When you want to b
where to get the right
erect scaffolding,
but even if you have a re
into a successful artist with

have to learn some basic techniques:
e them, how to hahdlettisel, how to

nt, it will beyvdifficult to develop
. It is not seey to master all of the

his bowle introduce basic
concepts that make it simpler to discuss and an e d1gmitin the subsequent

you proceed to later chapters. On first r
carefully to the end of Sect. 2.3 and skim thro
Sect. 2.1 by introducing some notation and t

introduced by real hardware. The model is concre
and abstract enough to allow elegant arguments. Secticih
level pseudocode notation for algorithms that is m

more convenient than actual programming languages, siece
concepts borrowed from mathematics without having to walbyut ex
they can be compiled to run on actual hardware. We frequamthptat
to make algorithms more readable and easier to prove coifbi is
of Sect. 2.4. Section 2.5 gives the first comprehensive elarhj
sorted array. In Sect. 2.6, we introduce mathematical igcles for analyzing the
complexity of programs, in particular, for analyzing neskeops and recursive pro-

subject

1 The above illustration of Stonehenge is from [156].

20 2 Introduction

cedure calls. Additional analysis techniques are neededverage-case analysis;
these are covered in Sect. 2.7. Randomized algorithmsystied in Sect. 2.8, use
coin tosses_inftheir execution. Section 2.9 is devoted tplggaa concept that will

play animpertanttele throughout the book. In Sect. 2.10¢igeuss the question of
when an algorithm'should be called efficient, and introdbesdomplexity classes
P andNP. Finally, as in every chapter of this book, there are sestmmtaining im-

plementationnotes (Seet. 2.11) and historical notes amidefufindings (Sect. 2.12).

2.1 Asymptotic'Notation

The main purpose of algorithmfanalysis is to give perforneaguearantees, for ex-
ample bounds on'runninggime, that are at the same time de¢amncise, general,
and easy to understafd: Itis difficult to meet all these @aiteimultaneously. For
example, the most accurateWway to eharacterize the runiniegit of an algorithm is

to view T as a mapping from the skbf all inputs to the set of nonnegative numbers
R.. For any problem instandeT (i) isgh@yrunning time om. This level of detail is
so overwhelming that we'eould net possibly derive a theoouali. A useful theory
needs a more global view ofithe petformanee of an algorithm.

We group the set of all inputs int@classesiof “similar” inpahd summarize the
performance on all instancesin the same class into a singhar. The most useful
grouping is bysize Usually, there is a naturalway to assign a size to each g@nobl
instance. The size of an integer'is the ndmber-ofidigits inggesentation, and the
size of a set is the number of elemepts’in the setiThe size imistance is always
a natural number. Sometimes we use more than gne parameteaure the size
of an instance; for example, it is customary to measure the af a graph by its
number of nodes and its number of edges. We ignore this coatn for now. We
use siz@) to denote the size of instanceandl,, tefdenotelihe instances of sine
for n € N. For the inputs of size, we are interested in the maximum, minimum, and
average execution timés:

worst case: T(n) =max{iL(i):i € ld}
best case: T(n) = min{T)EiE,}
average case: T(n) = 1 T().

|In| i€lh

We are interested most in the worst-case execution tinegstagives us the
strongest performance guarantee. A comparison of the bestand the wgrst case
tells us how much the execution time varies for differentitsgn the same class. If
the discrepancy is big, the average case may give more inisighthe tpue perfor-
mance of the algorithm. Section 2.7 gives an example.

We shall perform one more step of data reduction: we shatig@imate omgrowth
rate or asymptotic analysigrunctionsf (n) andg(n) have thesame growth ratéf

2 We shall make sure thdfT (i) : i € In} always has a proper minimum and maximum, and
thatl,, is finite when we consider averages.

2.1 Asymptotic Notation 21

there are positive constartandd such that < f(n)/g(n) < d for all sufficiently
largen, and f(n).grows fasterthang(n) if, for all positive constantg, we have
f(n) > c- g(mgforall sufficiently largen. For example, the functions®, n? + 7n,
5n? — 7ng@ndn? /10 10°n all have the same growth rate. Also, they grow faster
thanfi®?, Which in ttn grows faster thanlogn. The growth rate talks about the
behavior forilargen. The word “asymptotic” in “asymptotic analysis” also sses
the fact that we*are int€rested in the behavior for large

Why are we jnteérested only in growth rates and the behavidafgen? We are
interested inghe'behavior for largdecause the whole purpose of designing efficient
algorithms'is to be able to solve large instances. For largen algorithm whose
running time has a smaillér growth rate than the running tifmenother algorithm
will be superior. Also, our maehine model is an abstractibmeal machines and
hence can predict actual ruAning times only up to a conséatdif, and this suggests
that we should not distinguish between algorithms whosaingntimes have the
same growth rate. A pleasing side ‘effect of concentratingromth rate is that we
can characterize the funningtimes of algorithms by simpiefions. However, in
the sections on implementation, we shall frequently takesec look and go beyond
asymptotic analysis. Als@, whenuSing ofle of the algoritdeescribed in this book,
you should always ask yoursélfwhether the asymptotic viejustified.

The following definitions allow us'to argue precisely abasymptotic behavior
Let f (n) andg(n) denote functions thatmap nonnegative integers to nonnegesl
numbers:

n):ve> 0:3ng € Nimavn > negag(n) < c- f(n)},
n):ve>0:3ng € Ny :VASNo: g(n)&c- f(n)}.

The left-hand sides should be read as “big GFf“big omega of f”, “theta of f”,
“little o of f”, and “little omega off”, respectively.

Let us see some examples(ré) is the set ofjallfunctions that grow at most
quadratically, ¢n?) is the set of functions that grow less than quadraticallg an
o(1) is the set of functions that go to zero agoes toginfinity. Here\'1” stands
for the functionn — 1, which is one everywhere, and hene o(1)Jif f(n) <
c- 1 for any positivec and sufficiently largen, i.e., f(n) goes tozerd as goes to
infinity. Generally, @ f (n)) is the set of all functions that “grow no faster thafr(h).
Similarly, Q(f(n)) is the set of all functions that “grow at least as fast §81). For
example, the Karatsuba algorithm for integer multiplicathas a worst-gase running
time in O(n'°8), whereas the school algorithm has a worst-casefrunningitime
Q(nz), so that we can say that the Karatsuba algorithm is asymepiiytfaster than
the school algorithm. The “little 0” notation(6(n)) denotes the set of all functions
that “grow strictly more slowly than(n). Its twin w(f(n)) is rarely used, and is
only shown for completeness.

22 2 Introduction

The growth rate of most algorithms discussed in this bookieea polynomial
or a logarithmic function, or the product of a polynomial amdbgarithmic func-

and hencep(n) > (ax/2)
the definition ofQ (n*), and

Exercise 2.1 Right or wrong? o) n2), (b)nlogn € O(n), (c)nlogn e
Q(n), (d) logn € o(n).

Asymptotic notation is used a lot |
stretch mathematical notation a littl
O(n?)) to be treated similarly to ord
write h=O(f) instead oth € O(f), an
example,

n part@ylwe shall always
stead of @h) C O(f). For

3n’+7n=0(n%) =

Be warned that sequences of equalities in
from left to right.

+, -, 0r/,thenF oG is a shorthand foffog: f
{h} oF. So f(n)+o(f(n)) denotes the set of all functiorfgn
grows strictly more slowly tharii(n), i.e., the ratio(f(n

asn goes to infinity. Equivalently, we can writéd 4 o(1)
whenever we care about the constant in the leading term ol
order terms

stands for
hereg(n)

goes to one
S notation

Lemma 2.2.The following rules hold fo©-notation:

cf(n) =O(f(n)) for any positive const
f(n)+g(n) = Q(f(n),
f(n)+g(n) = O(f(n)) if g(n) = O(f(n)),
O(f(n))-O(g(n)) = O(f(n)-g(n)).

2.2 The Machine Model 23

Exercise 2.2 Prove Lemma 2.2.

(Fig. 2.1) introduced a
ich was simple, yet

an elegant de-
tials; otherwise,|
ible. Hardware |
technology has deve since 1945,
However, the program from von
Neumann’s designis so ele Ithatitis

ally, programs written with
in mind also work well on th

The variant of von Neumann’s m
gorithmic analysis is called tHeRAM (r
machine) model. It was introduce
and Sturgis [179]. It is aequentiamac

rn Dec. 28, 1903 in Budapest,
d Feb. 8, 1957 in Washing-

time. The memory ostore consists of infini
at any point in time, only a finite number of t .
our discussion of
integer arithmetic in Chap. 1, we assumed thatsm eaetdigit. It is more

the size of the input. Our default assumption is that intg polynomial
in the size of the data being processed can be sto ; integers
can be represented by a number of bits that is logarithmibe the input

This assumption is reasonable because we could alwaysispuethe con
single cell over logarithmically many cells with a logantftc overhead i
space and obtain constant-size cells. The assumptionveomnt beca
to be able to store array indices in a single cell. The assomjs ne
allowing cells to store arbitrary numbers would lead to ab ptimistic al-
gorithms. For example, by repeated squaring, we could gémernumber with 2
bits in n steps. Namely, if we start with the number=221, squaring it once gives

4 =22 = 22" squaring it twice gives 16 2* = 22 and squaring ih times gives 2.

we want

24 2 Introduction

Our model supports a limited form of parallelism. We can perf simple operations
on a logarithmic number of bits in constant time.

