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Introduction

When you want to become a sculptor1 you have to learn some basic techniques:
where to get the right stones, how to move them, how to handle the chisel, how to
erect scaffolding, . . . . Knowing these techniques will not make you a famous artist,
but even if you have a really exceptional talent, it will be very difficult to develop
into a successful artist without knowing them. It is not necessary to master all of the
basic techniques before sculpting the first piece. But you always have to be willing
to go back to improve your basic techniques.

This introductory chapter plays a similar role in this book.We introduce basic
concepts that make it simpler to discuss and analyze algorithms in the subsequent
chapters. There is no need for you to read this chapter from beginning to end before
you proceed to later chapters. On first reading, we recommendthat you should read
carefully to the end of Sect. 2.3 and skim through the remaining sections. We begin in
Sect. 2.1 by introducing some notation and terminology thatallow us to argue about
the complexity of algorithms in a concise way. We then introduce a simple machine
model in Sect. 2.2 that allows us to abstract from the highly variable complications
introduced by real hardware. The model is concrete enough tohave predictive value
and abstract enough to allow elegant arguments. Section 2.3then introduces a high-
level pseudocode notation for algorithms that is much more convenient for express-
ing algorithms than the machine code of our abstract machine. Pseudocode is also
more convenient than actual programming languages, since we can use high-level
concepts borrowed from mathematics without having to worryabout exactly how
they can be compiled to run on actual hardware. We frequentlyannotate programs
to make algorithms more readable and easier to prove correct. This is the subject
of Sect. 2.4. Section 2.5 gives the first comprehensive example: binary search in a
sorted array. In Sect. 2.6, we introduce mathematical techniques for analyzing the
complexity of programs, in particular, for analyzing nested loops and recursive pro-

1 The above illustration of Stonehenge is from [156].



FR
E

E
C

O
P

Y
20 2 Introduction

cedure calls. Additional analysis techniques are needed for average-case analysis;
these are covered in Sect. 2.7. Randomized algorithms, discussed in Sect. 2.8, use
coin tosses in their execution. Section 2.9 is devoted to graphs, a concept that will
play an important role throughout the book. In Sect. 2.10, wediscuss the question of
when an algorithm should be called efficient, and introduce the complexity classes
P andNP. Finally, as in every chapter of this book, there are sections containing im-
plementation notes (Sect. 2.11) and historical notes and further findings (Sect. 2.12).

2.1 Asymptotic Notation

The main purpose of algorithm analysis is to give performance guarantees, for ex-
ample bounds on running time, that are at the same time accurate, concise, general,
and easy to understand. It is difficult to meet all these criteria simultaneously. For
example, the most accurate way to characterize the running timeT of an algorithm is
to viewT as a mapping from the setI of all inputs to the set of nonnegative numbersR+. For any problem instancei, T(i) is the running time oni. This level of detail is
so overwhelming that we could not possibly derive a theory about it. A useful theory
needs a more global view of the performance of an algorithm.

We group the set of all inputs into classes of “similar” inputs and summarize the
performance on all instances in the same class into a single number. The most useful
grouping is bysize. Usually, there is a natural way to assign a size to each problem
instance. The size of an integer is the number of digits in itsrepresentation, and the
size of a set is the number of elements in the set. The size of aninstance is always
a natural number. Sometimes we use more than one parameter tomeasure the size
of an instance; for example, it is customary to measure the size of a graph by its
number of nodes and its number of edges. We ignore this complication for now. We
use size(i) to denote the size of instancei, andIn to denote the instances of sizen
for n∈N. For the inputs of sizen, we are interested in the maximum, minimum, and
average execution times:2

worst case: T(n) = max{T(i) : i ∈ In}
best case: T(n) = min{T(i) : i ∈ In}
average case: T(n) =

1
|In| ∑

i∈In

T(i) .

We are interested most in the worst-case execution time, since it gives us the
strongest performance guarantee. A comparison of the best case and the worst case
tells us how much the execution time varies for different inputs in the same class. If
the discrepancy is big, the average case may give more insight into the true perfor-
mance of the algorithm. Section 2.7 gives an example.

We shall perform one more step of data reduction: we shall concentrate ongrowth
rate or asymptotic analysis. Functionsf (n) andg(n) have thesame growth rateif

2 We shall make sure that{T(i) : i ∈ In} always has a proper minimum and maximum, and
that In is finite when we consider averages.
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there are positive constantsc andd such thatc≤ f (n)/g(n) ≤ d for all sufficiently
large n, and f (n) grows fasterthan g(n) if, for all positive constantsc, we have
f (n) ≥ c · g(n) for all sufficiently largen. For example, the functionsn2, n2 + 7n,
5n2− 7n, andn2/10+ 106n all have the same growth rate. Also, they grow faster
thann3/2, which in turn grows faster thannlogn. The growth rate talks about the
behavior for largen. The word “asymptotic” in “asymptotic analysis” also stresses
the fact that we are interested in the behavior for largen.

Why are we interested only in growth rates and the behavior for largen? We are
interested in the behavior for largen because the whole purpose of designing efficient
algorithms is to be able to solve large instances. For largen, an algorithm whose
running time has a smaller growth rate than the running time of another algorithm
will be superior. Also, our machine model is an abstraction of real machines and
hence can predict actual running times only up to a constant factor, and this suggests
that we should not distinguish between algorithms whose running times have the
same growth rate. A pleasing side effect of concentrating ongrowth rate is that we
can characterize the running times of algorithms by simple functions. However, in
the sections on implementation, we shall frequently take a closer look and go beyond
asymptotic analysis. Also, when using one of the algorithmsdescribed in this book,
you should always ask yourself whether the asymptotic view is justified.

The following definitions allow us to argue precisely aboutasymptotic behavior.
Let f (n) andg(n) denote functions that map nonnegative integers to nonnegative real
numbers:

O( f (n)) = {g(n) : ∃c > 0 :∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≤ c · f (n)} ,

Ω( f (n)) = {g(n) : ∃c > 0 :∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≥ c · f (n)} ,

Θ( f (n)) = O( f (n))∩Ω( f (n)) ,

o( f (n)) = {g(n) : ∀c > 0 :∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≤ c · f (n)} ,

ω( f (n)) = {g(n) : ∀c > 0 :∃n0 ∈ N+ : ∀n≥ n0 : g(n) ≥ c · f (n)} .

The left-hand sides should be read as “big O off ”, “big omega of f ”, “theta of f ”,
“little o of f ”, and “little omega off ”, respectively.

Let us see some examples. O
(

n2
)

is the set of all functions that grow at most
quadratically, o

(

n2
)

is the set of functions that grow less than quadratically, and
o(1) is the set of functions that go to zero asn goes to infinity. Here “1” stands
for the functionn 7→ 1, which is one everywhere, and hencef ∈ o(1) if f (n) ≤
c · 1 for any positivec and sufficiently largen, i.e., f (n) goes to zero asn goes to
infinity. Generally, O( f (n)) is the set of all functions that “grow no faster than”f (n).
Similarly, Ω( f (n)) is the set of all functions that “grow at least as fast as”f (n). For
example, the Karatsuba algorithm for integer multiplication has a worst-case running
time in O

(

n1.58
)

, whereas the school algorithm has a worst-case running timein
Ω
(

n2
)

, so that we can say that the Karatsuba algorithm is asymptotically faster than
the school algorithm. The “little o” notation o( f (n)) denotes the set of all functions
that “grow strictly more slowly than”f (n). Its twin ω( f (n)) is rarely used, and is
only shown for completeness.
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The growth rate of most algorithms discussed in this book is either a polynomial
or a logarithmic function, or the product of a polynomial anda logarithmic func-
tion. We use polynomials to introduce our readers to some basic manipulations of
asymptotic notation.

Lemma 2.1.Let p(n) = ∑k
i=0aini denote any polynomial and assume ak > 0. Then

p(n) ∈ Θ
(

nk
)

.

Proof. It suffices to show thatp(n)∈ O
(

nk
)

andp(n)∈ Ω
(

nk
)

. First observe that for
n > 0,

p(n) ≤
k

∑
i=0

|ai |ni ≤ nk
k

∑
i=0

|ai | ,

and hencep(n) ≤ (∑k
i=0 |ai |)nk for all positiven. Thusp(n) ∈ O

(

nk
)

.
Let A = ∑k−1

i=0 |ai |. For positiven we have

p(n) ≥ akn
k−Ank−1 =

ak

2
nk +nk−1

(ak

2
n−A

)

and hencep(n) ≥ (ak/2)nk for n > 2A/ak. We choosec = ak/2 andn0 = 2A/ak in
the definition ofΩ

(

nk
)

, and obtainp(n) ∈ Ω
(

nk
)

. ⊓⊔

Exercise 2.1.Right or wrong? (a)n2+106n∈O
(

n2
)

, (b)nlogn∈O(n), (c)nlogn∈
Ω(n), (d) logn∈ o(n).

Asymptotic notation is used a lot in algorithm analysis, andit is convenient to
stretch mathematical notation a little in order to allow sets of functions (such as
O
(

n2
)

) to be treated similarly to ordinary functions. In particular, we shall always
write h = O( f ) instead ofh∈ O( f ), and O(h) = O( f ) instead of O(h) ⊆ O( f ). For
example,

3n2 +7n= O
(

n2)= O
(

n3) .

Be warned that sequences of equalities involving O-notation should only be read
from left to right.

If h is a function,F andG are sets of functions, and◦ is an operator such as
+, ·, or /, thenF ◦G is a shorthand for{ f ◦g : f ∈ F,g∈ G}, andh◦F stands for
{h} ◦F. So f (n)+ o( f (n)) denotes the set of all functionsf (n)+ g(n) whereg(n)
grows strictly more slowly thanf (n), i.e., the ratio( f (n)+ g(n))/ f (n) goes to one
asn goes to infinity. Equivalently, we can write(1+o(1)) f (n). We use this notation
whenever we care about the constant in the leading term but want to ignorelower-
order terms.

Lemma 2.2.The following rules hold forO-notation:

c f(n) = Θ( f (n)) for any positive constant,

f (n)+g(n) = Ω( f (n)) ,

f (n)+g(n) = O( f (n)) if g(n) = O( f (n)) ,

O( f (n)) ·O(g(n)) = O( f (n) ·g(n)) .
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Exercise 2.2.Prove Lemma 2.2.

Exercise 2.3.Sharpen Lemma 2.1 and show thatp(n) = aknk +o
(

nk
)

.

Exercise 2.4.Prove thatnk = o(cn) for any integerk and anyc> 1. How doesnlog logn

compare withnk andcn?

2.2 The Machine Model

Fig. 2.1. John von Neumann
born Dec. 28, 1903 in Budapest,
died Feb. 8, 1957 in Washing-
ton, DC

In 1945, John von Neumann (Fig. 2.1) introduced a
computer architecture [201] which was simple, yet
powerful. The limited hardware technology of the
time forced him to come up with an elegant de-
sign that concentrated on the essentials; otherwise,
realization would have been impossible. Hardware
technology has developed tremendously since 1945.
However, the programming model resulting from von
Neumann’s design is so elegant and powerful that it is
still the basis for most of modern programming. Usu-
ally, programs written with von Neumann’s model
in mind also work well on the vastly more complex
hardware of today’s machines.

The variant of von Neumann’s model used in al-
gorithmic analysis is called theRAM (random access
machine) model. It was introduced by Sheperdson
and Sturgis [179]. It is asequentialmachine with uni-
form memory, i.e., there is a single processing unit,
and all memory accesses take the same amount of
time. The memory orstore, consists of infinitely many cellsS[0], S[1], S[2], . . . ;
at any point in time, only a finite number of them will be in use.

The memory cells store “small” integers, also calledwords. In our discussion of
integer arithmetic in Chap. 1, we assumed that “small” meantone-digit. It is more
reasonable and convenient to assume that the interpretation of “small” depends on
the size of the input. Our default assumption is that integers bounded by a polynomial
in the size of the data being processed can be stored in a single cell. Such integers
can be represented by a number of bits that is logarithmic in the size of the input.
This assumption is reasonable because we could always spread out the contents of a
single cell over logarithmically many cells with a logarithmic overhead in time and
space and obtain constant-size cells. The assumption is convenient because we want
to be able to store array indices in a single cell. The assumption is necessary because
allowing cells to store arbitrary numbers would lead to absurdly overoptimistic al-
gorithms. For example, by repeated squaring, we could generate a number with 2n

bits in n steps. Namely, if we start with the number 2= 21, squaring it once gives
4 = 22 = 221

, squaring it twice gives 16= 24 = 222
, and squaring itn times gives 22

n
.
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Our model supports a limited form of parallelism. We can perform simple operations
on a logarithmic number of bits in constant time.

