
Reliable and Efficient Geometric Computation

Kurt Mehlhorn
Max-Planck-Institut für Informatik

slides and papers are available at my home page

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.1/28

My Waterloo Co-Authors

Cheriyan: Maximum Flow (SICOMP 96), Algs for Dense Graphs
(Algorithmica 96), Highest-Level Selection (IPL 99)

Koenemann: Exact Geometric Computation in LEDA (CompGeo 96)

Munro: Partial Match Retrieval (IPL 84), Random Variates (ICALP 93),
Multiple Selection (ICALP 05)

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.2/28

Geometric Computing

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.3/28

The Goal: Reliable and Efficient Geometric Computing

in particular, a reliable and efficient CAD kernel

reliable = produce a sensible output for all inputs

sensible output =
• the mathematically correct output or
• something provably close to the correct output

efficient = at most ten times slower than existing unreliable implementa-
tions

Why am I interested?
• mathematically challenging
• industrially relevant
• I blundered once: the first release of geometry in LEDA was unreliable

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.4/28

State of the Art
Most existing implementations (commercial or academic) are unreliable

• may crash or produce non-sensical answers see next slide

Where do we stand?
• we = reliable geometric algorithms project at MPI +

EU-projects CGAL, GALIA, ECG and ACS
• linear (lines, planes, points) geometry in 2d and 3d: nice academic

work + first industrial impact
• curved geometry in 2d: nice academic work + first industrial impact
• curved geometry in 3d: nice academic work
• implementations available in LEDA, CGAL, and EXACUS (ESA 2005)

How do we work?
• develop the required theory and system architecture and build

prototypical systems to validate the theory and to have impact beyond
our own community

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.5/28

Examples I: Intersection of 3d-Solids

Rhino3d crashes on this input the correct output

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.6/28

Examples II: Intersection of Planar 3d-Solids

Task: construct a regular cylinder P (base = regular n-gon) obtain Q from P by
a rotation by α degrees about its center, and compute the union of P and Q

System n α time output
ACIS 1000 1.0e-4 30 sec correct
ACIS 1000 1.0e-6 30 sec incorrect
CGAL/LEDA 1000 1.0e-6 44 sec correct
CGAL/LEDA 2000 1.0e-7 900sec correct

Granados/Hachenberger/
Hert/Kettner/Mehlhorn/Seel:
ESA 2003

Hachenberger/Kettner:
ESA 2005

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.7/28

Example III: Curved Polygons

• the green polygon is the union of the red and the blue polygon
• edges are half-circles (more generally, conic arcs)
• computation takes about 30 seconds for polygons with 1000 edges
• requires extension of sweep line algorithm and exact computation with

algebraic numbers of degree at most four

Berberich/Eigenwillig/Hemmer/Hert/Mehlhorn/Schömer: ESA 2002

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.8/28

Example IV: Degeneracies

A highly degenerate exam-
ple:

• many curves have a
common point

• different slopes
• same slope, different

curvature,
• same slope and curva-

ture, diff . . .

algorithm computes a planar
map and not only a picture

Berberich/Eigenwillig/Hemmer/Schömer/Wolpert:

CompGeo 2004

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.9/28

What is difficult?

• algs are designed for the real-RAM and non-degenerate inputs

• real-RAM = machine computes with real numbers in the sense of
mathematics: exact roots of polynomials, sine, cosine, . . .

• non-degenerate inputs: no three points on a line, no three curves
through a point, . . .

• but real inputs are frequently degenerate and

• real computers are not real-RAMs (32 bit integer and double precision
floating point arithmetic)

• the next three slides illustrate the pitfalls of floating point computation

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.10/28

The Orientation Predicate

•
three points p, q, and r in the plane either lie
on a common line or form a left or right turn
orient(p,q,r) = 0, +1, −1 −1

+1

• analytically

orient(p,q,r) = sign(det







1 px py

1 qx qy

1 rx ry






)

= sign((qx − px)(ry − py)− (qy − py)(rx − px)).

