
FR
E

E
C

O
P

Y
9

Graph Traversal

Suppose you are working in the traffic planning department ofa town with a nice
medieval center1. An unholy coalition of shop owners, who want more street-side
parking, and the Green Party, which wants to discourage car traffic altogether, has
decided to turn most streets into one-way streets. You want to avoid the worst by
checking whether the current plan maintains the minimal requirement that one can
still drive from every point in town to every other point.

In the language of graphs (see Sect. 2.9), the question is whether the directed
graph formed by the streets is strongly connected. The same problem comes up in
other applications. For example, in the case of a communication network with unidi-
rectional channels (e.g., radio transmitters), we want to know who can communicate
with whom. Bidirectional communication is possible withinthe strongly connected
components of the graph.

We shall present a simple, efficient algorithm for computingstrongly connected
components (SCCs) in Sect. 9.2.2. Computing SCCs and many other fundamental
problems on graphs can be reduced to systematic graph exploration, inspecting each
edge exactly once. We shall present the two most important exploration strategies:
breadth-first search, in Sect. 9.1, anddepth-first search, in Sect. 9.2. Both strategies
construct forests and partition the edges into four classes: tree edges comprising
the forest,forward edges running parallel to paths of tree edges,backwardedges
running antiparallel to paths of tree edges, andcrossedges that connect two different
branches of a tree in the forest. Figure 9.1 illustrates the classification of edges.

forward

backward

cross

s
tree

Fig. 9.1.Graph edges classified as tree edges, forward edges, backward edges, and cross edges

1 The copper engraving above shows a part of Frankfurt around 1628 (M. Merian).



FR
E

E
C

O
P

Y
176 9 Graph Traversal

9.1 Breadth-First Search

A simple way to explore all nodes reachable from some nodes is breadth-first search
(BFS). BFS explores the graphlayer by layer. The starting nodes forms layer 0. The
direct neighbors ofs form layer 1. In general, all nodes that are neighbors of a node
in layer i but not neighbors of nodes in layers 0 toi −1 form layeri +1.

The algorithm in Fig. 9.2 takes a nodes and constructs the BFS tree rooted ats.
For each nodev in the tree, the algorithm records its distanced(v) from s, and the
parent nodeparent(v) from whichv was first reached. The algorithm returns the pair
(d,parent). Initially, shas been reached and all other nodes store some special value
⊥ to indicate that they have not been reached yet. Also, the depth of s is zero. The
main loop of the algorithm builds the BFS tree layer by layer.We maintain two sets
Q andQ′; Q contains the nodes in the current layer, and we construct thenext layer
in Q′. The inner loops inspect all edges(u,v) leaving nodesu in the current layer
Q. Wheneverv has no parent pointer yet, we put it into the next layerQ′ and set its
parent pointer and distance appropriately. Figure 9.3 gives an example of a BFS tree
and the resulting backward and cross edges.

BFS has the useful feature that its tree edges define paths from s that have a
minimum number of edges. For example, you could use such paths to find railway
connections that minimize the number of times you have to change trains or to find
paths in communication networks with a minimal number of hops. An actual path
from s to a nodev can be found by following the parent references fromv backwards.

Exercise 9.1.Show that BFS will never classify an edge as forward, i.e., there are no
edges(u,v) with d(v) > d(u)+1.

Function bfs(s : NodeId) : (NodeArrayof NodeId)× (NodeArrayof 0..n)
d = 〈∞, . . . ,∞〉 : NodeArrayof NodeId // distance from root
parent =〈⊥, . . . ,⊥〉 : NodeArrayof NodeId
d[s] :=0
parent[s] :=s // self-loop signals root
Q = 〈s〉 : Setof NodeId // current layer of BFS tree
Q′ = 〈〉 : Setof NodeId // next layer of BFS tree
for ℓ :=0 to ∞ while Q 6= 〈〉 do // explore layer by layer

invariant Q contains all nodes with distanceℓ from s
foreach u∈ Q do

foreach (u,v) ∈ E do // scanedges out ofu
if parent(v) = ⊥ then // found an unexplored node

Q′ :=Q′ ∪{v} // remember for next layer
d[v] := ℓ+1
parent(v) := u // update BFS tree

(Q,Q′) :=(Q′,〈〉) // switch to next layer
return (d,parent) // the BFS tree is now{(v,w) : w∈V,v = parent(w)}

Fig. 9.2.Breadth-first search starting at a nodes



FR
E

E
C

O
P

Y
9.1 Breadth-First Search 177

s
s

1 2 30

cross
backward
tree

forward

b

b
c

cd
d

e

e

f

f

g

g

Fig. 9.3. An example of how BFS (left) and DFS (right) classify edges into tree edges, back-
ward edges, cross edges, and forward edges. BFS visits the nodes in the orders, b, c, d, e, f ,
g. DFS visits the nodes in the orders, b, e, g, f , c, d

Exercise 9.2.What can go wrong with our implementation of BFS ifparent[s] is
initialized to⊥ rather thans? Give an example of an erroneous computation.

