(]

®

ver

Suppose you are worki ffic planning departmera twn with a nice
medieval centét of shop owners, who want more streg¢-si
parking, and the G ants to discourage cafit altogether, has
decided to turn mos 0 one-way streets. You waatoid the worst by
checking whether the ins the minimaliregment that one can

still drive from every poi

In the language of grap
graph formed by the streets
other applications. For exampl

.9), the question itheththe directed
connected. The saaidem comes up in
ommuaitaetwork with unidi-

with whom. Bidirectional communication is possiblei\wittire strongly connected
components of the graph.
We shall present a simple, efficie compusirgngly connected
spand maey fatndamental
problems on graphs can be reduced to syste
edge exactly once. We shall present the twq bEation strategies:

).2. Both strategies

Fig. 9.1.Graph edges classified as tree edges, forward edges, b , and cross edges

1 The copper engraving above shows a part of Frankfurt aro8a8 (M. Merian).

176 9 Graph Traversal

9.1 Breadth-First Search

lore all nodes reachable from some saslbreadth-first search
(BFS). the graﬂﬂtyer by Iayer The starting nodeforms layer 0. The

For each node in e the algorithm records its distart{e) from s, and the
E ichv was first reached. The algorithm returns the pair
n reached and all other nodes store some special value
not been reached yet. Also, ththdds is zero. The
the BFS tree layer by layée. maintain two sets

(d,parent.
1 to indicate that
main loop of the

QandQ@’; Q cont he current layer, and we constructakelayer
in Q. The inner loo gés V) leaving nodes in the current layer
Q. Whenevew has [et, we put it into the next la@éand set its
parent pointer and ropriately. Figure 9.3sgawveexample of a BFS tree

and the resulting bac
BFS has the usefu

edges(u,v).vv.ith d(v) >d(u)+1

Function bfgs: Nodeld : (NodeArrayof No
d = (c0,...,00) : NodeArrayof Nodeld
parent=(1,..., 1) : NodeArrayof Nodeld
dig:=0
parents :=s
Q = (s) : Setof Nodeld
Q' = () : Setof Nodeld
for £:=0to co while Q # () do

invariant Q contains all nodes with distanédrom s
foreachu € Qdo
foreach (u,v) € E do
if paren{v) = L then

..n)
/I distance from root

Q:=Qu{v}
div]:=¢+1
paren{v):=u
(QQ):=(Q.() /] to next layer
return (d,parent) /I the BFS tree is novW(v,w) : w € V,v = pareni{w) }

Fig. 9.2.Breadth-first search starting at a nale

9.1 Breadth-First Search 177

—= tree el -

N backwar e e @
----> Cross A
---== forward

SI¢ft) and DFS fight) classify edges into tree edges, back-
orward edges. BFS visits des imothe ordes, b, ¢, d, e, f,
dem, e g, f,cd

Exercise 9.2W ith our implementation of BFSpifrents| is
[xample of an erroneous computation.

fied in which order no m the current layee (e BFS tree that
is produced wheul is re n one performs a BFS from nodén
the graphin Fig. 9.3.

Exercise 9.4 (FIFO BFS).E
queue of nodes whose outg
sulting algorithm and our two-

plement BFS using a single FIFO
edges st|II have to be scaRnedk that the re-
ue al pute dydbe same tree if the
ropridge. Compare the FIFO
€d.3, and the Jarnik—Prim
in conthvighat are the main

version of BFS with Dijkstra’s algorit
algorithm described in Sect. 11.2. W
differences?

itis scanned Do not reset the parent array between d|Ifelue|s 0
isolated nodes are simply connected components of size one.

Exercise 9.7 (transitive closure)The transitive closure G = (V,E™)
G = (V,E) has an edgéu,v) € E™ whenever there is a path froat
an algorithm for computing transitive closures. Hint: tofig(v) for€éach noder to
find all nodes reachable from Try to avoid a full reinitialization of the arraysand
parentat the beginning of each call. What is the running time of yalgorithm?

