=

R

A 1zex . Integer Arithmetics %
|
x| 1%
g &
- [B
o i
x>
x|
* P4liS
o
An appetizer is supposed to s appetite at thimbieg) of a meal. This is
exactly the purpose of t t to stimulate yderest in algorithmié

It. The schotiodefor multiplying in-
tegers is not the best multi
large integers, i.e., integers Wi nds or even ambiof digits, and we shall
teach you one of them.

Arithmetic on long integers is ne
computing, and computer algebra al mukifdtin algorithm is not

ne.t@e way, we shall learn

shall also see the interplay of theory an

We assume that integers are represented igi se InaseB number
system, wherd is an integer larger than one 0, Btol and a
digit stringa,_1an_2...a180 represents the nu e most important
systems with a small value &are base 2, with €
to 9, and base 16, with digits 0 to 15 (frequently W
F). Larger bases, such a& 216, 232 and #4, are also usef

“10101” in base 2 represents -2*+0.234+1.2 21,
“924” in base 10 represents Q0P+ 2-10' + 4-
We assume that we have two primitive operations at our dap ddition

of three digits with a two-digit result (this is sometimediea a full ad and the

1 The Soviet stamp on this page shoMishammad ibn Musa al-Khw.
mately 780; died between 835 and 850), Persian mathenraicid astronomer from the
Khorasan province of present-day Uzbekistan. The wordofélgm” is derived from his
name.

2 1 Appetizer: Integer Arithmetics

multiplication of two digits with a two-digit result.For example, in base 10, we
have

5 and 67=42.

13
iciency of our algorithms by the nurabprimitive opera-

We shall measure the
tions executed
We ca any-digit integer into anmm-digit integer for anym> n by
adding additional lead 0s. Concretely, “425” and0@R5” represent the same
integer. We shall or the two operands of an addition or multiplication
and assume throdig i ion @andb aren-digit integers. The assumption

shall come back to thigkeahthe end of the

to ap, with a,_1 being the most significant
digit (also called leading digit),andy being the least significant digit, and write
a=(ap-1...a9). The i
denote the digits db, an

1.1 Addition
We all know how to add two i :)yandb = (by_1...bg). We
simply write one under the other wit ificagiitdialigned, and sum

ipom to the next. This digit
= (%...%). Graphically,

an-1...a1

bn_l e bl bO
ChCh1..-C1 O
Sh Sh-1..- S1 S0
wherec, to ¢p is the sequence of carries aswd (s,
Ci1-B+s=a+hbi+c¢for0<i<nands,=c,. 1 is written as

c =0 :Digit

for i:=0ton—1do adda, bj, andcto forms and‘a new

Shi=cC

We need one primitive operation for each position, and hertcgéal ofpprimi-
tive operations.

Theorem 1.1. The addition of two n-digit integers requires exactl
ations. The result is an+ 1-digit integer.

2 Observe that the sum of three digits is at ma® 3 1) and the product of two digits is at
most(B—1)?, and that both expressions are boundedmy 1)-B'+(B—1)-B°=B? 1,
the largest integer that can be written with two digits.

1.2 Multiplication: The School Method 3

1.2 Multiplication: The School Method

We all know

multiply two integers. In this section, weal review the “school
section, we shall get to know a method iécsignificantly

lowly. We first review how to multiply mualigit integera by

useb; for the one-digit integer, since this is how we need

a-bj=c-B+d.

Ch-1C-2..-CG GC-1...C0

dn—1~~~di+1 di ...d1 do
sum ofc andd

Let us determine the nu i erations. Fohéawe need one prim-
otal ofn primitive operations. Then
we add twan+ 1-digit numb 1 primitive operations. So the total

number of primitive operatio

-digit a one-digit number vgitht- 1

t number, you will probably
proceed slightly differently. You combir¢he generation of the produds bj with
, i.e., you create the digit aihdd

when they are needed in the final additi
separate phase because this simplifies the de

Exercise 1.1. Give a program for the multipli
single phase.