Exercise 9.3.BFS trees are not necessarily unique. In particular, we havenot speci-
fied in which order nodes are removed from the current layer. Give the BFS tree that
is produced whend is removed beforeb when one performs a BFS from nodes in
the graph in Fig. 9.3.

Exercise 9.4 (FIFO BFS).Explain how to implement BFS using a single FIFO
queue of nodes whose outgoing edges still have to be scanned.Prove that the re-
sulting algorithm and our two-queue algorithm compute exactly the same tree if the
two-queue algorithm traverses the queues in an appropriateorder. Compare the FIFO
version of BFS with Dijkstra’s algorithm described in Sect.10.3, and the Jarník–Prim
algorithm described in Sect. 11.2. What do they have in common? What are the main
differences?

Exercise 9.5 (graph representation for BFS).Give a more detailed description of
BFS. In particular, make explicit how to implement it using the adjacency array rep-
resentation described in Sect. 8.2. Your algorithm should run in time O(n+m).

Exercise 9.6 (connected components).Explain how to modify BFS so that it com-
putes a spanning forest of an undirected graph in time O(m+n). In addition, your
algorithm should select arepresentativenoder for each connected component of the
graph and assign it tocomponent[v] for each nodev in the same component asr.
Hint: scan all nodess∈V and start BFS from any nodes that it still unreached when
it is scanned. Do not reset the parent array between different runs of BFS. Note that
isolated nodes are simply connected components of size one.

Exercise 9.7 (transitive closure).The transitive closure G+ = (V,E+) of a graph
G= (V,E) has an edge(u,v) ∈ E+ whenever there is a path fromu to v in E. Design
an algorithm for computing transitive closures. Hint: runbfs(v) for each nodev to
find all nodes reachable fromv. Try to avoid a full reinitialization of the arraysd and
parentat the beginning of each call. What is the running time of youralgorithm?



FR
E

E
C

O
P

Y
178 9 Graph Traversal

9.2 Depth-First Search

You may view breadth-first search as a careful, conservativestrategy for systematic
exploration that looks at known things before venturing into unexplored territory. In
this respect,depth-first search(DFS) is the exact opposite: whenever it finds a new
node, it immediately continues to explore from it. It goes back to previously explored
nodes only if it runs out of options. Although DFS leads to unbalanced, strange-
looking exploration trees compared with the orderly layersgenerated by BFS, the
combination of eager exploration with the perfect memory ofa computer makes
DFS very useful. Figure 9.4 gives an algorithm template for DFS. We can derive
specific algorithms from it by specifying the subroutinesinit, root, traverseTreeEdge,
traverseNonTreeEdge, andbacktrack.

DFS marks a node when it first discovers it; initially, all nodes are unmarked.
The main loop of DFS looks for unmarked nodess and callsDFS(s,s) to grow a
tree rooted ats. The recursive callDFS(u,v) explores all edges(v,w) out of v. The
argument(u,v) indicates thatv was reached via the edge(u,v) into v. For root nodes
s, we use the “dummy” argument(s,s). We writeDFS(∗,v) if the specific nature of
the incoming edge is irrelevant to the discussion at hand. Assume now that we are
exploring edge(v,w) within the callDFS(∗,v).

If w has been seen before,w is already a node of the DFS forest. So(v,w) is not a
tree edge, and hence we calltraverseNonTreeEdge(v,w) and make no recursive call
of DFS.

If w has not been seen before,(v,w) becomes a tree edge. We therefore call
traverseTreeEdge(v,w), markw, and make the recursive callDFS(v,w). When we
return from this call, we explore the next edge out ofv. Once all edges out ofv
have been explored, we callbacktrackon the incoming edge(u,v) to perform any
summarizing or cleanup operations needed and return.

At any point in time during the execution ofDFS, there are a number of ac-
tive calls. More precisely, there are nodesv1, v2, . . .vk such that we are currently
exploring edges out ofvk, and the active calls areDFS(v1,v1), DFS(v1,v2), . . . ,
DFS(vk−1,vk). In this situation, we say that the nodesv1, v2, . . . , vk areactiveand
form the DFS recursion stack. The nodevk is called thecurrent node. We say that
a nodev has been reached whenDFS(∗,v) is called, and is finished when the call
DFS(∗,v) terminates.