• det is twice the signed area of the triangle (p,q,r)

• float_orient(p,q,r) is result of evaluating orient(p,q,r) in floating point
arithmetic

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.11/28

Geometry of Float-Orient

p = (0.5,0.5), q = (12,12) and r = (24,24)

0.5 0.5+255 ·2−53

picture shows

float_orient((px + xu, py + yu),q,r)

for 0 ≤ x,y ≤ 255, where u = 2−53.

the line `(q,r) is shown in black

near the line many points are mis-classified
Kettner/Mehlhorn/Pion/Schirra/Yap: ESA 2004

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.12/28

A Simple Convex Hull Algorithm
• alg considers the points one by one, maintains vertices of current hull in

counter-clockwise order

• Initialize L to the counter-clockwise triangle (a,b,c).
for all r ∈ S do

if there is an edge e visible from r then
compute the sequence (vi, . . . ,v j) of edges visible from r.
replace the subsequence (vi+1, . . . ,v j−1) by r.

end if
end for

•

PSfrag replacementsr

vi

v j
Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.13/28

The Effect on a Simple Convex Hull Algorithm

p1, p5

p2 p3

p4

p1, p5

p2 p3

p4

p6

PSfrag replacements

p1 p5

PSfrag replacements

p1 p5

• the hull of p1 to p4 is
correctly computed

• p5 lies close to p1, lies
inside the hull of the first
four points, but float-sees
the edge (p1, p4). The
magnified schematic
view below shows that
we have a concave
corner at p5.

• point p6 sees the edges
(p1, p2) and (p4, p5), but
does not see the edge
(p5, p1).

• we obtain either the hull
shown in the figure on the
right or ...

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.14/28

Solutions
• Solutions for single algorithms.
• The Exact Geometric Computation Paradigm (ECG)

• implement a Real-RAM to the extent needed in computational
geometry the challenge is efficiency

• redesign the algorithms so that they can handle all inputs and have
small arithmetic demand

• Exact Computation Paradigm applies to all geometric algorithms
• basis for LEDA, CGAL, and EXACUS

• Approximation via Controlled Perturbation
• compute the correct result for a slightly perturbed input
• initiated by Danny Halperin and co-workers and refined and

generalized by us
• Controlled perturbation applies to a large class of geometric

algorithms
• successfully used for Delaunay, Voronoi, arrangements of circles

and spheres
Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.15/28

Controlled Perturbation

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.16/28

Geometry of Float-Orient

•

• picture shows

float_orient((px +xu, py+yu),q,r)

for 0 ≤ x,y ≤ 255, where
u = 2−53.

the line `(q,r) is shown in black
• near the line many points are

mis-classified

• outside a narrow strip around the curve of degeneracy, points are
classified correctly !!!

• how narrow is narrow?
• true for all geometric predicates?
• if true, can we exploit to design reliable algorithms

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.17/28

Basics
• our program operates on points q1 to qn

•
to perturb a point qi:

move it to random point pi in the disk
Bδ (qi) of radius δ centered at qi

PSfrag replacements δ
qi

• programs branch on the sign (+1, 0, -1) of expressions
• we use floating point arithmetic with mantissa length L
• the maximum error in evaluating an expression E is ME

• ME = something ·2−L

• if |E| > ME , it is safe to evaluate E with floating point arithmetic and to
branch on the sign of the result

• we have a geometric program that works for all non-degenerate inputs
(if executed with exact real arithmetic)

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.18/28

Converting a Program to Controlled Perturbation
• guard every predicate evaluation, i.e.,

replace branch on sign of E by

if (|E| ≤ max error in evaluation of E) stop with exception;
branch on sign of E

• and then run the following master program
• initialize δ and L to convenient values
• loop

• perturb input
• run the guarded algorithm with floating point precision L
• if the program fails, double L and rerun

• observe that program needs to be changed only slightly
• guards for predicates and master loop

• guards can be avoided by use of interval arithmetic

Theorem: For a large class of geometric programs: modified program
terminates and returns the exact result for the perturbed input. Moreover (!!!),
can quantify relation between δ and L.

