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My Waterloo Co-Authors

Cheriyan: Maximum Flow (SICOMP 96), Algs for Dense Graphs
(Algorithmica 96), Highest-Level Selection (IPL 99)

Koenemann: Exact Geometric Computation in LEDA (CompGeo 96)

Munro: Partial Match Retrieval (IPL 84), Random Variates (ICALP 93),
Multiple Selection (ICALP 05)
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Geometric Computing

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.3/28



The Goal: Reliable and Efficient Geometric Computing

in particular, a reliable and efficient CAD kernel

reliable = produce a sensible output for all inputs

sensible output =
• the mathematically correct output or
• something provably close to the correct output

efficient = at most ten times slower than existing unreliable implementa-
tions

Why am I interested?
• mathematically challenging
• industrially relevant
• I blundered once: the first release of geometry in LEDA was unreliable
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State of the Art
Most existing implementations (commercial or academic) are unreliable

• may crash or produce non-sensical answers see next slide

Where do we stand?
• we = reliable geometric algorithms project at MPI +

EU-projects CGAL, GALIA, ECG and ACS
• linear (lines, planes, points) geometry in 2d and 3d: nice academic

work + first industrial impact
• curved geometry in 2d: nice academic work + first industrial impact
• curved geometry in 3d: nice academic work
• implementations available in LEDA, CGAL, and EXACUS (ESA 2005)

How do we work?
• develop the required theory and system architecture and build

prototypical systems to validate the theory and to have impact beyond
our own community
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Examples I: Intersection of 3d-Solids

Rhino3d crashes on this input the correct output
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Examples II: Intersection of Planar 3d-Solids

Task: construct a regular cylinder P (base = regular n-gon) obtain Q from P by
a rotation by α degrees about its center, and compute the union of P and Q

System n α time output
ACIS 1000 1.0e-4 30 sec correct
ACIS 1000 1.0e-6 30 sec incorrect
CGAL/LEDA 1000 1.0e-6 44 sec correct
CGAL/LEDA 2000 1.0e-7 900sec correct

Granados/Hachenberger/
Hert/Kettner/Mehlhorn/Seel:
ESA 2003

Hachenberger/Kettner:
ESA 2005
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Example III: Curved Polygons

• the green polygon is the union of the red and the blue polygon
• edges are half-circles (more generally, conic arcs)
• computation takes about 30 seconds for polygons with 1000 edges
• requires extension of sweep line algorithm and exact computation with

algebraic numbers of degree at most four

Berberich/Eigenwillig/Hemmer/Hert/Mehlhorn/Schömer: ESA 2002
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Example IV: Degeneracies

A highly degenerate exam-
ple:

• many curves have a
common point

• different slopes
• same slope, different

curvature,
• same slope and curva-

ture, diff . . .

algorithm computes a planar
map and not only a picture

Berberich/Eigenwillig/Hemmer/Schömer/Wolpert:

CompGeo 2004
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What is difficult?

• algs are designed for the real-RAM and non-degenerate inputs

• real-RAM = machine computes with real numbers in the sense of
mathematics: exact roots of polynomials, sine, cosine, . . .

• non-degenerate inputs: no three points on a line, no three curves
through a point, . . .

• but real inputs are frequently degenerate and

• real computers are not real-RAMs (32 bit integer and double precision
floating point arithmetic)

• the next three slides illustrate the pitfalls of floating point computation
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The Orientation Predicate

•
three points p, q, and r in the plane either lie
on a common line or form a left or right turn
orient(p,q,r) = 0, +1, −1 −1

+1

• analytically

orient(p,q,r) = sign(det







1 px py

1 qx qy

1 rx ry






)

= sign((qx − px)(ry − py)− (qy − py)(rx − px)).

• det is twice the signed area of the triangle (p,q,r)

• float_orient(p,q,r) is result of evaluating orient(p,q,r) in floating point
arithmetic
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Geometry of Float-Orient

p = (0.5,0.5), q = (12,12) and r = (24,24)

0.5 0.5+255 ·2−53

picture shows

float_orient((px + xu, py + yu),q,r)

for 0 ≤ x,y ≤ 255, where u = 2−53.

the line `(q,r) is shown in black

near the line many points are mis-classified
Kettner/Mehlhorn/Pion/Schirra/Yap: ESA 2004

Kurt Mehlhorn, MPI für Informatik Reliable and Efficient Geometric Computation – p.12/28