IR), & (AND), >> (shift right), << (shift left), and®
e operatiodss andmod stand for integer division and

true(=1) or
valuesO and 1.
bits stored inar
imation of a real

e R:=0R;jis aunar

(bitwise NOT).

R :=C assigns &onstal

e that there are operations whéchriet the
-point number, i.enitefiprecision approx-

Each instruction takes one time | execution time of a program
is the number of instructions execut a lishstructions numbered
starting at one. The addresses in jump-instructionsjrefénis numbering. The input

It is important to remember that t AM model is an abstoactOne should
not confuse it with physically existing m ne iz, real machines have
a finite memory and a fixed number of bits pe Or34). In contrast,
his loa viewed as
an abstraction of the historical development! e had words of 4,

can index a memory of siz€® Thus, at current p
cost and not by physical limitations. Observe that thi
32-bit words were introduced.

tempt to execute many instructions in parallel. How wellytkac nds on
factors such as data dependencies between successiveaseras a con
an operation does not have a fixed cost. This effect is péatiguorono

can be hundreds of times higher than the best-case time.€Bise
processors attempt to keep frequently used dataghes— sm ast memories
close to the processors. How well caches work depends a lttednarchitecture,
the program, and the particular input.

2.2 The Machine Model 25

We could attempt to introduce a very accurate cost modethiznvould miss the
point. We would end up with a complex model that would be ditfito handle. Even
a successfulseomplexity analysis would lead to a monstrousaila depending on
many parametersithat change with every new processor giemeralthough such
a forfmula Would contain detailed information, the very céexjiy of the formula
would makeibuseless. We therefore go to the other extremegminate all model
parameters by*assumifg that each instruction takes exadyunit of time. The
result is that constant factors in our model are quite mepgeds — one more reason
to stick to asymptotic analysis most of the time. We comptenfa this drawback
by providingimplementationnotes, in which we discuss iempéntation choices and
trade-offs.

2.2.1 External Memory

The biggest difference between a'RAM and a real machine ikenntemory: a
uniform memory in @ RAM and a complex memory hierarchy in d meachine.

In Sects. 5.7, 6.3, and ¥.6, we shalldiscuss algorithmshtiiat been specifically
designed for huge data‘sets whieh havete be stored on slovorgesach as disks.
We shall use thexternal-memory medé&b study these algorithms.

The external-memory madel is like the RAM model except thatfast memory
Sis limited in size toM words.*Additionally, there is an external memory with un-
limited size. There are speciD\operations which transfelB consecutive words
between slow and fast memory“For example;the external mecaald be a hard
disk, M would then be the size of the'main memary, @dould be a block size
that is a good compromise between low latency and high battHwwith current
technologyM = 2 Ghyte andB = 2 Mbyte are realisti¢ values. One I/O step would
then take around 10 ms which is 207 cloek cycles of a 2 GHz machine. With an-
other setting of the parameteys and B, we“couldgmodelithe smaller access time
difference between a hardware cache and main'memory.

2.2.2 Parallel Processing

On modern machines, we are confronted with many“forms _efllprarocessing.
Many processors have 128-512-bit-wildD registers that@llow theyparallel exe-
cution of asingleinstruction ormultiple data objectsSimultaneous multithreading
allows processors to better utilize their resources by ingimultiple threads of ac-
tivity on a single processor core. Even mobile devices dfiire multiple processor
cores that can independently execute programs, and mestsdrave seyveral such
multicore processors accessing the sashared memoryCoprocessors in particu-
lar those used for graphics processing, have even mordearalon a_single chip.
High-performance computers consist of multiple serveetyystemsfinterconnected
by a fast, dedicated network. Finally, more loosely conegcomputers of all types
interact through various kinds of network (the Internetlioanetworks, ...) indis-
tributed systemghat may consist of millions of nodes. As you can imagine,ingls
simple model can be used to describe parallel programsmgromi these many levels

26 2 Introduction

of parallelism. We shall therefore restrict ourselves toasional informal arguments
as to why a certain sequential algorithm may be more or lessteaadapt to paral-
lel processingf For example, the algorithms for high-miedi arithmetic in Chap. 1
could make'use of SIMD instructions.

2.3 Pseudocode

Our RAM madelis\an abstraction and simplification of the niaelprograms exe-
cuted on microprocessors./The purpose of the model is tageaprecise definition
of running time. However{the model is much too low-levelfilomulating complex
algorithms. Our pregrams would become too long and too tardad. Instead, we
formulate our algerithms jpseudocodevhich is an abstraction and simplification of
imperative programmifig'fanguages such as € (Java, C#, and Pascal, combined
with liberal use of mathematical notation. We now descriiedonventions used in
this book, and deriveiatimingimodel for pseudocode prograimes timing model is
quite simple:basic pseudocode instruetions take constant time, andegkore and
function calls take constant timegalus theitime to execge tody We justify the
timing model by outlining hew pseudocode,can be translatéul equivalent RAM
code. We do this only to the extent necessary to understartihting model. There
is no need to worry about compiler optimization techniqs#s;e constant factors
are outside our theory. The reader may decide to skip theymhs describing the
translation and adopt the timingimodel @as an“axiem. The gyiftaur pseudocode
is akin to that of Pascal [99], becausefwe find this'notatipodyaphically nicer for
a book than the more widely known syntax of C and its descesdzint and Java.

2.3.1 Variables and Elementary Data Types

A variable declaratiorfv = x : T” introduces ag/ariable of type T, and initializes
it with the valuex. For example, &nswer= 42/ {N” introduces)a variablanswer
assuming integer values and initializes it to the\value 4Be¥\the type of a variable
is clear from the context, we shall sometimes.omit it frefp deelaration. A type
is either a basic type (e.g., integer, Boolean valtue, ortpojror af€omposite type.
We have predefined composite types such as arrays, anda@ppiispecific classes
(see below). When the type of a variable is irrelevant to tSeLsionywe use the
unspecified typ&lementas a placeholder for an arbitrary types, We take the liberty
of extending numeric types by the valuese and e whenever this’is conwenient.
Similarly, we sometimes extend types by an undefined valeedtd by the symbol
1), which we assume to be distinguishable from any “propesireint of the typd .
In particular, for pointer types it is useful to have an unaiedi value. The values of
the pointer type Pointer to T” are handles of objects of type. In thefRAM model;
this is the index of the first cell in a region of storage hofpam object of typd'.

A declaration & : Array [i..j] of T” introduces ararray aconsisting ofj —i + 1
element®f typeT, stored inafi], afi + 1], ..., a[]]. Arrays are implemented as con-
tiguous pieces of memory. To find an elemefK, it suffices to know the starting

2.3 Pseudocode 27

address o and the size of an object of tyfe For example, if registeR, stores the
starting address_of arraf0..k] and the elements have unit size, the instruction se-
quence Ry :=Ra+42; R, :=9Ry|" loadsa[42] into registeiR,. The size of an array

is fixed atfthe timeof declaration; such arrays are caltatlc. In Sect. 3.2, we show
howgo'implementinbounded arraythat can grow and shrink during execution.

A declaration ¢t : Classage: N, income: N end’ introduces a variable whose
values are palirs of inteders. The componentsare denoted bg.ageandc.income
For a variablec, addressofc returns the address of We also say that it returns a
handle tcc. [fgpis/an appropiiate pointer typp;=addressofc stores a handle toin
p andxp gives us back. Thefields oft can then also be accessed thropgh age
andp — income Alternatively, one may write (but nobody ever doésp).ageand
(xp).income

Arrays and a@bjects refefenced by pointers can be allocatddiaallocated by
the commandsllocatefanddispose\For example p :=allocateArray [1..n] of T
allocates an array afobjectsof typeli.\I hat is, the statement allocates a contiguous
chunk of memory of Size timesithe size of an object of tyde and assigns a handle
of this chunk (= the starting address ofthie chunk).t@he statementisposep frees
this memory and makesiit availablé for reuse. Véilocateanddispose we can cut
our memory arrays into disjeint'pieces that can be referred to separatelys@he
functions can be implemented to rugyin constant time. Thekst implementation
is as follows. We keep track ef the used portion®by storing the index of the
first free cell ofSin a special variable, sdyee A call of allocatereserves a chunk
of memory starting afree and increasege€ by thejsize of the allocated chunk. A
call of disposedoes nothing. This implementationiis time-efficient, but sypace-
efficient. Any call ofallocate or dispesetakes constant time. However, the total
space consumption is the total spacethat has everdeeataliicend not the maximal
space simultaneously used, i.e., allocated but not yet fraieany one time. It is
not known whether an arbitrary sequenceatibcateland@isposeoperations can
be realized space-efficiently and with constant time peratn. However, for all
algorithms presented in this boakilocate anddisposecan be realized in a time-
and space-efficient way.

We borrow some composite data structuresyfrom mathemitigarticular, we
use tuples, sequences, and sB#rs, triples, and othEfuplesareairitten in round
brackets, for examplé3,1), (3,1,4), and(3,1,4,1,5). Sincedlples anly contain a
constant number of elements, operations on them cafi bermnoteoperations on
their constituents in an obvious w&equencestore elementsiin a specified order;
for example $= (3,1,4,1) : Sequencef Z" declares a sequens®fintegers and
initializes it to contain the numbers 3, 1, 4, and 1 in thaeor8equences arg a natural
abstraction of many data structures, such as files, stiists,stacks, and/gueues. In
Chap. 3, we shall study many ways to represent sequencesefithapters, we shall
make extensive use of sequences as a mathematical alostredidlittle“further
reference to implementation details. The empty sequenestien‘as().

