Point Arithmetic Work
• redefine the problem: approximation instead of true output
• modify algorithms to cope with imprecise arithmetic
• restrict inputs, e.g., integer coordinates in [−220..220].
• solutions are algorithm specific, not generic
• Milenkovic, Sugihara, Shewchuck, Halperin, Mehlhorn, Osbild,

Sagraloff

• The Exact Geometric Computation Paradigm (ECG) Yap, 93
• implement a Real-RAM to the extent needed

the challenge is efficiency and keeping extent low
• redesign the algorithms so that they can handle all inputs and

have small arithmetic demand
• ECG applies to all geometric algorithms
• basis for LEDA and CGAL
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The ECG Paradigm: State of the Art

• Implement a Real-RAM to the extend needed.

• For linear geometric objects, efficiency and reliability can be
achieved simultaneously (1992 – 2002)
• This required to develop some theory and
• serious systems building (LEDA, CGAL)

• Working Hypothesis: to a large extent, this also holds true for
nonlinear geometric objects (2002 –
• This requires lots of new theory

• and serious systems building (CGAL)

Kurt Mehlhorn, MPI for Informatics and Saarland University Geometric ComputingThe Science of Making Geometric Algorithms Work – p.14/29



The ECG Paradigm: State of the Art

• Implement a Real-RAM to the extend needed.

• For linear geometric objects, efficiency and reliability can be
achieved simultaneously (1992 – 2002)
• This required to develop some theory and
• serious systems building (LEDA, CGAL)

• Working Hypothesis: to a large extent, this also holds true for
nonlinear geometric objects (2002 –
• This requires lots of new theory
• new geometric algorithms with smaller arithmetic demand,
• advances in computer algebra, in particular polynomial

system solving, and
• better interplay between symbolic, numeric and geometric

computing
• and serious systems building (CGAL)
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Intersection of Two Polygonal Cylinders

• construct cylinder P, base is regular n-gon,

• obtain Q from P by rotation by α degrees,

• and compute the union of P and Q
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Intersection of Two Polygonal Cylinders

• construct cylinder P, base is regular n-gon,

• obtain Q from P by rotation by α degrees,

• and compute the union of P and Q

system n α time output

ACIS 1000 1.0e-4 10 sec correct

ACIS 1000 1.0e-6 2sec incorrect answer

Rhino3D 200 1.0e-2 15sec correct

Rhino3D 400 1.0e-2 – CRASH

CGAL/LEDA 5000 6.175e-06 30 sec correct

CGAL/LEDA 5000 1.581e-09 34 sec correct

CGAL/LEDA → ∞ → 0 → ∞ correct
Hachenberger/M/Kettner
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Some Results for Nonlinear Geometry

Arno Eigenwillig Erik Berberich Efi Fogel (Tel Aviv)

Dany Halperin (Tel Aviv) Michael Hemmer Michael Kerber

Lutz Kettner (Mental Images) Kurt Mehlhorn Michael Sagraloff

Elmar Schömer (Mainz) Raimund Seidel Vikram Sharma

Stefan Schirra (Magdeburg) Ron Wein (Tel Aviv) Nicola Wolpert (Stuttgart)

Rudolf Fleischer (Shanghai)
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A Basic Problem: Arrangement Computation

you see a planar embed-
ded graph; the challenge
is to compute the graph

algorithms handle arbitra-
ry degrees and degenera-
cies

• many curves have a
common point

• different slopes

• same slope, different
curvature,

• same slope and cur-
vature, diff . . .

contributors: all
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Boolean Operation on Curved Polygons

green polygon is union of red and blue

computation takes about 10 secs for polygons with 1000 vertices

this is competitive with unreliable approaches

arrangement computation is the workhorse
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Arrangements on Surfaces

• a step towards 3d

• arrangement on a torus-like
surface defined by quadric
surfaces

• method (and software) works
for surfaces such as spheres,
cylinders, tori, paraboloids,
. . . ,

• software is generic

• applications: point location,
overlay, Minkowski sums, 3d
boolean ops (???, Dupont,

Hemmer, Petitjean, Schömer)

• Berberich, Fogel, Halperin, Hemmer,

Mehlhorn, Schömer, Wein, Wolpert
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Analysis of a Single Algebraic Surface

• a second step
towards 3d

• topology of an
algebraic surface
• nodes =

singularities
• edges =

self-intersections
• faces =

surface-patches

• triangulation of
algebraic surfaces

• symbolic ⇒ verified
approximate
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Analysis of a Single Algebraic Surface

• a second step
towards 3d

• topology of an
algebraic surface

• triangulation of
algebraic surfaces

• Berberich, Kerber, Sagraloff
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A General Theme

compute numerically

and make sure that the results can
be interpreted symbolically

Approach has increased the effi-
ciency of our algorithms by three
orders of magnitude
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Exact Sign Computation of Radical Expressions

Let E be an expression with integer operands and operators +, −, ∗ and√ . Define

• u(E) = value of E after replacing − by +.

