0

Distance to M

quickest pathfromstot. Th
from a fire station s to all loc
we may even want a complete distance
all-pairs problem. In a road atlas, yo
for the most important cities.
Here is a route-planning algorithm that requires a city mayaa lot of dexterity
on the ciyp.nMake a knot
wherever roads meet, and at your sta iti hig starting knot until
the entire net dangles below it. If you have sucg yok ny tangles and the
hinder a knot from
pluctory figure of
Brand illustrates

ay want to cteripa quickest routes
n — the single-smiproblem. Sometimes
m everywheeetywhere — the

moving down, the tight threads define the s
this chapter shows the campus map of the

shortest-
problems

Route planning in road networks is one of the
path computations. When an appropriate graph :
turn out to profit from shortest-path computations. For epis

mentioned such diverse applications as planning flows iwerdts, urban sing,
inventory planning, DNA sequencing, the knapsack problsee (also p. 12),
production planning, telephone operator scheduling,clelfieet planning, approx-

imating piecewise linear functions, and allocating ingjpeceffort o
line.
The most general formulation of the shortest-path probleokd at a directed
graphG = (V,E) and a cost functiorr that maps edges to arbitrary real-number

L (c) Universitat Karlsruhe (TH), Institut fiir Photogrammietund Fernerkundung.

192 10 Shortest Paths

costs. It turns out that the most general problem is fairlyemsive to solve. So we
are also interested in various restrictions that allow #mpnd more efficient al-
gorithms: nopnegative edge costs, integer edge costs,aeticagraphs. Note that
we havegalready 'selved the very special case of unit edge goSect. 9.1 — the
breadth-first,search (BFS) tree rooted at nede a concise representation of all
shortest paths from We begin in Sect. 10.1 with some basic concepts that lead to
a generic approach tesShortest-path algorithms. A systermpproach will help us
to keep track of #he*zoo ef shortest-path algorithms. As ost &xample of a re-
stricted but fast'and simple algorithm, we look at acycliagrs in Sect. 10.2. In
Sect. 10.3,'we come to the most widely used algorithm fortesbpaths: Dijkstra’s
algorithm for generaligraphs with nonnegative edge codts. dfficiency of Dijk-
stra’s algorithm rglies heavily on,efficient priority quauén an introductory course
or at first reading, Dijkstra:sfalgorithm might be a good glaa stop. But there are
many more interestingfthings abaut shortest paths in thairetar of the chapter.
We begin with an average-ease analysis of Dijkstra’s algorin Sect. 10.4 which
indicates that priorityigueue gperations might dominageetkecution time less than
one might think. In Se€t, 10.5, we discu@snotone priority queues for integer keys
that take additional advantage ofgthe properties of Digstalgorithm. Combining
this with average-case analysis'leads evenito a linear g&egpegecution time. Sec-
tion 10.6 deals with arbitrarysedge Gosts, and Sect. 10afstbe all-pairs problem.
We show that the all-pairs preblem for general edge costscexito one general
single-source problem plussingle-source problems with nonnegative edge costs.
This reduction introduces the generallyuSefuliconcepiofenpotentials. We close
with a discussion of shortest path quefies in Sect.20.8.

10.1 From Basic Concepts to a'Generic Algorithm

We extend the cost function to paths in the natural way: Ilst eba path is the
sum of the costs of its constituent edges, ifep iE (e1,e,,.5 &), thenc(p) =
> 1<i<kC(&). The empty path has cost zero.

For a pairs andv of nodes, we are interested in a shogiest path fsamv. We
avoid the use of the definite article “the” here; sineegthees inegmore than one
shortest path. Does a shortest path always exist? Obsa#inumber of paths
from sto v may be infinite. For example, if= pCqis a path'fronsto v containing a
cycleC, then we may go around the cycle an arbitrary’"number of timdsstll have
a path fromsto v; see Fig. 10.1. More preciselp,is a path leadinggfromto u, C is
a path leading frona to u, andq is a path fronu to v. Consider the path) £pCq
which first uses to go fromsto u, then goes around the cydléimes, and finally
follows g fromutov. The cost of) is ¢(p) +i-c(C) +¢(q). If Cis anegdtive cycle
i.e.,c(C) <0, thenc(ri*V) < ¢(r). In this situation, there is no shertestpathyirom
sto v. Assume otherwise: salp, is a shortest path fromto v. Théhe(r()) < ¢(P)
for i large enough and soP is not a shortest path frosito v. We shall show next
that shortest paths exist if there are no negative cycles.

2§ > (c(p)+c(q) —c(P))/|c(C)]| will do.

10.1 From Basic Concepts to a Generic Algorithm 193

Lemma 10.1.If G
shortest path P40l exists. Moreover P can be chosea sinfiple.