Sets play an important role in mathematical arguments arshaialso use them
in our pseudocode. In particular, you shall see declaratsuch asM = {3,1,4}

28 2 Introduction

: Setof N” that are analogous to declarations of arrays or sequeBetsare usually
implemented as sequences.

t is an assignment E, wherex is a variable and is an
ment is easily transformed into ataohsiumber of RAM

also use parallel assignmeseveral variables. For
the same typéa;b):=(b,a)" swaps the contents

nl elseJ’, whereC is a Boolean expression
into the instruction sequence

whereevalC) is a seq
its value in registeR, tr
mentl, trans(J) implement

that evaluate the expre€siomd leave
e of instructions that implement state-
ss of the first instructiontrang(J),
§J). The sequence above first
, the program jumps to the first iativn
of the translation ofl. If C eval the program continues with the
translation ofl and then jumps to'the i
ment ‘if Cthen1” is a shorthand for if
empty “else” part.

Our written representation of pr ded for enand uses less

\ arusually group state-

ability for humans and for computers. We use
ambiguous otherwise. For the same reason,
the purpose of separating statements.
The loop ‘fepeat! until C” translates intdrans(l ; , wheresl
other types
ol y list, the
shorthand on the left expands into the statements on the rlg

while Cdo | if C then repeat! uptil -C
fori:=atobdo | i:=a;whilei<b Tt
for i:=ato c while C do | i :=a; while I;i++

foreachee sdo| fori:=1to|s

Many low-level optimizations are possible when loops amastated’into RAM code.
These optimizations are of no concern for us. For us, it iy @nportant that the
execution time of a loop can be bounded by summing the exattithes of each of
its iterations, including the time needed for evaluatingdigons.

2.3 Pseudocode 29
2.3.3 Procedures and Functions

A subroutine withithe namf@ois declared in the formProcedure foo(D) |”, where

| is the be@y of they\procedure altis a sequence of variable declarations specify-
ing thé parametersid@bo. A call of foo has the fornfoo(P), whereP is a parameter
list. The parameter Iist has the same length as the varigslation list. Parameter
passing is either “by value” or “by reference”. Our defaidsamption is that basic
objects such as intégers and Booleans are passed by valtigsdicdmplex objects
such as arrayS are passed by reference. These conventossndar to the con-
ventions used by C\and guarantee that parameter passirggdakstant time. The
semantics of parameterpassing is defined as follows. Fdua parametex of type

T, the actual parameter must bg,an expresBiofthe same type. Parameter passing
is equivalent to the declaration'ofia local variaklef typeT initialized toE. For a
reference parametenfdype, theactual parameter must be a variable of the same
type and the formalparameter is simply an alternative namthé actual parameter.

As with variable declarations, we'sometimes omit type datians for parame-
ters if they are unimportant or Clear fromthe context. Sames we also declare pa-
rameters implicitly usingimathematical netation. For eptanthe declaratiofro-
cedurebar({ay,...,an)) introdu€es a procedure whose argument is a sequente of
elements of unspecified type.

Most procedure calls canibe compiled into machine code byplgisubstitut-
ing the procedure body for the procedure call and makingipians for parameter
passing; this is callethlining. Value passingiisimplemented by making appropriate
assignments to copy the parameter values into the, localhlas of the procedure.
Reference passing to a formal parametel is implemented by changing the type
of x to Pointer to T, replacing all oceurrences of in the body of the procedure
by (xx) and initializingx by the assignment:= addressofy, wherey is the actual
parameter. Inlining gives the compiler many opperttnif@soptimization, so that
inlining is the most efficient approach for small'procedwansé, for procedures that
are called from only a single place.

Functionsare similar to procedures, exceptthat they allowthe restatement to
return a value. Figure 2.2 shows the declaration,of a recifénction that returns!
and its translation into RAM code. The substitutionapphdi@ads forfecursivepro-
cedures and functions that directly or indirectly call treereses stbstitution would
never terminate. Realizing recursive procedures in RAMea@djuiresithe concept
of arecursion stackExplicit subroutine calls over a‘stack are also/used faydar
procedures that are called multiple times where inliningildaindulyincrease the
code size. The recursion stack is a reserved part of the nyemenseR Sto/denote
it. RScontains a sequence attivation recordsone for each active progedure call.
A special registeR; always points to the first free entry in this stack. The atitva
record for a procedure withparameters anéllocal variables has sizeflk=F¢EThe
first location contains the return address, i.e., the addoéshe instruction where
execution is to be continued after the call has terminatesl nextk locations are
reserved for the parameters, and the fihldcations are for the local variables. A
procedure call is now implemented as follows. First, theirmglprocedurecaller

30 2 Introduction

Function factorial(n) : Z
if n= 1then return 1 else returnn-factorial(n—1)

factori /I the first instruction ofactorial
Rn: /I loadn into registerR,
JZ thenCase /I jump to then case, ifi is zero
RSR(] = aRec Il else case; return address for recursive call
RYR +1]:=Ry—1 Il parameter is1 — 1

R=R+2

J factori

/I increase stack pointer
/I start recursive call

aRecCall: /I return address for recursive call
Rresult:=RIR — 1] /I storenxfactorial(n— 1) in result register
J return /I goto return
thenCase : /I code for then case
Rresuit:=1 /I put 1 into result register
return: /I code for return
R:=R -2 /I free activation record
J RSR] /I jump to return address
Fig. 2.2. A recursive functiorf d the €orresponding RAM code. The RAM code
returns the function value in registBfeg|
R
3
aRecCall
4
aRecCall
“FtorCall Fig. 2.3.The recursion stack of) when the recursion
has reachethctorial(3)

pushes the return address and the actual pa
cordingly, and jumps to the first instruction of the
routine reserves space for its local variables by incrg
the body ofcalledis executed. During execution of the
formal parameter (& i < k) is an access tRSR, — ¢ —k
i-th local variable (0<i < ¢) is an access tRR: — ¢ +i]. Whene
return statement, it decreasBsby 1+ k+ ¢ (observe thatalledknowsk a
execution continues at the return address (which can belfatRSR,]).
trol is returned tccaller. Note that recursion is no problem with this
each incarnation of a routine will have its own stack aredtfqpara
variables. Figure 2.3 shows the contents of the recursamk sif [Ifactorial(5)
when the recursion has reacHadtorial(3). The labelafterCall is the address of
the instruction following the cafiactorial(5), andaRecCall is defined in Fig. 2.2.

2.4 Designing Correct Algorithms and Programs 31

Exercise 2.5 (sieve of Eratosthenes)ranslate the following pseudocode for find-
ing all prime numbers up tointo RAM machine code. Argue correctness first.

rray [2..n] of {0,1} // if a[i] is false,i is known to be nonprime

:=2i to nstepi do a[j]:=0
[Lif ali] is true,i is prime and all multiples ofare nonprime
hen output ‘i is prime”

We also need a si
the interface a
notation by way

ject-oriented programmintfpabwe can separate
ion of the data structiesshall introduce our

ClassComplex
Number r.=x
Numberi=y

numeric types for the real and
with capital letters. The real an
andi, respectively. Now, the declarati
numbercinitialized to 2+ 3i; c.iis the |
value ofc.

aginary parts. Very oftemotass names will begin
agin e storé¢hemember variables r

) of R” declares a complex
nclabsreturns the absolute

to the template mechanism of-€ or the g
of this notation, the typesSetof Element and
earlier are ordinary classes. Objects of a cl
variables as specified in the class definition.

algorithms using natural language and mathematical motafilge such,
cannot be executed by a computer. The formulation of an idtgorin a
ming language is called a program. Designing correct algms and tr
correct algorithm into a correct program are nontrivial @nebr-prone
section, we learn about assertions and invariants, twaibseifice

of correct algorithms and programs.

32 2 Introduction

2.4.1 Assertions and Invariants

Assertionsal riantsdescribe properties of the program state, i.e., properties
of singl nd relations between the values ofrakvariables. Typical
pro pointer has a defined value, an intsgaorinegative, a list
is nonemp lue of an integer varialdagthis equal to the length of a
certain listL. fshows an example of the use of assertions andanta
in a functionpowe hat computega™ for a real numbea and a nonnegative
integerng.

We stal f gssertng > 0 and—(a= 0Ang = 0). This states that

the program expe
be zero. We make

gative integeand that not both andng are allowed to
t the behavior of our progranmparts that violate
erefore calledpgheconditionof the program.
It is good programmi i check the preconditioragdrogram, i.e., to
write code which ¢ ition and signals arr dritds violated. When
the precondition ho ram is correctpoatconditionholds at the
termination of the pr ple, we assert thata™. It is also good
programming practice

routine produces a result sati
For conciseness, we shall

more elaborate assertions may be r
verification.

final state of a program or function. We
diate states. Some particularly important consi
places in a program. These properties are ca
structure invariants are of particular importa

Function powera: R; ng: N) : R
assertng > 0and—(a=0Ang =0) II'tis ' Oshould be
p=a:R; r=1:R;, n=ng:N Nr = ao
while n> 0do

invariant p"r = a"
if nis oddthenn--;r:=r-p /I invariant violated between
else(n,p):=(n/2,p-p) /I parallel assignment maintains invariant
assertr = a /I This is a consequence of the inv.
return r

Fig. 2.4.An algorithm that computes integer powers of real numbers.