Exercise 9.8.Give a nonrecursive formulation of DFS. You need to maintaina stack
of active nodes and, for each active node, the set of unexplored edges.

9.2.1 DFS Numbering, Finishing Times, and Topological Sorting

DFS has numerous applications. In this section, we use it to number the nodes in
two ways. As a by-product, we see how to detect cycles. We number the nodes in
the order in which they are reached (arraydfsNum) and in the order in which they
are finished (arrayfinishTime). We have two countersdfsPosandfinishingTime, both
initialized to one. When we encounter a new root or traverse atree edge, we set the



FR
E

E
C

O
P

Y
9.2 Depth-First Search 179

Depth-first search of a directed graphG = (V,E)
unmark all nodes
init
foreach s∈V do

if s is not markedthen
marks // makesa root and grow
root(s) // a new DFS tree rooted at it.
DFS(s,s)

ProcedureDFS(u,v : NodeId) // Explorev coming fromu.
foreach (v,w) ∈ E do

if w is markedthen traverseNonTreeEdge(v,w) // w was reached before
else traverseTreeEdge(v,w) // w was not reached before

markw
DFS(v,w)

backtrack(u,v) // return fromv along the incoming edge

Fig. 9.4.A template for depth-first search of a graphG = (V,E). We say that a callDFS(∗,v)
exploresv. The exploration is complete when we return from this call

dfsNumof the newly encountered node and incrementdfsPos. When we backtrack
from a node, we set itsfinishTimeand incrementfinishingTime. We use the following
subroutines:

init: dfsPos= 1 : 1..n; finishingTime= 1 : 1..n
root(s): dfsNum[s] :=dfsPos++
traverseTreeEdge(v,w): dfsNum[w] :=dfsPos++
backtrack(u,v): finishTime[v] :=finishingTime++

The ordering bydfsNumis so useful that we introduce a special notation ‘≺’ for
it. For any two nodesu andv, we define

u≺ v⇔ dfsNum[u] < dfsNum[v] .

The numberingsdfsNumandfinishTimeencode important information about the
execution ofDFS, as we shall show next. We shall first show that the DFS numbers
increase along any path of the DFS tree, and then show that thenumberings together
classify the edges according to their type.

Lemma 9.1.The nodes on the DFS recursion stack are sorted with respect to≺.

Proof. dfsPosis incremented after every assignment todfsNum. Thus, when a node
v becomes active by a callDFS(u,v), it has just been assigned the largestdfsNumso
far. ⊓⊔

dfsNums andfinishTimes classify edges according to their type, as shown in Ta-
ble 9.1. The argument is as follows. Two calls of DFS are either nested within each
other, i.e., when the second call starts, the first is still active, or disjoint, i.e., when the



FR
E

E
C

O
P

Y
180 9 Graph Traversal

Table 9.1.The classification of an edge(v,w). Tree and forward edges are also easily distin-
guished. Tree edges lead to recursive calls, and forward edges do not

Type dfsNum[v] < dfsNum[w] finishTime[w] < FinishTime[v]
Tree Yes Yes
Forward Yes Yes
Backward No No
Cross No Yes

second starts, the first is already completed. IfDFS(∗,w) is nested inDFS(∗,v), the
former call starts after the latter and finishes before it, i.e.,dfsNum[v] < dfsNum[w]
andfinishTime[w] < finishTime[v]. If DFS(∗,w) andDFS(∗,v) are disjoint and the
former call starts before the latter, it also ends before thelatter, i.e.,dfsNum[w] <

dfsNum[v] andfinishTime[w] < finishTime[v]. The tree edges record the nesting struc-
ture of recursive calls. When a tree edge(v,w) is explored withinDFS(∗,v), the call
DFS(v,w) is made and hence is nested withinDFS(∗,v). Thusw has a larger DFS
number and a smaller finishing time thanv. A forward edge(v,w) runs parallel to a
path of tree edges and hencew has a larger DFS number and a smaller finishing time
thanv. A backward edge(v,w) runs antiparallel to a path of tree edges, and hence
w has a smaller DFS number and a larger finishing time thanv. Let us look, finally,
at a cross edge(v,w). Since(v,w) is not a tree, forward, or backward edge, the calls
DFS(∗,v) andDFS(∗,w) cannot be nested within each other. Thus they are disjoint.
Sow is marked either beforeDFS(∗,v) starts or after it ends. The latter case is impos-
sible, since, in this case,w would be unmarked when the edge(v,w) was explored,
and the edge would become a tree edge. Sow is marked beforeDFS(∗,v) starts and
henceDFS(∗,w) starts and ends beforeDFS(∗,v). ThusdfsNum[w] < dfsNum[v] and
finishTime[w] < finishTime[v]. The following Lemma summarizes the discussion.

