Geometric Computing

The Science of Making Geometric Algorithms Work

Kurt Mehlhorn

Max-Planck-Institut für Informatik and Saarland University
Overview

- The Real-RAM Model and the Innocent Years (till 85)
- Sobering Experiences (85 – 90)
- Floating Point Arithmetic and Geometry
- Numerical Analysis versus Computational Geometry
- Approaches to Reliable Geometric Computing (90 – today)
 - Make Floating Point Arithmetic Work
 - Exact Computation Paradigm
- Exact Computation Paradigm: State of the Art
 - Examples of what can be done
 - A powerful theme: exact decisions based on approximate computation
- CGAL, the Computational Geometry Algorithms Library
- Outlook
The Real RAM

The computation model we shall refer to is that of a random access machine (RAM) in the sense of Aho, Hopcroft, and Ullman, with the only modification that real number arithmetic replaces integer arithmetic.

F. Preparata and S.J. Hong, Convex hulls of finite sets of points in two and three dimensions, CACM, 20, 2, (Feb 77), p.88:
Remarks

It is the natural model for CG, as the parameters (point coordinates, line coefficients, radii of circles, ...) are real values. Numerical analysis used it successfully; so it seemed like an innocent assumption. The Real-RAM is key to the success of the field.
Remarks

One can buy RAMs, one cannot buy a Real-RAM.

Computers offer bounded length integer and floating point arithmetic in hardware and arbitrary precision arithmetic in software.
Remarks

The research community developed and analyzed algorithms, it was not interested in implementation.

It was common belief that floating point arithmetic would be a good enough substitute for real arithmetic, as it is in numerical analysis.
Sobering Experiences (85 – 90)

- In the mid 80s, the CG community and others began to implement geometric algorithms (line segment intersection, Delaunay and Voronoi diagrams, arrangements of lines and hyperplanes).

\[\text{Real RAM} = \text{RAM} + \text{floating point arithmetic} \]
Sobering Experiences (85 – 90)

- In the mid 80s, the CG community and others began to implement geometric algorithms (line segment intersection, Delaunay and Voronoi diagrams, arrangements of lines and hyperplanes).

Real RAM = RAM + floating point arithmetic

- Floating point arithmetic is a poor substitute for real arithmetic. Most implementations did not work.
- Degenerate cases were cumbersome.
- Debugging was a nightmare.
- I had asked a student to implement Voronoi diagrams of line segments: we found a few examples on which the implementation worked.
Sobering Experiences (85 – 90)

• In the mid 80s, the CG community and others began to implement geometric algorithms (line segment intersection, Delaunay and Voronoi diagrams, arrangements of lines and hyperplanes).

Real RAM = RAM + floating point arithmetic

• Floating point arithmetic is a poor substitute for real arithmetic. Most implementations did not work.
• Degenerate cases were cumbersome.
• Debugging was a nightmare.
• I had asked a student to implement Voronoi diagrams of line segments: we found a few examples on which the implementation worked.
• Starting in the late 80s, implementation of geometric algorithms became an area of research (Fortune, Guibas, Milenkovic, Stolfi, Sugihara, Yap)
The Intersection of Four Simple Solids

output is not a set, but a combinatorial object plus coordinates

Rhino3D: \(((s_1 \cap s_2) \cap c_2) \cap c_1) \rightarrow \text{successful}

\(((c_1 \cap c_2) \cap s_1) \cap s_2) \rightarrow \text{“Boolean operation failed”}

geometric problems are non-continuous functions from input to output
Geometry and Floating Point Arithmetic

Orientation Predicate: three points p, q, and r in the plane either lie on a common line or form a left or right turn

$$\text{orient}(p, q, r) = 0, +1, -1$$

- analytically

$$\text{orient}(p, q, r) = \text{sign}(\det \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix})$$

- $float_orient(p, q, r)$ is the result of evaluating $orient(p, q, r)$ in floating point arithmetic.

- Observe: we formulate our algorithms in terms of geometric predicates, we use arithmetic to implement these predicates.
Geometry of Float-Orient

\[p = (0.5, 0.5), \quad q = (12, 12) \quad \text{and} \quad r = (24, 24) \]

The picture shows

\[\text{float_orient}(\langle p_x + x, p_y + y \rangle, q, r) \]

for \(0 \leq x, y \leq 255 \), where \(u = 2^{-53} \).