2.4 Designing Correct Algorithms and Programs 33
2.4.2 Loop Invariants

A loop invarianthelds before and after each loop iteration. In our exampdeghaim
that p"r =@ befare each iteration. This is true before the first iteratibhe ini-
tialization ofithe program variables takes care of thisaktfan invariant frequently
tells’us howtto initialize the variables. Assume that theammant holds before exe-
cution of the 1oop bodypand > 0. If nis odd, we decrememt and multiplyr by
p. This reestablishés'theinvariant (note that the invaiswiblated between the as-
signments). lffis'even, we halva and squarg, and again reestablish the invariant.
When the 100p tefminates, we hapér = a™ by the invariant, andh = 0 by the
condition of the logp.3Ehus= a™ and we have established the postcondition.

The algorithmdn Fig. 2.4 and many more algorithms describehis book have
a quite simple structure. Agfew variables are declared aitihlized to establish
the loop invariant. Theafamain logp manipulates the stetteeqprogram. When the
loop terminates, the leop invariant tagether with the texation condition of the loop
implies that the correct resulthas been computed. The loaiant therefore plays
a pivotal role in understanding'why a pgegram works corge@hce we understand
the loop invariant, it suffices to cheek'thatithe loop invaria true initially and after
each loop iteration. This is particularly easy if the looglpeonsists of only a small
number of statements, as i the example above.

2.4.3 Data Structure Invariants

More complex programs encapsulatg their state in, objects®/consistent repre-
sentation is also governed by invariants. Sdaka structure invariantare declared
together with the data type. They ake true after an objecoistructed, and they
are preconditions and postconditionsief all methods of ascl&or example, we
shall discuss the representation of sets by“sortedfarrdiygs data structure invari-
ant will state that the data structure uses an a@f@ayd an integen, thatn is the size

of a, that the seB stored in the data structurg is equal{&@1);.. .,a[n]}, and that
all] < a2] < ... < a[n]. The methods of the class have to maintain this invariant and
they are allowed to leverage the invariant; for éxamplestach method may make
use of the fact that the array is sorted.

2.4.4 Certifying Algorithms

We mentioned above that it is good programming practice EeEkkassertions. It

is not always clear how to do this efficiently; in our examptegram, it is'€asy to
check the precondition, but there seems to be no easy wagtk tihe posteondition.

In many situations, howevethe task of checking assertions can be simplified by
computing additional informatiarThis additional information is calledcertificate
orwitnessand its purpose is to simplify the check of an assertion. Mérealgorithm
computes a certificate for the postcondition, we call deatifying algorithm We
shall illustrate the idea by an example. Consider a funotibnse input is a graph

G = (V,E). Graphs are defined in Sect. 2.9. The task is to test whethegrtiph is

34 2 Introduction

bipartite, i.e., whether there is a labeling of the node& afith the colors blue and
red such that any edge & connects nodes of different colors. As specified so far,
the function returns true or false — truedfis bipartite, and false otherwise. With this
rudimentaryoutputithe postcondition cannot be checkedidter, we may augment
theprogramas follows. When the program decl&éspartite, it also returns a two-
coloring of the graph. When the program declaBronbipartite, it also returns a
cycle of odd length ingthe graph. For the augmented prograenpbstcondition is
easy to check. Inghe'firstcase, we simply check whether gkgdonnect nodes of
different colerS,and in the second case, we do nothing. Akledgth cycle proves
that the graph is n@nbipartite. Most algorithms in this baak be made certifying
without increasinggheasymptotic running time.

2.5 An Example <Binary Search

Binary search is a veryusefulitechnique for searching inrdered set of items. We
shall use it over and over again in latef'chapters.

The simplest scenario is asfollows. We are given a sortexy aff..n] of pair-
wise distinct elements, i.ea/df<"a[2)< ... Qa[n|, and an element Now we are
required to find the indekwith\afi — 1} x x < a]ii|; here,a|0] anda[n + 1] should be
interpreted as fictitious elements with\value® and+, respectively. We can use
these fictitious elements in theinvariants and the proafschnnot access them in
the program.

Binary search is based on the pfinciple of divide-and-cengWe choose an
indexm € [1..n] and compare with ajm]. If x=a[m|, we are done and retuir=m.

If x < a[m], we restrict the search to the,part of the array beédme, and ifx > a[m,
we restrict the search to the part of thetakray adfer. We need to say more clearly
what it means to restrict the search to a subintepval-Wetwayandices? andr, and
maintain the invariant

(1 0</<r<n+1 andl\a[/] <x<alf].

This is true initially with¢ = 0 andr = n+ 1. If / andgaré consecutive indices,is
not contained in the array. Figure 2.5 shows the completgraf:

The comments in the program show that the second part of theiamt is main-
tained. With respect to the first part, we observe that'thp Is@ntered with? < r.

If £41=r, we stop and return. Otherwise} 2 <r and hencé <m'r- Thusmis

a legal array index, and we can accepyg|. If x = aJm|, we stop. Otherwise, we set
eitherr = mor ¢ = mand hence havé< r at the end of the loop. Thus the invariant
is maintained.

Let us argue for termination next. We observe first that iftaration‘isThotithe
last one, then we either increaker decrease, and hence — ¢ deGreases. Thus the
search terminates. We want to show more. We want to showtbatiarch terminates
in a logarithmic number of steps. To do this, we study the tjtyan— ¢ — 1. Note
that this is the number of indicésvith £ < i < r, and hence a natural measure of the

2.5 An Example — Binary Search 35

size of the current subproblem. We shall show that eachtiberaxcept the last at
least halves the size of the problem. If an iteration is netidist,r — ¢ — 1 decreases

< iterations. Thék+ 1)-th iteration is certainly the last

if we enter it withr is is guaranteed if/2¢ < 1 ork > logn. We conclude
that, at most, 2- logn iterations are performed. Since the number of comparisons i
a natural numbe the boundd Bgn].

We next discuss two important extensions of binary seatic$t, Ehere is no need
for the valuesa|i] to be stored i need the capability to comput
nic functiband arguments
fimsuch thatf (m) < x<
d to adhiisection method
h to the case where tlydsaméinite. As-
ant to findm such that
array, the procedure is
p[2'], a[2?], a[2%),
2ntial searchirhen

andj with f(i) <x< f(j), we canus
f(m+1). In this context, binary sear

sume we have an infinite arrajl..co] wi
am < x < am+1]. If x is larger than all eleny
allowed to diverge. We proceed as follows.
..., until the firsti with x < a[2'] is found. This i
we complete the search by binary search on

(4,r):=(0,n+1)
while true do
invariant |
if £+1=rthenreturn “a[{] < x<a[(+1]"
m:=(r +0)/2]
s:=comparéx,a[m|) Il =1if x < alm|, 0if x=a[m],

olds here

if s= 0then return “x is equal to gm”;
if s<0
thenr:=m Il af¢
else/:=m IIajf] =am < x< a[r]

Fig. 2.5.Binary Search fox in a sorted arrag[1..n.

36 2 Introduction

Theorem 2.4.The combination of exponential and binary search finds x im@n
bounded sorted array in at mo8togm+ 3 comparisons, wherefa| < x < ajm+1].

parisons for the binary search. This gives a totaliof 2
2-1 we havd < 1+ logmand the claim follows. m|

on and is not sorted, we knotling. There is no way
logarithmic time.

tions executed. ivplify the analy-
sis further by grouping in cusing on thestvoase. The use of
asymptotic notation allows constant factotslawer-order terms. This
coarsening of our view also a look at upper boumde execution time
rather than the exact worst cas ymptsuiic remains unchanged.
rtimge of pseudocode can be
ogmeomachine code first.
nalyzirgupecode. LeT (1)

analyzed directly. There is no need t
We shall next introduce a set of

then tell us how to estimate the running
the running times of their constituents:

o T(L;1)Y=T)+T(1").
e T(if Cthenl elsel’) = O(T(C)+ maxT(I),
e T(repeatl until C) = O(3k, T(i)), where

andT (i) is the time needed in theth iteration o

We postpone the treatment of subroutine calls to Sec
the rule for loops is nontrivial to apply; it requires eve

2.6.1 “Doing Sums”

We now introduce some basic techniques for evaluating s@uss e in the
analysis of loops, in average-case analysis, and also iartakysi
algorithms.

For example, the insertion sort algorithm introduced intSed has two nested
loops. The outer loop countsfrom 2 ton. The inner loop performs at most- 1
iterations. Hence, the total number of iterations of thesirlnop is at most

2.6 Basic Algorithm Analysis 37

no "l nn-1
i-1)=YVi= =0(n?) ,
2T
where t quality comes from (A.11). Since the ton@fe execution of

we get a worst-case execution time @(nz). All nested
dictable number of iterations caartsyzed in an analogous
fashion: wor sutwards by repeatedly finding a alisk®m expression for

S imple manipulations suchias =c3; &, yi(a+bi) =
Yia+Yyibi, ; + 31 ,a, one can often reduce the sums to simple
forms that in a catalog of sums. A small saonfidach formulae
Since we are usually interestdd iorthe asymptotic
behavior, we ca id doing sums exactly andrtés estimates. For
example, instea
follows:

canzantlg subroutine sepa-
esjoe for the running time
as, dpproach does not lead

rately and then substitute the bound
of the calling routine. For recursive

For example, for the recursive va
tion, we obtainedrl' (1) =1 andT (n) = 6n+ 4T,
itive operations. For the Karatsuba algorit
T(n) =3n?+2nforn< 3 andT(n) = 12n+3
arecurrence relatiordefines a function in ter
arguments. Explicit definitions for small paral

g expression was
n/2] + 1) otherwise. In general,

of the sam

in dividing the problem inta subproblems of size/b and combining th
k = 0, there are no recursive calls, we invest wayrland are done.