We can now turn to the multiplication of twedig ,
for integer multiplication works as follows: we first form i
tiplying a by the j-th digit b; of b, and then sum the sui
to obtain the product ad andb. Graphically,

Pon Pon-1--- Po2 Po,1 Po,o
Pin Pin-1Pin-2-... P11 P10
P2n P2n-1 P2n-2 P2n-3--- P20

Pn—1n ... Pn—13 Pn—12 Pn-11 Pn-10
sum of then partial products

3 In the literature on compiler construction and performaopgmization, this transforma-
tion is known adoop fusion

4 1 Appetizer: Integer Arithmetics

The description in pseudocode is more compact. We iniéatie producp to zero
and then add to it the partial produetsb; - B! one by one:

umber of primitive operations requisetihb school method.
Each partial iarequires A+ 1 primitive operations, and hence all partial
products togethe 2+ n primitive operations. The produet- b is a -
digit numbe (summatiops- a- b; - Bl are summations ofr2digit
integers. requires at maspmitive operations, and hence all
additions together most22pr|m|t|ve operations. Thus, we need no more

A simple ob i to improve this bound. The bera- b; - B! has
n+ 1+ j digits, the | [e zero. We can therefore start the addition in
the j + 1-th positio -b;-Bl to p, we havep=a- (bj_1---by),

i.e., p hasn+ j digits! ition gb anda- b; - BJ amounts to the addition
i nmy+ 1 primitive operations. Therefore,
all additions together r itive operations. We have thus shown

the following result.

itive operations.

We have now analyzed th
school methods for integer addition
primitive operations for the school
Observe that & +2n = n?(3+2/n),
3n? for largen. We say thaM, grows q

[tiplooa The numbeM,, of
er nplittation is 32 + 2n.
is essentially the same as

3n?+2n B
3(n/2)2+2(n/2) ~ (n/2)?

Mn/Mn/Z =

in our fa-
en time the

Assume now that we actually implement the
vorite programming Ianguage (we shall do so Iater in th

reason is thaprimitive operations are representative of the ru s
gorithm Consider the addition of two-digit integers first. What happen
program is executed? For each positigtihe digitsa; andb; have to be m
processing unit, the sum + b; + ¢ has to be formed, the digi of the
to be stored in memory, the careys updated, the indeixis incre .
for loop exit needs to be performed. Thus, for eadine same niimber of machine
cycles is executed. We have counted one primitive operéioeachi, and hence

the number of primitive operations is representative ofrthmber of machine cy-

cles executed. Of course, there are additional effectexXample pipelining and the

ult needs

1.2 Multiplication: The School Method 5

" school méthod —+—
Tn/Tn/2

100

3.28527
3.67967 10 r
3.91413

256
512
1024
2048
4096
8192
16384
32768
65536
131072

time [sec]

o
o
s

0.001

0.0001 |

24 26 28 210 212 214 216

n

the multiplicataim-digit integers. The
g timeT,, of the Cr+ implementation
t on theight shows lodT, versus logn, and we

anP for onstants and, thenT/T, » = 2P

Fig. 1.1. The running time of t
three columns of the table on
givenin Sect. 1.7, and the rafla/

see essentially a line. Observe th

complex transport mechanism for data between memory amuttieessing unit, but
they will have a similar effect for all an
is also representative of the running time of a
machine. The argument extends to multiplic
by a one-digit number is a process similar t

gtation on an actual
ation of a number

of the data poinfs(logn,logT,). The data exhibits approximately quadrafi€ growth,
as we can deduce in various ways. The rdligT, , is always close t
the double logarithmic plot shows essentially a line of sltwo. The

4 The internal clock that measures CPU time returns its tisingsom , say millisec-
onds, and hence the rounding required introduces an erug td one-half of this unit. It
is therefore important that the experiment timed takes nhoieger than this unit, in order
to reduce the effect of rounding.

5 Throughout this book, we use lago denote the logarithm to base 2, Jog

6 1 Appetizer: Integer Arithmetics

are quite encouragingur theoretical analysis has predictive value. Our theizagt
analysis showed quadratic growth of the number of primitigerations, we argued
above that ing time should be related to the numbpriofitive operations,
ing time essentially grows quadraticdflowever, we also see

sy For smallthe growth from one row to the nextis less than by
a factor of f inear and constant terms in the runriing still play a substantial
role. For largem; i0\is very close to four. For very largétoo large to be timed
conveniently), we obably see a factor larger tham,fsince the access time

to memor 2 size of the data. We shall come battlistpoint in
Sect. 2.2.