The line \(\ell(q, r) \) is shown in black.

Near the line many points are mis-classified.

Kettner/Mehlhorn/Pion/Schirra/Yap: ESA 2004, CGTA 2008
A Simple Convex Hull Algorithm

- alg considers the points one by one, maintains vertices of current hull in counter-clockwise order

Initialize hull with first three points.

for all \(r \in S \) do
 if there is an edge \(e \) visible from \(r \) then
 compute the sequence \((v_i, \ldots, v_j)\) of edges visible from \(r \) and replace the subsequence \((v_{i+1}, \ldots, v_{j-1})\) by \(r \).

of course: the visible edges form a contiguous subsequence
An Output of this Algorithm
the hull of \(p_1 \) to \(p_4 \) is correctly computed

\(p_5 \) lies close to \(p_1 \), lies inside the hull of the first four points, but float-sees the edge \((p_1, p_4)\).

Concave corner at \(p_5 \).

point \(p_6 \) sees the edges \((p_1, p_2)\) and \((p_4, p_5)\), but does not see the edge \((p_5, p_1)\).

we obtain ...
Numerical Analysis versus Computational Geometry

- Numerical analysis mainly computes continuous functions, e.g., the eigenvalues of a matrix.
- Algorithms of numerical analysis are self-correcting.
- We are to a large extent interested in non-continuous functions, e.g., the convex hull of a set of points. The output is a combinatorial object (sequence of vertices) not a set.
- Numerical analysis calls such problems ill-posed or at least ill-conditioned.
- We use arithmetic to make yes/no decisions, e.g., does p lie on ℓ or not?
- Our algorithms are not self-correcting.
Approaches to Reliable Geometric Computing

- Reliable = program does what it claims to do.
- Make Floating Point Arithmetic Work

- The Exact Geometric Computation Paradigm (ECG) Yap, 93

Kurt Mehlhorn, MPI for Informatics and Saarland University
Approaches to Reliable Geometric Computing

- Reliable = program does what it claims to do.
- Make Floating Point Arithmetic Work
 - redefine the problem: approximation instead of true output
 - modify algorithms to cope with imprecise arithmetic
 - restrict inputs, e.g., integer coordinates in \([-2^{20}..2^{20}]\).
 - solutions are algorithm specific, not generic
- Milenkovic, Sugihara, Shewchuck, Halperin, Mehlhorn, Osbild, Sagraloff
- The Exact Geometric Computation Paradigm (ECG) Yap, 93
Approaches to Reliable Geometric Computing

• Reliable = program does what it claims to do.
• Make Floating Point Arithmetic Work
 • redefine the problem: approximation instead of true output
 • modify algorithms to cope with imprecise arithmetic
 • restrict inputs, e.g., integer coordinates in \([-2^{20}, 2^{20}]\).
 • solutions are algorithm specific, not generic
• Milenkovic, Sugihara, Shewchuck, Halperin, Mehlhorn, Osbild, Sagraloff
• The Exact Geometric Computation Paradigm (ECG) Yap, 93
 • implement a Real-RAM to the extent needed
 the challenge is efficiency and keeping extent low
 • redesign the algorithms so that they can handle all inputs and have small arithmetic demand
• ECG applies to all geometric algorithms
• basis for LEDA and CGAL
The ECG Paradigm: State of the Art

- Implement a Real-RAM to the extend needed.

- For linear geometric objects, efficiency and reliability can be achieved simultaneously (1992 – 2002)
 - This required to develop some theory and
 - serious systems building (LEDA, CGAL)

- Working Hypothesis: to a large extent, this also holds true for nonlinear geometric objects (2002 –
 - This requires lots of new theory

- and serious systems building (CGAL)
The ECG Paradigm: State of the Art

- Implement a Real-RAM to the extend needed.