Theorem 2.5 (master theorem (simple form))For positive con
d, and n= bX for some integer k, consider the recurrence

a ifn=1,
r(n) = :
{cn+d-r(n/b) ifn>1.

38 2 Introduction

Then
O(n) ifd<b,
r(n)= ¢ ©(nlogn) ifd=hb,
O(nl%d) ifd >b.

e main insight behind Theorem /& consider the amount
el of recursion. We start with a pnobdé sizen. At thei-th
e hawi problems, each of size/b'. Thus the total size of

of work done
level of the rec
the problem

The work performed stimes the problem size, and hence the work
performed at any recursion is proportional te tibtal problem size at
that level. Dependin is'less than, equal to, or larger than 1, we have
different kinds of beh :
If d < b, the workd allyith the level of recursion and the
first level of recursion acco t fraction of thaltexecution time.

If d=Db, we have the orkeaterylevel of recursion. Since
there are logarithmically mal e total amount oflnis ©(nlogn)

Finally, if d > b, we have a
of recursion so that thiastlevel tant fraction of the total running

Fig. 2.6. Examples of the three cases of the master theorem. Problenisdicat y hor-
izontal line segments with arrows at both ends. The length ®égment repregents the size
of the problem, and the subproblems resulting from a prolaesrshown in t i
The topmost part of figure corresponds to the ahse2 andb =4, i.e.,
erates two subproblems of one-fourth the size. Thus thédia of the stibproblems is only
half of the original size. The middle part of the figure illzges the casd = b = 2, and the
bottommost part illustrates the cade- 3 andb = 2

2.6 Basic Algorithm Analysis 39

Proof. We start with a single problem of size= b*. W call this level zero of the
recursior At level 1, we haved problems, each of size/b = bkfl. At level 2, we
haved? pro each of size/b? = b2, At level i, we haved' problems, each

s a casand hence the total cost at lekeb adX.
e the total cost of the divide-and-congtegss at levels 1 to
k—1. At levelipwe hav@l' recursive calls each for subproblems of di¥e'. Each

365

Cased = b. We ha
andcnk= cnlog,n= r the divide-and-conquer steps.

Cased < b. We have a O(n) for the bottom of the recursion.
For the cost of the divid s, we use (Adr33 fjeometric series,

k=1 /4
cn- iZO (B

and

Cng(%)i_

Cased > b. First, note that

logh logd
gk — oklogd _ okiogp1o9d _ pkiogp

Hence the bottom of the recursion has a costriff%¢ the divide-

and-conquer steps we use the geometric series again

LIS TR . L A

d/b—1 ‘djb—1 d/b—1
We shall use the master theorem many times in this book. tinfa
currenceT (n) = 3n?+2n for n < 3 andT(n) < 12n+3T([n/2] +

3 In this proof, we use the terminology of recursive programsrider to give an intuitive
idea of what we are doing. However, our mathematical argtsreguply to any recurrence
relation of the right form, even if it does not stem from a mséee program.

40 2 Introduction

Karatsuba'’s algorithm, is not covered by our master thepvemch neglects round-
ing issues. We shall now show how to extend the master thetwraéhe following
recurrence;

)S{a if n<ng,

cn+d-r([n/b]+e) if n>ng,

wherea, b, ¢, d, andéare'constants, ang is such thatn/b| +e< nforn > nyg. We

proceed in tw t concentratenari the formb* + z, wherezis such that
[z/b]+e=2Z) b= 2 ande= 3, we would choose= 6. Note that for
n of this form, we e=[(0+2)/b] +e=b"1+[z/b] +e=b"1+z2

i.e., the reduced problem'si s the same form. Far'shie this special form, we

How do we g
is cleaf that the co

P The simplest way is semantic reasoning. It
oblem size, and hence the epanfinput of
sizenwill be no larg an input whose size is etputile next input
size of special form. mobgimes larger andb is a constant, the
bound derived for speciahi y a constant factor.

may want to skip thasagraph and
fine a fun&{ainby the same recur-
< ngandR(n) =cn+dR([n/b]+
derive a bound fdR(n) andn of special

rence, with< replaced by eq
e) for n > ng. Obviously,r(n) <
form as described above. Fina

s(n) is the smallest number of the fo i >n. The induction step is
as follows:

R(n) =cn+dR([n/b]+e) <c =R(s(n)),
where the inequality uses the induction hypoth ar . The last equality
uses the fact that fos(n) = b*+z (and hence e havebk 2 4z <

n/b] +e< b1+ zand hence([n/b] +e) =k

There are many generalizations of the
cursion earlier, the cost for dividing and conqu
the subproblems might vary within certain bounds,
depend on the input size, etc. We refer the reader to th
information.

Exercise 2.8.Consider the recurrence

cin) — 1 ifn=1,
=1 c(n/2)) +c(n/2]) +en ifn>1.

Show thatC(n) = O(nlogn).

4 Be aware that most errors in mathematical arguments areavearrences of the word
“clearly”.

2.7 Average-Case Analysis 41

*Exercise 2.9.Suppose you have a divide-and-conquer algorithm whoseirrgnn
time is governed by the recurrend€l) = a, T(n) = cn+ [/n | T([n/[/Nn]]).

to data structures is often governed by the followgogir-
¢+ T(n/2). Show thafT (n) = O(logn).

The algori iques introduced so far ar¢éagyoriented in the fol-
alyze a large program, we firdyaadts parts and then
s into an analysis of the farggram. The combi-

oriented. In this ap te parts of the exacutith parts of a combi-
natorial structure an e about the combinatdrigdtsire. For example, we
might argue that a ce am is executed at orma® for each edge
of agraph orthatthe e i piece of progrdeaat doubles the size

itially, andhastn at termination, and

2.7 Average-Case Analys

In this section we shall introduce y
way of three examples of increasin
with basic concepts of probability the

se aigalWe shall do so by
assuraeytbu are familiar
such as discretdability distributions,

expected values, indicator variables, and“the li ctations. Section A.3
reviews the basics.

2.7.1 Incrementing a Counter

We begin with a very simple example. Our inpu filled with
digits zero and one. We want to increment the number e array by

one.
i:=0
while (i < nand gi] = 1) do afi] = 0; i++;
if i <nthenalij]=1

How often is the body of the while loop executed? Cleanlfimes i
case and 0 times in the best case. What is the average ca
average-case analysis is always to define the model of r .e., to define the

underlying probability space. We postulate the followingdal of randomness: each

digit is zero or one with probability 2, and different digits are independent. The
loop body is executell times, 0< k < n, iff the lastk+ 1 digits ofa are 0% or k

42 2 Introduction

is equal ton and all digits ofa are equal to one. The former event has probability
2~ 1) and the latter event has probability2 Therefore, the average number of
executions j

k2~ (k+1) 4 ppn < S k2 k=2,

<k<n k>0

where the last'equali the same as (A.14).

Our second example tly more demanding. Considdottmving simple pro-
gram that determ iMum element in an aafayn]:

m:=a[l]; i i] > mthen m:=ai]
How often is the a ecuted? In the worst case, it is executed in
every iteration of the enne- 1 times. In the best case, it is not executed
at all. What is the ave we start by definiagptbbability space.
We assume that the ar elements and that any order of these
elements is equally likely. ur probabibkyace consists of tha
permutations of the array e utation ialsdikely and therefore

ture of the array elements is unimpprtan
we may assume that the arra mbersnliricsome order. We are
interested in the average numb

a sequence is an element which is |

permutationof the integers 1 to, let
What is EMp)? We shall describe two 0 determine the expectatiarsiall
n, is easy to determine[H,] by direct calculatio , there is only one
permutation, namelyl), and it has one maxim . Forn =2, there
are two permutations, name({, 2) and(2,1). 0 maxima and the
latter has one maximum. Sd¥,| = 1.5. For la
We write M, as a sum of indicator variab
wherely is equal to one for a permutatiagnif the k-th'e
maximum. For examplég((3,1,2,4)) = 0 andl4((3,1,2,4 ve

ber of left-to-right-maxima.

E[Mn] =E[l1+124...+ 1]
=E[l1)+E[l2] +...+E[ly)]
=prol(ly =1)+probl, =1)+...+ prokl,=1) ,

where the second equality is the linearity of expectatidn®)(and the t
follows from thely’s being indicator variables. It remains to det
ity thatl, = 1. Thek-th element of a random permutation is a left-to-right maxim
if and only if thek-th element is the largest of the filselements. In a random per-
mutation, any position is equally likely to hold the maximsu that the probability
we are looking for is profly = 1) = 1/k and hence

2.7 Average-Case Analysis 43

1
E[My] = prob(ly =1) = =
" 1§Z§n 1§Z§n k
So, EM 1/3+1/4=(124+6+4+3)/12=25/12. The sun}y ;.y<n 1/k
will es in this book. It is known under thene ‘h-th harmonic
number” and'i d iy, Itis known thatim<H, < 1-+Inn,i.e.,Hy =~ Inn;
see (A.12). e that the average number of lefigta-maxima is much

smaller than in the

. . . N1 ni
Exercise < Inn+ 1. Hint: show first thatz - g/ — dx
& k 1 X
We now descfibe an alterpative analysis. We introd8ges a shorthand for
E[M] and setdg ent is always a left-to-right maximum, anchea
number is equally li ement. If the first edgrnis equal té, then only

the numbers+ 1 t
order in the remaini equenee, and hence we shall see actedmumber of\,_
further maxima. Thus

An=1+ (
1<i<n

A simple trick simplifies this rrence. The correspogdéquation fom — 1 in-
stead ofnis (N—1)A_1 =n—-195 ;< racting the equation for— 1
from the equation fon yields

nA— (N—1)A1=1+A, or /n+A1,
and hencé\, = H,.