Lemma 9.2.Table 9.1 shows the characterization of edge types in terms of dfsNum
and finishTime.

Exercise 9.9.Modify DFS such that it labels the edges with their type. Whatis the
type of an edge(v,w) whenw is on the recursion stack when the edge is explored?

Finishing times have an interesting property for directed acyclic graphs.

Lemma 9.3.The following properties are equivalent: (i) G is an acyclicdirected
graph (DAG); (ii) DFS on G produces no backward edges; (iii) all edges of G go
from larger to smaller finishing times.

Proof. Backward edges run antiparallel to paths of tree edges and hence create cy-
cles. Thus DFS on an acyclic graph cannot create any backwardedges. All other
types of edge run from larger to smaller finishing times according to Table 9.1. As-
sume now that all edges run from larger to smaller finishing times. In this case the
graph is clearly acyclic. ⊓⊔

An order of the nodes of a DAG in which all edges go from left to right is called
a topological sorting. By Lemma 9.3, the ordering by decreasing finishing time is a



FR
E

E
C

O
P

Y
9.2 Depth-First Search 181

topological ordering. Many problems on DAGs can be solved efficiently by iterating
over the nodes in a topological order. For example, in Sect. 10.2 we shall see a fast,
simple algorithm for computing shortest paths in acyclic graphs.

Exercise 9.10 (topological sorting).Design a DFS-based algorithm that outputs the
nodes in topological order ifG is a DAG. Otherwise, it should output a cycle.

Exercise 9.11.Design a BFS-based algorithm for topological sorting.

Exercise 9.12.Show that DFS on an undirected graph does not produce any cross
edges.

9.2.2 Strongly Connected Components

We now come back to the problem posed at the beginning of this chapter. Recall that
two nodes belong to the same strongly connected component (SCC) of a graph iff
they are reachable from each other. In undirected graphs, the relation “being reach-
able” is symmetric, and hence strongly connected components are the same as con-
nected components. Exercise 9.6 outlines how to compute connected components
using BFS, and adapting this idea to DFS is equally simple. For directed graphs,
the situation is more interesting; see Fig. 9.5 for an example. We shall show that an
extension of DFS computes the strongly connected components of a digraphG in
linear time O(n+m). More precisely, the algorithm will output an arraycomponent
indexed by nodes such thatcomponent[v] = component[w] iff v andw belong to the
same SCC. Alternatively, it could output the node set of eachSCC.

Exercise 9.13.Show that the node sets of distinct SCCs are disjoint. Hint: assume
that SCCsC andD have a common nodev. Show that any node inC can reach any
node inD and vice versa.

aa bb

c

d e

e

f

g
i

i
h

c,d, f ,g,h

Fig. 9.5.A digraphG and the corresponding shrunken graphGs. The SCCs ofG have node
sets{a}, {b}, {c,d, f ,g,h}, {e}, and{i}



FR
E

E
C

O
P

Y
182 9 Graph Traversal

a

a

b

b

c

d

e
e

f

g

h
cd

fgh

open nodes b c d f g h
representativesb c f

Fig. 9.6.A snapshot of DFS on the graph of Fig. 9.5 and the corresponding shrunken graph.
The first DFS was started at nodea and a second DFS was started at nodeb, the current node is
g, and the recursion stack containsb, c, f , g. The edges(g, i) and(g,d) have not been explored
yet. Edges(h, f ) and(d,c) are back edges,(e,a) is a cross edge, and all other edges are tree
edges. Finished nodes and closed components are shaded. There are closed components{a}
and{e} and open components{b}, {c,d}, and{ f ,g,h}. The open components form a path in
the shrunken graph with the current nodeg belonging to the last component. The representa-
tives of the open components are the nodesb, c, and f , respectively. DFS has reached the open
nodes in the orderb, c, d, f , g, h. The representatives partition the sequence of open nodes
into the SCCs ofGc

The idea underlying the algorithm is simple. We imagine thatthe edges ofG are
added one by one to an initially edgeless graph. We useGc = (V,Ec) to denote the
current graph, and keep track of how the SCCs ofGc evolve as edges are added.
Initially, there are no edges and each node forms an SCC of itsown. For the addition
step, it is helpful to introduce the notion of ashrunken graph. We useGs

c to denote
the shrunken graph corresponding toGc. The nodes ofGs

c are the SCCs ofGc. If C
andD are distinct SCCs ofGc, we have an edge(C,D) in Gs

c iff there are nodesu∈C
andv∈ D where(u,v) is an edge ofGc. Figure 9.5 shows an example.