Mehlhorn/Osbild/Sagraloff: ICALP 06

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.19/28

Converting a Program to Controlled Perturbation
• guard every predicate evaluation, i.e.,

replace branch on sign of E by

if (|E| ≤ max error in evaluation of E) stop with exception;
branch on sign of E

• and then run the following master program
• initialize δ and L to convenient values
• loop

• perturb input
• run the guarded algorithm with floating point precision L
• if the program fails, double L and rerun

Theorem: For a large class of geometric programs: modified program
terminates and returns the exact result for the perturbed input. Moreover (!!!),
can quantify relation between δ and L.

Mehlhorn/Osbild/Sagraloff: ICALP 06

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.19/28

How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−L

• if 2|∆| > 28 ·M2 ·2−L, float_orient gives the correct result

• |∆| = (1/2)dist(q,r) ·dist(`(q,r), p) q r

p

• if dist(q,r) ·dist(`(q,r), p) > 28 ·M2 ·2−L,
float_orient gives the correct result

• if dist(`((q,r), p)) ≥ 28 ·M2 ·2−L/dist(q,r),

float_orient(p,q,r) gives the correct result.

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.20/28

How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−L

• Punch Line: if
dist(`((q,r), p)) ≥ 28 ·M2 ·2−L/dist(q,r),

float_orient(p,q,r) gives the correct result.

on the right, q and r have one
third the distance than in figure
on the left

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.20/28

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.

• assume p1 to pn−1 are already determined:
• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1

PSfrag replacements qn

p1

p2

p3 • whp = (choice of pn fails with prob
≤ 1/(2n))

• prob, some choice fails is ≤ 1/2
• with prob 1/2, perturbed points are

f-safe

• need that strips cover at most fraction
1/(2n) of ball Bδ (qn)

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.21/28

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1

PSfrag replacements qn

p1

p2

p3

• whp = (choice of pn fails with prob
≤ 1/(2n))

• prob, some choice fails is ≤ 1/2
• with prob 1/2, perturbed points are

f-safe

• need that strips cover at most fraction
1/(2n) of ball Bδ (qn)

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.21/28

Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1

PSfrag replacements qn

p1

p2

p3 • whp = (choice of pn fails with prob
≤ 1/(2n))

• prob, some choice fails is ≤ 1/2
• with prob 1/2, perturbed points are

f-safe

• need that strips cover at most fraction
1/(2n) of ball Bδ (qn)

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.21/28

Controlled Perturbation II
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1
• need that strips cover at most fraction 1/(2n) of ball Bδ (qn)

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 + n2 · (28 ·M2 ·2−L/γ) ·2 ·δ

• want: size of FR ≤ π ·δ 2/(2n)

• fix γ so as to minimize FR and obtain

any L ≥ 2log(M/δ)+4logn+9 works
• M = 1000, δ = 0.001, n = 1000, L ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.22/28

Controlled Perturbation II
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1
• need that strips cover at most fraction 1/(2n) of ball Bδ (qn)

• A small problem : strips can be arbitrarily wide
• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 + n2 · (28 ·M2 ·2−L/γ) ·2 ·δ

PSfrag replacements

qn

• want: size of FR ≤ π ·δ 2/(2n)

• fix γ so as to minimize FR and obtain

any L ≥ 2log(M/δ)+4logn+9 works
• M = 1000, δ = 0.001, n = 1000, L ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.22/28

Controlled Perturbation II
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1
• need that strips cover at most fraction 1/(2n) of ball Bδ (qn)

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 + n2 · (28 ·M2 ·2−L/γ) ·2 ·δ

• want: size of FR ≤ π ·δ 2/(2n)

• fix γ so as to minimize FR and obtain

any L ≥ 2log(M/δ)+4logn+9 works
• M = 1000, δ = 0.001, n = 1000, L ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.22/28

Controlled Perturbation II
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1
• need that strips cover at most fraction 1/(2n) of ball Bδ (qn)

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 + n2 · (28 ·M2 ·2−L/γ) ·2 ·δ

• want: size of FR ≤ π ·δ 2/(2n)