In addition to the main memory, there are a small number ofregisters R1, . . . ,Rk.
Our RAM can execute the followingmachine instructions:

• Ri :=S[Rj ] loadsthe contents of the memory cell indexed by the contents ofRj

into registerRi .
• S[Rj ] :=Ri storesregisterRi into the memory cell indexed by the contents ofRj .
• Ri :=Rj ⊙Rℓ is a binary register operation where “⊙” is a placeholder for a va-

riety of operations. Thearithmeticoperations are the usual+, −, and∗ but also
the bitwise operations| (OR),& (AND), >> (shift right),<< (shift left), and⊕
(exclusive OR, XOR). The operationsdiv andmod stand for integer division and
the remainder, respectively. Thecomparisonoperations≤, <, >, and≥ yield
true ( = 1) or false( = 0). Thelogical operations∧ and∨ manipulate thetruth
values0 and 1. We may also assume that there are operations which interpret the
bits stored in a register as a floating-point number, i.e., a finite-precision approx-
imation of a real number.

• Ri :=⊙Rj is a unary operation using the operators−, ¬ (logical NOT), or~
(bitwise NOT).

• Ri :=C assigns aconstantvalue toRi .
• JZ j,Ri continues execution at memory addressj if registerRi is zero.
• J j continues execution at memory addressj.

Each instruction takes one time step to execute. The total execution time of a program
is the number of instructions executed. A program is a list ofinstructions numbered
starting at one. The addresses in jump-instructions refer to this numbering. The input
for a computation is stored in memory cellsS[1] to S[R1].

It is important to remember that the RAM model is an abstraction. One should
not confuse it with physically existing machines. In particular, real machines have
a finite memory and a fixed number of bits per register (e.g., 32or 64). In contrast,
the word size and memory of a RAM scale with input size. This can be viewed as
an abstraction of the historical development. Microprocessors have had words of 4,
8, 16, and 32 bits in succession, and now often have 64-bit words. Words of 64 bits
can index a memory of size 264. Thus, at current prices, memory size is limited by
cost and not by physical limitations. Observe that this statement was also true when
32-bit words were introduced.

Our complexity model is also a gross oversimplification: modern processors at-
tempt to execute many instructions in parallel. How well they succeed depends on
factors such as data dependencies between successive operations. As a consequence,
an operation does not have a fixed cost. This effect is particularly pronounced for
memory accesses. The worst-case time for a memory access to the main memory
can be hundreds of times higher than the best-case time. The reason is that modern
processors attempt to keep frequently used data incaches– small, fast memories
close to the processors. How well caches work depends a lot ontheir architecture,
the program, and the particular input.
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We could attempt to introduce a very accurate cost model, butthis would miss the
point. We would end up with a complex model that would be difficult to handle. Even
a successful complexity analysis would lead to a monstrous formula depending on
many parameters that change with every new processor generation. Although such
a formula would contain detailed information, the very complexity of the formula
would make it useless. We therefore go to the other extreme and eliminate all model
parameters by assuming that each instruction takes exactlyone unit of time. The
result is that constant factors in our model are quite meaningless – one more reason
to stick to asymptotic analysis most of the time. We compensate for this drawback
by providing implementation notes, in which we discuss implementation choices and
trade-offs.

2.2.1 External Memory

The biggest difference between a RAM and a real machine is in the memory: a
uniform memory in a RAM and a complex memory hierarchy in a real machine.
In Sects. 5.7, 6.3, and 7.6, we shall discuss algorithms thathave been specifically
designed for huge data sets which have to be stored on slow memory, such as disks.
We shall use theexternal-memory modelto study these algorithms.

The external-memory model is like the RAM model except that the fast memory
S is limited in size toM words. Additionally, there is an external memory with un-
limited size. There are specialI/O operations, which transferB consecutive words
between slow and fast memory. For example, the external memory could be a hard
disk, M would then be the size of the main memory, andB would be a block size
that is a good compromise between low latency and high bandwidth. With current
technology,M = 2 Gbyte andB = 2 Mbyte are realistic values. One I/O step would
then take around 10 ms which is 2·107 clock cycles of a 2 GHz machine. With an-
other setting of the parametersM andB, we could model the smaller access time
difference between a hardware cache and main memory.

2.2.2 Parallel Processing

On modern machines, we are confronted with many forms of parallel processing.
Many processors have 128–512-bit-wideSIMD registers that allow the parallel exe-
cution of asingle instruction onmultiple data objects.Simultaneous multithreading
allows processors to better utilize their resources by running multiple threads of ac-
tivity on a single processor core. Even mobile devices oftenhave multiple processor
cores that can independently execute programs, and most servers have several such
multicoreprocessors accessing the sameshared memory. Coprocessors, in particu-
lar those used for graphics processing, have even more parallelism on a single chip.
High-performance computers consist of multiple server-type systems interconnected
by a fast, dedicated network. Finally, more loosely connected computers of all types
interact through various kinds of network (the Internet, radio networks, . . . ) indis-
tributed systemsthat may consist of millions of nodes. As you can imagine, no single
simple model can be used to describe parallel programs running on these many levels
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of parallelism. We shall therefore restrict ourselves to occasional informal arguments
as to why a certain sequential algorithm may be more or less easy to adapt to paral-
lel processing. For example, the algorithms for high-precision arithmetic in Chap. 1
could make use of SIMD instructions.

2.3 Pseudocode

Our RAM model is an abstraction and simplification of the machine programs exe-
cuted on microprocessors. The purpose of the model is to provide a precise definition
of running time. However, the model is much too low-level forformulating complex
algorithms. Our programs would become too long and too hard to read. Instead, we
formulate our algorithms inpseudocode, which is an abstraction and simplification of
imperative programming languages such as C, C++, Java, C#, and Pascal, combined
with liberal use of mathematical notation. We now describe the conventions used in
this book, and derive a timing model for pseudocode programs. The timing model is
quite simple:basic pseudocode instructions take constant time, and procedure and
function calls take constant time plus the time to execute their body. We justify the
timing model by outlining how pseudocode can be translated into equivalent RAM
code. We do this only to the extent necessary to understand the timing model. There
is no need to worry about compiler optimization techniques,since constant factors
are outside our theory. The reader may decide to skip the paragraphs describing the
translation and adopt the timing model as an axiom. The syntax of our pseudocode
is akin to that of Pascal [99], because we find this notation typographically nicer for
a book than the more widely known syntax of C and its descendants C++ and Java.

2.3.1 Variables and Elementary Data Types

A variable declaration“v = x : T” introduces a variablev of typeT, and initializes
it with the valuex. For example, “answer= 42 :N” introduces a variableanswer
assuming integer values and initializes it to the value 42. When the type of a variable
is clear from the context, we shall sometimes omit it from thedeclaration. A type
is either a basic type (e.g., integer, Boolean value, or pointer) or a composite type.
We have predefined composite types such as arrays, and application-specific classes
(see below). When the type of a variable is irrelevant to the discussion, we use the
unspecified typeElementas a placeholder for an arbitrary type. We take the liberty
of extending numeric types by the values−∞ and∞ whenever this is convenient.
Similarly, we sometimes extend types by an undefined value (denoted by the symbol
⊥), which we assume to be distinguishable from any “proper” element of the typeT.
In particular, for pointer types it is useful to have an undefined value. The values of
the pointer type “Pointer to T” are handles of objects of typeT. In the RAM model,
this is the index of the first cell in a region of storage holding an object of typeT.

A declaration “a : Array [i.. j] of T” introduces anarray a consisting ofj − i +1
elementsof typeT, stored ina[i], a[i +1], . . . ,a[ j]. Arrays are implemented as con-
tiguous pieces of memory. To find an elementa[k], it suffices to know the starting
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address ofa and the size of an object of typeT. For example, if registerRa stores the
starting address of arraya[0..k] and the elements have unit size, the instruction se-
quence “R1 :=Ra+42;R2 :=S[R1]” loadsa[42] into registerR2. The size of an array
is fixed at the time of declaration; such arrays are calledstatic. In Sect. 3.2, we show
how to implementunbounded arraysthat can grow and shrink during execution.

A declaration “c : Classage: N, income: N end” introduces a variablec whose
values are pairs of integers. The components ofc are denoted byc.ageandc.income.
For a variablec, addressofc returns the address ofc. We also say that it returns a
handle toc. If p is an appropriate pointer type,p:=addressofcstores a handle toc in
p and∗p gives us backc. The fields ofc can then also be accessed throughp→ age
andp→ income. Alternatively, one may write (but nobody ever does)(∗p).ageand
(∗p).income.

Arrays and objects referenced by pointers can be allocated and deallocated by
the commandsallocate and dispose. For example,p := allocateArray [1..n] of T
allocates an array ofn objects of typeT. That is, the statement allocates a contiguous
chunk of memory of sizen times the size of an object of typeT, and assigns a handle
of this chunk (= the starting address of the chunk) top. The statementdisposep frees
this memory and makes it available for reuse. Withallocateanddispose, we can cut
our memory arrayS into disjoint pieces that can be referred to separately. These
functions can be implemented to run in constant time. The simplest implementation
is as follows. We keep track of the used portion ofS by storing the index of the
first free cell ofS in a special variable, sayfree. A call of allocatereserves a chunk
of memory starting atfree and increasesfree by the size of the allocated chunk. A
call of disposedoes nothing. This implementation is time-efficient, but not space-
efficient. Any call ofallocate or disposetakes constant time. However, the total
space consumption is the total space that has ever been allocated and not the maximal
space simultaneously used, i.e., allocated but not yet freed, at any one time. It is
not known whether an arbitrary sequence ofallocate and disposeoperations can
be realized space-efficiently and with constant time per operation. However, for all
algorithms presented in this book,allocate anddisposecan be realized in a time-
and space-efficient way.

We borrow some composite data structures from mathematics.In particular, we
use tuples, sequences, and sets.Pairs, triples, and othertuplesare written in round
brackets, for example(3,1), (3,1,4), and(3,1,4,1,5). Since tuples only contain a
constant number of elements, operations on them can be broken into operations on
their constituents in an obvious way.Sequencesstore elements in a specified order;
for example “s = 〈3,1,4,1〉 : Sequenceof Z” declares a sequences of integers and
initializes it to contain the numbers 3, 1, 4, and 1 in that order. Sequences are a natural
abstraction of many data structures, such as files, strings,lists, stacks, and queues. In
Chap. 3, we shall study many ways to represent sequences. In later chapters, we shall
make extensive use of sequences as a mathematical abstraction with little further
reference to implementation details. The empty sequence iswritten as〈〉.

Sets play an important role in mathematical arguments and weshall also use them
in our pseudocode. In particular, you shall see declarations such as “M = {3,1,4}
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: Setof N” that are analogous to declarations of arrays or sequences.Sets are usually
implemented as sequences.

2.3.2 Statements

The simplest statement is an assignmentx := E, wherex is a variable andE is an
expression. An assignment is easily transformed into a constant number of RAM
instructions. For example, the statementa :=a+bc is translated into “R1 :=Rb∗Rc;
Ra := Ra + R1”, where Ra, Rb, andRc stand for the registers storinga, b, andc,
respectively. From C, we borrow the shorthands++ and-- for incrementing and
decrementing variables. We also use parallel assignment toseveral variables. For
example, ifaandbare variables of the same type, “(a,b):=(b,a)” swaps the contents
of a andb.

The conditional statement “if C then I elseJ”, whereC is a Boolean expression
andI andJ are statements, translates into the instruction sequence

eval(C); JZ sElse, Rc; trans(I); J sEnd; trans(J) ,

whereeval(C) is a sequence of instructions that evaluate the expressionC and leave
its value in registerRc, trans(I) is a sequence of instructions that implement state-
mentI , trans(J) implementsJ, sElseis the address of the first instruction intrans(J),
andsEndis the address of the first instruction aftertrans(J). The sequence above first
evaluatesC. If C evaluates to false (= 0), the program jumps to the first instruction
of the translation ofJ. If C evaluates to true (= 1), the program continues with the
translation ofI and then jumps to the instruction after the translation ofJ. The state-
ment “if C then I ” is a shorthand for “if C then I else;”, i.e., an if–then–else with an
empty “else” part.