Exercise 1.2. Writg s for the addition and multiplication of longégers
Represent integ (arrays or lists or whgtmweprogramming lan-
guage offers) of deci se the built-in aritiioi® implement the prim-

LTIPLY1, and MULTIPLYuinctions that add
integers, multiply al -digit number, andtiplyl integers, respec-
tively. Use your imple i e your own versibRig. 1.1. Experiment
with using a larger bas b&%e 2

Exercise 1.3. Describe an

1.3 Result Checking

Our algorithms for addition and multi
to assume that we can implement them correctly in the progriamlanguage of our
choice. However, writing softwafds ctivity, and hence we should
always ask ourselves whether we can of putation. For multi-
plication, the authors were taught the follo amentary school. The
method is known a®leunerprobean German, nes” in English, and
preuve par neufn French.

UseSy to denote this checksum. Here is an examp
4528— 19— 10— 1.

Do the same fob and the result of the computation. This
% and . All checksums are single-digit numbers. Compsies, and
checksuns. If sdiffers froms, c is not equal taa- b. This test was d ibed by
al-Khwarizmi in his book on algebra.

Let us go through a simple example. laet= 429,b = 357, a
Thens, = 6,5 = 6, ands, = 1. Also, S-S, = 36 and hence =

6 The bug in the division algorithm of the floating-point unfttbe original Pentium chip
became infamous. It was caused by a few missing entries inlaotable used by the
algorithm.

1.4 A Recursive Version of the School Method 7

hences; is not the product o andb. Indeed, the correct product és= 153153.
Its checksum is 9, and hence the correct product passessth&le test is not fool-
3 also passes the test. However, the test is quitel asefdetects

be the remai due, in the integer divisioa by q, i.e.,.sa=a—|a/q] - q.
Then0< s, < q. A matical notatios, = a modq.” Similarly, s, = b modq
ands, =cm S= (Sa-S) modg. If c=a-b, then it must be the case
thats= s # a-band uncovers a mistake in the multiplication.

What do we know/ifszs,s e know thaiq divides the difference of anda- b.
If this difference j mistake will be detectgdaby g which does not
divide the differe

and hence= (2-0)
135153+ 429-357.

Exercise 1.5 (Elferprobe, ¢
mainders modulo 11, namel

YPowers of ten have very simple re-
(-1 forallk>0,i.e., 1 mod 1:1,
—1, etc. Describe a simple test

encounter with théivide-and-conqueparadig
in algorithm design.
Leta andb be our twon-digit integers whic tiply. L&t= |n/2].

st signifieant digits and

and hence
a-b=ay-by-B*+ (a1-bo+a0-by) B +ap-bo.

This formula suggests the following algorithm for compugtan b:

7 The method taught in school uses residues in the range 1 SieShihof
the definitions = a— ([a/q] — 1) - q.

8 Observe that we have changed notatiapnanda; now denote the two parts afand are
no longer single digits.

to 8 according to

8 1 Appetizer: Integer Arithmetics

(a) Splitaandbinto a3, ag, b1, andbyp.
(b) Compute the four products - b1, a3 - bg, ag - by, andag - bg.

beas, ag, b1, andbg are [n/2]-digit numbers and hence the
(b) are simpler than the originalltiplication if [n/2] < n,
ealgorithm is now as follows. To multiply cdigit numbers,
nitive. To multiplg-digit numbers fon > 2, use the three-

his calleivide-and-conqueiVe reduce the problem
e number o$impler problems of the same kind. A
ays consists of threéspar the first part, we split
roblems of the same kiodr(step (a)); in the
blems using the samehéthr step (b)); and,
n to the original deob from the solutions to

divide-and-conq
the original prok
second part we
in the third part, w

. Visualization of the school method and
sive variant. The rhombus-shaped area

productsa; - by, a1 - bg, ag - b1, andag - bg. In the
recursi me, we first sum the partial prod-

What is the connection of our re ive integer multipimatto the school
method? It is really the same method.
ay - by, ap - by, andag - by are also computed in
recursive integer multiplication is just the sc
recursive algorithm uses a quadratic numbe

od. Knowing that our
se tells us that the

powerful concept for the analysis of recursive algo

Lemma 1.4. Let T(n) be the maximal number of primi
our recursive multiplication algorithm when applied t0 mid i

1 ifn=1
T =< {4~T([n/21)+3«2~n ifn>2.

Proof. Multiplying two one-digit numbers requires one primitj
This justifies the case= 1. So, assume > 2. Splittinga andb in e four pieces
ay, ap, by, andbg requires no primitive operatiorfsEach piece has at mogn/2]

9 It will require work, but it is work that we do not account far our analysis.

1.5 Karatsuba Multiplication 9

digits and hence the four recursive multiplications regairmost 4T ([n/2]) prim-
itive operations. Finally, we need three additions to asderthe final result. Each
0 numbers of at most #igits and hence requires at most 2
primitiv i This justifies the inequality fop 2. O

Il learn that such recurrences are eape and yield the
already conj dratic execution time of the réeigorithm.

our recursi icati Igorithm when applied to igitlintegers. Then Tn) <
7n? if nis a power offiwo, and h) < 28n? for all n.