Proof. Let X be a shortessimplepath fromsto v. If x is not a shortest path fros
to v, there is a shorte imple patlirom sto v. Sincer is nonsimple we can,
as in Fig. 10.1, ereC is a cycle andpq is a simple path. Then
c(x) < c(pg), ant =c(r) < ¢(x) < c(pg). Soc(C) < 0 and we

Exercise 10.1Stren mma above and show thatig reachable frons,
then a shortest path f i re is no negative cycle that is reachable
from s and from which

For two nodes andyv,

+o0
p(s,v) =< —o
c(a shortest path frorato

if there is no path fronsto v,
i is no shortest path frogtov,

Since we ussto denote the source v
u(v):=u(s,v). Observe that i¥ is reachable frors but there is no shortest path from
sto v, then there are paths of arbitrarily pstisThmakes sense to
definep(v) = —wo in this case. Shortest paths : e propertigisjvwe

state as exercises.

Exercise 10.2 (subpaths of shortest paths)S
are themselves shortest paths, i.e., if a path o t path, then
is also a shortest path.

Exercise 10.3 (shortest-path treespssume that all n

such that all tree paths are shortest paths. Hint: assunéhfitss
unique, and consider the subgraphkonsisting of all shortest paths starti
the preceding exercise to prove tfats a tree. Extend this result to the case where
shortest paths are not unique.

Our strategy for finding shortest paths from a source a generaliza-
tion of the BFS algorithm shown in Fig. 9.3. We maintain tiNodeArrayg d and
parent Here,d[v] contains our current knowledge about the distance &oorv, and
parentv] stores the predecessorwbn the current shortest path voWe usually

194 10 Shortest Paths

cef v. Initially, d[g = 0 andparents| = s. All

other nodes ha inite di and no parent.

The natural way nce values is to propagatamite information
across edges. If there i [u], ande = (u,V) is an edge out
of u, then there is a u] +c(e). If this cost is smaller than

updated andparentaccordingly. This

Procedurerelax(e =

if d[u]+ c(e) < d[v] thend[v]:); parentv]:=u

Lemma 10.2.After any seque
path of length @] from s to v.

xations, [f] & o, then there is a

Proof. We use induction on the nu ations. The drirertainly
true before the first relaxation. The path ngtle zero froms to
s, and all other nodes have infinite distance. ConS|der nextazxatlon of an edge
e = (u,v). By the induction hypothesis, ‘
and a path of lengtH[v] from sto v. If d[u] + ¢
Otherwise peis a path of lengttd[u] + c(e) fro

the (reversed) thick edges in Fig. 10.2 give usphee
sufficient number of edge relaxations: nodes, i, andh are
these edges and have reached their respegfiyeralue§2—
b, j, andd form a negative-cost cycle so that their shortest-pe
is attached to this cycle, and thuga) =

What is a good sequence of edge relaxations’blset(el, ...,&) bea
sto v. If we relax the edges in the ordey to e, we haved|v] < c(p
sequence of relaxations. ff is a shortest path from to v, thend|v
belowc(p), by the preceding lemma, and hertjg] = c(p) afte
relaxations.

Lemma 10.3 (correctness criterion). After performing a sequence R of edge re-
laxations, we have [d] = u(v) if, for some shortest path £ (e1,ey,...,e) from

10.2 Directed Acyclic Graphs 195

s to v, p is a subsequence of R, i.e., there are indicesth < --- < tx such that
.,R[t] = &x. Moreover, the parent information defines a path

, t, I & T RS
7e]-7 Y e27 """ 73(7 >
(&, e &)

We haveu(v) =y Fori € 1..k, letv; be the target node af, and we
defineto = 0 andvgls's. THENd[Vile< 5 1 j<; C(€;) after timet;, as a simple induction

decreased. Afterther t;] fori > 0, we havel|vi] <d[vi_1]+c(g) <
ved|v] < u(v). Sinced|v] cannot go below

Let us prove nextt i tion traces out shortest paths. We shall

do so under the additional i shortest pathsragque, and leave the
general case to the reade iR, iwe haved|vi] = p(vi) for 1 <
i <k.Whend|vi] was set tqu eratiomelax(u, vi), the existence of a path

of lengthu(vi) from sto v; was'@stablished. Since, by assumption, the shortest path
from stov; is unique, we must

Exercise 10.4Redo the second par
sumption that shortest paths are uni

Exercise 10.5Let S be the edges ofs
n— 1 copies ofS. Show thatu(v) = d[v]
relaxationsS"™1 have been performed.

some arbitrary order and I&"Y be
nodes (V) # —oo after the

ces of relaxations
gNe come back to

In the following sections, we shall exhibit
for acyclic graphs and for graphs with nonnegative edge fa
general graphs in Sect. 10.6.