Our written representation of programs is intended for humans and uses less
strict syntax than do programming languages. In particular, we usually group state-
ments by indentation and in this way avoid the proliferationof brackets observed in
programming languages such as C that are designed as a compromise between read-
ability for humans and for computers. We use brackets only ifthe program would be
ambiguous otherwise. For the same reason, a line break can replace a semicolon for
the purpose of separating statements.

The loop “repeat I until C” translates intotrans(I); eval(C); JZ sI, Rc, wheresI
is the address of the first instruction intrans(I). We shall also use many other types
of loop that can be viewed as shorthands for repeat loops. In the following list, the
shorthand on the left expands into the statements on the right:

while C do I if C then repeatI until ¬C
for i :=a to b do I i :=a; while i ≤ b do I; i++
for i :=a to ∞ while C do I i :=a; while C do I; i++
foreache∈ sdo I for i :=1 to |s| do e:=s[i]; I

Many low-level optimizations are possible when loops are translated into RAM code.
These optimizations are of no concern for us. For us, it is only important that the
execution time of a loop can be bounded by summing the execution times of each of
its iterations, including the time needed for evaluating conditions.
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2.3.3 Procedures and Functions

A subroutine with the namefoo is declared in the form “Procedure foo(D) I ”, where
I is the body of the procedure andD is a sequence of variable declarations specify-
ing the parameters offoo. A call of foo has the formfoo(P), whereP is a parameter
list. The parameter list has the same length as the variable declaration list. Parameter
passing is either “by value” or “by reference”. Our default assumption is that basic
objects such as integers and Booleans are passed by value andthat complex objects
such as arrays are passed by reference. These conventions are similar to the con-
ventions used by C and guarantee that parameter passing takes constant time. The
semantics of parameter passing is defined as follows. For a value parameterx of type
T, the actual parameter must be an expressionE of the same type. Parameter passing
is equivalent to the declaration of a local variablex of typeT initialized toE. For a
reference parameterx of typeT, the actual parameter must be a variable of the same
type and the formal parameter is simply an alternative name for the actual parameter.

As with variable declarations, we sometimes omit type declarations for parame-
ters if they are unimportant or clear from the context. Sometimes we also declare pa-
rameters implicitly using mathematical notation. For example, the declarationPro-
cedurebar(〈a1, . . . ,an〉) introduces a procedure whose argument is a sequence ofn
elements of unspecified type.

Most procedure calls can be compiled into machine code by simply substitut-
ing the procedure body for the procedure call and making provisions for parameter
passing; this is calledinlining. Value passing is implemented by making appropriate
assignments to copy the parameter values into the local variables of the procedure.
Reference passing to a formal parameterx : T is implemented by changing the type
of x to Pointer to T, replacing all occurrences ofx in the body of the procedure
by (∗x) and initializingx by the assignmentx := addressofy, wherey is the actual
parameter. Inlining gives the compiler many opportunitiesfor optimization, so that
inlining is the most efficient approach for small proceduresand for procedures that
are called from only a single place.

Functionsare similar to procedures, except that they allow the returnstatement to
return a value. Figure 2.2 shows the declaration of a recursive function that returnsn!
and its translation into RAM code. The substitution approach fails for recursivepro-
cedures and functions that directly or indirectly call themselves – substitution would
never terminate. Realizing recursive procedures in RAM code requires the concept
of a recursion stack. Explicit subroutine calls over a stack are also used for large
procedures that are called multiple times where inlining would unduly increase the
code size. The recursion stack is a reserved part of the memory; we useRSto denote
it. RScontains a sequence ofactivation records, one for each active procedure call.
A special registerRr always points to the first free entry in this stack. The activation
record for a procedure withk parameters andℓ local variables has size 1+k+ ℓ. The
first location contains the return address, i.e., the address of the instruction where
execution is to be continued after the call has terminated, the nextk locations are
reserved for the parameters, and the finalℓ locations are for the local variables. A
procedure call is now implemented as follows. First, the calling procedurecaller
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Function factorial(n) : Z
if n = 1 then return 1 else returnn· factorial(n−1)

factorial : // the first instruction offactorial
Rn :=RS[Rr −1] // loadn into registerRn

JZ thenCase, Rn // jump to then case, ifn is zero
RS[Rr ] = aRecCall // else case; return address for recursive call
RS[Rr +1] := Rn−1 // parameter isn−1
Rr :=Rr +2 // increase stack pointer
J factorial // start recursive call
aRecCall : // return address for recursive call
Rresult :=RS[Rr −1]∗Rresult // storen∗ factorial(n−1) in result register
J return // goto return
thenCase : // code for then case
Rresult :=1 // put 1 into result register
return : // code for return
Rr :=Rr −2 // free activation record
J RS[Rr ] // jump to return address

Fig. 2.2. A recursive functionfactorial and the corresponding RAM code. The RAM code
returns the function value in registerRresult.

aRecCall

aRecCall

afterCall

5

4

3

Rr

Fig. 2.3.The recursion stack of a callfactorial(5) when the recursion
has reachedfactorial(3)

pushes the return address and the actual parameters onto thestack, increasesRr ac-
cordingly, and jumps to the first instruction of the called routinecalled. The called
routine reserves space for its local variables by increasing Rr appropriately. Then
the body ofcalled is executed. During execution of the body, any access to thei-th
formal parameter (0≤ i < k) is an access toRS[Rr − ℓ−k+ i] and any access to the
i-th local variable (0≤ i < ℓ) is an access toRS[Rr − ℓ+ i]. Whencalledexecutes a
return statement, it decreasesRr by 1+k+ℓ (observe thatcalledknowsk andℓ) and
execution continues at the return address (which can be found atRS[Rr ]). Thus con-
trol is returned tocaller. Note that recursion is no problem with this scheme, since
each incarnation of a routine will have its own stack area forits parameters and local
variables. Figure 2.3 shows the contents of the recursion stack of a callfactorial(5)
when the recursion has reachedfactorial(3). The labelafterCall is the address of
the instruction following the callfactorial(5), andaRecCall is defined in Fig. 2.2.
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Exercise 2.5 (sieve of Eratosthenes).Translate the following pseudocode for find-
ing all prime numbers up ton into RAM machine code. Argue correctness first.

a = 〈1, . . . ,1〉 : Array [2..n] of {0,1} // if a[i] is false,i is known to be nonprime
for i :=2 to ⌊√n⌋ do

if a[i] then for j :=2i to n step i do a[ j] :=0
// if a[i] is true,i is prime and all multiples ofi are nonprime

for i :=2 to n do if a[i] then output “i is prime”

2.3.4 Object Orientation

We also need a simple form of object-oriented programming sothat we can separate
the interface and the implementation of the data structures. We shall introduce our
notation by way of example. The definition

ClassComplex(x,y : Element) of Number
Number r:=x
Number i:=y
Function abs: Numberreturn

√
r2 + i2

Function add(c′ : Complex) : Complex return Complex(r +c′.r, i +c′.i)

gives a (partial) implementation of a complex number type that can use arbitrary
numeric types for the real and imaginary parts. Very often, our class names will begin
with capital letters. The real and imaginary parts are stored in themember variables r
andi, respectively. Now, the declaration “c : Complex(2,3) of R” declares a complex
numberc initialized to 2+3i; c.i is the imaginary part, andc.absreturns the absolute
value ofc.

The type after theof allows us to parameterize classes with types in a way similar
to the template mechanism of C++ or the generic types of Java. Note that in the light
of this notation, the types “Setof Element” and “Sequenceof Element” mentioned
earlier are ordinary classes. Objects of a class are initialized by setting the member
variables as specified in the class definition.

2.4 Designing Correct Algorithms and Programs

An algorithm is a general method for solving problems of a certain kind. We describe
algorithms using natural language and mathematical notation. Algorithms, as such,
cannot be executed by a computer. The formulation of an algorithm in a program-
ming language is called a program. Designing correct algorithms and translating a
correct algorithm into a correct program are nontrivial anderror-prone tasks. In this
section, we learn about assertions and invariants, two useful concepts for the design
of correct algorithms and programs.
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2.4.1 Assertions and Invariants

Assertionsand invariantsdescribe properties of the program state, i.e., properties
of single variables and relations between the values of several variables. Typical
properties are that a pointer has a defined value, an integer is nonnegative, a list
is nonempty, or the value of an integer variablelength is equal to the length of a
certain listL. Figure 2.4 shows an example of the use of assertions and invariants
in a functionpower(a,n0) that computesan0 for a real numbera and a nonnegative
integern0.

We start with the assertionassertn0 ≥ 0 and¬(a = 0∧n0 = 0). This states that
the program expects a nonnegative integern0 and that not bothaandn0 are allowed to
be zero. We make no claim about the behavior of our program forinputs that violate
this assertion. This assertion is therefore called thepreconditionof the program.
It is good programming practice to check the precondition ofa program, i.e., to
write code which checks the precondition and signals an error if it is violated. When
the precondition holds (and the program is correct), apostconditionholds at the
termination of the program. In our example, we assert thatr = an0. It is also good
programming practice to verify the postcondition before returning from a program.
We shall come back to this point at the end of this section.

One can view preconditions and postconditions as acontractbetween the caller
and the called routine: if the caller passes parameters satisfying the precondition, the
routine produces a result satisfying the postcondition.

For conciseness, we shall use assertions sparingly, assuming that certain “ob-
vious” conditions are implicit from the textual description of the algorithm. Much
more elaborate assertions may be required for safety-critical programs or for formal
verification.

Preconditions and postconditions are assertions that describe the initial and the
final state of a program or function. We also need to describe properties of interme-
diate states. Some particularly important consistency properties should hold at many
places in a program. These properties are calledinvariants. Loop invariants and data
structure invariants are of particular importance.

Function power(a : R; n0 : N) : R
assertn0 ≥ 0 and¬(a = 0∧n0 = 0) // It is not so clear what 00 should be
p = a : R; r = 1 :R; n = n0 : N // we have:pnr = an0

while n > 0 do
invariant pnr = an0

if n is oddthen n--; r := r · p // invariant violated between assignments
else(n, p) :=(n/2, p· p) // parallel assignment maintains invariant

assertr = an0 // This is a consequence of the invariant andn = 0
return r

Fig. 2.4.An algorithm that computes integer powers of real numbers.
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2.4.2 Loop Invariants

A loop invariantholds before and after each loop iteration. In our example, we claim
that pnr = an0 before each iteration. This is true before the first iteration. The ini-
tialization of the program variables takes care of this. In fact, an invariant frequently
tells us how to initialize the variables. Assume that the invariant holds before exe-
cution of the loop body, andn > 0. If n is odd, we decrementn and multiplyr by
p. This reestablishes the invariant (note that the invariantis violated between the as-
signments). Ifn is even, we halven and squarep, and again reestablish the invariant.
When the loop terminates, we havepnr = an0 by the invariant, andn = 0 by the
condition of the loop. Thusr = an0 and we have established the postcondition.

The algorithm in Fig. 2.4 and many more algorithms describedin this book have
a quite simple structure. A few variables are declared and initialized to establish
the loop invariant. Then, a main loop manipulates the state of the program. When the
loop terminates, the loop invariant together with the termination condition of the loop
implies that the correct result has been computed. The loop invariant therefore plays
a pivotal role in understanding why a program works correctly. Once we understand
the loop invariant, it suffices to check that the loop invariant is true initially and after
each loop iteration. This is particularly easy if the loop body consists of only a small
number of statements, as in the example above.

2.4.3 Data Structure Invariants

More complex programs encapsulate their state in objects whose consistent repre-
sentation is also governed by invariants. Suchdata structure invariantsare declared
together with the data type. They are true after an object is constructed, and they
are preconditions and postconditions of all methods of a class. For example, we
shall discuss the representation of sets by sorted arrays. The data structure invari-
ant will state that the data structure uses an arraya and an integern, thatn is the size
of a, that the setS stored in the data structure is equal to{a[1], . . . ,a[n]}, and that
a[1] < a[2] < .. . < a[n]. The methods of the class have to maintain this invariant and
they are allowed to leverage the invariant; for example, thesearch method may make
use of the fact that the array is sorted.