Lemma 9.4.The shrunken graph Gsc is acyclic.

Proof. Assume otherwise, and letC1,C2, . . . ,Ck−1,Ck with Ck = C1 be a cycle in
Gs

c. Recall that theCi are SCCs ofGc. By the definition ofGs
c, Gc contains an edge

(vi ,wi+1) with vi ∈ Ci andwi+1 ∈ Ci+1 for 0 ≤ i < k. Definevk = v1. SinceCi is
strongly connected,Gc contains a path fromwi+1 to vi+1, 0≤ i < k.Thus all thevi ’s
belong to the same SCC, a contradiction. ⊓⊔

How do the SCCs ofGc andGs
c change when we add an edgee to Gc? There

are three cases to consider. (1) Both endpoints ofe belong to the same SCC ofGc.
The shrunken graph and the SCCs do not change. (2)e connects nodes in different
SCCs but does not close a cycle. The SCCs do not change, and an edge is added to
the shrunken graph. (3)e connects nodes in different SCCs and closes one or more



FR
E

E
C

O
P

Y
9.2 Depth-First Search 183

cycles. In this case, all SCCs lying on one of the newly formedcycles are merged
into a single SCC, and the shrunken graph changes accordingly.

In order to arrive at an efficient algorithm, we need to describe how we maintain
the SCCs as the graph evolves. If the edges are added in arbitrary order, no efficient
simple method is known. However, if we use DFS to explore the graph, an efficient
solution is fairly simple to obtain. Consider a depth-first search onG and letEc

be the set of edges already explored by DFS. A subsetVc of the nodes is already
marked. We distinguish between three kinds of SCC ofGc: unreached, open, and
closed. Unmarked nodes have indegree and outdegree zero inGc and hence form
SCCs consisting of a single node. This node is isolated in theshrunken graph. We
call these SCCsunreached. The other SCCs consist of marked nodes only. We call
an SCC consisting of marked nodesopenif it contains an active node, andclosed
if it contains only finished nodes. We call a marked node “open” if it belongs to
an open component and “closed” if it belongs to a closed component. Observe that a
closed node is always finished and that an open node may be either active or finished.
For every SCC, we call the node with the smallest DFS number inthe SCC the
representativeof the SCC. Figure 9.6 illustrates these concepts. We state next some
important invariant properties ofGc; see also Fig. 9.7:

(1) All edges inG (not justGc) out of closed nodes lead to closed nodes. In our
example, the nodesa andeare closed.

(2) The tree path to the current node contains the representatives of all open com-
ponents. LetS1 to Sk be the open components as they are traversed by the tree
path to the current node. There is then a tree edge from a node in Si−1 to the
representative ofSi, and this is the only edge intoSi , 2≤ i ≤ k. Also, there is no
edge from anSj to anSi with i < j. Finally, all nodes inSj are reachable from
the representativer i of Si for 1≤ i ≤ j ≤ k. In short, the open components form
a path in the shrunken graph. In our example, the current nodeis g. The tree path
〈b,c, f ,g〉 to the current node contains the open representativesb, c, and f .

(3) Consider the nodes in open components ordered by their DFS numbers. The rep-
resentatives partition the sequence into the open components. In our example,
the sequence of open nodes is〈b,c,d, f ,g,h〉 and the representatives partition
this sequence into the open components{b}, {c,d}, and{ f ,g,h}.

We shall show below that all three properties hold true generally, and not only for
our example. The three properties will be invariants of the algorithm to be developed.
The first invariant implies that the closed SCCs ofGc are actually SCCs ofG, i.e., it
is justified to call them closed. This observation is so important that it deserves to be
stated as a lemma.

Lemma 9.5.A closed SCC of Gc is an SCC of G.

Proof. Let v be a closed vertex, letS be the SCC ofG containingv, and letSc be
the SCC ofGc containingv. We need to show thatS= Sc. SinceGc is a subgraph
of G, we haveSc ⊆ S. So, it suffices to show thatS⊆ Sc. Let w be any vertex inS.
There is then a cycleC in G passing throughv andw. The first invariant implies that



FR
E

E
C

O
P

Y
184 9 Graph Traversal

all vertices ofC are closed. Since closed vertices are finished, all edges outof them
have been explored. ThusC is contained inGc, and hencew∈ Sc. ⊓⊔

The Invariants (2) and (3) suggest a simple method to represent the open SCCs
of Gc. We simply keep a sequenceoNodesof all open nodes in increasing order of
DFS numbers, and the subsequenceoRepsof open representatives. In our example,
we haveoNodes= 〈b,c,d, f ,g,h〉 andoReps= 〈b,c, f 〉. We shall later see that the
typeStackof NodeIdis appropriate for both sequences.