10.2 Directed Acyclic Graphs

In a directed acyclic graph (DAG), there are no directedeyeln noMegative
cycles. Moreover, we have learned in Sect. 9.2.1 that thesoéla DA
topologically sorted into a sequengey, Vo, ..., V) such that(v,vj) €
i < j. A topological order can be computed in linear timé¢n©-n) either
depth-first search or breadth-first search. The nodes onathyi
in topological order. Thus, by Lemma 10.3, we can comput
distances if we first relax the edges out\af then the edges out ab, etc.; see
Fig. 10.3 for an example. In this way, each edge is relaxed onte. Since every
edge relaxation takes constant time, we obtain a total ¢éxectime of Qm+ n).

196 10 Shortest Paths

Fig. 10.3.0rde
DAG. The topologi

Theorem 10.4.Shotrte in acyclic graphs can be computed in @fra+ n).

Exercise 10.6 (ro i r public transportation). Finding the quickest

or train leaving a plaaetimet and reaching

its next stopp’ at ti tion is viewed as an edge connecting nodes
(p,t) and(p/,t’). Als top and subsequent events (arrival and/or depar-
ture) atp, say at time
(p,t'). (@) Show that th this way is a DAG. (b) Yeadchan ad-
ditional node that models i t in space ametiThere should also
be one edge connecting it ion network.t\Wiaeuld this edge be?
(c) Suppose you have com ortest-path tree fromsyarting node to all
reachable frorhdtv do you actually find

are relaxed in a judicious order, every edge
What is the right order? Along any shorte
crease (more precisely, do not decrease). Th

fath distances in-
ould scan nodes (to

this in Theorem 10.5. We obtain the algorithm shown in Fig410his alg
known as Dijkstra’s shortest-path algorithm. Figure 1G.&ves an examp,

in the introduction to this chapter. Suppose we put all thseand k
and then lift the starting node. The other knots will leave $rf
the order of their shortest-path distances.

the table in

Theorem 10.5.Dijkstra’s algorithm solves the single-source shorteathpproblem
for graphs with nonnegative edge costs.

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm) 197

Dijkstra’s Algorithm
declare all nodes_ unscanned and initializandparent

anned node with tentative distaneex do

node with minimal tentative distance S u
t of u and declaral scanned scanne |i>

hortest-path algorithm for nonnegative edgeghts

Operation
insert(s)
deleteMin- (s,0)
relax s2 a
relax s29 d (
deleteMin- (a,2) [((
relax a> b ((b,
deleteMin- (b,5) [((d, 1
relax b2 ¢ ((e,7),(

1
relax b= e ((e,6),(c,7 e shortest-path tree, and the numbers in
deleteMin- (e,6) |((c,7),(d, 1 icate shortest-path distances. The table
relax e b ((¢,7),(d,10) n theleft illustrates the execution. Ttgueue
relax 8. ¢ ((c,7).(d,10)) contains all pairgv,d[v]) with v reached and

0 TN node is calledachedif its ten-
relax e= d ((d,6),(c,7)) is less thanco. Initially, s is
deleteM‘:ﬁ» (d,6)|{(c, 7)) reached and|uhscanned. The actions of the al-
relaxd = s {(c, 7)) gorithm are n in the first column. The sec-
relax d > b (e, 7))
deleteMin- (c,7) [()

Proof. We proceed in two steps. In the first
from sare scanned. In the second step, we s
agree when a node is scanned. In both steps,

For the first step, assume the existence of a
never scanned. Consider a shortest gath (s = v1,Va, ..

is set tod[vi_1] + c(vi_1,V;), a value less thar-c. Sov; must be scann
point during the execution, since the only nodes that stagaimned are
d[u] = 4+ at termination.

For the second step, consider the first point in ttmehen a
with p[v] < d(v). As above, consider a shortest path(S= v1,Vo, ...,V = V) from
stov, and leti be minimal such thay is not scanned before timeTheni > 1, sinces
is the first node scanned apds) = 0 = d[s] whensis scanned. By the definition of

198 10 Shortest Paths

Function Dijkstra(s: Nodeld : NodeArrayx NodeArray /I returns(d, parent)
: /I tentative distance from root

/I self-loop signals root
/I unscanned reached nodes

s u) /' we haved[u] = p(u)

scanne 'i> Il relax

/I update tree
u vw
o—>»9'

reached [’

Vi_1 was scanned before ti
Vvi_1is scannedd|vi] is set t
at timet, we haved|vi] = u(vi

(vi—1) whenv;_1 is scanned. When
P (Vi-1)+C(Vi-1,Vi) = (V). So,
d|w] and hence; is scanned instead of

Vi, a contradiction. |
Exercise 10.7Letvy, vy, ... i nodes are scanned. Show that
p(vi) < u(vp) <..., i.e., the nodes in drder of increasing shquégist
distance.