2.4.4 Certifying Algorithms

We mentioned above that it is good programming practice to check assertions. It
is not always clear how to do this efficiently; in our example program, it is easy to
check the precondition, but there seems to be no easy way to check the postcondition.
In many situations, however,the task of checking assertions can be simplified by
computing additional information. This additional information is called acertificate
orwitness, and its purpose is to simplify the check of an assertion. When an algorithm
computes a certificate for the postcondition, we call it acertifying algorithm. We
shall illustrate the idea by an example. Consider a functionwhose input is a graph
G = (V,E). Graphs are defined in Sect. 2.9. The task is to test whether the graph is
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bipartite, i.e., whether there is a labeling of the nodes ofG with the colors blue and
red such that any edge ofG connects nodes of different colors. As specified so far,
the function returns true or false – true ifG is bipartite, and false otherwise. With this
rudimentary output, the postcondition cannot be checked. However, we may augment
the program as follows. When the program declaresG bipartite, it also returns a two-
coloring of the graph. When the program declaresG nonbipartite, it also returns a
cycle of odd length in the graph. For the augmented program, the postcondition is
easy to check. In the first case, we simply check whether all edges connect nodes of
different colors, and in the second case, we do nothing. An odd-length cycle proves
that the graph is nonbipartite. Most algorithms in this bookcan be made certifying
without increasing the asymptotic running time.

2.5 An Example – Binary Search

Binary search is a very useful technique for searching in an ordered set of items. We
shall use it over and over again in later chapters.

The simplest scenario is as follows. We are given a sorted array a[1..n] of pair-
wise distinct elements, i.e.,a[1] < a[2] < .. . < a[n], and an elementx. Now we are
required to find the indexi with a[i −1] < x≤ a[i]; here,a[0] anda[n+1] should be
interpreted as fictitious elements with values−∞ and+∞, respectively. We can use
these fictitious elements in the invariants and the proofs, but cannot access them in
the program.

Binary search is based on the principle of divide-and-conquer. We choose an
indexm∈ [1..n] and comparex with a[m]. If x = a[m], we are done and returni = m.
If x< a[m], we restrict the search to the part of the array beforea[m], and ifx> a[m],
we restrict the search to the part of the array aftera[m]. We need to say more clearly
what it means to restrict the search to a subinterval. We havetwo indicesℓ andr, and
maintain the invariant

(I) 0≤ ℓ < r ≤ n+1 and a[ℓ] < x < a[r] .

This is true initially withℓ = 0 andr = n+1. If ℓ andr are consecutive indices,x is
not contained in the array. Figure 2.5 shows the complete program.

The comments in the program show that the second part of the invariant is main-
tained. With respect to the first part, we observe that the loop is entered withℓ < r.
If ℓ+1= r, we stop and return. Otherwise,ℓ+2≤ r and henceℓ < m< r. Thusm is
a legal array index, and we can accessa[m]. If x = a[m], we stop. Otherwise, we set
eitherr = m or ℓ = mand hence haveℓ < r at the end of the loop. Thus the invariant
is maintained.

Let us argue for termination next. We observe first that if an iteration is not the
last one, then we either increaseℓ or decreaser, and hencer − ℓ decreases. Thus the
search terminates. We want to show more. We want to show that the search terminates
in a logarithmic number of steps. To do this, we study the quantity r − ℓ−1. Note
that this is the number of indicesi with ℓ < i < r, and hence a natural measure of the
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size of the current subproblem. We shall show that each iteration except the last at
least halves the size of the problem. If an iteration is not the last,r − ℓ−1 decreases
to something less than or equal to

max{r −⌊(r + ℓ)/2⌋−1,⌊(r + ℓ)/2⌋− ℓ−1}
≤ max{r − ((r + ℓ)/2−1/2)−1,(r + ℓ)/2− ℓ−1}
= max{(r − ℓ−1)/2,(r − ℓ)/2−1}= (r − ℓ−1)/2 ,

and hence it at least halved. We start withr − ℓ−1 = n+ 1−0−1= n, and hence
haver − ℓ−1≤

⌊

n/2k
⌋

afterk iterations. The(k+1)-th iteration is certainly the last
if we enter it withr = ℓ+1. This is guaranteed ifn/2k < 1 ork > logn. We conclude
that, at most, 2+ logn iterations are performed. Since the number of comparisons is
a natural number, we can sharpen the bound to 2+ ⌊logn⌋.
Theorem 2.3.Binary search finds an element in a sorted array of size n in2+⌊logn⌋
comparisons between elements.

Exercise 2.6.Show that the above bound is sharp, i.e., for everyn there are instances
where exactly 2+ ⌊logn⌋ comparisons are needed.

Exercise 2.7.Formulate binary search with two-way comparisons, i.e., distinguish
between the casesx < a[m], andx≥ a[m].

We next discuss two important extensions of binary search. First, there is no need
for the valuesa[i] to be stored in an array. We only need the capability to compute
a[i], giveni. For example, if we have a strictly monotonic functionf and argumentsi
and j with f (i) < x< f ( j), we can use binary search to findmsuch thatf (m) ≤ x<
f (m+1). In this context, binary search is often referred to as thebisection method.

Second, we can extend binary search to the case where the array is infinite. As-
sume we have an infinite arraya[1..∞] with a[1] ≤ x and want to findm such that
a[m] ≤ x < a[m+ 1]. If x is larger than all elements in the array, the procedure is
allowed to diverge. We proceed as follows. We comparex with a[21], a[22], a[23],
. . . , until the firsti with x< a[2i] is found. This is called anexponential search. Then
we complete the search by binary search on the arraya[2i−1..2i ].

(ℓ, r) :=(0,n+1)
while true do

invariant I // i.e., invariant(I) holds here
if ℓ+1 = r then return “a [ℓ] < x < a[ℓ+1]”
m:= ⌊(r + ℓ)/2⌋ // ℓ < m< r
s:=compare(x,a[m]) // −1 if x < a[m], 0 if x = a[m], +1 if x > a[m]
if s= 0 then return “x is equal to a[m]”;
if s< 0

then r :=m // a[ℓ] < x < a[m] = a[r]
elseℓ :=m // a[ℓ] = a[m] < x < a[r]

Fig. 2.5.Binary Search forx in a sorted arraya[1..n].
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Theorem 2.4.The combination of exponential and binary search finds x in anun-
bounded sorted array in at most2logm+3 comparisons, where a[m]≤ x< a[m+1].

Proof. We needi comparisons to find the firsti such thatx < a[2i], followed by
log(2i −2i−1)+2 comparisons for the binary search. This gives a total of 2i + 1
comparisons. Sincem≥ 2i−1, we havei ≤ 1+ logmand the claim follows. ⊓⊔

Binary search is certifying. It returns an indexm with a[m] ≤ x < a[m+ 1]. If
x = a[m], the index proves thatx is stored in the array. Ifa[m] < x < a[m+ 1] and
the array is sorted, the index proves thatx is not stored in the array. Of course, if the
array violates the precondition and is not sorted, we know nothing. There is no way
to check the precondition in logarithmic time.

2.6 Basic Algorithm Analysis

Let us summarize the principles of algorithm analysis. We abstract from the compli-
cations of a real machine to the simplified RAM model. In the RAM model, running
time is measured by the number of instructions executed. We simplify the analy-
sis further by grouping inputs by size and focusing on the worst case. The use of
asymptotic notation allows us to ignore constant factors and lower-order terms. This
coarsening of our view also allows us to look at upper bounds on the execution time
rather than the exact worst case, as long as the asymptotic result remains unchanged.
The total effect of these simplifications is that the runningtime of pseudocode can be
analyzed directly. There is no need to translate the programinto machine code first.

We shall next introduce a set of simple rules for analyzing pseudocode. LetT(I)
denote the worst-case execution time of a piece of programI . The following rules
then tell us how to estimate the running time for larger programs, given that we know
the running times of their constituents:

• T(I ; I ′) = T(I)+T(I ′).
• T(if C then I elseI ′) = O(T(C)+max(T(I),T(I ′))).
• T(repeat I until C) = O

(

∑k
i=1T(i)

)

, wherek is the number of loop iterations,
andT(i) is the time needed in thei-th iteration of the loop, including the testC.

We postpone the treatment of subroutine calls to Sect. 2.6.2. Of the rules above, only
the rule for loops is nontrivial to apply; it requires evaluating sums.

2.6.1 “Doing Sums”

We now introduce some basic techniques for evaluating sums.Sums arise in the
analysis of loops, in average-case analysis, and also in theanalysis of randomized
algorithms.

For example, the insertion sort algorithm introduced in Sect. 5.1 has two nested
loops. The outer loop countsi, from 2 ton. The inner loop performs at mosti − 1
iterations. Hence, the total number of iterations of the inner loop is at most
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n

∑
i=2

(i −1) =
n−1

∑
i=1

i =
n(n−1)

2
= O

(

n2) ,

where the second equality comes from (A.11). Since the time for one execution of
the inner loop is O(1), we get a worst-case execution time ofΘ

(

n2
)

. All nested
loops with an easily predictable number of iterations can beanalyzed in an analogous
fashion: work your way outwards by repeatedly finding a closed-form expression for
the innermost loop. Using simple manipulations such as∑i cai = c∑i ai, ∑i(ai +bi)=

∑i ai + ∑i bi, or ∑n
i=2ai = −a1 + ∑n

i=1ai , one can often reduce the sums to simple
forms that can be looked up in a catalog of sums. A small sampleof such formulae
can be found in Appendix A. Since we are usually interested only in the asymptotic
behavior, we can frequently avoid doing sums exactly and resort to estimates. For
example, instead of evaluating the sum above exactly, we mayargue more simply as
follows:

n

∑
i=2

(i −1)≤
n

∑
i=1

n = n2 = O
(

n2) ,

n

∑
i=2

(i −1)≥
n

∑
i=⌈n/2⌉

n/2 = ⌊n/2⌋ ·n/2= Ω
(

n2) .

2.6.2 Recurrences

In our rules for analyzing programs, we have so far neglectedsubroutine calls. Non-
recursive subroutines are easy to handle, since we can analyze the subroutine sepa-
rately and then substitute the bound obtained into the expression for the running time
of the calling routine. For recursive programs, however, this approach does not lead
to a closed formula, but to a recurrence relation.

For example, for the recursive variant of the school method of multiplica-
tion, we obtainedT(1) = 1 andT(n) = 6n+ 4T(⌈n/2⌉) for the number of prim-
itive operations. For the Karatsuba algorithm, the corresponding expression was
T(n) = 3n2 + 2n for n≤ 3 andT(n) = 12n+ 3T(⌈n/2⌉+ 1) otherwise. In general,
a recurrence relationdefines a function in terms of the same function using smaller
arguments. Explicit definitions for small parameter valuesmake the function well
defined. Solving recurrences, i.e., finding nonrecursive, closed-form expressions for
them, is an interesting subject in mathematics. Here we focus on the recurrence re-
lations that typically emerge from divide-and-conquer algorithms. We begin with a
simple case that will suffice for the purpose of understanding the main ideas. We
have a problem of sizen = bk for some integerk. If k > 1, we invest linear workcn
in dividing the problem intod subproblems of sizen/b and combining the results. If
k = 0, there are no recursive calls, we invest worka, and are done.

Theorem 2.5 (master theorem (simple form)).For positive constants a, b, c, and
d, and n= bk for some integer k, consider the recurrence

r(n) =

{

a if n = 1 ,

cn+d · r(n/b) if n > 1 .
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Then

r(n) =











Θ(n) if d < b ,

Θ(nlogn) if d = b ,

Θ
(

nlogb d
)

if d > b .

Figure 2.6 illustrates the main insight behind Theorem 2.5.We consider the amount
of work done at each level of recursion. We start with a problem of sizen. At the i-th
level of the recursion, we havedi problems, each of sizen/bi. Thus the total size of
the problems at thei-th level is equal to

di n
bi = n

(

d
b

)i

.

The work performed for a problem isc times the problem size, and hence the work
performed at any level of the recursion is proportional to the total problem size at
that level. Depending on whetherd/b is less than, equal to, or larger than 1, we have
different kinds of behavior.

If d < b, the workdecreases geometricallywith the level of recursion and the
first level of recursion accounts for a constant fraction of the total execution time.

If d = b, we have the same amount of work ateverylevel of recursion. Since
there are logarithmically many levels, the total amount of work is Θ(nlogn).

Finally, if d > b, we have a geometricallygrowingamount of work at each level
of recursion so that thelast level accounts for a constant fraction of the total running
time. We formalize this reasoning next.

d=2, b=4

d=3, b=2

d = b = 4

Fig. 2.6.Examples of the three cases of the master theorem. Problems are indicated by hor-
izontal line segments with arrows at both ends. The length ofa segment represents the size
of the problem, and the subproblems resulting from a problemare shown in the line below it.
The topmost part of figure corresponds to the cased = 2 andb = 4, i.e., each problem gen-
erates two subproblems of one-fourth the size. Thus the total size of the subproblems is only
half of the original size. The middle part of the figure illustrates the cased = b = 2, and the
bottommost part illustrates the cased = 3 andb = 2
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Proof. We start with a single problem of sizen = bk. W call this level zero of the
recursion.3 At level 1, we haved problems, each of sizen/b = bk−1. At level 2, we
haved2 problems, each of sizen/b2 = bk−2. At level i, we havedi problems, each
of sizen/bi = bk−i . At level k, we havedk problems, each of sizen/bk = bk−k = 1.
Each such problem has a costa, and hence the total cost at levelk is adk.