178 9 Graph Traversal

9.2 Depth-First Search

You may vi dth-first search as a careful, conservatiagegy for systematic
explorati s at known things before venturing imbexplored territory. In

node, itim iately continues to explore fromit. It goeskot previously explored
nodes only i of options. Although DFS leads to alabced, strange-
looking exploratie ompared with the orderly laygeserated by BFS, the
combination ;
DFS very useful. |
specific algorithm
traverseNonTreeEd

gure 9.4 gives an algorithm template f&iSDWe can derive
ity specifying the subroutiimas, root, traverseTreeEdge
k

DFS marks t discovers it; initially, all msdare unmarked.
The main loop of D arked nodeand callsDFS(s,s) to grow a
tree rooted as. Th i ,V) explores all edgeés,w) out of v. The
argumen{u,v) indical s reached via the edge v) into v. For root nodes

s, we use the “dumm . write DFS(x, v) if the specific nature of

If whas been seen bef
tree edge, and hence we rseNohTreeEd@e w) and make no recursive call
of DFS

If w has not been seen befor, w) tree edge. We therefore call
traverseTreeEdde, w), markw, and ive calFS(v,w). When we
return from this call, we explore th ofOnce all edges out of
have been explored, we cdlacktrac edgéu,v) to perform any

At any point in time during the exe
tive calls. More precisely, there are nodgs v
exploring edges out of, and the active cal
DFS(vk_1,V). In this situation, we say that t
form the DFS recursion stack. The nodeis ca
a nodev has been reached wh&FS(x,v) is calle
DFS(x,v) terminates.

DFS(vy,V2), ...,
Vi areactiveand
node We say that

of active nodes and, for each active node, the set of uneagbled

9.2.1 DFS Numbering, Finishing Times, and Topological Soitig

DFS has numerous applications. In this section, we use itto

two ways. As a by-product, we see how to detect cycles. Wi mhie nodes in
the order in which they are reached (ardfgNun) and in the order in which they
are finished (arrafinishTim@. We have two counteidfsPosandfinishingTimeboth
initialized to one. When we encounter a new root or traverseeedge, we set the

9.2 Depth-First Search 179

Depth-first search of a directed graphG = (V,E)
unmark all nodes

/I makes a root and grow
root(s) /I anew DFS tree rooted at it.
DFS(s;s)

Procedure DES /I Explorev coming fromu.

) /I wwas reached before
/I wwas not reached before

/I return fromv along the incoming edge

graph= (V,E). We say that a caDFS(x, V)
exploresv. The exploratio e return from this call

dfsNumof the newly encou
from a node, we set ifénishTi
subroutines:
init:
root(s):
traverseTreeEdde, w):
backtracKu, v):

The ordering bydfsNumis so useful th
it. For any two nodes andv, we define

u < v< dfsNunju] <

increase along any path of the DFS tree, and then sho
classify the edges according to their type.

Lemma 9.1.The nodes on the DFS recursion stack are sorted W

Proof. dfsPoss incremented after every assignmentifsNum Thus, w
v becomes active by a cdlIFS(u, V), it has just been assigned the lar
far.

dfsNuns andfinishTime classify edges according to their type, as shown in Ta-
ble 9.1. The argument is as follows. Two calls of DFS are eittested within each
other, i.e., when the second call starts, the first is stilvacor disjoint, i.e., when the

180 9 Graph Traversal

Table 9.1.The classification of an edde,w). Tree and forward edges are also easily distin-
guished. Tree edges lead to recursive calls, and forwarelsedig not

fsNunfv] < dfsNunjw| finishTiméw] < FinishTiméyv]|
Yes Yes
Yes Yes
No No
No Yes

second starts, the 2ady complete@MFS(x, w) is nested iDFS(x,v), the
tter and finishes beforeat, dfsNunfv] < dfsNunfw|
andfinishTiméw] If DFS(x,w) andDFS(x,Vv) are disjoint and the