2.7.3 Linear Search

We come now to our third example; this exa eatdelimg. Consider

red to arrange

sequence from left to right until we encountein thisW
access iten

Suppose now that we also know that we shall access the iteth
probabilities; say, we search for itenwith probability p;, wherep; > 0
1<i<n, andy;p = 1. In this situation, th@xpectedr averagecost
is equal toy pi¢i, since we search for itemwith probability p; and
search idj.

What is the best way of arranging the items? Intuition teishat we should
arrange the items in order of decreasing probability. Lginase this.

44 2 Introduction

Lemma 2.6.An arrangement is optimal with respect to the expected bezust if it
has the property thatip> p; implies/; < ¢j. If p1 > p2 > ... > pn, the placement

4 = iresult optimal expected search cost €¥; pii.
Pro rrangement in which, for somand j, we havep; > p; and
6>, i.e., i e probable than itefnand yet placed after it. Interchanging

itemsi and | 2 search cost by
+ (pilj + piti) = (pi — pj) (6 — ¢j) <O,

i.e., the new arrangen better and hence the old amarges not optimal.

Let us now co cape > p2 > ... > pn. Since there are only! possible
arrangements, tk i | arrangement. Alsio<ify andi is placed after
i, the arrangemé the argument in the pieggmhragraph. Thus
the optimal arrang osition¢; =i and its expected search cost is

Y pii.

fpr>p>...> ngemert =i for all i is still optimal. However,
if some probabilities a ore than one opimangement. Within
blocks of equal probabil O

Can we still do somethi probabilitipsare not known to us?
The answer is yes, and a ve uristic does the jabcélled themove-to-

happy and do nothing. Otherwi osition 1 immade the items in
positions 1 to/; — 1 one position to th is that, in this way, feadjy
accessed items tend to stay near t rangeandrihfrequently ac-
cessed items move to the rear. We
move-to-front heuristic.

Consider two items and j and suppos
past. Item will be accessed before itejif the lag
last access to iteu Thus the probability that i
With probability p; /(pi + pj), item j stands be

Now, ¢ is simply one plus the number o
the expected value df is equal to 13 ;. . p;j/(Pi
search cost in the move-to-front heuristic is

R Pi _<p,
CMTF—IZpl <1+ Z#i pi+pj> —ZPH— ;Zﬂ o N

i [i

2m were accessed in the
roccurred after the

j is pi/(pi + pj)-

foie the list. Thus
the expected

Observe that for eachand j with i # j, the termpip;/(pi + p;) appea ice in
the sum above. In order to proceed with the analysis, we aspy p
This is an assumption used in the analysis, the algorithrmb
Then

2.8 Randomized Algorithms 45

Pij
=VYp(1+2 § ——
Zp’(2 pi+pi>
pi <1+2 z 1) <Zpi2i:22pii:20pt.
JI<i I

PiPj

CMTFZZPH'Z
I

o-front heuristic achieves an expected searehwihich is

of your choice. Boontains an amoumty of

u but becomes known orecbdl is opened.
No two boxes conta amount of money. The rules ofahee are very
simple:

At the beginning of the g ter gives you 10 token

the box are larger tieacontents of
and back a téken.

e When you have to hand bagk a token but have no tokens, the gade@ad you

lose.
e When you manage to open all of t win and can ké#peahoney.
There are strange pictures on the b sevesrignts by suggesting

the box to be opened next. Your au
only a few candidates win. Now, you
in this game. Is there a strategy that giv
presenter’s hints useful?

Let us first analyze the obvious algorith
The worst case is that he makes you open

ted to thosvstells you that
urself whether Wtusrth part|C|pat|ng

box. You would be happy, but there would be no time to place=eiements, so

right maxima question of the preceding section in disguse. have to
a token whenever a new maX|mum shows up. We saw in the preg

harmonic number. For= 100,Hn < 6. Soif the presenter were to'point to the boxes

5 The contents of the first box opened are larger than the csntérall previously opened
boxes, and hence the first token goes back to the presentes fingt round.

46 2 Introduction

in random order, you would have to hand back only 6 tokens enaae. But why
should the presenter offer you the boxes in random order?adenb incentive to
have too many wihners.

Thesolution isito take your fate into your own handgen the boxes in random
ordef. You select oneof the boxes at random, open it, then cho@selam box from
the remainingyones, and so on. How do you choose a random bbr® Yere ar&
boxes left, youwchoosefa random box by tossing a die wildes or by choosing a
random numberinthe range 1kadn this way, you generate a random permutation of
the boxes and hence the analysis in the previous sectibagtiies. On average you
will have to'return fewer than 6 tokens and hence your 10 telseiffice. You have
just seen aandomizedalgorithmWe want to stress that, although the mathematical
analysis is the same, the conclusions are very differemthdmverage-case scenario,
you are at the mercy of thé presenter. If he opens the boxemtom order, the
analysis applies; if hefdoes not, it does not. You have no waglt, except after
many shows and with hindsight. In‘ther words, the presemetrols the dice and
it is up to him whethenhe uses,fair dice. The situation is cietefy different in the
randomized-algorithmsiscenario. Yous0ntrol the dice,yamdgenerate the random
permutation. The analysis is validgio'matter what the preseives.

2.8.1 The Formal Model

Formally, we equip our RAM with an additional instructid®:=randIntC) assigns
arandominteger between 0 ar@--1 to R dhypseudocode, we write=randInt(C),
wherev is an integer variable. The cost of making axandom choiceéstione unit.
Algorithmsnotusing randomization are callek®terministic

The running time of a randomizedialgorithm will'generallpdad on the random
choices made by the algorithm. So the kunning time on annustais no longer a
number, but a random variable dependingon theffandemchdide may eliminate
the dependency of the running time on rand@gm choices by, pogmur machine
with a timer. At the beginning of the executjon, we set theetirto a valueT (n),
which may depend on the sineof the problemiinstance, and/stop the machine once
the timer goes off. In this way, we can guaranteg,that theifignime is bounded by
T(n). However, if the algorithm runs out of time, it'daes not deli@nanswer.

The output of a randomized algorithm may also depend’on tigora choices
made. How can an algorithm be useful if the answgrf on an, instamay depend
on the random choices made by the algorithm — if the answerbedjfes” today
and “No” tomorrow? If the two cases are equally probable aghgwergivemby the
algorithm has no value. However, if the correct answer isimuore likely ghan the
incorrect answer, the answer does have value. Let us seeaarpix

Alice and Bob are connected over a slow telephone line. Atiag'an integer
xa and Bob has an integeg, each withnbits. They want to detérmine whether
they have the same number. As communication is slow, thairig@o minimize the
amount of information exchanged. Local computation is mokaue.

In the obvious solution, Alice sends her number to Bob, anld &wecks whether
the numbers are equal and announces the result. This redgb@m to transmin

2.8 Randomized Algorithms 47

digits. Alternatively, Alice could send the number digit bigit, and Bob would
check for equality as the digits arrived and announce thétras soon as he knew it,
i.e., as soo responding digits differed or all digétd been transmitted. In the
worst ¢ igits have to be transmitted. We shall now show that randatiain
provement. After transmission of @(pgn) bits, equality
and inequality,can be decided with high probability.

list of prime numk 2 list consists of the smallegtrimes withk or more bits
and leading h prime has a value of at IdastV@ shall say more
about the i i low. In this way, it is guaranteed that both Alice and
Bob generate the s hen Alice chooses an index i <L, at random and
sends andxa mo computegg mod p;. If xo mod p; # xg mod p;,

he declares tha different. Otherwise, tlards the numbers the
same. Clearly, if th he same, Bob will say sthelfnumbers are
different andxa mo e will declare them different. However, if
Xa 7 Xg and yetxa mod p; = od p;, he will erroneously declare the numbers

An error occurs ifxa odpi). The latter condition is equiv-
alent top; dividing the diff . This difference is at most"2in
absolute value. Since each pri of at leas2our list contains at

most(n/k)/L. We can make t
enough. If, say, we want to m
choosd. = 10°(n/k).

What is the appropriate choice mbers witk bits, approxi-
mately ¥/k are primes. Hence, if ¥ list will contain onlyk-bit
integers. The condition2> 10fn is ta ount tk > logn+ 6log10. With this
choice ofk, the protocol transmits ldg+ k = @ bitsThis is exponen-
tially better than the naive protocol.

What can we do if we want an error prob
the calculations above with= 10'%n. Alternati the protocol twice
and declare the numbers different if at least swrem different. This
two-stage protocol errs only if both runs err, and gbilityrof error is at
most 10°.10°6=10"12

@ We could redo

Exercise 2.12 Compare the efficiency of the two apfreache
probability of 1012,

Exercise 2.131n the protocol described above, Alice and Bob hav
ridiculously long lists of prime numbers. Discuss the faling modifie

6 et d be the number of primes on our list that divibe Then 2 > |D| >
henced < n/k.