Exercise 10.8 (checking of shortest-pathidi ; me that all edge costs are

positive, that all nodes are reachable frgrand t
reals satisfyingd[s = 0 andd[v] = ming)ce @
d[v] = u(v) for all v. Does the claim still hold in'the presence of edges of costZzer

We come now to the implementation of ithme \8tore all un-
scanned reached nodes in an addressable prio SUSEsE using their
tentative-distance values as keys. Thus, we can extracig be scanned
using the queue operatidieleteMin We need a varia e where the
operatiordecreaseKegddresses queue items using nodes ra handles. Give
an ordinary priority queue, suchNodePQcan be implemented Us ditional

NodeArraytranslating nodes into handles. We can also store the fyriqui
directly in aNodeArray We obtain the algorithm givenin Fig. 10.6. Ne e analyze
its running time in terms of the running times for the queuerafions /nitializi
the arraysd and parentand setting up a priority queu@ = {s} :
Checking forQ = 0 and loop control takes constant time per it€ration of thdev
loop, i.e., @n) time in total. Every node reachable frais removed from the queue
exactly once. Every reachable node is dlsserted exactly once. Thus we have at
mostn deleteMinandinsert operations. Since each node is scanned at most once,

10.4 *Average-Case Analysis of Dijkstra’s Algorithm 199

each edge is relaxed at most once, and hence there can betahmesreaseKey
operations. We gbtain a total execution time of

and Tgecreasekeydenote the execution times foeleteMin
insert, andde espectively. Note that these execution times are a fomcti

h and a nonnegative cost function such thaetae-r
sesdecreaseKegperation.

ijkstra proposed the followingplementation of
the priority que intai ber of reached unsahnades, and two arrays
indexed by nodes — the tentative distances and an array storing,
for each node, wh d or reached. TsentanddecreaseKetake
time O(1). A delete
find the minimum tentati i y reached unscanaodd. Thus the total
running time becomes

Much better priority que
original paper. Using the bin
in Sect. 6.2, we obtain

s have been itasince Dijkstra’s
d Fibonacci heapipriqueues described

and

respectively. Asymptotically, the Fibonacci
for sparse graphs witm = O(n). In practice,
fastest implementation, because they involve
number ofdecreaseKegperations tends to be mu
predicts. This experimental observation will be suppoled
the next section.

ap impletado
bonacci hea

is superior except
s are usually not the

10.4 *Average-Case Analysis of Dijkstra’s Algorithm

We shall show that the expected numbedetreaseKegperations is
Our model of randomness is as follows. The gr&pland t
are arbitrary. Also, for each node we have an arbitrary s€(v) of indegreév)
nonnegative real numbers. So far, everything is arbitréing randomness comes
now: we assume that, for eaehthe costs inC(v) are assigned randomly to the
edgesnto v, i.e., our probability space consists[gf.y, indegre¢v)! assignments of

200 10 Shortest Paths

edge costs to edges. We want to stress that this model isggritral. In particular,
it covers the situation where edge costs are drawn indepdgdeom a common
distribution.

m, the edges whose relaxatian causelecreaseKey
me = (u;,V), wherep(u) < p(v). Say there aré

such edgesy, ...,
are scanned. We s
relaxed in the ordes, ... tter how the costs @©(v) are assigned to them.

i.e., only left-to-right minima o
operations. We conclude that t
by the number of left-to-right minim
the “—1" accounts for the fact that th
to-right minimum but causes anser
shown that the expected number of left-to-right maxima ireemutation of sizeék

is bounded byHy. The same bound ho r mini hus the expected number
of decreaseKepperations is bounded by, — 1 i is bounded by
Also, k < indegreév). Summing over all node > following bound for
the expected number dicreaseKegperations

),c(&) can causeecreaseKey
Kegperations ow is bounded
e1), ..., (&) minus one;
the sequenaats as a left-
Keyin Sect. 2.8, we have

In indegreév) < nl
2

where the last inequality follows from the concavity 2 (A.15)).

We conclude that the expected running time {$r3- nlog(m/n)logn)
binary heap implementation of priority queues. For suffidiedense gr,

10.5 Monotone Integer Priority Queues 201
10.5 Monotone Integer Priority Queues

Dijkstra’s al is designed to scan nodes in order afdexreasing distance

notone priority queue (see Chapter #esufor its implemen-

tati whether monotonicity can be expldite the case of general
real edge ¢ . er, for integer edge costs, signifszaings are possible. We
therefore as i 5 section that edge costs are istagéne range OC for
some intege€. C isfas ed to be known when the queue is initialized.

Since a an consist of at mostl edges, the shortest-path dis-
tances are % he range of values in the queue at any one time is
even smaller. Lemij ast value deleted from the queue (zero before the first
deletion). Dijkstra intains the invarianat all values in the queue are
contained inmin riant certainly holds after the first insertion. A
deleteMinmay incre | values in the queue are boundedChylus
the old value ofmin e for the new value ofin. Edge relaxations
insert priorities of th c(e) = min+c(e) € min.min+C.