• fix γ so as to minimize FR and obtain

any L ≥ 2log(M/δ)+4logn+9 works
• M = 1000, δ = 0.001, n = 1000, L ≥ 2 ·20+4 ·10+9 = 89

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.22/28

Generalization to All (??) Geometric Predicates

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

x1 to xk points (in the plane)

x = (x1, . . . ,xk−1) fixed, x = xk variable q, r fixed, p variable

Cx = {x : f (x,x) = 0}, curve of degeneracy C = {p :orient(p,q,r) = 0}
Cx is either the entire plane or a curve plane or `(q,r)

PSfrag replacements

x

x0

Cx Relate f (x,x) to the distance of x from Cx.

f (x,x) ≥ g(x) ·dist(Cx,x)

Forbidden region becomes tubular neighbor-
hood of Cx of width M f /g(x)

analyse g(x) recursively

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.23/28

Generalization II
• in ICALP 06 paper, we show how to analyse a large class of predicates

in the same way
• predicates with a fixed number of arguments

• controlled perturbation applies to any algorithm
• using only predicates as above and
• whose running time is bounded as a function of number of input

points

• most algorithms in CGAL are covered

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.24/28

The Exact Computation Paradigm

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.25/28

Improved Algs: Arrangements of Algebraic Curves

• algebraic curve = zero set of a
polynomial in variables x and y

• assume rational coefficients
• x2 + y2 = 9 defines circle of radius 3
• compute x-coordinates of event points

(vertical tangents, singularities,
intersections)

• event point are algebraic numbers

• substitute x-values into algebraic curves and determine the roots of the
resulting equations in y

• this requires to determine roots of polynomials with algebraic
coefficients

• Seidel/Wolpert: CompGeo 2005: can do with roots of polynomials with
rational coefficients

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.26/28

Efficient Computation with Algebraic Numbers

• p(x) = ∑0≤i≤n pixi, a polynomial of degree n

• pn ≥ 1, pi ≤ 2τ for all i τ bits before binary point
• sep(p) = minimum distance between any two roots of p, the root

separation of p.
• Theorem: Isolating intervals for real roots can be computed in time

polynomial in n and τ + log1/sep(p).

• more precisely, O(n4(τ + log(1/sep(p)))2) bit operations
requires O(n(τ + log(1/sep(p)))) bits of each coefficient

• for integer coefficients, our algorithm has the same complexity as
previous algs

• experiments: p(x) a polynomial with integer coefficients
running times on p(x), π · p(x), and

√
2 · p(x) are essentially the same

Eigenwillig/Kettner/Krandick/Mehlhorn/Schmitt/Wolpert: CASC 2005

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.27/28

Summary

Most existing implementations (commercial or academic) are unreliable
• may crash or produce non-sensical answers

Where do we stand?
• we = reliable geometric algorithms project at MPI +

EU-projects CGAL, GALIA, ECG and ACS
• linear (lines, planes, points) geometry in 2d and 3d: nice academic

work + industrial impact
• curved geometry in 2d: nice academic work + industrial impact
• curved geometry in 3d: nice academic work
• implementations available in LEDA, CGAL, and EXACUS (ESA 2005)

How do we work?
• develop the required theory and build prototypical systems to validate

the theory and to have impact beyond our own community
Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.28/28

	My Waterloo Co-Authors
	Geometric Computing
	The Goal: Reliable and Efficient Geometric Computing
	State of the Art
	Examples I: Intersection of 3d-Solids
	Examples II: Intersection of Planar 3d-Solids
	Example III: Curved Polygons
	Example IV: Degeneracies
	What is difficult?
	The Orientation Predicate
	Geometry of Float-Orient
	A Simple Convex Hull Algorithm
	The Effect on a Simple Convex Hull Algorithm
	Solutions
	
	Geometry of Float-Orient
	Basics
	Converting a Program to Controlled Perturbation
	How Narrow is Narrow?
	Controlled Pertubation I
	Controlled Perturbation II
	Generalization to All (??)
Geometric Predicates
	Generalization II
	
	Improved Algs: Arrangements of Algebraic Curves
	Efficient Computation with Algebraic Numbers
	Summary