Let us next compute the total cost of the divide-and-conquersteps at levels 1 to
k−1. At level i, we havedi recursive calls each for subproblems of sizebk−i . Each
call contributes a cost ofc ·bk−i , and hence the cost at leveli is di ·c ·bk−i . Thus the
combined cost over all levels is

k−1

∑
i=0

di ·c ·bk−i = c ·bk ·
k−1

∑
i=0

(

d
b

)i

= cn·
k−1

∑
i=0

(

d
b

)i

.

We now distinguish cases according to the relative sizes ofd andb.

Cased = b. We have a costadk = abk = an= Θ(n) for the bottom of the recursion
andcnk= cnlogb n = Θ(nlogn) for the divide-and-conquer steps.

Cased < b. We have a costadk < abk = an= O(n) for the bottom of the recursion.
For the cost of the divide-and-conquer steps, we use (A.13) for a geometric series,
namely∑0≤i<k xi = (1−xk)/(1−x) for x > 0 andx 6= 1, and obtain

cn·
k−1

∑
i=0

(

d
b

)i

= cn· 1− (d/b)k

1−d/b
< cn· 1

1−d/b
= O(n)

and

cn·
k−1

∑
i=0

(

d
b

)i

= cn· 1− (d/b)k

1−d/b
> cn= Ω(n) .

Cased > b. First, note that

dk = 2k logd = 2k logb
logb logd

= bk logd
logb = bk logb d = nlogbd .

Hence the bottom of the recursion has a cost ofanlogb d = Θ
(

nlogb d
)

. For the divide-
and-conquer steps we use the geometric series again and obtain

cbk (d/b)k−1
d/b−1

= c
dk−bk

d/b−1
= cdk 1− (b/d)k

d/b−1
= Θ

(

dk
)

= Θ
(

nlogbd
)

.
⊓⊔

We shall use the master theorem many times in this book. Unfortunately, the re-
currenceT(n) = 3n2 + 2n for n ≤ 3 andT(n) ≤ 12n+ 3T(⌈n/2⌉+ 1), governing

3 In this proof, we use the terminology of recursive programs in order to give an intuitive
idea of what we are doing. However, our mathematical arguments apply to any recurrence
relation of the right form, even if it does not stem from a recursive program.
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Karatsuba’s algorithm, is not covered by our master theorem, which neglects round-
ing issues. We shall now show how to extend the master theoremto the following
recurrence:

r(n) ≤
{

a if n≤ n0,

cn+d · r(⌈n/b⌉+e) if n > n0,

wherea, b, c, d, andeare constants, andn0 is such that⌈n/b⌉+e< n for n> n0. We
proceed in two steps. We first concentrate onn of the formbk+z, wherez is such that
⌈z/b⌉+e= z. For example, forb= 2 ande= 3, we would choosez= 6. Note that for
n of this form, we have⌈n/b⌉+e=

⌈

(bk +z)/b
⌉

+e= bk−1 + ⌈z/b⌉+e= bk−1+z,
i.e., the reduced problem size has the same form. For then’s in this special form, we
then argue exactly as in Theorem 2.5.

How do we generalize to arbitraryn? The simplest way is semantic reasoning. It
is clear4 that the cost grows with the problem size, and hence the cost for an input of
sizen will be no larger than the cost for an input whose size is equalto the next input
size of special form. Since this input is at mostb times larger andb is a constant, the
bound derived for specialn is affected only by a constant factor.

The formal reasoning is as follows (you may want to skip this paragraph and
come back to it when the need arises). We define a functionR(n) by the same recur-
rence, with≤ replaced by equality:R(n) = a for n≤ n0 andR(n) = cn+dR(⌈n/b⌉+
e) for n > n0. Obviously,r(n) ≤ R(n). We derive a bound forR(n) andn of special
form as described above. Finally, we argue by induction thatR(n) ≤ R(s(n)), where
s(n) is the smallest number of the formbk +zwith bk +z≥ n. The induction step is
as follows:

R(n) = cn+dR(⌈n/b⌉+e) ≤ cs(n)+dR(s(⌈n/b⌉+e)) = R(s(n)) ,

where the inequality uses the induction hypothesis andn ≤ s(n). The last equality
uses the fact that fors(n) = bk + z (and hencebk−1 + z < n), we havebk−2 + z <
⌈n/b⌉+e≤ bk−1 +zand hences(⌈n/b⌉+e) = bk−1 +z= ⌈s(n)/b⌉+e.

There are many generalizations of the master theorem: we might break the re-
cursion earlier, the cost for dividing and conquering may benonlinear, the size of
the subproblems might vary within certain bounds, the number of subproblems may
depend on the input size, etc. We refer the reader to the books[81, 175] for further
information.

Exercise 2.8.Consider the recurrence

C(n) =

{

1 if n = 1,

C(⌊n/2⌋)+C(⌈n/2⌉)+cn if n > 1.

Show thatC(n) = O(nlogn).

4 Be aware that most errors in mathematical arguments are nearoccurrences of the word
“clearly”.
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*Exercise 2.9.Suppose you have a divide-and-conquer algorithm whose running
time is governed by the recurrenceT(1) = a, T(n) = cn+ ⌈√n ⌉T(⌈n/⌈√n ⌉⌉).
Show that the running time of the program is O(nloglogn).

Exercise 2.10.Access to data structures is often governed by the followingrecur-
rence:T(1) = a, T(n) = c+T(n/2). Show thatT(n) = O(logn).

2.6.3 Global Arguments

The algorithm analysis techniques introduced so far are syntax-oriented in the fol-
lowing sense: in order to analyze a large program, we first analyze its parts and then
combine the analyses of the parts into an analysis of the large program. The combi-
nation step involves sums and recurrences.

We shall also use a completely different approach which one might call semantics-
oriented. In this approach we associate parts of the execution with parts of a combi-
natorial structure and then argue about the combinatorial structure. For example, we
might argue that a certain piece of program is executed at most once for each edge
of a graph or that the execution of a certain piece of program at least doubles the size
of a certain structure, that the size is one initially, and atmostn at termination, and
hence the number of executions is bounded logarithmically.

2.7 Average-Case Analysis

In this section we shall introduce you to average-case analysis. We shall do so by
way of three examples of increasing complexity. We assume that you are familiar
with basic concepts of probability theory such as discrete probability distributions,
expected values, indicator variables, and the linearity ofexpectations. Section A.3
reviews the basics.

2.7.1 Incrementing a Counter

We begin with a very simple example. Our input is an arraya[0..n− 1] filled with
digits zero and one. We want to increment the number represented by the array by
one.

i :=0
while (i < n and a[i] = 1) do a[i] = 0; i++;
if i < n then a[i] = 1

How often is the body of the while loop executed? Clearly,n times in the worst
case and 0 times in the best case. What is the average case? Thefirst step in an
average-case analysis is always to define the model of randomness, i.e., to define the
underlying probability space. We postulate the following model of randomness: each
digit is zero or one with probability 1/2, and different digits are independent. The
loop body is executedk times, 0≤ k ≤ n, iff the lastk+ 1 digits ofa are 01k or k
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is equal ton and all digits ofa are equal to one. The former event has probability
2−(k+1), and the latter event has probability 2−n. Therefore, the average number of
executions is equal to

∑
0≤k<n

k2−(k+1) +n2−n ≤ ∑
k≥0

k2−k = 2 ,

where the last equality is the same as (A.14).

2.7.2 Left-to-Right Maxima

Our second example is slightly more demanding. Consider thefollowing simple pro-
gram that determines the maximum element in an arraya[1..n]:

m:=a[1]; for i :=2 to n do if a[i] > m then m:=a[i]

How often is the assignmentm:=a[i] executed? In the worst case, it is executed in
every iteration of the loop and hencen−1 times. In the best case, it is not executed
at all. What is the average case? Again, we start by defining the probability space.
We assume that the array containsn distinct elements and that any order of these
elements is equally likely. In other words, our probabilityspace consists of then!
permutations of the array elements. Each permutation is equally likely and therefore
has probability 1/n!. Since the exact nature of the array elements is unimportant,
we may assume that the array contains the numbers 1 ton in some order. We are
interested in the average number ofleft-to-right maxima. A left-to-right maximum in
a sequence is an element which is larger than all preceding elements. So,(1,2,4,3)
has three left-to-right-maxima and(3,1,2,4) has two left-to-right-maxima. For a
permutationπ of the integers 1 ton, letMn(π) be the number of left-to-right-maxima.
What is E[Mn]? We shall describe two ways to determine the expectation. For small
n, is easy to determine E[Mn] by direct calculation. Forn = 1, there is only one
permutation, namely(1), and it has one maximum. So E[M1] = 1. Forn = 2, there
are two permutations, namely(1,2) and(2,1). The former has two maxima and the
latter has one maximum. So E[M2] = 1.5. For largern, we argue as follows.

We write Mn as a sum of indicator variablesI1 to In, i.e., Mn = I1 + . . . + In,
whereIk is equal to one for a permutationπ if the k-th element ofπ is a left-to-right
maximum. For example,I3((3,1,2,4)) = 0 andI4((3,1,2,4)) = 1. We have

E[Mn] = E[I1 + I2+ . . .+ In]

= E[I1]+E[I2]+ . . .+E[In]

= prob(I1 = 1)+prob(I2 = 1)+ . . .+prob(In = 1) ,

where the second equality is the linearity of expectations (A.2) and the third equality
follows from theIk’s being indicator variables. It remains to determine the probabil-
ity that Ik = 1. Thek-th element of a random permutation is a left-to-right maximum
if and only if thek-th element is the largest of the firstk elements. In a random per-
mutation, any position is equally likely to hold the maximum, so that the probability
we are looking for is prob(Ik = 1) = 1/k and hence
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E[Mn] = ∑
1≤k≤n

prob(Ik = 1) = ∑
1≤k≤n

1
k

.

So, E[M4] = 1+1/2+1/3+1/4=(12+6+4+3)/12= 25/12.The sum∑1≤k≤n1/k
will appear several times in this book. It is known under the name “n-th harmonic
number” and is denoted byHn. It is known that lnn≤ Hn ≤ 1+ lnn, i.e.,Hn ≈ lnn;
see (A.12). We conclude that the average number of left-to-right maxima is much
smaller than in the worst case.

Exercise 2.11.Show that
n

∑
k=1

1
k
≤ lnn+1. Hint: show first that

n

∑
k=2

1
k
≤
∫ n

1

1
x

dx.

We now describe an alternative analysis. We introduceAn as a shorthand for
E[Mn] and setA0 = 0. The first element is always a left-to-right maximum, and each
number is equally likely as the first element. If the first element is equal toi, then only
the numbersi + 1 to n can be further left-to-right maxima. They appear in random
order in the remaining sequence, and hence we shall see an expected number ofAn−i

further maxima. Thus

An = 1+

(

∑
1≤i≤n

An−i

)

/n or nAn = n+ ∑
0≤i≤n−1

Ai .

A simple trick simplifies this recurrence. The corresponding equation forn− 1 in-
stead ofn is (n−1)An−1 = n−1+ ∑1≤i≤n−2Ai . Subtracting the equation forn−1
from the equation forn yields

nAn− (n−1)An−1 = 1+An−1 or An = 1/n+An−1 ,

and henceAn = Hn.

2.7.3 Linear Search

We come now to our third example; this example is even more demanding. Consider
the following search problem. We have items 1 ton, which we are required to arrange
linearly in some order; say, we put itemi in positionℓi . Once we have arranged the
items, we perform searches. In order to search for an itemx, we go through the
sequence from left to right until we encounterx. In this way, it will takeℓi steps to
access itemi.

Suppose now that we also know that we shall access the items with different
probabilities; say, we search for itemi with probability pi , wherepi ≥ 0 for all i,
1 ≤ i ≤ n, and∑i pi = 1. In this situation, theexpectedor averagecost of a search
is equal to∑i piℓi , since we search for itemi with probability pi and the cost of the
search isℓi .