• k(E) = number of distinct square roots in E.

Then (BFMS, BFMSS)

E = 0 or |E| ≥ 1

u(E)2k(E)−1

Theorem allows us to determine signs of algebraic expressions by
numerical computation with precision (2k(E)−1) logu(E).

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann
extensions: division, higher-order roots, roots of univariate polynomials

Kurt Mehlhorn, MPI for Informatics and Saarland University Geometric ComputingThe Science of Making Geometric Algorithms Work – p.23/29



Numerical Sign Computation

sep(E)← u(E)1−2k(E)
; // bound from previous slide

k← 1;
while (true)
{ compute an approximation Ẽ with |E− Ẽ|< 2−k;

if ( |Ẽ| ≥ 2−k ) return sign(Ẽ);
if ( 2−k < sep(E)/2 ) return “sign is zero”; // since |E| ≤ 2−k +2−k < sep(E)

k← 2·k; // double the precision

}

• Ẽ is computed by numerical methods

• worst case complexity is determined by separation bound:
maximal precision required is logarithm of separation bound

• easy cases are decided quickly (a big plus of the numerical
approach)

• strategy above is basis for sign test in LEDA and CORE reals.
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Root Isolation for Bitstream Polynomials

• polynomial p(x) = ∑0≤i≤n aixi.

• the ai are arbitrary reals, can compute approximations, e.g.,
π = 3.14. . .

• to isolate a real root z of p means to compute an interval [a,b] with
rational endpoints containing z and no other root of p

• same running time on x3−3, on
√

2x3−3
√

2, and on πx3−3π

• all previous algorithms exhibited large differences

• isolate roots of p̃(x) = ∑0≤i≤n ãixi, where ãi ≈ ai

issues: same number of real roots, intervals for p̃ apply to p,
running time determined by geometry of zeroset of p

• new root isolator is key for our implementations

• symbolic⇒ verified approximate

Eigenwillig, Kettner, Krandick, Mehlhorn, Sagraloff, Wolpert
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Interplay: Symbolic – Verified Approximate

α α̃

• given an algebraic curve p(x,y), can
determine a polynomial R(x) whose
roots are the x-coordinates of the
critical points, here α

• we isolate α and obtain an
approximation α̃

• want zeros of p(α,y)

• know from a symbolic computation
that p(α,y) has three distinct real
roots one of which is a double root

• determine roots of p(α̃,y)

• can infer situation at α from situation
at α̃

• how good does α̃ have to be?

• Eigenwillig, Hemmer, Kerber, Seidel, Wolpert
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CGAL

• CGAL = computational geometry algorithms library

• The goal of the CGAL Open Source Project is to provide easy
access to efficient and reliable geometric algorithms in the form of a
C++ library

• Why a library?
• Build on the shoulders of others
• Preserve good solutions

• Why CGAL?
• CGAL offers many algorithms.
• CGAL is generic, i.e., modules are easily reused, e.g.,

gcd for polynomials over any ring and not just for integer
polynomials
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Genericity and Functionality

• arrangements, initially, for curves with
integral coefficients

7x3 +4xy2 + . . .

• rotation by α degrees:

x′ = xcosα+ysinα, y′ = . . .

• α = 30 degree, cosα =
√

3/2,
sinα = 1/2

• new number type: Z[
√

k] for integer k

• now algorithms can also handle
rotated curves (as long as sine and
cosine can be expressed as roots)

• Hemmer, Kerber
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Outlook

• symbolic⇒ verified approximate
• improved running time without sacrificing correctness
• but symbolic computations are still the bottleneck

• Bezier curves and surfaces

• 3D arrangements of surfaces,

• Boolean operations, offsets, . . . of 2d polygons whose edges are
algebraic curve or Bezier curve segments

• Boolean operations, offsets, . . . of 3d polyhedra whose faces are
algebraic surface or Bezier surface patches

• Rounding and Cascaded Constructions

• LEDA/CGAL have a fairly large academic and commercial user
base

• achieve the same for nonlinear CGAL
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