In 1962, the Soviet mai ici uba [104] diseevarfaster way of multi-
plying large integers. Th ' is algorithmwgsdike n'°93 ~ 158 The
method is surprisingly sim uba ofiserved thabhals algebraic identity al-
lows one multiplication to b divide-acolquer implementation,
i.e., one can multiply-bit nu onlthreemultiplications of integers half
the size.
The details are as follows. L
to multiply. Letk = [n/2|. As above
consists of thé least significant digit
digits. We splitb in the same way. Th

igit integers which we want
0 numbersy; and ag; ag
f then — k most significant

a=a;-B"+a; and
and hence (the magic is in the second equal

a-b= a1~b1~52k+(a1'bo+ao'b1)~Bk+

— ay- by - B*+ ((ag+a0) - (b1 +bo) — (

At first sight, we have only made things more com
ever, shows that the last formula can be evaluated

namely,a; - by, a; - bo, and(ay + ao) - (b1 + bo).
is three more than in the recursive implementation of th@skchethod.

algorithm for computing - b:

10 Actually, five additions and one subtraction. We leave itgaders to convince themselves
that subtractions are no harder than additions.

10 1 Appetizer: Integer Arithmetics

(a) Splitaandbinto a3, ag, b1, andbyp.
(b) Compute the three products

a;-b;, po=ag-bg, p1=(ar+ao)-(b1+bo).

igned products to obtainb, i.e., compute - b according to

p2-B*+ (pr— (p2+ po)) - B+ po.

+ ag, andby + by are [n/2] + 1-digit numbers and
step (b) are simpler than theimal multiplication if
e complete algorithm is now as follows: to multiply

0.1 r

Fig. 1.3. The running times of implemen-

time [sec]

001 | 7. tations of Karatsuba and school meth-
X # integer multiplication. The run-
><>~< ning times for two versions of Karatsuba’'s
0.001 | yn: Karatsuba4 switches to
0.0001
1le-05 |

Figure 1.3 shows the running tim&g (n) and Tg(n) of C++ i
of the Karatsuba method and the school methodfdigit integers. The
both axes are logarithmic. We see, essentially, straighslof differen
running time of the school method grows liké, and hence the s
case of the school method. The slope is smaller in the case
and this suggests that its running time grows IiRewith 8 < 2. In fact, the ratid!
Tk(n)/Tk(n/2) is close to three, and this suggests tBais such that 8 = 3 or

11 T (1024) = 0.0455, Ty (2048 = 0.1375, andli (4096 = 0.41.

1.6 Algorithm Engineering 11

B =log3~ 1.58. Alternatively, you may determine the slope from Fig.. M\&
shall prove below thafi (n) grows likenl°93, We say that th&aratsuba method has

better asym ehaviowe also see that the inputs have to be quite big before the
superi behavior of the Karatsuba method Hgtresults in a smaller
run that for= 28, the school method is still faster, that foe= 29,

° i havior ultimately wins.
e Anas i algorithm can be faster on smailits.

In the next sec ' all learn how to improve the behafithe Karatsuba
method for smal . ulting algorithm will alvealye at least as good as

Lemma 1.6. Let Tk i number of primitive operations required by
the Karatsuba algor ied to n-digit integerem
ifn<3,
6-2-n ifn>4.
Proof. Multiplying two n-bit e school method requires no more

primitive operations? Each piece an
[n/2] + 1 digits, and hence the threerecursive multiplicationsiiregat most 3
Tk ([n/2] + 1) primitive operations.
andbg + by, and four additions to ass
two numbers of at mostidigits and hen
This justifies the inequality fan > 4.

ble the final result. Each amiditivolves
uire pi&imitive operations.
O

In Sect. 2.6, we shall learn some generg gphecurrences of
this kind.

Theorem 1.7. Let Tk (n) be the maximal number of ns required by
the Karatsuba algorithm when applied to n-digit integ on'o93
48-n+48-logn for all n.

Proof. We refer the reader to Sect. 1.8 for a proof.