10.5.1 Bucket Queues

A bucket queue is a circ
and 3.8). We view the natur
all integers of the formi+ (C+ 1)j map to the index. A nodev € Q with tentative
distanced|v] is stored inB[d[V]
always inmin..min+C, all nodes in a
Initialization create<C + 1 empty insertsv into B[d[v] mod
C+1]. A decreaseKdy) removesy f aining it and insertsinto
B[d[v] modC + 1]. Thusinsert and decréaseKeyake constant time if buckets are
implemented as doubly linked lists.
A deleteMinfirst looks at buckeB[min modd
incrementamin and repeats. In this way, the [toi
is O(n+nC) = O(nC), sincemin is incremen
elements are deleted from the queue. Plugg :
queue implementation with integer edge costs.Ifl ound for the
cost of Dijkstra’s algorithm, we obtain

medistance value.

TbijkstraBucket= O(M+nC).

*Exercise 10.11 (Dinic’s refinement of bucket queues [57]Ass
costs are positive real numbers[ayin, Cmax|. Explain how to find shorte
time O(mM+ NCmax/Cmin). Hint: use buckets of widthyn. Show that all n
smallest nonempty bucket hag@/] = p(v).

10.5.2 *Radix Heaps

Radix heaps [9] improve on the bucket queue implementatyonsing buckets of
different widths. Narrow buckets are used for tentativeéadises close tonin, and

202 10 Shortest Paths

bucket queue witic =9

content=
<(a7 29)7 (b7 30)7 (07 30)7 (d731)7 (67 33)7 (f735)7 (g7 36)> =
11110, (d, 11112, (e, 100003, (f, 100011, (g, 100100)

11101 10" > 100000 8
! I
a,29 9,36 []f,35 []e33
Fig. 10.7.Example of a bucke nd a radix heagddgwer parf). SinceC =9,

buckets of the radix heap indidateset

wide buckets are used for ten
we shall show how this approa
running time

the concept of thenost significant distin
largest index where the binary representations'd
binary representatiorss= ;- 0i2' andb = y;-¢f§2', we defingthe most significant

whereK =
1+ |[logC]|. The queue elements are distributed over th ingotal the

We refer to this rule as the bucket queue invariant. Figuré gi¥es an ex
remark that ifminhas a one bit in positionfor 0 <i < K, the correspon
BJi] is empty. This holds since amjv] with i = msdmin,d[v]) would ha
in positioni and hence be smaller thamn. But all keys in the qu
large agmin.
How can we compute:=msda, b)? We first observe that fa + b, the bitwise
exclusive ORa@ b of a andb has its most significant one in positiomnd hence
represents an integer whose value is at leaahd less than'2'. Thusmsda,b) =

10.5 Monotone Integer Priority Queues 203

|log(a@b)|, since loda® b) is a real number with its integer part equal tnd the
floor function extracts the integer part. Many processoppett the computation of

on, we shall assume tinatlcan be evaluated in constant time.
queue operations. Initializatimsert, anddecreaseKework

) is removed and returned. if> 0, the bucke8]i] is
> smallest tentative distance contained in thoddiu
Sincemin has chang bucket queue invariant needs to be restodcial
observation for tkh i radix heaps is that only iibeles in bucket are
how they are affected. ketansider first the
[j] with j < i are empty. Ifi = K, there are
no j's with j > K.
msda, min) = j, bec and new valuesh agree at bit positions greater
thani.

What happens to t
priate new bucket. Thus stant time if= —1 and takes time
O(i + |BJi]]) = O(K + |BJi]|) i > .7 below shows that every node in
bucketBJi] is moved to a buc i maller index. This observatitowa us to
account for the cost of delete sing amortized analysis. As our unit of cost (one
token), we shall use the time requi node betiveekets.

We chargeK + 1 tokens for oper associate thesé+ 1 to-
kens withv. These tokens pay for moves wtol lower-numbered buckets in
deleteMinoperations. A node starts k
—1, and in between never moves ba
decreaseKegy) operation will also never
Hence, theK + 1 tokens can pay for all the
The remaining cost of deleteMinis O(K) for
amortized cost& + 1+ O(1) = O(K) for anin
obtain a total execution time of @+n- (K +
algorithm, as claimed.

It remains to prove thatleleteMinoperations move nog
buckets.

er-numbered

Lemma 10.7.Let i be minimal such that[B is nonempty and as
be the smallest element ifiB Then msémin,x) < i for all x € BJi].