What is the best way of arranging the items? Intuition tells us that we should
arrange the items in order of decreasing probability. Let usprove this.
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Lemma 2.6.An arrangement is optimal with respect to the expected search cost if it
has the property that pi > p j impliesℓi < ℓ j . If p1 ≥ p2 ≥ . . . ≥ pn, the placement
ℓi = i results in the optimal expected search cost Opt= ∑i pi i.

Proof. Consider an arrangement in which, for somei and j, we havepi > p j and
ℓi > ℓ j , i.e., itemi is more probable than itemj and yet placed after it. Interchanging
itemsi and j changes the search cost by

−(piℓi + p jℓ j)+ (piℓ j + p jℓi) = (pi − p j)(ℓi − ℓ j) < 0 ,

i.e., the new arrangement is better and hence the old arrangement is not optimal.
Let us now consider the casep1 > p2 > .. . > pn. Since there are onlyn! possible

arrangements, there is an optimal arrangement. Also, ifi < j and i is placed after
j, the arrangement is not optimal by the argument in the preceding paragraph. Thus
the optimal arrangement puts itemi in positionℓi = i and its expected search cost is
∑i pi i.

If p1 ≥ p2 ≥ . . . ≥ pn, the arrangementℓi = i for all i is still optimal. However,
if some probabilities are equal, we have more than one optimal arrangement. Within
blocks of equal probabilities, the order is irrelevant. ⊓⊔

Can we still do something intelligent if the probabilitiespi are not known to us?
The answer is yes, and a very simple heuristic does the job. Itis called themove-to-
front heuristic. Suppose we access itemi and find it in positionℓi . If ℓi = 1, we are
happy and do nothing. Otherwise, we place it in position 1 andmove the items in
positions 1 toℓi −1 one position to the rear. The hope is that, in this way, frequently
accessed items tend to stay near the front of the arrangementand infrequently ac-
cessed items move to the rear. We shall now analyze the expected behavior of the
move-to-front heuristic.

Consider two itemsi and j and suppose that both of them were accessed in the
past. Itemi will be accessed before itemj if the last access to itemi occurred after the
last access to itemj. Thus the probability that itemi is before itemj is pi/(pi + p j).
With probabilityp j/(pi + p j), item j stands before itemi.

Now, ℓi is simply one plus the number of elements beforei in the list. Thus
the expected value ofℓi is equal to 1+ ∑ j ; j 6=i p j/(pi + p j), and hence the expected
search cost in the move-to-front heuristic is

CMTF = ∑
i

pi

(

1+ ∑
j ; j 6=i

p j

pi + p j

)

= ∑
i

pi + ∑
i, j ; i 6= j

pi p j

pi + p j
.

Observe that for eachi and j with i 6= j, the termpi p j/(pi + p j) appears twice in
the sum above. In order to proceed with the analysis, we assume p1 ≥ p2 ≥ . . . ≥ pn.
This is an assumption used in the analysis, the algorithm hasno knowledge of this.
Then



FR
E

E
C

O
P

Y
2.8 Randomized Algorithms 45

CMTF = ∑
i

pi +2 ∑
j ; j<i

pi p j

pi + p j
= ∑

i

pi

(

1+2 ∑
j ; j<i

p j

pi + p j

)

≤ ∑
i

pi

(

1+2 ∑
j ; j<i

1

)

< ∑
i

pi2i = 2∑
i

pi i = 2Opt .

Theorem 2.7.The move-to-front heuristic achieves an expected search time which is
at most twice the optimum.

2.8 Randomized Algorithms

Suppose you are offered the chance to participate in a TV gameshow. There are 100
boxes that you can open in an order of your choice. Boxi contains an amountmi of
money. This amount is unknown to you but becomes known once the box is opened.
No two boxes contain the same amount of money. The rules of thegame are very
simple:

• At the beginning of the game, the presenter gives you 10 tokens.
• When you open a box and the contents of the box are larger than the contents of

all previously opened boxes, you have to hand back a token.5

• When you have to hand back a token but have no tokens, the game ends and you
lose.

• When you manage to open all of the boxes, you win and can keep all the money.

There are strange pictures on the boxes, and the presenter gives hints by suggesting
the box to be opened next. Your aunt, who is addicted to this show, tells you that
only a few candidates win. Now, you ask yourself whether it isworth participating
in this game. Is there a strategy that gives you a good chance of winning? Are the
presenter’s hints useful?

Let us first analyze the obvious algorithm – you always followthe presenter.
The worst case is that he makes you open the boxes in order of increasing value.
Whenever you open a box, you have to hand back a token, and whenyou open the
11th box you are dead. The candidates and viewers would hate the presenter and
he would soon be fired. Worst-case analysis does not give us the right information
in this situation. The best case is that the presenter immediately tells you the best
box. You would be happy, but there would be no time to place advertisements, so
that the presenter would again be fired. Best-case analysis also does not give us the
right information in this situation. We next observe that the game is really the left-to-
right maxima question of the preceding section in disguise.You have to hand back
a token whenever a new maximum shows up. We saw in the preceding section that
the expected number of left-to-right maxima in a random permutation isHn, then-th
harmonic number. Forn= 100,Hn < 6. So if the presenter were to point to the boxes

5 The contents of the first box opened are larger than the contents of all previously opened
boxes, and hence the first token goes back to the presenter in the first round.
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in random order, you would have to hand back only 6 tokens on average. But why
should the presenter offer you the boxes in random order? He has no incentive to
have too many winners.

The solution is to take your fate into your own hands:open the boxes in random
order. You select one of the boxes at random, open it, then choose a random box from
the remaining ones, and so on. How do you choose a random box? When there arek
boxes left, you choose a random box by tossing a die withk sides or by choosing a
random number in the range 1 tok. In this way, you generate a random permutation of
the boxes and hence the analysis in the previous section still applies. On average you
will have to return fewer than 6 tokens and hence your 10 tokens suffice. You have
just seen arandomized algorithm. We want to stress that, although the mathematical
analysis is the same, the conclusions are very different. Inthe average-case scenario,
you are at the mercy of the presenter. If he opens the boxes in random order, the
analysis applies; if he does not, it does not. You have no way to tell, except after
many shows and with hindsight. In other words, the presentercontrols the dice and
it is up to him whether he uses fair dice. The situation is completely different in the
randomized-algorithms scenario. You control the dice, andyou generate the random
permutation. The analysis is valid no matter what the presenter does.

2.8.1 The Formal Model

Formally, we equip our RAM with an additional instruction:Ri := randInt(C) assigns
arandominteger between 0 andC−1 toRi. In pseudocode, we writev:=randInt(C),
wherev is an integer variable. The cost of making a random choice is one time unit.
Algorithmsnot using randomization are calleddeterministic.

The running time of a randomized algorithm will generally depend on the random
choices made by the algorithm. So the running time on an instancei is no longer a
number, but a random variable depending on the random choices. We may eliminate
the dependency of the running time on random choices by equipping our machine
with a timer. At the beginning of the execution, we set the timer to a valueT(n),
which may depend on the sizen of the problem instance, and stop the machine once
the timer goes off. In this way, we can guarantee that the running time is bounded by
T(n). However, if the algorithm runs out of time, it does not deliver an answer.

The output of a randomized algorithm may also depend on the random choices
made. How can an algorithm be useful if the answer on an instance i may depend
on the random choices made by the algorithm – if the answer maybe “Yes” today
and “No” tomorrow? If the two cases are equally probable, theanswer given by the
algorithm has no value. However, if the correct answer is much more likely than the
incorrect answer, the answer does have value. Let us see an example.

Alice and Bob are connected over a slow telephone line. Alicehas an integer
xA and Bob has an integerxB, each withnbits. They want to determine whether
they have the same number. As communication is slow, their goal is to minimize the
amount of information exchanged. Local computation is not an issue.

In the obvious solution, Alice sends her number to Bob, and Bob checks whether
the numbers are equal and announces the result. This requires them to transmitn
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digits. Alternatively, Alice could send the number digit bydigit, and Bob would
check for equality as the digits arrived and announce the result as soon as he knew it,
i.e., as soon as corresponding digits differed or all digitshad been transmitted. In the
worst case, alln digits have to be transmitted. We shall now show that randomization
leads to a dramatic improvement. After transmission of onlyO(logn) bits, equality
and inequality can be decided with high probability.

Alice and Bob follow the following protocol. Each of them prepares an ordered
list of prime numbers. The list consists of the smallestL primes withk or more bits
and leading bit 1. Each such prime has a value of at least 2k. We shall say more
about the choice ofL andk below. In this way, it is guaranteed that both Alice and
Bob generate the same list. Then Alice chooses an indexi, 1≤ i ≤ L, at random and
sendsi andxA mod pi to Bob. Bob computesxB mod pi . If xA mod pi 6= xB mod pi ,
he declares that the numbers are different. Otherwise, he declares the numbers the
same. Clearly, if the numbers are the same, Bob will say so. Ifthe numbers are
different andxA mod pi 6= xB mod pi , he will declare them different. However, if
xA 6= xB and yetxA mod pi = xB mod pi , he will erroneously declare the numbers
equal. What is the probability of an error?

An error occurs ifxA 6= xB but xA ≡ xB(modpi). The latter condition is equiv-
alent to pi dividing the differenceD = xA − xB. This difference is at most 2n in
absolute value. Since each primepi has a value of at least 2k, our list contains at
mostn/k primes that divide6 the difference, and hence the probability of error is at
most(n/k)/L. We can make this probability arbitrarily small by choosingL large
enough. If, say, we want to make the probability less than 0.0000001= 10−6, we
chooseL = 106(n/k).

What is the appropriate choice ofk? Out of the numbers withk bits, approxi-
mately 2k/k are primes.7 Hence, if 2k/k ≥ 106n/k, the list will contain onlyk-bit
integers. The condition 2k ≥ 106n is tantamount tok ≥ logn+ 6log10. With this
choice ofk, the protocol transmits logL+k = logn+12log10 bits.This is exponen-
tially better than the naive protocol.

What can we do if we want an error probability less than 10−12? We could redo
the calculations above withL = 1012n. Alternatively, we could run the protocol twice
and declare the numbers different if at least one run declares them different. This
two-stage protocol errs only if both runs err, and hence the probability of error is at
most 10−6 ·10−6 = 10−12.

Exercise 2.12.Compare the efficiency of the two approaches for obtaining anerror
probability of 10−12.

Exercise 2.13.In the protocol described above, Alice and Bob have to prepare
ridiculously long lists of prime numbers. Discuss the following modified protocol.

6 Let d be the number of primes on our list that divideD. Then 2n ≥ |D| ≥ (2k)d = 2kd and
henced ≤ n/k.

7 For any integerx, let π(x) be the number of primes less than or equal tox. For example,
π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less thanor equal to 10.
Then x/(lnx+ 2) < π(x) < x/(lnx− 4) for x ≥ 55. See the Wikipedia entry on “prime
numbers” for more information.
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Alice chooses a randomk-bit integerp (with leading bit 1) and tests it for primality.
If p is not prime, she repeats the process. Ifp is prime, she sendsp andxA mod p to
Bob.

Exercise 2.14.Assume you have an algorithm which errs with a probability ofat
most 1/4 and that you run the algorithmk times and output the majority output.
Derive a bound on the error probability as a function ofk. Do a precise calculation
for k = 2 andk = 3, and give a bound for largek. Finally, determinek such that the
error probability is less than a givenε.

2.8.2 Las Vegas and Monte Carlo Algorithms

Randomized algorithms come in two main varieties, the Las Vegas and the Monte
Carlo variety. ALas Vegas algorithmalways computes the correct answer but its
running time is a random variable. Our solution for the game show is a Las Vegas
algorithm; it always finds the box containing the maximum; however, the number of
left-to-right maxima is a random variable. AMonte Carloalgorithm always has the
same run time, but there is a nonzero probability that it gives an incorrect answer. The
probability that the answer is incorrect is at most 1/4. Our algorithm for comparing
two numbers over a telephone line is a Monte Carlo algorithm.In Exercise 2.14, it is
shown that the error probability can be made arbitrarily small.

Exercise 2.15.Suppose you have a Las Vegas algorithm with an expected execution
timet(n), and that you run it for 4t(n) steps. If it returns an answer within the alloted
time, this answer is returned, otherwise, an arbitrary answer is returned. Show that
the resulting algorithm is a Monte Carlo algorithm.

Exercise 2.16.Suppose you have a Monte Carlo algorithm with an execution time
m(n) that gives a correct answer with probabilityp and a deterministic algorithm
that verifies in timev(n) whether the Monte Carlo algorithm has given the correct
answer. Explain how to use these two algorithms to obtain a Las Vegas algorithm
with expected execution time(m(n)+v(n))/(1− p).