A Simple Convex Hull Algorithm
• alg considers the points one by one, maintains vertices of current hull in

counter-clockwise order

• Initialize L to the counter-clockwise triangle (a,b,c).
for all r ∈ S do

if there is an edge e visible from r then
compute the sequence (vi, . . . ,v j) of edges visible from r.
replace the subsequence (vi+1, . . . ,v j−1) by r.

end if
end for

•

PSfrag replacementsr

vi

v j
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The Effect on a Simple Convex Hull Algorithm

p1, p5

p2 p3

p4

p1, p5

p2 p3

p4

p6

PSfrag replacements

p1 p5

PSfrag replacements

p1 p5

• the hull of p1 to p4 is
correctly computed

• p5 lies close to p1, lies
inside the hull of the first
four points, but float-sees
the edge (p1, p4). The
magnified schematic
view below shows that
we have a concave
corner at p5.

• point p6 sees the edges
(p1, p2) and (p4, p5), but
does not see the edge
(p5, p1).

• we obtain either the hull
shown in the figure on the
right or ...
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Solutions
• Solutions for single algorithms.
• The Exact Geometric Computation Paradigm (ECG)

• implement a Real-RAM to the extent needed in computational
geometry the challenge is efficiency

• redesign the algorithms so that they can handle all inputs and have
small arithmetic demand

• Exact Computation Paradigm applies to all geometric algorithms
• basis for LEDA, CGAL, and EXACUS

• Approximation via Controlled Perturbation
• compute the correct result for a slightly perturbed input
• initiated by Danny Halperin and co-workers and refined and

generalized by us
• Controlled perturbation applies to a large class of geometric

algorithms
• successfully used for Delaunay, Voronoi, arrangements of circles

and spheres
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Controlled Perturbation
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Geometry of Float-Orient

•

• picture shows

float_orient((px +xu, py+yu),q,r)

for 0 ≤ x,y ≤ 255, where
u = 2−53.

the line `(q,r) is shown in black
• near the line many points are

mis-classified

• outside a narrow strip around the curve of degeneracy, points are
classified correctly !!!

• how narrow is narrow?
• true for all geometric predicates?
• if true, can we exploit to design reliable algorithms
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Basics
• our program operates on points q1 to qn

•
to perturb a point qi:

move it to random point pi in the disk
Bδ (qi) of radius δ centered at qi

PSfrag replacements δ
qi

• programs branch on the sign (+1, 0, -1) of expressions
• we use floating point arithmetic with mantissa length L
• the maximum error in evaluating an expression E is ME

• ME = something ·2−L

• if |E| > ME , it is safe to evaluate E with floating point arithmetic and to
branch on the sign of the result

• we have a geometric program that works for all non-degenerate inputs
(if executed with exact real arithmetic)
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Converting a Program to Controlled Perturbation
• guard every predicate evaluation, i.e.,

replace branch on sign of E by

if (|E| ≤ max error in evaluation of E) stop with exception;
branch on sign of E

• and then run the following master program
• initialize δ and L to convenient values
• loop

• perturb input
• run the guarded algorithm with floating point precision L
• if the program fails, double L and rerun

• observe that program needs to be changed only slightly
• guards for predicates and master loop

• guards can be avoided by use of interval arithmetic

Theorem: For a large class of geometric programs: modified program
terminates and returns the exact result for the perturbed input. Moreover (!!!),
can quantify relation between δ and L.

Mehlhorn/Osbild/Sagraloff: ICALP 06
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How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−L

• if 2|∆| > 28 ·M2 ·2−L, float_orient gives the correct result

• |∆| = (1/2)dist(q,r) ·dist(`(q,r), p) q r

p

• if dist(q,r) ·dist(`(q,r), p) > 28 ·M2 ·2−L,
float_orient gives the correct result

• if dist(`((q,r), p)) ≥ 28 ·M2 ·2−L/dist(q,r),

float_orient(p,q,r) gives the correct result.
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How Narrow is Narrow?
• orient(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)) = sign(E)

• E = 2· signed area ∆ of the triangle (p,q,r)
• if coordinates are bounded by M, maximal error in evaluating E with

floating point arithmetic with mantissa length p is 28 ·M2 ·2−L

• Punch Line: if
dist(`((q,r), p)) ≥ 28 ·M2 ·2−L/dist(q,r),

float_orient(p,q,r) gives the correct result.

on the right, q and r have one
third the distance than in figure
on the left
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Controlled Pertubation I
• consider algorithms using only the orientation predicate
• input points q1, . . . , qn: perturb into p1, . . . , pn such that all

evaluations for the perturbed points are f-safe.