3 @ is a direct machine instruction, antbgx| is the exponent in the floating-p
tation ofx.

represen-

204 10 Shortest Paths

Casei<K Case i=K
i 0 i h O
L a [0] | L _a[0] |
min Y a [1] | L _a [1[8]0]]

[1] | Lo [p[a] |

Fig. 10.8.The eys relevant to the proof of Lemma 1B The proof, it is

guishing index ofin, and anyx € BJi] is
d allx € BJi] have a one in bit position
X larger thamhus the most significant

min € BK]. Leth = msdmin,
bits in positions larger thajin
setting the bits in positions O ot
representation oA. Since thej-th bit of d that ofinis one, we have
min, < A+2/ andA+ 2/ < min. Also,

agree in all bits with indeX or larger, and he
In order to aid intuition, we give a seco

next observe that can be obtained fromrmin, by add
min < x, the final carry in this addition must run into posi

o followed by a 1, followed byj — K zeros, followed by somK&-b
min < x, the] — K zeros must also be present in the binary representati

*Exercise 10.12 Radix heaps can also be based on number represe
b for anyb > 2. In this situation we have buckessi, j] fori =
0 < j <b,whereK =1+ |logC/logb|. An unscanned reached*noxiés stored in
bucketB]i, j] if msdmin,d[x]) =i and thei-th digit of d[x] is equal toj. We also
store, for each, the number of nodes contained in the buckejBJi, j]. Discuss

the implementation of the priority queue operations andastiat a shortest-path

10.5 Monotone Integer Priority Queues 205

algorithm with running time @m+ n(b+ logC/logb)) results. What is the optimal
choice ofb?

are random integers in the rang& @ small change to Dijk-
dix heaps guarantees linear rugtime [139, 76]. For every
te the minimum cost of an incoming edge. We dividato
ontains unscanned nodes whose tentative-distabeg |
eir exact distance frgnand a parB which contains aII

arbitrary node knis removed and the outgoing edges
are relaxed. Whe minimum node is selected fr&andminis set

to its distance label. is selected fBrthe nodes in the first nonempty
, andv] < min+c™. (v), we movev to F.
n edge intannot decreas#v], and hence

We call this algorith se linear Dijkstréfe algorithm ALD
is correct, since it is still true henv is scanned. For nodes removed

this follows from the fact th e the smallest téwatlistance among all
unscanned reached nodes.

be a random function from E
to 0..C. The algorithm ALD then sol urce probleexpected time

O(m+n).

the amortized analysis of plain radix heaps.
a nodev has been moved to a new bucket bu
henca/ is moved to a bucke[i] with i > logc;

—logchi,(v) + 1 tokens into the account fo
to decreaseKewnddeleteMinoperations opera
we obtain a total payment of

Z(|Ongm()+1):n+ Z(K_

Vv

tet out irB[K]. When
in+ch. (v), and

ices ifnsertpays

over all costs due

ing over all nodes,

i.e.,
> (K- logcinin(v)) < z —logc(e)
Vv

—logc(e) is the number of leading zeros in the binary representafiafe) when
written as a-bit number. Our edge costs are uniform random numbers@) and
K =1+ [logC]|. Thus prolfK —logc(e) =i) =2". Using (A.14), we conclude that

206 10 Shortest Paths

E [Z(k— Iogc(e))] = Z;iz—i =0(m).

ted cost of thieleteMiranddecreaseKegperations is On+ n).
e these operations is algo-©n). O

e maximum edge c@tppears in the premise but not in
the conclusion of 10.8. Indeed, it can be shown tkanh#ar result holds
for random rea je costs.

**Exercise 10.13.E
a random functio
be Qm-+n). Wha

to adapt the algorithm ALD to the case wheis
he real interva(0, 1]. The expected time should still
0 you need about the representatiorgefebts
s available? Hint: you finstywant to solve Ex-

For acyclic graphs and fo

laxations. For arbitrary edg such result is knd¥avever, it is easy to
guarantee the correctness criterion of Lemma 10.3 usimg 1) edge relaxations:
the Bellman—Ford algorithm [18,563] g 10.9 penfign— 1 rounds. In
each round, it relaxes all edges. Sin carfs>mostn — 1 edges,
every shortest path is a subsequen i cexditielss. Thus, after the

with —co < d[V] < oo, by

unreachable frors will still have d[v] = o,

It is not so obvious how to find the nodesvj
e = (u,v) with d[u] + c(e) < d[v] after the rel
d[v] := — because if there were a shortest p
by now and relaxing would not lead to shorter

ould have found it
ore. We can now also

setd[w] = —oo for all nodesw reachable fronv. plements this
approach using a recursive functioriectv). It sets thed-va and all nodes
reachable from it to—c. If infect reaches a node tha = —oo,

it breaks the recursion because previous executiongedt ha explored

all nodes reachable from. If d[v] is not set to—co during postpre e have
d[x]+c(e) > d]y] for any edge== (x,y) on any pattp fromstov. Thusd[s]

d[v] for any pathp from sto v, and hencel[v] < p(v). We conclude thad |y,

Exercise 10.14Show that the postprocessing runs in timer(d Hint:
toDFS.