We come back to our game show example. You have 10 tokens available to you.
The expected number of tokens required is less than 6. How sure should you be that
you will go home a winner? We need to bound the probability that Mn is larger than
11, because you lose exactly if the sequence in which you order the boxes has 11
or more left-to-right maxima.Markov’s inequalityallows you to bound this prob-
ability. It states that, for a nonnegative random variableX and any constantc ≥ 1,
prob(X ≥ c ·E[X])≤ 1/c; see (A.4) for additional information. We apply the inequal-
ity with X = Mn andc = 11/6. We obtain

prob(Mn ≥ 11) ≤ prob

(

Mn ≥
11
6

E[Mn]

)

≤ 6
11

,

and hence the probability of winning is more than 5/11.
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2.9 Graphs

Graphs are an extremely useful concept in algorithmics. We use them whenever we
want to model objects and relations between them; in graph terminology, the objects
are callednodes, and the relations between nodes are callededges. Some obvious
applications are to road maps and communication networks, but there are also more
abstract applications. For example, nodes could be tasks tobe completed when build-
ing a house, such as “build the walls” or “put in the windows”,and edges could model
precedence relations such as “the walls have to be built before the windows can be
put in”. We shall also see many examples of data structures where it is natural to
view objects as nodes and pointers as edges between the object storing the pointer
and the object pointed to.

When humans think about graphs, they usually find it convenient to work with
pictures showing nodes as bullets and edges as lines and arrows. To treat graphs algo-
rithmically, a more mathematical notation is needed: adirected graph G= (V,E) is a
pair consisting of anode set(or vertex set) V and anedge set(or arc set) E ⊆V ×V.
We sometimes abbreviate “directed graph” todigraph. For example, Fig. 2.7 shows
the graphG= ({s,t,u,v,w,x,y,z} , {(s,t), (t,u), (u,v),(v,w),(w,x),(x,y),(y,z),(z,s),
(s,v),(z,w),(y,t),(x,u)}). Throughout this book, we use the conventionn = |V| and
m= |E| if no other definitions forn or mare given. An edgee= (u,v)∈ E represents
a connection fromu to v. We callu andv thesourceandtarget, respectively, ofe.
We say thate is incidenton u andv and thatv andu areadjacent. The special case
of a self-loop(v,v) is disallowed unless specifically mentioned.

The outdegreeof a nodev is the number of edges leaving it, and itsindegree
is the number of edges ending at it, formally,outdegree(v) = |{(v,u) ∈ E}| and
indegree(v) = |{(u,v) ∈ E}|. For example, nodew in graphG in Fig. 2.7 has in-
degree two and outdegree one.

A bidirected graphis a digraph where, for any edge(u,v), the reverse edge(v,u)
is also present. Anundirected graphcan be viewed as a streamlined representation of
a bidirected graph, where we write a pair of edges(u,v), (v,u) as the two-element set
{u,v}. Figure 2.7 shows a three-node undirected graph and its bidirected counterpart.
Most graph-theoretic terms for undirected graphs have the same definition as for

self−loop
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their bidirected counterparts, and so this section will concentrate on directed graphs
and only mention undirected graphs when there is something special about them.
For example, the number of edges of an undirected graph is only half the number
of edges of its bidirected counterpart. Nodes of an undirected graph have identical
indegree and outdegree, and so we simply talk about theirdegree. Undirected graphs
are important because directions often do not matter and because many problems are
easier to solve (or even to define) for undirected graphs thanfor general digraphs.

A graphG′ = (V ′,E′) is asubgraphof G if V ′ ⊆V andE′ ⊆ E. GivenG= (V,E)
and a subsetV ′ ⊆ V, the subgraphinducedby V ′ is defined asG′ = (V ′,E∩ (V ′×
V ′)). In Fig. 2.7, the node set{v,w} in G induces the subgraphH = ({v,w} ,{(v,w)}).
A subsetE′ ⊆ E of edges induces the subgraph(V,E′).

Often, additional information is associated with nodes or edges. In particular,
we shall often neededge weightsor costs c: E → R that map edges to some numeric
value. For example, the edge(z,w) in graphG in Fig. 2.7 has a weightc((z,w)) =−2.
Note that an edge{u,v} of an undirected graph has a unique edge weight, whereas,
in a bidirected graph, we can havec((u,v)) 6= c((v,u)).

We have now seen quite a lot of definitions on one page of text. If you want to
see them at work, you may jump to Chap. 8 to see algorithms operating on graphs.
But things are also becoming more interesting here.

An important higher-level graph-theoretic concept is the notion of a path. Apath
p = 〈v0, . . . ,vk〉 is a sequence of nodes in which consecutive nodes are connected
by edges inE, i.e.,(v0,v1) ∈ E, (v1,v2) ∈ E, . . . , (vk−1,vk) ∈ E; p has lengthk and
runs fromv0 to vk. Sometimes a path is also represented by its sequence of edges.
For example,〈u,v,w〉 = 〈(u,v),(v,w)〉 is a path of length 2 in Fig. 2.7. A path is
simple if its nodes, except maybe forv0 andvk, are pairwise distinct. In Fig. 2.7,
〈z,w,x,u,v,w,x,y〉 is a nonsimple path.

Cycles are paths with a common first and last node. A simple cycle visit-
ing all nodes of a graph is called aHamiltonian cycle. For example, the cycle
〈s,t,u,v,w,x,y,z,s〉 in graphG in Fig. 2.7 is Hamiltonian. A simple undirected cycle
contains at least three nodes, since we also do not allow edges to be used twice in
simple undirected cycles.

The concepts of paths and cycles help us to define even higher-level concepts.
A digraph isstrongly connectedif for any two nodesu andv there is a path from
u to v. GraphG in Fig. 2.7 is strongly connected. A strongly connected component
of a digraph is a maximal node-induced strongly connected subgraph. If we remove
edge(w,x) from G in Fig. 2.7, we obtain a digraph without any directed cycles.A di-
graph without any cycles is called adirected acyclic graph(DAG). In a DAG, every
strongly connected component consists of a single node. An undirected graph iscon-
nectedif the corresponding bidirected graph is strongly connected. The connected
components are the strongly connected components of the corresponding bidirected
graph. For example, graphU in Fig. 2.7 has connected components{u,v,w}, {s,t},
and{x}. The node set{u,w} induces a connected subgraph, but it is not maximal
and hence not a component.
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Exercise 2.17.Describe 10 substantially different applications that canbe modeled
using graphs; car and bicycle networks are not considered substantially different. At
least five should be applications not mentioned in this book.

Exercise 2.18.A planar graphis a graph that can be drawn on a sheet of paper such
that no two edges cross each other. Argue that street networks arenot necessarily
planar. Show that the graphsK5 andK33 in Fig. 2.7 are not planar.

2.9.1 A First Graph Algorithm

It is time for an example algorithm. We shall describe an algorithm for testing
whether a directed graph is acyclic. We use the simple observation that a nodev
with outdegree zero cannot appear in any cycle. Hence, by deletingv (and its incom-
ing edges) from the graph, we obtain a new graphG′ that is acyclic if and only ifG is
acyclic. By iterating this transformation, we either arrive at the empty graph, which
is certainly acyclic, or obtain a graphG∗ where every node has an outdegree of at
least one. In the latter case, it is easy to find a cycle: start at any nodev and construct
a path by repeatedly choosing an arbitrary outgoing edge until you reach a nodev′

that you have seen before. The constructed path will have theform (v, . . . ,v′, . . . ,v′),
i.e., the part(v′, . . . ,v′) forms a cycle. For example, in Fig. 2.7, graphG has no node
with outdegree zero. To find a cycle, we might start at nodez and follow the path
〈z,w,x,u,v,w〉 until we encounterw a second time. Hence, we have identified the
cycle 〈w,x,u,v,w〉. In contrast, if the edge(w,x) is removed, there is no cycle. In-
deed, our algorithm will remove all nodes in the orderw, v, u, t, s, z, y, x. In Chap. 8,
we shall see how to represent graphs such that this algorithmcan be implemented
to run in linear time. See also Exercise 8.3. We can easily make our algorithm cer-
tifying. If the algorithm finds a cycle, the graph is certainly cyclic. If the algorithm
reduces the graph to the empty graph, we number the nodes in the order in which
they are removed fromG. Since we always remove a nodev of outdegree zero from
the current graph, any edge out ofv in the original graph must go to a node that
was removed previously and hence has received a smaller number. Thus the ordering
proves acyclicity: along any edge, the node numbers decrease.

Exercise 2.19.Show ann-node DAG that hasn(n−1)/2 edges.

2.9.2 Trees

An undirected graph is atree if there isexactlyone path between any pair of nodes;
see Fig. 2.8 for an example. An undirected graph is aforest if there isat mostone
path between any pair of nodes. Note that each component of a forest is a tree.

Lemma 2.8.The following properties of an undirected graph G are equivalent:

1. G is a tree.
2. G is connected and has exactly n−1 edges.
3. G is connected and contains no cycles.
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Fig. 2.8.Different kinds of trees. Fromleft to right, we see an undirected tree, an undirected
rooted tree, a directed out-tree, a directed in-tree, and anarithmetic expression

Proof. In a tree, there is a unique path between any two nodes. Hence the graph
is connected and contains no cycles. Conversely, if there are two nodes that are
connected by more than one path, the graph contains a cycle. Thus (1) and (3) are
equivalent. We next show the equivalence of (2) and (3). Assume thatG = (V,E) is
connected, and letm= |E|. We perform the following experiment: we start with the
empty graph and add the edges inE one by one. Addition of an edge can reduce
the number of connected components by at most one. We start with n components
and must end up with one component. Thusm≥ n− 1. Assume now that there is
an edgee= {u,v} whose addition does not reduce the number of connected compo-
nents. Thenu andv are already connected by a path, and hence addition ofe creates
a cycle. If G is cycle-free, this case cannot occur, and hencem = n− 1. Thus (3)
implies (2). Assume next thatG is connected and has exactlyn− 1 edges. Again,
add the edges one by one and assume that addinge= {u,v} creates a cycle. Thenu
andv are already connected, and hencee does not reduce the number of connected
components. Thus (2) implies (3). ⊓⊔

Lemma 2.8 does not carry over to digraphs. For example, a DAG may have many
more thann−1 edges. A directed graph is anout-treewith a root noder, if there is
exactly one path fromr to any other node. It is anin-treewith a root noder if there
is exactly one path from any other node tor. Figure 2.8 shows examples. Thedepth
of a node in a rooted tree is the length of the path to the root. Theheightof a rooted
tree is the maximum over the depths of its nodes.

We can also make an undirected tree rooted by declaring one ofits nodes to be the
root. Computer scientists have the peculiar habit of drawing rooted trees with the root
at the top and all edges going downwards. For rooted trees, itis customary to denote
relations between nodes by terms borrowed from family relations. Edges go between
a uniqueparentand itschildren. Nodes with the same parent aresiblings. Nodes
without children areleaves. Nonroot, nonleaf nodes areinterior nodes. Consider a
path such thatu is between the root and another nodev. Thenu is anancestorof v,
andv is adescendantof u. A nodeu and its descendants form asubtreerooted atu.
For example, in Fig. 2.8,r is the root;s, t, andv are leaves;s, t, andu are siblings
because they are children of the same parentr; u is an interior node;r andu are
ancestors ofv; s, t, u, andv are descendants ofr; andv andu form a subtree rooted
at u.
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Function eval(r) : R
if r is a leaf then return the number stored in r
else // r is an operator node

v1 :=eval(first child of r)
v2 :=eval(second child of r)
return v1operator(r)v2 // apply the operator stored inr

Fig. 2.9.Recursive evaluation of an expression tree rooted atr.

2.9.3 Ordered Trees.

Trees are ideally suited to representing hierarchies. For example, consider the ex-
pressiona+ 2/b. We have learned that this expression means thata and 2/b are
added. But deriving this from the sequence of characters〈a,+,2,/,b〉 is difficult. For
example, it requires knowledge of the rule that division binds more tightly than addi-
tion. Therefore compilers isolate this syntactical knowledge inparsersthat produce
a more structured representation based on trees. Our example would be transformed
into the expression tree given in Fig. 2.8. Such trees are directed and, in contrast to
graph-theoretic trees, they areordered. In our example,a is the first, or left, child of
the root, and/ is the right, or second, child of the root.