7 For any integeK, let 71(x) be the number of primes less than or equak.téor example,
1(10) = 4 because there are four prime numbers (2, 3, 5 and 7) lesothegual to 10.
Thenx/(Inx+2) < m(x) < x/(Inx—4) for x > 55. See the Wikipedia entry on “prime
numbers” for more information.

48 2 Introduction

Alice chooses a randoRabit integerp (with leading bit 1) and tests it for primality.
If pis not prime, she repeats the procesg i$ prime, she sendsandxa mod p to

you have an algorithm which errs with a probabilityabf
run the algorithiatimes and output the majority output.
2rror probability as a functiorkoDo a precise calculation
e a bound for larde Finally, determinek such that the

0 main varieties, the Laga¥eand the Monte
Ilways computes the correct answer but its
running time isa r r solution for the gaimansis a Las Vegas
algorithm; it always X containing the maximumyhkwer, the number of
left-to-right maxima is i
same run time, but ther bility that itgaeincorrect answer. The

most 1/4. Agoathm for comparing

rithm with an expected tixecu
an answer within the alloted
anssvreturned. Show that

timet(n), and that you run it for¢n) st
time, this answer is returned, other
the resulting algorithm is a Monte C

that verifies in timev(n) whether the Monte
answer. Explain how to use these two algo
with expected execution tim@n(n) +v(n))/(1

as given the correct
a\legas algorithm

We come back to our game show example.
The expected number of tokens required is less than 6

or more left-to-right maximaMarkov’s inequalityallows you to hou
ability. It states that, for a nonnegative random variablend any const
prob(X > c-E[X])< 1/c; see (A.4) for additional information. We applyhe inegual
ity with X = M, andc = 11/6. We obtain

probMp > 11) < prob(Mn > 1€1E[Mn]) < 1% ,

and hence the probability of winning is more than 5/11.

2.9 Graphs 49
2.9 Graphs

Graphs are remely useful concept in algorithmics. Yéetiem whenever we

d maps and communication netwotkghbre are also more
example, nodes could be taslestcompleted when build-
] the walls” or “put in the windowesid edges could model

hs, they usually find it conveni@work with
d edges as lines andsaifo treat graphs algo-
tion is neededirected graph G= (V,E) is a
V and anedge seforarc se) ECV x V.
hdtgraph For example, Fig. 2.7 shows
) (U,V), (V,W), (W, X)? (Xay)v (yv Z)? (27 5)7
ok, we use the conventioa |V | and

rithmically, a more
pair consisting of a
We sometimes abbre
the graptG = ({s,t,u,v,
(s,V), (zw), (y,1),(x,u)}).
m= |E| if no other definitio
a connection fronu to v. We the sourceandtarget respectively, ok.

is the number of edges ending at) = |{(v,u) € E}| and
indegreév) = |{(u,v) € E}|. For exa infgraphG in Fig. 2.7 has in-
degree two and outdegree one.

e two-element set
ebtdd counterpart.
gesdefinition as for

{u,v}. Figure 2.7 shows a three-node undirec
Most graph-theoretic terms for undirected g

Fig. 2.7.Some graphs

50 2 Introduction

their bidirected counterparts, and so this section willagmrate on directed graphs
and only mention undirected graphs when there is somethiagia about them.
For examplegthesnumber of edges of an undirected graph yshail the number
of edgesfofits bidirected counterpart. Nodes of an unditegraph have identical
indegree and outdegree, and so we simply talk aboutdegiree Undirected graphs
are importantibecause directions often do not matter araliseanany problems are
easier to solve(or even'to define) for undirected graphsftitageneral digraphs.

A graphG’' = (M E’) isiasubgraphof G if V/ CV andE’ C E. GivenG = (V,E)
and a subsg#/ €V, the stbgraplinducedby V' is defined ass’ = (V/,EN (V' x
V). InFig*2.7, thehode s¢t, w} in Ginduces the subgraph= ({v,w},{(v,w)}).

A subsetE’ C E of gdgesjifiduces the subgraphE’).

Often, additional information is associated with nodes @ges. In particular,
we shall often needdge weightsrcosts c E — R that map edges to some numeric
value. For example, th€'edge w) ingraphG in Fig. 2.7 has a weightf{ (z w)) = —2.
Note that an edgéuy} of anundirected graph has a unique edge weight, whereas,
in a bidirected graphjwe canthas@u,V)) # c((v,u)).

We have now seen guite a lot of definitions on one page of teyxbd want to
see them at work, you may jumpg@ Chap. 8 to see algorithmsatpgron graphs.
But things are also becomingimoreiinteresting here.

An important higher-levelgraph=theoretieiconcept is théan of a path. Apath
p = (vo,...,V) is a sequenceiof nodes in which consecutive nodes are cednect
by edgesirE, i.e., (Vo,v1) € E, W, V2) € E, ..., (W_1,V%) € E; p has lengttk and
runs fromvp to v. Sometimes aipath isalso‘represented by its sequence aof.edge
For example (u,v,w) = ((u,v), (v,w)) i8 @ path of length 2 in Fig. 2.7. A path is
simpleif its nodes, except maybe fog and vy, are pairwise distinct. In Fig. 2.7,
(z,w,x,u,v,W,X,y) is a nonsimple path.

Cyclesare paths with a commondfirst and last node. A simple cyclg-visi
ing all nodes of a graph is called ldamiltonian.ey€le."Fer example, the cycle
(s,t,u,v,W,x,y,zs) in graphG in Fig. 2.7 is Hamiltonian. A simple undirected cycle
contains at least three nodes, since we also do not allowsddd®e used twice in
simple undirected cycles.

The concepts of paths and cycles help usito define€ven higyelreoncepts.
A digraph isstrongly connected for any two nodesiiandv therefis a path from
utov. GraphG in Fig. 2.7 is strongly connected. A strongly'eonnegcted congmt
of a digraph is a maximal node-induced strongly copnéctedisph. Ifwe remove
edge(w, x) from G in Fig. 2.7, we obtain a digraph without anyidirected cychedi-
graph without any cycles is calleddirected acyclic grapDAG).Ifaia DAG pevery
strongly connected component consists of a single nodenditected graphiison-
nectedif the corresponding bidirected graph is strongly conngclédne gonnected
components are the strongly connected components of thespomding bidirected
graph. For example, gragh in Fig. 2.7 has connected componefisy,w} {st},
and{x}. The node sefu,w} induces a connected subgraph, but'it is not maximal
and hence not a component.

2.9 Graphs 51

Exercise 2.17 Describe 10 substantially different applications that barmodeled
using graphs; car and bicycle networks are not considefestautially different. At
least five s applications not mentioned in this book.

r graphis a graph that can be drawn on a sheet of paper such
that'no two ss each other. Argue that street netveodnot necessarily

It is time for an N Algorithm. We shall describe an atgm for testing
whether a directg ph i clic. We use the simple ohtiervthat a node
with outdegree z in any cycle. Hence, leyidgl/ (and its incom-
anew gr&pthat is acyclic if and only iG is
acyclic. By iteratin n, we either aerat the empty graph, which
is certainly acyclic, where every node has an outdegree of at
least one. In the latter i ind a cycle: staryanodes and construct

a path by repeatedly ¢ i outgoing edgéymt reach a node’
path will haviothe(v, ...,V ... V),

i.e., the par{Vv,...,V) form le, in Fig. 2.7, grapthas no node
with outdegree zero. To fin
(z,w, X, u,v,w) until we encou
cycle (w,x,u,v,w). In contrast, i
deed, our algorithm will remove all n
we shall see how to represent grap algod#mbe implemented
to run in linear time. See also Exer easilyenoak algorithm cer-
tifying. If the algorithm finds a cycle, raph is certgialyclic. If the algorithm
reduces the graph to the empty graph, nodes order in which
they are removed fror®. Since we always re tdegree zero from
the current graph, any edge outwfn the ori ust go to a node that
was removed previously and hence has received a smallergrumiius the ordering

2.9.2 Trees

An undirected graph is tieeif there isexactlyone path between any pai
see Fig. 2.8 for an example. An undirected graph fisrastif there isat
path between any pair of nodes. Note that each componentoéstfis

Lemma 2.8.The following properties of an undirected graph

1. Gis atree.
2. Gis connected and has exactly-A edges.
3. G is connected and contains no cycles.

52 2 Introduction

undirected undirected rooted directed expressio

(+)
dA) @ ()

@ I’OOte(dAD e @

5. Frorteft to right, we see an undirected tree, an undirected
a directed in-tree, aratitimetic expression

e graph contains a cyulss. (L) and (3) are
nce of (2) and (3). AssthatG = (V,E) is

one. Addition of an edge can reduce

t most one. We sthrbveomponents

n— 1. Assume now that there is
uce the number of connected compo
d by a path, and hence additiercifates

a cycle. If G is cycle-free, this ‘¢ase cann r, and hemce n— 1. Thus (3)
implies (2). Assume next tha i s exactly- 1 edges. Again,
add the edges one by one and assu v} creates a cycle. Than
andv are already connected, and h es not reduce the number of connected
components. Thus (2) implies (3).

Lemma 2.8 does not carry over to dig .
more tham — 1 edges. A directed graph is an
exactly one path from to any other node. It is
is exactly one path from any other nodertd-ig

relations between nodes by terms borrowed from family iatat EC
a uniqueparentand itschildren Nodes with the same parent &nbhng
without children ardeaves Nonroot, nonleaf nodes aneterior nodes.
path such thati is between the root and another nad&henu is anan
andv is adescendantf u. A nodeu and its descendants fornsa :
For example, in Fig. 2.8, is the root;s, t, andv are leavess, t, andu are siblings
because they are children of the same parentis an interior noder andu are
ancestors o¥; s, t, u, andv are descendants of andv andu form a subtree rooted
atu.