- For linear geometric objects, efficiency and reliability can be achieved simultaneously (1992 – 2002)
 - This required to develop some theory and
 - serious systems building (LEDA, CGAL)

- Working Hypothesis: to a large extent, this also holds true for nonlinear geometric objects (2002 –
 - This requires lots of new theory
 - new geometric algorithms with smaller arithmetic demand,
 - advances in computer algebra, in particular polynomial system solving, and
 - better interplay between symbolic, numeric and geometric computing
 - and serious systems building (CGAL)
Intersection of Two Polygonal Cylinders

- construct cylinder P, base is regular n-gon,
- obtain Q from P by rotation by α degrees,
- and compute the union of P and Q
Intersection of Two Polygonal Cylinders

- construct cylinder P, base is regular n-gon,
- obtain Q from P by rotation by α degrees,
- and compute the union of P and Q

<table>
<thead>
<tr>
<th>system</th>
<th>n</th>
<th>α</th>
<th>time</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIS</td>
<td>1000</td>
<td>1.0e-4</td>
<td>10 sec</td>
<td>correct</td>
</tr>
<tr>
<td>ACIS</td>
<td>1000</td>
<td>1.0e-6</td>
<td>2sec</td>
<td>incorrect answer</td>
</tr>
<tr>
<td>Rhino3D</td>
<td>200</td>
<td>1.0e-2</td>
<td>15sec</td>
<td>correct</td>
</tr>
<tr>
<td>Rhino3D</td>
<td>400</td>
<td>1.0e-2</td>
<td>–</td>
<td>CRASH</td>
</tr>
<tr>
<td>CGAL/LEDA</td>
<td>5000</td>
<td>6.175e-06</td>
<td>30 sec</td>
<td>correct</td>
</tr>
<tr>
<td>CGAL/LEDA</td>
<td>5000</td>
<td>1.581e-09</td>
<td>34 sec</td>
<td>correct</td>
</tr>
<tr>
<td>CGAL/LEDA</td>
<td>$\rightarrow \infty$</td>
<td>$\rightarrow 0$</td>
<td>$\rightarrow \infty$</td>
<td>correct</td>
</tr>
</tbody>
</table>
Some Results for Nonlinear Geometry

Arno Eigenwillig
Dany Halperin (Tel Aviv)
Lutz Kettner (Mental Images)
Elmar Schömer (Mainz)
Stefan Schirra (Magdeburg)
Rudolf Fleischer (Shanghai)

Erik Berberich
Michael Hemmer
Kurt Mehlhorn
Raimund Seidel
Ron Wein (Tel Aviv)

Efi Fogel (Tel Aviv)
Michael Kerber
Michael Sagraloff
Vikram Sharma
Nicola Wolpert (Stuttgart)
A Basic Problem: Arrangement Computation

you see a planar embedded graph; the challenge is to compute the graph.

algorithms handle arbitrary degrees and degeneracies

- many curves have a common point
- different slopes
- same slope, different curvature,
- same slope and curvature, diff ...

contributors: all
Boolean Operation on Curved Polygons

green polygon is union of red and blue
computation takes about 10 secs for polygons with 1000 vertices
this is competitive with unreliable approaches
arrangement computation is the workhorse
Arrangements on Surfaces

• a step towards 3d
• arrangement on a torus-like surface defined by quadric surfaces
• method (and software) works for surfaces such as spheres, cylinders, tori, paraboloids, ...
• software is generic
• applications: point location, overlay, Minkowski sums, 3d boolean ops (???, Dupont, Hemmer, Petitjean, Schömer)
• Berberich, Fogel, Halperin, Hemmer, Mehlhorn, Schömer, Wein, Wolpert
Analysis of a Single Algebraic Surface

- a second step towards 3d
- topology of an algebraic surface
 - nodes = singularities
 - edges = self-intersections
 - faces = surface-patches
- triangulation of algebraic surfaces
- symbolic \Rightarrow verified approximate
Analysis of a Single Algebraic Surface

- a second step towards 3d
- topology of an algebraic surface
- triangulation of algebraic surfaces
- Berberich, Kerber, Sagraloff
A General Theme

compute numerically
and make sure that the results can
be interpreted symbolically

Approach has increased the effi-
ciency of our algorithms by three
orders of magnitude
Let E be an expression with integer operands and operators $+, -, \times$ and $\sqrt{}$. Define

- $u(E) =$ value of E after replacing $-$ by $+$.
- $k(E) =$ number of distinct square roots in E.