former call star

dfsNunfv] andfinishTi mév|. The tree edges record the nesting struc-
ture of recursive c gav) is explored withinlDFS(x, v), the call
DFS(v,w) is made a i d witldFS(+,v). Thusw has a larger DFS
number and a smallerfinishingti forward edggv,w) runs parallel to a

path of tree edges and FS number and a smaller finishing time
thanv. A backward edg&v,w i lel to a path of tree edges, and hence
w has a smaller DFS num
at a cross edge/,w). Since(V,
DFS(x,v) andDFS(x,w) cann
Sowis marked either befori@F
sible, since, in this cas& would be u
and the edge would become a tree
henceDFS(x,w) starts and ends befol
finishTiméw] < finishTimgv]. The follo

tree, forward, or backward edge, the calls
d within each other. Thus they are disjoint.
it ends. The latter case is impos-
the edgew) was explored,
befor®FS(x,v) starts and
sNunfw] < dfsNunfv] and

from larger to smaller finishing times.

Proof. Backward edges run antiparallel to paths of tree edges ameck
cles. Thus DFS on an acyclic graph cannot create any backedye
types of edge run from larger to smaller finishing times adiray to
sume now that all edges run from larger to smaller finishinges
graph is clearly acyclic. O

An order of the nodes of a DAG in which all edges go from leftight is called
atopological sorting By Lemma 9.3, the ordering by decreasing finishing time is a

9.2 Depth-First Search 181

topological ordering. Many problems on DAGs can be solvéidiehtly by iterating
in a topological order. For example, in S&c? Wwe shall see a fast,
r computing shortest paths in acyclirs.

Exercise 9 on an undirected graph does not produce any cros
edges.
We now come bac ed at the beginning of tiaipter. Recall that

directed grapbsethtion “being reach-
nected compsraetthe same as con-
nected components. Exergi ow to computeembed components
using BFS, and adapting equally simple.diected graphs,
the situation is more interesting; . 9.5 for an exampk shall show that an
extension of DFS computes t cted compsméra digraphG in
linear time Qn+ m). More preci ill output an arreagmponent
indexed by nodes such thewmponen] iff vandw belong to the
same SCC. Alternatively, it could ou of &3ClE.

able” is symmetric, and

Exercise 9.13Show that the node se
that SCC< andD have a common node
node inD and vice versa.

distinct SCCs are disjoint. Hsgume
w de i@ can reach any

00 o‘ P I

T SIS

Fig. 9.5. A digraph G and the corresponding shrunken graph The SCCs ofs have node
sets{a}, {b}, {c,d, f,g,h}, {e}, and{i}

182 9 Graph Traversal

opennodes bcdfgh
representativeb ¢ f

Fig. 9.6.A snapsha h of Fig. 9.5 and the correspgratirunken graph.
The first DFS was st ond DFS was started at nbdée current node is

g, and the recursion s Phe edgesg,i) and(g,d) have not been explored
yet. Edgegh, f) and(d, dgege, a) is a cross edge, and all other edges are tree
edges. Finished nodes a ts are shadeel.aféelosed componenfa}

and{e} and open compon ,h}. The open components form a path in

the shrunken graph with the c to the last component. The representa-
tives of the open components espectively. DFS has reached the open
nodes in the ordeb, c, d, f, g, h entatives partition the sequence of open nodes

into the SCCs of5¢

The idea underlying the algorith i . agine thatedges oG are
added one by one to an initially ed (V,Ec) to denote the
current graph, and keep track of ho volve as edges are added.
Initially, there are no edges and each C oivits For the addition
step, it is helpful to introduce the notion o e useG: to denote
the shrunken graph corresponding@g The ng e SCCs 0E¢. If C

Lemma 9.4.The shrunken graph s acyclic.

Proof. Assume otherwise, and 1€;,Cy,...,Cy_1,Cx
G3. Recall that the&S; are SCCs of3¢. By the definitio

belong to the same SCC, a contradiction.