2.10 PandNP 53

Function evalr) : R

if r is a leafthen return the number stored in r

/I r is an operator node

/I apply the operator stored in

ive evaluation of an expression tree rooted at

Trees are ideall i enting hierarchies. kamele, consider the ex-
pressiona+ 2/b. that this expression means dreatd 2/b are
added. But derivin ence of characters, 2, /, b) is difficult. For
ule that divisiordsimore tightly than addi-
tactical knalgle inparsersthat produce
a more structured repr n trees. Our exavopld be transformed
into the expression tree
graph-theoretic trees, the
the root, and is the right, or
Expression trees are eas e by a simple recutgiwéthm. Figure 2.9
i es whasesteare numbers and
whose interior nodes are binary oper
We shall see many more exampl
7 use them to represent fundamen

systematically explore solution spac

es in this @@pters 6 and
s, anuteCH® uses them to

2.10 P and NP

pn which there is no
1 “inefficient”

it does not matter whether a clever data structure can aetelan
by a factor ofn. All chapters of this book, except for Chap. 1
algorithms.

There are many problems for which no efficient algorithm iswn. Here, we
mention only six examples:

aboutieffit

54 2 Introduction

e The Hamiltonian cycle problem: given an undirected graptide whether it
contains a Hamiltonian cycle.

a conjunctio@; ACy A ... AC, of clauses A clause is a
..V ¢, of literals, and a literal is a variable or a negated
&1 V —V3V —\g iS a clause.

en an undirected graph and an integdecide whether

: given an edge-weightedentdd graph and
raph contains a Hamiltonian cycleraftleat

whether there is a i es whtholors such that any two adjacent
nodes are colored

The fact that we know n
that none exists. It is simpl
In particular, we have no pr

whether an efficidgbathm exists or not.
ch algorithms do ndstexn general, it is
ed in a givea bound. We shall
see some simple lower bounds i
problems above have no efficient so

Complexity theonhas found an i
bound proofs. It clusters algorithmi
lent with respect to some complexity

IargeLgps that are equiva-

gre is a large class of
is an abbreviation
inistic polynomial
time” does not mean anythlng to you, |gnore and carry ore Sik problems men-
problems. It islwide
partigular, thalP-
complete problems have no efficient algorithm. In i
shall give a formal definition of the cladéP. We refer th ader ta books about
theory of computation and complexity theory [14, 7
ment.

We assume, as is customary in complexity theory, that inptesen
some fixed finite alphabeX. A decision problenis a subset C >*. Wi
to denote the characteristic functionlofi.e., x.(x) = 1 if x € L andx
x & L. A decision problem is polynomial-time solvable iff its chateri
is polynomial-time computable. We ugeto denote the class nomial-time-
solvable decision problems.

A decision problent is in NP iff there is a predicat€(x,y) and a polynomiap
such that

2.10 PandNP 55

(1) foranyx e X*,x € Liff thereis ay € * with |y| < p(]x|) andQ(x,y), and
(2) Qis computable in polynomial time.

We cally proof of membership. For our example problems, it is easy to
tNP. In case of the Hamiltonian cycle problem, the witness

is a*Hamiltoni in the input graph. A witness for a Bmol formula is an
assignment ues to variables that make the flartnue. The solvability
of an instance of th psack problem is witnessed by a sabstements that fit
into the knap eve the profit boénd

Exercise 2.9 Prove lique problem, the traveling salesman propand the
graph coloring pra

ial-time-computable functigrsuch that for

all x e 2*, we hav Clearly, if L is reducible toL’ andL’ € P,

thenL € P. Also, redugibility iS transitive. A decision probleimis NP-hard if every
problem inNP is poly i le to it. A problem NP-completef it
is NP-hard and inNP. Al t seem prohibitively difficult to pre

to show tleaeryproblem inNP was
polynomial-time reducible
managed to do this for the isfiability problem [2D]. From that time
on, it was “easy”. Assume yo
need to show two things: (1) isomeknown NP-complete
problemL’ that can be reduced to i the reducibiliglation then
implies that all problems itNP are reducible td.. Withievery new complete prob-
lem, it becomes easier to show tha -complete. The website
http://ww. nada. kt h. se/ ~vi ggo/
maintains a compendium &fP-complete
duction.

Lemma 2.10.The Boolean satisfiability proble
clique problem.

connected by an edge iff# i’ and eithew;j # X/ or Bij = Byj. Inwords, t
sentatives of two literals are connected by an edge if theynigeo differe
and an assignment can satisfy them simultaneously. We ¢heitf is s
G has a clique of siz&.

Assume first that there is a satisfying assignneenthe assig
at least one literal in every clause, say litefiglin clauseCi. Consider the subgraph
of G spanned by thej,, 1 <i <k. This is a clique of siz& Assume otherwise; say,
rij; andry/j, are not connected by an edge. Thep,= xyj, andfj; # Byj,. Butthen

56 2 Introduction

the literals/ij; and¢;j, are complements of each other, amaannot satisfy them
both.

ume that there is a cliglef sizek in G. We can construct a

satisfyi . For each, 1 <i <k, K contains exactly one nodg,;. We
co assignmemtby settinga (xij;) = Bij;. Note thata is well
defined bec ji = Xvj, implies S, = Byj,; otherwiserij; andryj, would not be
connected b jadClearly satisfies. O
Exercise 2.20 e Hamiltonian cycle problem is polynomial-timee
ducible to

a common destiny. If anybody shfindtia
polynomial time al em, thenNP = P. Since so many people
have tried to find su ions, it is becoming less andliksly that this will ever
happen: Thé&P-compl utual witnesses of their hardness.

Does the theory ol 0 apply to optimization problems? Opti-
mization problems are easi
optimal solution, we ask w
than or equal t& wherek is a
to decide whether there is a saluti i lue greatar traequal tk, we can
use a combination of exponenti '
objective value.

An algorithm for a decision pro
the instance belongs to the problem

or no, dependn whether
ot retwitness. Frequently,

a clique of sizek exists. We select an arbitrar, skawhethe® = G\ v
has a clique of sizk. If so, we recursively sea . If not, we know
search for a cliqu€_, of sizek— 1 in the subg
is a clique of siz&kin G.

2.11 Implementation Notes

Our pseudocode is easily converted into actual programsyiinaperative
ming language. We shall give more detailed comments for @d Java
Eiffel programming language [138] has extensive supparafsertion
preconditions, and postconditions.
Our special valued, —o, and are available for floating-point numbers. For
other data types, we have to emulate these values. For esaom@ could use the
smallest and largest representable integers-ferand o, respectively. Undefined
pointers are often represented by a null pointdl. Sometimes we use special values

nvariants,

2.12 Historical Notes and Further Findings 57

for convenience only, and a robust implementation shoudébawsing them. You will
find examples in later chapters.

Randomizédalgorithms need access to a random source. Yelatehoice be-
tween aghardware generator that generates true random msiguhe an algorith-
micg@enerator that'generates pseudo-random numbers. \ðef reader to the
Wikipedia page on “random numbers” for more information.

2.11.1 C+

Our pseudacode can be viewed as a concise notation for atafléset. The mem-
ory management gperatioB8ocate anddisposeare similar to the €+ operations
newanddelete C#+ calls the default constructor for each element of an array, i
allocating an array ofi objects'takes tim@(n) whereas allocating an arrayof ints
takes constant time.4f contrast, we assume dhadrrays which are not explicitly
initialized contain garbage.n#£3-, you,can obtain this effect using the C functions
mallocandfree However, thisis\a deprecated practice and should only &éawhen
array initialization would be a severegperformance bottdn If memory manage-
ment of many small objeets is pefformanee-critical, you castomize it using the
allocator class of the @+ stan@ard\ibrary.

Our parameterizations oficlasses\usirigisia special case of thet@-template
mechanism. The parameters added in\brackets after a clamsgcmrespond to the
parameters of a-€+ constructor.

Assertions are implementedias C ma€rosinithe includagieer t . h. By de-
fault, violated assertions trigger a runtime error and tptheir position in the pro-
gram text. If the macrdiDEBUGis defined, assertion checking is disabled.

For many of the data structures and algorithms discussddsitbbok, excellent
implementations are available in software libraries. Geodrces are the standard
template library STL [157], the Boost [27]%& libraries,"afid the LEDA [131, 118]
library of efficient algorithms and data structures:.

2.11.2 Java

Java has no explicit memory management. RathgarBage colle€toperiodically
recycles pieces of memory that are no longer referenced@Ws simplifies pro-
gramming enormously, it can be a performance problem. Resede\beyond the
scope of this book. Generic types provide parameterizatictasses. Assertions are
implemented with thassertstatement.

Excellentimplementations for many data structures andrdhgns are available
in the packaggava.util and in the JDSL [78] data structure library.

2.12 Historical Notes and Further Findings

Sheperdson and Sturgis [179] defined the RAM model for ustgmrighmic analy-
sis. The RAM model restricts cells to holding a logarithmicmwber of bits. Dropping

58 2 Introduction

this assumption has undesirable consequences; for exaimpleomplexity classes
P and PSPACE collapse [87]. Knuth [113] has described a more detailedratis

machine m