Then (BFMS, BFMSS)

$$E = 0 \quad \text{or} \quad |E| \geq \frac{1}{u(E)2^k(E) - 1}$$

Theorem allows us to determine signs of algebraic expressions by numerical computation with precision $(2^k(E) - 1) \log u(E)$.

related work: Mignotte, Canny, Dube/Yap, Li/Yap, Scheinermann

extensions: division, higher-order roots, roots of univariate polynomials
Numerical Sign Computation

\[\text{sep}(E) \leftarrow u(E)^{1-2^{k(E)}}; \quad \text{// bound from previous slide} \]

\[k \leftarrow 1; \]

\[\text{while (true)} \{ \]

\[\text{compute an approximation } \tilde{E} \text{ with } |E - \tilde{E}| < 2^{-k}; \]

\[\text{if (} |\tilde{E}| \geq 2^{-k} \text{) return } \text{sign}(\tilde{E}); \]

\[\text{if (} 2^{-k} < \text{sep}(E)/2 \text{) return “sign is zero”;} \quad \text{// since } |E| \leq 2^{-k} + 2^{-k} < \text{sep}(E) \]

\[k \leftarrow 2 \cdot k; \quad \text{// double the precision} \]

\[\}

- \(\tilde{E} \) is computed by numerical methods
- worst case complexity is determined by separation bound: maximal precision required is logarithm of separation bound
- easy cases are decided quickly (a \textbf{big} plus of the numerical approach)
- strategy above is basis for sign test in LEDA and CORE \textit{reals}.
Root Isolation for Bitstream Polynomials

- Polynomial $p(x) = \sum_{0 \leq i \leq n} a_i x^i$.
- The a_i are arbitrary reals, can compute approximations, e.g., $\pi = 3.14\ldots$
- To isolate a real root z of p means to compute an interval $[a, b]$ with rational endpoints containing z and no other root of p.
- Same running time on $x^3 - 3$, on $\sqrt{2}x^3 - 3\sqrt{2}$, and on $\pi x^3 - 3\pi$.
- All previous algorithms exhibited large differences.
- Isolate roots of $\tilde{p}(x) = \sum_{0 \leq i \leq n} \tilde{a}_i x^i$, where $\tilde{a}_i \approx a_i$.
 - Issues: same number of real roots, intervals for \tilde{p} apply to p, running time determined by geometry of zero set of p.
- New root isolator is key for our implementations.
- Symbolic \Rightarrow verified approximate.
given an algebraic curve $p(x, y)$, can determine a polynomial $R(x)$ whose roots are the x-coordinates of the critical points, here α

- we isolate α and obtain an approximation $\tilde{\alpha}$
- want zeros of $p(\alpha, y)$
- know from a symbolic computation that $p(\alpha, y)$ has three distinct real roots one of which is a double root
- determine roots of $p(\tilde{\alpha}, y)$
- can infer situation at α from situation at $\tilde{\alpha}$
- how good does $\tilde{\alpha}$ have to be?

Eigenwillig, Hemmer, Kerber, Seidel, Wolpert
CGAL

• CGAL = computational geometry algorithms library

• The goal of the CGAL Open Source Project is to provide easy access to efficient and reliable geometric algorithms in the form of a C++ library

• Why a library?
 • Build on the shoulders of others
 • Preserve good solutions

• Why CGAL?
 • CGAL offers many algorithms.
 • CGAL is generic, i.e., modules are easily reused, e.g.,
 \[\text{gcd for polynomials over any ring and not just for integer polynomials} \]
Genericity and Functionality

- arrangements, initially, for curves with integral coefficients

\[7x^3 + 4xy^2 + \ldots \]

- rotation by \(\alpha \) degrees:
 \[x' = x \cos \alpha + y \sin \alpha, \quad y' = \ldots \]

- \(\alpha = 30 \) degree, \(\cos \alpha = \sqrt{3}/2, \sin \alpha = 1/2 \)

- new number type: \(\mathbb{Z}[\sqrt{k}] \) for integer \(k \)

- now algorithms can also handle rotated curves (as long as sine and cosine can be expressed as roots)

- Hemmer, Kerber
Outlook

- symbolic ⇒ verified approximate
 - improved running time without sacrificing correctness
 - but symbolic computations are still the bottleneck
- Bezier curves and surfaces
- 3D arrangements of surfaces,
- Boolean operations, offsets, . . . of 2d polygons whose edges are algebraic curve or Bezier curve segments
- Boolean operations, offsets, . . . of 3d polyhedra whose faces are algebraic surface or Bezier surface patches
- Rounding and Cascaded Constructions
- LEDA/CGAL have a fairly large academic and commercial user base
- achieve the same for nonlinear CGAL