Exercise 10.15Someone proposes an alternative postprocessing algos#idv]
to —oo for all nodesy for which following parents does not leadsoGive an example
where this method overlooks a node wijtfv) = —co.

10.7 All-Pairs Shortest Paths and Node Potentials 207

Function BellmanFords : Nodeld : NodeArrayx NodeArray
aNodeArrayof RU {—oo, o0} /I distance from root
: NodeArrayof Nodeld

/I self-loop signals root

/I roundi

/I postprocessing
infect(v)

Procedureinfect(v)
if d[v] > —oo then
dv]i=—o0
foreach (v,

Exercise 10.16 (arbitrage). i of currenci€with an exchange rate

j ij units of currencyj for one unit of
currencyi). A currency ar there is a sequence of elementary
currency exchange actionts i hat starts with one unit of a currency and
ends with more than one unit @hthe same currency. (a) Showdéind out whether
amatrix of exchange rates adm e. kiotxy) = logx+logy. (b)
Refine your algorithm so that it outpu f exchstegs that maximizes
the average profjter transaction

A (node) potential functioassigns a numbgot(v) to each node. For
e= (v,w), we define itseduced cost(e) as

c(e) = pot(v) + c(e) — pot(w) .

Lemma 10.9. Let p and g be paths from v to w. Theip) = pot(v)5c(p) — pot(w)
andc(p) < c(q) iff c(p) < c(q). In particular, the shortest paths with respecttare
the same as those with respect to c.

208 10 Shortest Paths

All-Pairs Shortest Paths in the Absence of Negative Cycles

add a new nods zero length edgés,v) for all v /I no new cycles, time On)

computep (v, with Bellman-Ford /I time O(nm)

mpute reduced cosi®) forec E Il time O(m)
/I time Q(n(m+ nlogn))

m to compute the reduced shortatit-distancesi(x, v)

duced edge costs

/I time O(m)
/I use Lemma 10.9

) graplgnassevery edge a
(random) potentigbot(v),
ot(v). Show that this rule

(random) nonnegative coste), assign
and set the cost a¢ = (u,v) to ¢(e) =
does not generate negative cycles.

Lemma 10.10.Assume that G has n ative cycles and that all nodes can be
reached from s. Let pot) = p(v) forve V.
edge costs are nonnegative.

Proof. Since all nodes are reachable frerand si
H(v) € R forall v. Thus the reduced costs are

cycles can be solved in tin@(nm+ n?log n).

Proof. The algorithm is shown in Fig. 10.10. We add an auxi
cost edgegs,v) for all nodes of the graph. This does not create ne
and does not changeg(v,w) for any of the existing nodes. Then we solyethe single-
source problem for the soursgand sepot(v) = (v) for all v. Next we
reduced costs and then solve the single-source problenadbr e
Dijkstra’s algorithm. Finally, we translate the computéstances back to the original
cost function. The computation of the potentials takes t{ram), and then shortest-
path calculations take time(®m+ nlogn)). The preprocessing and postprocessing
take linear time. O

10.8 Shortest-Path Queries 209

The assumption th& has no negative cycles can be removed [133].

Exercise 10.

e diameter Dof a graphG is defined as the largest distance be-

to consider ways &pproximatethe diameter of a strongly
g a constant number of single-souro@wations. (a) For

how that no such relation holdslifected graphs. Let
D”(s):=ma that magD’(s),D”(s)) < D < D'(s)+D"(s) for both
phs. (b) How should a graph tresepted to support

ath from a specificceanodes to a spe-
network is one such scenario. Wl s
est-path queriesfficiently and argue

find shortest paths starting st
priority queue, because at this

stopping saves a factor of two in scafiied nodes inany apiplicdn practical route
planning, early stopping saves muc modermagayation systems
have a map of an entire continent are mostly used forrdisgaup to a few
hundred kilometers.

fromt backward until the search frontiers me
of Dijkstra’s algorithm side by side, one start

byrun two copies
e starting frorn(and
gues, safs and
for example

Dijkstra’s algorithm on the reversed graph with a startioget d
This is not quite correct, but almost so.

Exercise 10.19Give an example whengis noton the shortest path fro

However, we have collected enough information once s
removed from both queues. Lef andd; denote the tentative-diStance labels at the
time of termination in the runs with sourseand source, respectively. We show
that p(t) < p(s,u) + p(u,t) implies the existence of a nodec Qs with u(t) =
ds[V] + Gt [V].