How do the SCCs 06; and G change when we add an ed
are three cases to consider. (1) Both endpoinsstoélong to the
The shrunken graph and the SCCs do not changes ¢@hnects nodes in different
SCCs hut does not close a cycle. The SCCs do not change, anigaiseadded to
the shrunken graph. (8 connects nodes in different SCCs and closes one or more

9.2 Depth-First Search 183

cycles. In this case, all SCCs lying on one of the newly forrogtles are merged
into a single SCC, and the shrunken graph changes accoydingl

node. This node is isolated irstinenken graph. We
call these SCCanreach e other SCCs consist of marked nodes only. We call
an SCC consistin dasenif it contains an active node, ardosed
We call a marked node “dpeit belongs to

For every SCC, we de W|th the smallest DFS numbénénSCC the
representativef the SCE. Fi . trates these concepts. We seatesome
important invariant propesti :

(1) All edges inG (not jus
example, the nodesand
(2) The tree path to the curr
ponents. Le§; to be the

node ontalns the repreaseagaf all open com-
en co as they are traversed by the tree

representative d§, and this is the
edge from arfj to an§ with i < j s ir§j are reachable from
the representativig of § for 1 <i < , the open components form
a path in the shrunken graph. In ou : entisadd he tree path

< i< k. Also, there is no

(3) Consider the nodes in open components
resentatives partition the sequence into
the sequence of open nodes(isc,d, f,g,
this sequence into the open componghts {

Dimbers. The rep-
arlenour example,
esentatives partition

is justified to call them closed. This observation is so int@trtha to be
stated as a lemma.

Lemma 9.5.A closed SCC of Gis an SCC of G.

Proof. Let v be a closed vertex, |6 be the SCC ofs containin@v, and letS:. be
the SCC ofG. containingv. We need to show th& = S;. SinceG. is a subgraph
of G, we haveS; C S. So, it suffices to show th&C .. Letw be any vertex irf.

There is then a cycl€ in G passing throughandw. The first invariant implies that

184 9 Graph Traversal

all vertices ofC are closed. Since closed vertices are finished, all edgesf tliem
have been explored. Th@sis contained irG¢, and hencev € .. O

) and (3) suggest a simple method to reptéise open SCCs
a sequenodlodesof all open nodes in increasing order of
subsequeaBepof open representatives. In our example,
= (b,c,d, f,g,h) andoReps= (b,c, f). We shall later see that the

shall also discuss date our representation of the opmponents.

When DFS s invariants clearly hold: no node is s@rko edge has
been traversed; ce there are neither open nor closed comizone
re empty.
rked, all marked nodes arghiéd and hence
there cannot be an . Therefore, both of theesee®Nodesand
produces the open compone(st. The
invariants are clearly m in the corrgmtasentation by addirgto
both sequences.

If a tree edge = (v,w)
an open component on its
invariantis clearly maintaine
is vand the new current nodeu
{w}. The open representatives are th
the second invariant is maintained.
DFS number and henaNodesando
invariant is maintained.

Now suppose that a nontree edge S ent nodeis explored.

gebecomes markedw} becomes
components arleamnged. The first
tive and hence open. The old current node
open components is extended by

open node with the largest
ended by. Thus the third

before eis tra-
5 of G.. We claim

open nodes ordered by dfsNum

Fig. 9.7. The open SCCs are shown as ovals, and the current node iS siscafold circle.
The tree path to the current node is indicated. It enters eaciponent at its representative.
The horizontal line below represents the open nodes, atdeyalfsNum Each open SCC
forms a contiguous subsequence, with its representatiits laftmost element

9.2 Depth-First Search 185

esentative;. There is a path fronw to rj sincew belongs to
s the edgév,w) mergesS to S into a single SCC

tovalongatreep
to rj. The path fro
conclude that any no
ri. Thus the SCCS§ to

k can be reached from and can reach
, angis their representative. THg,

The third invariant tells
containingw. The sequence i ered bydfsNum and the representative of
an SCC has the smalledfsNumgf any node in that component. ThdsNunjri] <
dfsNunfw] anddfsNuniw] < dfsN is therefore easy to update our
representation. We simply delete all ith dfsNunfr] > dfsNunfw]
from oReps