Expression trees are easy to evaluate by a simple recursive algorithm. Figure 2.9
shows an algorithm for evaluating expression trees whose leaves are numbers and
whose interior nodes are binary operators (say+, −, ·, /).

We shall see many more examples of ordered trees in this book.Chapters 6 and
7 use them to represent fundamental data structures, and Chapter 12 uses them to
systematically explore solution spaces.

2.10 P and NP

When should we call an algorithm efficient? Are there problems for which there is no
efficient algorithm? Of course, drawing the line between “efficient” and “inefficient”
is a somewhat arbitrary business. The following distinction has proved useful: an
algorithmA runs inpolynomial time, or is apolynomial-time algorithm, if there is
a polynomialp(n) such that its execution time on inputs of sizen is O(p(n)). If not
otherwise mentioned, the size of the input will be measured in bits. A problem can be
solved inpolynomial timeif there is a polynomial-time algorithm that solves it. We
equate “efficiently solvable” with “polynomial-time solvable”. A big advantage of
this definition is that implementation details are usually not important. For example,
it does not matter whether a clever data structure can accelerate an O

(

n3
)

algorithm
by a factor ofn. All chapters of this book, except for Chap. 12, are about efficient
algorithms.

There are many problems for which no efficient algorithm is known. Here, we
mention only six examples:
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• The Hamiltonian cycle problem: given an undirected graph, decide whether it
contains a Hamiltonian cycle.

• The Boolean satisfiability problem: given a Boolean expression in conjunctive
form, decide whether it has a satisfying assignment. A Boolean expression in
conjunctive form is a conjunctionC1 ∧C2 ∧ . . .∧Ck of clauses. A clause is a
disjunctionℓ1 ∨ ℓ2 ∨ . . .∨ ℓh of literals, and a literal is a variable or a negated
variable. For example,v1∨¬v3∨¬v9 is a clause.

• The clique problem: given an undirected graph and an integerk, decide whether
the graph contains a complete subgraph (= a clique) onk nodes.

• The knapsack problem: givenn pairs of integers(wi , pi) and integersM andP,
decide whether there is a subsetI ⊆ [1..n] such that∑i∈I wi ≤ M and∑i∈I pi ≥ P.
«««< .mine

• The traveling salesman problem: given an edge-weighted undirected graph and
an integerC, decide whether the graph contains a Hamiltonian cycle of length at
mostC. See Sect. 11.6.2 for more details.

• The graph coloring problem: given an undirected graph and anintegerk, decide
whether there is a coloring of the nodes withk colors such that any two adjacent
nodes are colored differently.

The fact that we know no efficient algorithms for these problems does not imply
that none exists. It is simply not known whether an efficient algorithm exists or not.
In particular, we have no proof that such algorithms do not exist. In general, it is
very hard to prove that a problem cannot be solved in a given time bound. We shall
see some simple lower bounds in Sect. 5.3. Most algorithmicists believe that the six
problems above have no efficient solution.

Complexity theoryhas found an interesting surrogate for the absence of lower-
bound proofs. It clusters algorithmic problems into large groups that are equiva-
lent with respect to some complexity measure. In particular, there is a large class of
equivalent problems known asNP-completeproblems. Here,NP is an abbreviation
for “nondeterministic polynomial time”. If the term “nondeterministic polynomial
time” does not mean anything to you, ignore it and carry on. The six problems men-
tioned above areNP-complete, and so are many other natural problems. It is widely
believed thatP is a proper subset ofNP. This would imply, in particular, thatNP-
complete problems have no efficient algorithm. In the remainder of this section, we
shall give a formal definition of the classNP. We refer the reader to books about
theory of computation and complexity theory [14, 72, 181, 205] for a thorough treat-
ment.

We assume, as is customary in complexity theory, that inputsare encoded in
some fixed finite alphabetΣ . A decision problemis a subsetL ⊆ Σ∗. We useχL

to denote the characteristic function ofL, i.e., χL(x) = 1 if x ∈ L andχL(x) = 0 if
x 6∈ L. A decision problem is polynomial-time solvable iff its characteristic function
is polynomial-time computable. We useP to denote the class of polynomial-time-
solvable decision problems.

A decision problemL is in NP iff there is a predicateQ(x,y) and a polynomialp
such that
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(1) for anyx∈ Σ∗, x∈ L iff there is ay∈ Σ∗ with |y| ≤ p(|x|) andQ(x,y), and
(2) Q is computable in polynomial time.

We cally awitnessor proof of membership. For our example problems, it is easy to
show that they belong toNP. In case of the Hamiltonian cycle problem, the witness
is a Hamiltonian cycle in the input graph. A witness for a Boolean formula is an
assignments of truth values to variables that make the formula true. The solvability
of an instance of the knapsack problem is witnessed by a subset of elements that fit
into the knapsack and achieve the profit boundP.

Exercise 2.9.Prove that the clique problem, the traveling salesman problem, and the
graph coloring problem are inNP.

A decision problemL is polynomial-time reducible(or simplyreducible) to a de-
cision problemL′ if there is a polynomial-time-computable functiong such that for
all x ∈ Σ∗, we havex ∈ L iff g(x) ∈ L′. Clearly, if L is reducible toL′ andL′ ∈ P,
thenL ∈ P. Also, reducibility is transitive. A decision problemL is NP-hard if every
problem inNP is polynomial-time reducible to it. A problem isNP-completeif it
is NP-hard and inNP. At first glance, it might seem prohibitively difficult to prove
any problemNP-complete – one would have to show thateveryproblem inNP was
polynomial-time reducible to it. However, in 1971, Cook andLevin independently
managed to do this for the Boolean satisfiability problem [44, 120]. From that time
on, it was “easy”. Assume you want to show that a problemL is NP-complete. You
need to show two things: (1)L ∈ NP, and (2) there issomeknown NP-complete
problemL′ that can be reduced to it. Transitivity of the reducibility relation then
implies that all problems inNP are reducible toL. With every new complete prob-
lem, it becomes easier to show that other problems areNP-complete. The website
http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html

maintains a compendium ofNP-complete problems. We give one example of a re-
duction.

Lemma 2.10.The Boolean satisfiability problem is polynomial-time reducible to the
clique problem.

Proof. Let F =C1∧ . . .∧Ck, whereCi = ℓi1∨ . . .∨ℓihi andℓi j = x
βi j
i j , be a formula in

conjunctive form. Here,xi j is a variable andβi j ∈ {0,1}. A superscript 0 indicates a
negated variable. Consider the following graphG. Its nodesV represent the literals
in our formula, i.e.,V =

{

r i j : 1≤ i ≤ k and 1≤ j ≤ hi
}

. Two nodesr i j andr i′ j ′ are
connected by an edge iffi 6= i′ and eitherxi j 6= xi′ j ′ or βi j = βi′ j ′ . In words, the repre-
sentatives of two literals are connected by an edge if they belong to different clauses
and an assignment can satisfy them simultaneously. We claimthatF is satisfiable iff
G has a clique of sizek.

Assume first that there is a satisfying assignmentα. The assignment must satisfy
at least one literal in every clause, say literalℓi j i in clauseCi . Consider the subgraph
of G spanned by ther i j i , 1≤ i ≤ k. This is a clique of sizek. Assume otherwise; say,
r i j i andr i′ j i′ are not connected by an edge. Then,xi j i = xi′ j i′ andβi j i 6= βi′ j i′ . But then
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the literalsℓi j i andℓi′ j i′ are complements of each other, andα cannot satisfy them
both.

Conversely, assume that there is a cliqueK of sizek in G. We can construct a
satisfying assignmentα. For eachi, 1≤ i ≤ k, K contains exactly one noder i j i . We
construct a satisfying assignmentα by settingα(xi j i ) = βi j i . Note thatα is well
defined becausexi j i = xi′ j i′ impliesβi j i = βi′ j i′ ; otherwise,r i j i andr i′ j i′ would not be
connected by an edge.α clearly satisfiesF . ⊓⊔

Exercise 2.20.Show that the Hamiltonian cycle problem is polynomial-timere-
ducible to the traveling salesman problem.

Exercise 2.21.Show that the clique problem is polynomial-time reducible to the
graph-coloring problem.

All NP-complete problems have a common destiny. If anybody shouldfind a
polynomial time algorithm foroneof them, thenNP = P. Since so many people
have tried to find such solutions, it is becoming less and lesslikely that this will ever
happen: TheNP-complete problems are mutual witnesses of their hardness.

Does the theory ofNP-completeness also apply to optimization problems? Opti-
mization problems are easily turned into decision problems. Instead of asking for an
optimal solution, we ask whether there is a solution with an objective value greater
than or equal tok, wherek is an additional input. Conversely, if we have an algorithm
to decide whether there is a solution with a value greater than or equal tok, we can
use a combination of exponential and binary search (see Sect. 2.5) to find the optimal
objective value.

An algorithm for a decision problem returns yes or no, depending on whether
the instance belongs to the problem or not. It does not returna witness. Frequently,
witnesses can be constructed by applying the decision algorithm repeatedly. Assume
we want to find a clique of sizek, but have only an algorithm that decides whether
a clique of sizek exists. We select an arbitrary nodev and ask whetherG′ = G\ v
has a clique of sizek. If so, we recursively search for a clique inG′. If not, we know
thatv must be part of the clique. LetV ′ be the set of neighbors ofv. We recursively
search for a cliqueCk−1 of sizek−1 in the subgraph spanned byV ′. Thenv∪Ck−1

is a clique of sizek in G.

2.11 Implementation Notes

Our pseudocode is easily converted into actual programs in any imperative program-
ming language. We shall give more detailed comments for C++ and Java below. The
Eiffel programming language [138] has extensive support for assertions, invariants,
preconditions, and postconditions.

Our special values⊥, −∞, and∞ are available for floating-point numbers. For
other data types, we have to emulate these values. For example, one could use the
smallest and largest representable integers for−∞ and∞, respectively. Undefined
pointers are often represented by a null pointernull . Sometimes we use special values
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for convenience only, and a robust implementation should avoid using them. You will
find examples in later chapters.

Randomized algorithms need access to a random source. You have a choice be-
tween a hardware generator that generates true random numbers and an algorith-
mic generator that generates pseudo-random numbers. We refer the reader to the
Wikipedia page on “random numbers” for more information.

2.11.1 C++

Our pseudocode can be viewed as a concise notation for a subset of C++. The mem-
ory management operationsallocateanddisposeare similar to the C++ operations
newanddelete. C++ calls the default constructor for each element of an array, i.e.,
allocating an array ofn objects takes timeΩ(n) whereas allocating an arrayn of ints
takes constant time. In contrast, we assume thatall arrays which are not explicitly
initialized contain garbage. In C++, you can obtain this effect using the C functions
mallocandfree. However, this is a deprecated practice and should only be used when
array initialization would be a severe performance bottleneck. If memory manage-
ment of many small objects is performance-critical, you cancustomize it using the
allocatorclass of the C++ standard library.

Our parameterizations of classes usingof is a special case of the C++-template
mechanism. The parameters added in brackets after a class name correspond to the
parameters of a C++ constructor.

Assertions are implemented as C macros in the include fileassert.h. By de-
fault, violated assertions trigger a runtime error and print their position in the pro-
gram text. If the macroNDEBUGis defined, assertion checking is disabled.

For many of the data structures and algorithms discussed in this book, excellent
implementations are available in software libraries. Goodsources are the standard
template library STL [157], the Boost [27] C++ libraries, and the LEDA [131, 118]
library of efficient algorithms and data structures.

2.11.2 Java

Java has no explicit memory management. Rather, agarbage collectorperiodically
recycles pieces of memory that are no longer referenced. While this simplifies pro-
gramming enormously, it can be a performance problem. Remedies are beyond the
scope of this book. Generic types provide parameterizationof classes. Assertions are
implemented with theassertstatement.

Excellent implementations for many data structures and algorithms are available
in the packagejava.util and in the JDSL [78] data structure library.

2.12 Historical Notes and Further Findings

Sheperdson and Sturgis [179] defined the RAM model for use in algorithmic analy-
sis. The RAM model restricts cells to holding a logarithmic number of bits. Dropping
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this assumption has undesirable consequences; for example, the complexity classes
P andPSPACE collapse [87]. Knuth [113] has described a more detailed abstract
machine model.

Floyd [62] introduced the method of invariants to assign meaning to programs
and Hoare [91, 92] systemized their use. The book [81] is a compendium on sums
and recurrences and, more generally, discrete mathematics.

Books on compiler construction (e.g., [144, 207]) tell you more about the com-
pilation of high-level programming languages into machinecode.