Let us next see how the SCCs ofGc develop during DFS. We shall discuss the
various actions of DFS one by one and show that the invariantsare maintained. We
shall also discuss how to update our representation of the open components.

When DFS starts, the invariants clearly hold: no node is marked, no edge has
been traversed,Gc is empty, and hence there are neither open nor closed components
yet. Our sequencesoNodesandoRepsare empty.

Just before a new root will be marked, all marked nodes are finished and hence
there cannot be any open component. Therefore, both of the sequencesoNodesand
oRepsare empty, and marking a new roots produces the open component{s}. The
invariants are clearly maintained. We obtain the correct representation by addings to
both sequences.

If a tree edgee= (v,w) is traversed and hencew becomes marked,{w} becomes
an open component on its own. All other open components are unchanged. The first
invariant is clearly maintained, sincev is active and hence open. The old current node
is v and the new current node isw. The sequence of open components is extended by
{w}. The open representatives are the old open representativesplus the nodew. Thus
the second invariant is maintained. Also,w becomes the open node with the largest
DFS number and henceoNodesandoRepsare both extended byw. Thus the third
invariant is maintained.

Now suppose that a nontree edgee= (v,w) out of the current nodev is explored.
If w is closed, the SCCs ofGc do not change whene is added toGc since, by
Lemma 9.5, the SCC ofGc containingw is already an SCC ofG before eis tra-
versed. So, assume thatw is open. Thenw lies in some open SCCSi of Gc. We claim

open nodes ordered by dfsNum

current
node

S1 S2 Sk

r1 r2 rk

Fig. 9.7. The open SCCs are shown as ovals, and the current node is shownas abold circle.
The tree path to the current node is indicated. It enters eachcomponent at its representative.
The horizontal line below represents the open nodes, ordered by dfsNum. Each open SCC
forms a contiguous subsequence, with its representative asits leftmost element



FR
E

E
C

O
P

Y
9.2 Depth-First Search 185

current
nodev

w

r i rk

Si Sk

Fig. 9.8. The open SCCs are shown as ovals and their representatives ascircles to the left of an
oval. All representatives lie on the tree path to the currentnodev. The nontree edgee= (v,w)
ends in an open SCCSi with representativer i . There is a path fromw to r i sincew belongs to
the SCC with representativer i . Thus the edge(v,w) mergesSi to Sk into a single SCC

that the SCCsSi to Sk are merged into a single component and all other components
are unchanged; see Fig. 9.8. Letr i be the representative ofSi. We can then go fromr i

to v along a tree path by invariant (2), then follow the edge(v,w), and finally return
to r i . The path fromw to r i exists, sincew and r i lie in the same SCC ofGc. We
conclude that any node in anSj with i ≤ j ≤ k can be reached fromr i and can reach
r i . Thus the SCCsSi to Sk become one SCC, andr i is their representative. TheSj

with j < i are unaffected by the addition of the edge.
The third invariant tells us how to findr i , the representative of the component

containingw. The sequenceoNodesis ordered bydfsNum, and the representative of
an SCC has the smallestdfsNumof any node in that component. ThusdfsNum[r i ] ≤
dfsNum[w] anddfsNum[w] < dfsNum[r j ] for all j > i. It is therefore easy to update our
representation. We simply delete all representativesr with dfsNum[r] > dfsNum[w]
from oReps.

Finally, we need to consider finishing a nodev. When will this close an SCC?
By invariant (2), all nodes in a component are tree descendants of the representative
of the component, and hence the representative of a component is the last node to
be finished in the component. In other words, we close a component iff we finish
a representative. SinceoRepsis ordered bydfsNum, we close a component iff the
last node ofoRepsfinishes. So, assume that we finish a representativev. Then, by
invariant (3), the componentSk with representativev = rk consists ofv and all nodes
in oNodesfollowing v. Finishingv closesSk. By invariant (2), there is no edge out
of Sk into an open component. Thus invariant (1) holds afterSk is closed. The new
current node is the parent ofv. By invariant (2), the parent ofv lies in Sk−1. Thus
invariant (2) holds afterSk is closed. Invariant (3) holds afterv is removed from
oReps, andv and all nodes following it are removed fromoNodes.