Finally, we need to consider fini n will this close an SCC?

of the component, and hence the repre
be finished in the component. In other words
a representative. SinagERepsis ordered bydfs
last node ofoRepdfinishes. So, assume that

oemaff we finish
component iff the

in oNodedollowing v. Finishingv closesS;. By inve
of & into an open component. Thus invariant (1) holds &8
current node is the parent uf By invariant (2), the p

and Fig. 9.9 illustrates a complete run. We use an aroayponenindexe
to record the result, and two staakRepsandoNodesWhen a new root j
atree edge is explored, a new open component consisting rag|
by pushing this node onto both stacks. When a cycle of opemp tsis created,
these components are merged by popping representative®Repsas long as the
top representative is not to the left of the nodlelosing the cycle. An SCSis
closed when its representativefinishes. At that point, all nodes @& are stored

186 9 Graph Traversal

a b c de f g hi j k a b c de f gh i j k
_— traverse(e,g) traverse(e,h) traverse(h.

i '

traverse(i,j) traverse(j,(i)i

e =
traverse(k,d) —

traverse(j,k

backtrack(j,k) backtrack(i,j) backtrack(h
fbacktrack(e,h) backtrack(d,e)
0

5 “"e
I

Fig. 9.9. An example of the development en and closed SCCs durk§. Dnmarked
nodes are shown as empty circles, marke : i

shown in black. Nontraversed edges are shown ia'g f§ed edges are shown in
black. Open SCCs are shown as empty ovals, al @wa as gray ovals. We
start in the situation shown at the upper left. We ma erse the edgesh)
and(b,c). This creates three open SSCs. The trave ges these components
into one. Next, we backtrack tg then toa, and finall intethe component
becomes closed. Please complete the description

abovev in oNodes The operatiorbacktracktherefore Close$
oRepsand by popping the nodese Sfrom oNodesand setting
the representative

Note that the tesiv € oNodesn traverseNonTreeEdgean be done j
time by storing information with each node that indicatesthler the node'is open or
not. This indicator is set when a nodes first marked, and reset w
of vis closed. We give implementation details in Sect. 9.3. ore, the while
loop and the repeat loop can make at mogerations during the entire execution
of the algorithm, since each node is pushed onto the stagdlgonce. Hence, the
execution time of the algorithm is@-+ n). We have the following theorem.

9.2 Depth-First Search 187

init:
component NodeArrayof Nodeld /I SCC representatives
/I representatives of open SCCs

/I all nodes in open SCCs

/I new open
/I component

/I collapse components on cycle

backtracKu, v):

if v=oRepstopthen
oReps.pop /I close
repeat /I component
w:=oNode
componerjtv] ‘=yv
until w=v

Fig. 9.10.An instantiation of t
of a graphG = (V,E)

he graph has two 2-edge con-
ponents, name{Q,1,2,3 4}

e graph has three bicon-
ponents, namely the subgraphs
anned by the se{®,1,2}, {1,3,4} and

2s 1 and 2 are articulation

Theorem 9.6.The algorithm in Fig. 9.10 comp
in timeO(m+n).

can be reached frors and the second tree proves traoan
nodes.

Exercise 9.15 (2-edge-connected component#)n undirected graph
connected if its edges can be oriented so that the graph lescsinong|
The 2-edge-connected components are the maximal 2-e
see Fig. 9.11. Modify the SCC algorithm shown in Fig. 9.10 computes 2-
edge-connected components. Hint: show first that DFS of directed graph never
produces any cross edges.