• assume p1 to pn−1 are already determined:
• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1

PSfrag replacements qn

p1

p2

p3 • whp = (choice of pn fails with prob
≤ 1/(2n))

• prob, some choice fails is ≤ 1/2
• with prob 1/2, perturbed points are

f-safe

• need that strips cover at most fraction
1/(2n) of ball Bδ (qn)
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Controlled Perturbation II
• assume p1 to pn−1 are already determined:

• choose pn in a circle of radius δ about qn such that whp
• pn lies outside all strips of half-width 28 ·M2 ·2−L/dist(pi, p j) about

`(pi, p j) for 1 ≤ i < j ≤ n−1
• need that strips cover at most fraction 1/(2n) of ball Bδ (qn)

• IDEA: also guarantee dist(pi, p j) > γ for some γ

• then size of forbidden region ≤ n ·π · γ2 + n2 · (28 ·M2 ·2−L/γ) ·2 ·δ

• want: size of FR ≤ π ·δ 2/(2n)

• fix γ so as to minimize FR and obtain

any L ≥ 2log(M/δ )+4logn+9 works
• M = 1000, δ = 0.001, n = 1000, L ≥ 2 ·20+4 ·10+9 = 89
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Generalization to All (??) Geometric Predicates

general orientation
predicate P(x1, . . . ,xk) = sign f (x1, . . . ,xk) orient(p,q,r)

x1 to xk points (in the plane)

x = (x1, . . . ,xk−1) fixed, x = xk variable q, r fixed, p variable

Cx = {x : f (x,x) = 0}, curve of degeneracy C = {p :orient(p,q,r) = 0}
Cx is either the entire plane or a curve plane or `(q,r)

PSfrag replacements

x

x0

Cx Relate f (x,x) to the distance of x from Cx.

f (x,x) ≥ g(x) ·dist(Cx,x)

Forbidden region becomes tubular neighbor-
hood of Cx of width M f /g(x)

analyse g(x) recursively
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Generalization II
• in ICALP 06 paper, we show how to analyse a large class of predicates

in the same way
• predicates with a fixed number of arguments

• controlled perturbation applies to any algorithm
• using only predicates as above and
• whose running time is bounded as a function of number of input

points

• most algorithms in CGAL are covered
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The Exact Computation Paradigm
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Improved Algs: Arrangements of Algebraic Curves

• algebraic curve = zero set of a
polynomial in variables x and y

• assume rational coefficients
• x2 + y2 = 9 defines circle of radius 3
• compute x-coordinates of event points

(vertical tangents, singularities,
intersections)

• event point are algebraic numbers

• substitute x-values into algebraic curves and determine the roots of the
resulting equations in y

• this requires to determine roots of polynomials with algebraic
coefficients

• Seidel/Wolpert: CompGeo 2005: can do with roots of polynomials with
rational coefficients
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Efficient Computation with Algebraic Numbers

• p(x) = ∑0≤i≤n pixi, a polynomial of degree n

• pn ≥ 1, pi ≤ 2τ for all i τ bits before binary point
• sep(p) = minimum distance between any two roots of p, the root

separation of p.
• Theorem: Isolating intervals for real roots can be computed in time

polynomial in n and τ + log1/sep(p).

• more precisely, O(n4(τ + log(1/sep(p)))2) bit operations
requires O(n(τ + log(1/sep(p)))) bits of each coefficient

• for integer coefficients, our algorithm has the same complexity as
previous algs

• experiments: p(x) a polynomial with integer coefficients
running times on p(x), π · p(x), and

√
2 · p(x) are essentially the same

Eigenwillig/Kettner/Krandick/Mehlhorn/Schmitt/Wolpert: CASC 2005
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Summary

Most existing implementations (commercial or academic) are unreliable
• may crash or produce non-sensical answers

Where do we stand?
• we = reliable geometric algorithms project at MPI +

EU-projects CGAL, GALIA, ECG and ACS
• linear (lines, planes, points) geometry in 2d and 3d: nice academic

work + industrial impact
• curved geometry in 2d: nice academic work + industrial impact
• curved geometry in 3d: nice academic work
• implementations available in LEDA, CGAL, and EXACUS (ESA 2005)

How do we work?
• develop the required theory and build prototypical systems to validate

the theory and to have impact beyond our own community
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