It is now easy to instantiate the DFS template. Fig. 9.10 shows the pseudocode,
and Fig. 9.9 illustrates a complete run. We use an arraycomponentindexed by nodes
to record the result, and two stacksoRepsandoNodes. When a new root is marked or
a tree edge is explored, a new open component consisting of a single node is created
by pushing this node onto both stacks. When a cycle of open components is created,
these components are merged by popping representatives from oRepsas long as the
top representative is not to the left of the nodew closing the cycle. An SCCS is
closed when its representativev finishes. At that point, all nodes ofS are stored



FR
E

E
C

O
P

Y
186 9 Graph Traversal

marked finished

representative node

nonrepresentative node closed SCC

open SCC

nontraversed edge

traversed edge

unmarked

backtrack(d,d)

backtrack(e,h) backtrack(d,e)

traverse(i,e)

traverse(j,c)traverse(i,j) traverse(j,k)

traverse(k,d)

backtrack(j,k) backtrack(i,j) backtrack(h,i)

traverse(e,g) traverse(e,h) traverse(h,i)

root(a) traverse(a,b) traverse(b,c)

traverse(c,a)

backtrack(b,c) backtrack(a,b)

backtrack(a,a)

root(d) traverse(d,e) traverse(e,f) traverse(f,g)

backtrack(f,g) backtrack(e,f)

aa bb cc dd ee ff gg ii hh jj kk

Fig. 9.9.An example of the development of open and closed SCCs during DFS. Unmarked
nodes are shown as empty circles, marked nodes are shown in gray, and finished nodes are
shown in black. Nontraversed edges are shown in gray, and traversed edges are shown in
black. Open SCCs are shown as empty ovals, and closed SCCs areshown as gray ovals. We
start in the situation shown at the upper left. We makea a root and traverse the edges(a,b)
and(b,c). This creates three open SSCs. The traversal of edge(c,a) merges these components
into one. Next, we backtrack tob, then toa, and finally froma. At this point, the component
becomes closed. Please complete the description

abovev in oNodes. The operationbacktracktherefore closesS by poppingv from
oReps, and by popping the nodesw∈ S from oNodesand setting theircomponentto
the representativev.

Note that the testw∈ oNodesin traverseNonTreeEdgecan be done in constant
time by storing information with each node that indicates whether the node is open or
not. This indicator is set when a nodev is first marked, and reset when the component
of v is closed. We give implementation details in Sect. 9.3. Furthermore, the while
loop and the repeat loop can make at mostn iterations during the entire execution
of the algorithm, since each node is pushed onto the stacks exactly once. Hence, the
execution time of the algorithm is O(m+n). We have the following theorem.



FR
E

E
C

O
P

Y
9.2 Depth-First Search 187

init:
component: NodeArrayof NodeId // SCC representatives
oReps =〈〉 : Stackof NodeId // representatives of open SCCs
oNodes =〈〉 : Stackof NodeId // all nodes in open SCCs

root(w) or traverseTreeEdge(v,w):
oReps.push(w) // new open
oNodes.push(w) // component

traverseNonTreeEdge(v,w):
if w∈ oNodesthen

while w≺ oReps.topdo oReps.pop // collapse components on cycle

backtrack(u,v):
if v = oReps.top then

oReps.pop // close
repeat // component

w:=oNodes.pop
component[w] := v

until w = v

Fig. 9.10.An instantiation of the DFS template that computes stronglyconnected components
of a graphG = (V,E)

0

1

2

3

4
5

Fig. 9.11.The graph has two 2-edge con-
nected components, namely{0,1,2,3,4}
and {5}. The graph has three bicon-
nected components, namely the subgraphs
spanned by the sets{0,1,2}, {1,3,4} and
{2,5}. The vertices 1 and 2 are articulation
points

Theorem 9.6.The algorithm in Fig. 9.10 computes strongly connected components
in timeO(m+n).

Exercise 9.14 (certificates).Let G be a strongly connected graph and letsbe a node
of G. Show how to construct two trees rooted ats. The first tree proves that all nodes
can be reached froms, and the second tree proves thans can be reached from all
nodes.

Exercise 9.15 (2-edge-connected components).An undirected graph is 2-edge-
connected if its edges can be oriented so that the graph becomes strongly connected.
The 2-edge-connected components are the maximal 2-edge-connected subgraphs;
see Fig. 9.11. Modify the SCC algorithm shown in Fig. 9.10 so that it computes 2-
edge-connected components. Hint: show first that DFS of an undirected graph never
produces any cross edges.