1.6 Algorithm Engineering

Karatsuba integer multiplication is superior to the schoethod*for large inputs.
In our implementation, the superiority only shows for irgegwith more than 1 000

121t will require work, but it is work that we do not account for dur analysis.

12 1 Appetizer: Integer Arithmetics

digits. However, a simple refinement improves the perforzeagignificantly. Since
the school method is superior to the Karatsuba method fat sftegers, we should

Fig. 1.4. The running time of the Karat-
suba method as a function of the recursion
thresholdng. The times consumed for mul-
tiplying 2048-digit and 4096-digit integers
re shown. The minimum is ap = 32

refined Karatsuba algorithm fordi fand then adopt the value giving
the smallest running time. For our i
np = 32 (see Fig. 1.4). The asympto
shown in Fig. 1.3. We see that the

like n'°93, that the refined method is al
method and hence the refinement is
never slower than the school method.

he refinethawestill grows
faster tharesie Karatsuba
andttieatefined method is

operations as long as the number of digits is more than 28slkfo
as an indication that an actual implementation should $watantegers
imately 28 digits, as the argument concentrates solely onifpre oper
should take it as an argument that it is wise to have a noatnigcursi
np and then determine the threshold experimentally.

Exercise 1.7. Throughout this chapter, we have assumed that both argsméiat
multiplication aren-digit integers. What can you say about the complexity of-mul
tiplying n-digit and m-digit integers? (a) Show that the school method requires no

1.7 The Programs 13

more thana - nm primitive operations for some constaat (b) Assumen > mand
divide a into [n/m| numbers oim digits each. Multiply each of the fragments by
using Karat method and combine the results. Whaeisutining time of this

were used for the eriments described in this @raphe programs were
executed on a ma a 2 GHz dual-core Intel T7200 paoewith 4 Mbyte
of cache memory a main memory. The programs vwemgided with
GNU C++ version' 3.3. ization leve?.

d aninteger is a vectorigitd; here, “vector”
is the vector type o late library. A detlaninteger gn) declares
an integer wittm digit
at zero. The global vari&@dxtores the
base. The function&llA plement the primitive operations on

eyond the saeinfeger; the function

typedef unsigned int dig
typedef vector<digit> int
unsigned int B = 10;

Base, 2 <= B <= 2716

void fullAdder(digit a, digit
{ unsigned int sum = a + b + cj

t& s, digit& carry)
S = sum - carry*B; }

void digitMult(digit a, digit b,
{ unsigned int prod = axb; carry = prod/

carry)
- carry*B; }

digit getDigit(const integer& a, int i
{ return (i < a.size()? afi]l : 0); }

We want to run our programs on random i
generator for digits, anchndintegeffills its argume

unsigned int X = 542351;
digit randDigit() { X = 443143xX + 6412431,
void randInteger(integer& a)

{ int n = a.size(); for (int i=0; i<n; i++) al[i] =

tion, we computa andc such thatt« B+d = a[i] * b. We then
the previous iteration, and thearry from the previous iteration,'store the result in
atimeslji], and remember thearry. The school method (the functionult) multi-
pliesa by each digit ob and then adds it at the appropriate position to the resut (th
functionaddA).

14 1 Appetizer: Integer Arithmetics

void mult(const integer& a, const digit& b, integer& atimesb)
{ int n = a.size(); assert(atimesb.size() == n+1);
= 0;

, cprev, carry, atimesb[i], carry); cprev = c;

carry, atimesb[n], carry); assert(carry == 0);

}

i onst integer& atimesbj, int j)
{

.size();
r timesbj,i-j), carry, plil, carry);

assert (carry
}
integer mult(const i & a, ‘const integer& b)
{ int n = a.size ;

integer p(n + m,Q)y; i sbj(n+1);

for (int j = 0; j j

{ mult(a, bl[jl, atd , atimesbj, j); }

return p;

}

For Karatsuba’s method,
traction. The subtraction method ma

than the second. It computes its res the first

integer add(const integer& a,
{ int n = max(a.size(),b.size()
integer s(n+1); digit carry =
for (int i = 0; i < n; i++)
fullAdder(getDigit(a,i), getDigit
s[n] = carry;
return s;

st integer

}
void sub(integer& a, const integer& b)
{ digit carry = 0;

for (int i = 0; 1 < a.size(); i++)

if (ali] >= (getDigit(b,i) + carry))

{ ali] = ali]l - getDigit(b,i) - carry; carry

else { a[i]l = ali]l + B - getDigit(b,i) - carry; ca
assert(carry == 0);