188 9 Graph Traversal

Exercise 9.16 (biconnected componentsJwo nodes of arundirectedgraph be-
long to the saméiconnected compone(BCC) iff they are connected by an edge

or there ar dge-disjoint paths connecting them; sge911. A node is an
articulati intifibelongs to more than one BCC. Design an algorithm that<o
put ponents using a single pass of DF8.adapt the strongly-
connected- ponents algorithm. Define the represeatafia BCC as the node
with the seco ifsNumin the BCC. Prove that a BCC consists of the par-
ent of the repre and all tree descendants of thesemtative that can be

reached with > ough another representatieglifilbacktrack When
you return from a ative outputv, all nodes above in oNodes and the
parent ofv.

in a FIFO queue. We ¢
and nodes at depth+ 1
correctness immediately evi ur formutatioght also turn out to be
somewhat more efficient. ized as stacks, we will have fewer
cache faults than with a qu i icular if the nodeslayar do not quite fit

single arraya of nnodes is alloca
from a[1] to the right and the other gr,
switches to the next layer, the two m
Our SCC algorithm needs to st
an indication of whethev is marked, a jcation of whethelis open, something
like a DFS number in order to implemenk®, ed nodes, thdodeld
of the representative of its component. The
information. For example, iNodeld are integ
indicate an unmarked node. Negative numbets can indicged@@DFS numbers, so
- " is never applied
to closed nodes. Finally, the tege oNodesimply bee
these simplifications in place, additional tuning is polesik
componenthumbers of representatives rather than

data as a single array of records. The effect of these optinizo ance
of our SCC algorithm is discussed in [132].

9.3.1 Ct+

LEDA [118] has implementations for topological sortingac@ability from a node
(DFS), DFS numbering, BFS, strongly connected componentsnbiected compo-
nents, and transitive closure. BFS, DFS, topological sgrtand strongly connected

9.4 Historical Notes and Further Findings 189

components are also available in a very flexible implementahat separates rep-
resentation and implementation, supports incrementaigian, and allows various
other adaptations:

The Boost graph library [27] uses thisitor concepto support graph traversal.
A vigitor class has user-definable methods that are callegiatt pointsluring the
execution ofi@ graph'traversal algorithm. For example, tR& Risitor defines event
points similar'te the op@rationsit, root, traverse:, andbacktrackused in our DFS
template; there ar€ more event points in Boost.

9.3.2 Java

The JDSL [78] library [78] supports DFS in a very flexible wagt very much dif-
ferent from the visitor concéept described for Boost. Theseadso more specialized
algorithms for topolegical sorting and finding cycles.

9.4 Historical Notes\and FurtherEindings

BFS and DFS were knowpi'before the age,of computers. Tarjab| di8covered
the power of DFS and provided lineat-time algorithms for gnbasic problems re-
lated to graphs, in particular ‘Biconnected and stronglynected components. Our
SCC algorithm was invented by Cheriyan anéyMehlhorn [39] latet rediscovered
by Gabow [70]. Yet another linear-timefSCC algatithm is thaé to Kosaraju and
Sharir[178]. Itis very simple, but needstwo passes of DASS Pan be used to solve
many other graph problems in lineartime, for example eaongosition, planarity
testing, planar embeddings, and triconnected components.

It may seem that problems solvablelby,graph traversal aréngalesthat little
further research is needed on them. Howevergthe"bad newstigtaph traversal
itself is very difficult on advanced models offcomputatiomiparticular, DFS is a
nightmare for both parallel processing [161] and memoryehizhies [141, 128].
Therefore alternative ways to solve seemingly simple pnaisl are an interesting
area of research. For example, in Sect. 11.8 we describémoaqh to constructing
minimum spanning trees usirgfdge contractiorthat also works fonfinding con-
nected components. Furthermore, the problem of findingrmeotedieomponents
can be reduced to finding connected components [€89]. Thelak&d algorithms
for biconnected components and strongly connected conmp@aec_almost identi-
cal. But this analogy completely disappears for advancedietsamf computation, so
that algorithms for strongly connected components remaiaraa of intenSive (and
sometimes frustrating) research. More generally, it setiratsproblems for undi-
rected graphs (such as finding biconnected components)fiare easierto. solve
than analogous problems for directed graphs (such as firtieggly connected
components).