FR
E

E
C

O
P

Y
188 9 Graph Traversal

Exercise 9.16 (biconnected components).Two nodes of anundirectedgraph be-
long to the samebiconnected component(BCC) iff they are connected by an edge
or there are two edge-disjoint paths connecting them; see Fig. 9.11. A node is an
articulation pointif it belongs to more than one BCC. Design an algorithm that com-
putes biconnected components using a single pass of DFS. Hint: adapt the strongly-
connected-components algorithm. Define the representative of a BCC as the node
with the second smallestdfsNumin the BCC. Prove that a BCC consists of the par-
ent of the representative and all tree descendants of the representative that can be
reached without passing through another representative. Modify backtrack. When
you return from a representativev, outputv, all nodes abovev in oNodes, and the
parent ofv.

9.3 Implementation Notes

BFS is usually implemented by keeping unexplored nodes (with depthsd andd+1)
in a FIFO queue. We chose a formulation using two separate sets for nodes at depthd
and nodes at depthd+1 mainly because it allows a simple loop invariant that makes
correctness immediately evident. However, our formulation might also turn out to be
somewhat more efficient. IfQ andQ′ are organized as stacks, we will have fewer
cache faults than with a queue, in particular if the nodes of alayer do not quite fit
into the cache. Memory management becomes very simple and efficient when just a
single arraya of n nodes is allocated for both of the stacksQ andQ′. One stack grows
from a[1] to the right and the other grows froma[n] to the left. When the algorithm
switches to the next layer, the two memory areas switch theirroles.

Our SCC algorithm needs to store four kinds of information for each nodev:
an indication of whetherv is marked, an indication of whetherv is open, something
like a DFS number in order to implement “≺”, and, for closed nodes, theNodeId
of the representative of its component. The arraycomponentsuffices to keep this
information. For example, ifNodeIds are integers in 1..n, component[v] = 0 could
indicate an unmarked node. Negative numbers can indicate negated DFS numbers, so
thatu≺ v iff component[u] > component[v]. This works because “≺” is never applied
to closed nodes. Finally, the testw∈ oNodessimply becomescomponent[v] < 0. With
these simplifications in place, additional tuning is possible. We makeoRepsstore
componentnumbers of representatives rather than their IDs, and save an access to
component[oReps.top]. Finally, the arraycomponentshould be stored with the node
data as a single array of records. The effect of these optimization on the performance
of our SCC algorithm is discussed in [132].

9.3.1 C++

LEDA [118] has implementations for topological sorting, reachability from a node
(DFS), DFS numbering, BFS, strongly connected components, biconnected compo-
nents, and transitive closure. BFS, DFS, topological sorting, and strongly connected



FR
E

E
C

O
P

Y
9.4 Historical Notes and Further Findings 189

components are also available in a very flexible implementation that separates rep-
resentation and implementation, supports incremental execution, and allows various
other adaptations.

The Boost graph library [27] uses thevisitor conceptto support graph traversal.
A visitor class has user-definable methods that are called atevent pointsduring the
execution of a graph traversal algorithm. For example, the DFS visitor defines event
points similar to the operationsinit, root, traverse∗, andbacktrackused in our DFS
template; there are more event points in Boost.

9.3.2 Java

The JDSL [78] library [78] supports DFS in a very flexible way,not very much dif-
ferent from the visitor concept described for Boost. There are also more specialized
algorithms for topological sorting and finding cycles.

9.4 Historical Notes and Further Findings

BFS and DFS were known before the age of computers. Tarjan [185] discovered
the power of DFS and provided linear-time algorithms for many basic problems re-
lated to graphs, in particular biconnected and strongly connected components. Our
SCC algorithm was invented by Cheriyan and Mehlhorn [39] andlater rediscovered
by Gabow [70]. Yet another linear-time SCC algorithm is thatdue to Kosaraju and
Sharir [178]. It is very simple, but needs two passes of DFS. DFS can be used to solve
many other graph problems in linear time, for example ear decomposition, planarity
testing, planar embeddings, and triconnected components.

It may seem that problems solvable by graph traversal are so simple that little
further research is needed on them. However, the bad news is that graph traversal
itself is very difficult on advanced models of computation. In particular, DFS is a
nightmare for both parallel processing [161] and memory hierarchies [141, 128].
Therefore alternative ways to solve seemingly simple problems are an interesting
area of research. For example, in Sect. 11.8 we describe an approach to constructing
minimum spanning trees usingedge contractionthat also works for finding con-
nected components. Furthermore, the problem of finding biconnected components
can be reduced to finding connected components [189]. The DFS-based algorithms
for biconnected components and strongly connected components are almost identi-
cal. But this analogy completely disappears for advanced models of computation, so
that algorithms for strongly connected components remain an area of intensive (and
sometimes frustrating) research. More generally, it seemsthat problems for undi-
rected graphs (such as finding biconnected components) are often easier to solve
than analogous problems for directed graphs (such as findingstrongly connected
components).



FR
E

E
C

O
P

Y