}
The functionsplit splits an integer into two integers of half the size:

void split(const integer& a,integer& al, integer& a0)
{ int n = a.size(); int k = n/2;

for (int i = 0; i < k; i++) aO[i] = alil;

for (int i = 0; 1 < n - k; i++) alli] = alk+ il;

}

1.7 The Programs 15

The functionKaratsubaworks exactly as described in the text. If the inputs have

fewer thann0 digits, the school method is employed. Otherwise, the mpu split

integer
{ int n
integer p

onst integer& a, const integer& b, int n0)
int m = b.size(); assert(n == m); assert(n0 >= 4);

integer p2 =
pl
PO =

for (int i =
for (int i

return p;

The following program generate

inline double cpuTime() { retu
int main(){

for (int n = 8; n <= 131072; n *= 2)
{ integer a(n), b(n); randInteger(a);

double T = cpuTime(); int k = O;
while (cpuTime() - T < 1) { mult(a,b)
cout << "\n" << n << " school = " << (cpu

T = cpuTime(); k = 0;
while (cpuTime() - T < 1) { Karatsuba(a,b,4);
cout << " Karatsubad = " << (cpuTime() - T) /k; cou

T = cpuTime(); k = 0;

while (cpuTime() - T < 1) { Karatsuba(a,b,32); k++; }

cout << " Karatsuba32 = " << (cpuTime() - T) /k; cout.fl)
}
return O;

}

16 1 Appetizer: Integer Arithmetics

1.8 Proofsof Lemma 1.5 and Theorem 1.7

To make thi ter self-contained, we include proofs ahira 1.5 and Theo-
rem 1. ith an analysis of the recursive versiothefschool method.

1 ifn=1
4-T([n/2])4+3-2-n ifn>2

We use induction thafT (n) < 7n® — 6n whenn is a power of two. For
n=1, we havel (1)< 1= .Forn> 1, we have

where the second in i m the induction hyyasis. For general we

2/lo9n]_digit integers an 091 Since 209" < 2n, we conclude
thatT (n) < 28n? for all n.

How did we know that “? —
here. Fom = 2K, repeated substitutio

T2 <4.T@2Y) +6-2¢
<43T(2%) +6. (42

We turn now to the proof of Theorem 1.7. R

3n?+2n
Tie(m) < {3.TK((n/21 +1)+12n

the arguments of on the right-hand side are again powers of two. This'is nat tru
for Tx. However, ifn= 2K+ 2 andk > 1, then[n/2] + 1= 2k"1 42 an
should now use numbers of the form= 2+ 2,k > 0, as the basis
argument. We shall show that

T(242) <33-3+12. (211 2k — 2)

for k> 0. Fork = 0, we have

1.9 Implementation Notes 17

T(2°+2)=Tk(3) <3-3242.3=33=33.2°412- (21 +2.0-2).

t k be the minimal integer such that
ingn-digit numbers is no more costly

where the equality'3" = 2(lcg3)-(logn)

Exercise 1.9. Solve the recurrence

3n?+2n
Tr(W) < {3.TR((n/21 +1)

1.9 Implementation Notes

The programs given in Sect. 1.7 are not optimized.Fhe b r system
should be a power of two so that sums and carries can be perations.
Also, the size of a digit should agree with the word size ofrtfechine a little
more work should be invested in implementing primitive giens on di

191 C++

GMP [74] and LEDA [118] offer high-precision integer, rati@, and floating-point
arithmetic. Highly optimized implementations of Karataishmethod are used for
multiplication.

18 1 Appetizer: Integer Arithmetics
1.9.2 Java

javamathim nts arbitrary-precision integers and floatingapoumbers.

1.10 Hist | Notes and Further Findings

Is the Karatsuba odithe fastest known method for integatiplication? No,
much faste aown. Karatsuba's method splitst@ger into two parts
and requir tions of integers of half thegth. The natural exten-
sion is to split integersii arts of lengtim/k each. If the recursive step requites

thyk, the running time of the resulting algorithm
[196] and Cook [43] reduced the runningetim

to!3 O(n'*¢) for arbj iti he asymptotically most efficient algorithms
are the work of S ssen [171] and Schonhage The former
multiplies n-bit integ ognloglogn) bit operations, and it can be imple-

mented to run in this t
O(n) and requires the

ing machine. Therlattes in linear time
ussed in Sect. 2.2 dmthdlel, integers

13 The O-) notation is defined in Sect. 2.1.