210 10 Shortest Paths

Letp=(s=wp,...,Vi,Vi+1,-..,Vk =t) be a shortest path fromtot. Leti be
maximal such that; has been removed fros. Thends|vi;1] = H(S,vi+1) and
Vit € Qs W search stops. Algo(s,u) < u(s,vi+1), sinceu has already been
remov Vi1 has not. Next, observe that

t1) + H(Virt) = c(p) < p(s,u)+p(ut),
sincep is a shortest ommto t. By subtractingu(s,vi;1), we obtain

(s,u) — H(sVit1) +H(ut) < p(ut)
<0

t,i.e.,di[viy1] =

[earch stops. So we can determine the shortest
distance fronstot

nly the first node removed from both qugues

but also all nodes .We iterate over all such nodesand determine the
minimum value ofdg
Dijkstra’s algorithm'seans nod er of increasinggdise from the source.

In other words, it grows
the shortest-path metricin

the source nble circle is defined by
ute-plagpapplication for a road net-
centered osdhiece and argue that
shortest-path circles and geo i les are aboutaime sWe can then estimate
the speedup obtained by bidirecti i
a circle of a certain diameter has twi
We could thus hope that bidirection
unidirectional search.

graph with unit edge weights. How much
Try to find a family of graphs where bidirectig
nodes on average than does unidirectional s
hypercubes. (c) Give an example where bid
takeslonger than unidirectional search. Hint:
with sparsely populated surroundings. (d) Desid
forward and backward search such that bldlrecuonal sea
than twice as many nodes as unidirectional search.

gitional search?b)
ixponentially fewer
@nhrandom graphs or
eal road network
mh&h:l city

technlques mimic human behavior in route planning.

10.8.1 Goal-Directed Search

The idea is to bias the search space such that Dijkstra’sitiigpdoes not grow
a disk but a region protruding toward the target; see Figl1LOAssume we know
a functionf : V — R that estimates the distance to the target, ffév) estimates

10.8 Shortest-Path Queries 211

u(vt) for all nodesv. We use the estimates to modify the distance function. For
eache = (u,v), let* c(e) = c(e) + f(v) — f(u). We run Dijkstra’s algorithm with
the modifie ce function. We know already that nodemqt@ls do not change
ence correctness is preserved.ifeniatances are related via
s). An alternative view of this modification is that we run

Dijkstra’s a
minimal valu
A*-search

atiet us see one specific example.
v,t). Thenc(e) = c(e) + u(vt) —
ath fedmt have a modified cost equal to
s Dijlsstilgorithm only follows

Assume, in a thought expe

u(u,t) and hence edges on

zero and all other edges have

shortest paths, without looking |
The functionf must have certai e useful. First, we want the

modified distances to be nonnegati f(v) > f(u) for all edges

e= (u,v). In other words, our estimate of the distance froshould be at most our

estimate of the distance fromplus the i e to v. This property is
called consistency of estimates. We also wan pthe search when
is removed from the queue. This worksfifis a, 1 the distance to the

r the point in time

. If all edges ofp

been relaxed

e at termination.
was not,

whent is removed from the queue, and [ebe a
have been relaxed at terminatiatit] < c(p). If no
at termination, there is a nodeon p that is containe
Thend(t) + f(t) < d(v)+ f(v), sincet was removed from
and hence

dit] = d[t] + f(t) <d[v]+ f(v) <d[V]+ p(wt) <c(

In either case, we havéft] < c(p), and hence the shortest distance f tis
known as soon asis removed from the queue.

What is a good heuristic function for route planning in a r

planners often give a choice betwesimortestand fastestconne s. In the case

41n Sect. 10.7, we added the potential of the source and siitréhe potential of the target.
We do exactly the opposite now. The reason for changing the sdnvention is that in
Lemma 10.10, we used(s,V) as the node potential. NowW,estimategu(v,t).

212 10 Shortest Paths

of shortest paths, a feasible lower bouid) is the straight-line distance between
andt. Speedups by a factor of roughly four are reported in theditere. For fastest
paths, we may use the geometric distance divided by the gs=sedned for the best
kind of re@d. This ‘estimate is extremely optimistic, sirmeyets are frequently in the
centérof atown, andhence no good speedups have been tepbote sophisticated
methods forieomputing lower bounds are known; we refer theeeto [77] for a
thorough discussion,

10.8.2 Hierarchy

Road networks usuallygeontain a hierarchy of roads: thrawayls, state roads, county
roads, city roadss and so on. Average speeds are usuallgreghroads of higher
status, and therefore thedastest routes frequently follewvpattern that one starts
on a road of low statuS, changes‘several times to roads oéhgjhtus, drives the
largest fraction of the path'en a road of high status, andlyirddanges down to
lower-status roads near the target. A heuristic approachtherefore restrict the
search to high-status roads except forfsuitably choserhbergoods of the source
and target. Observe, however, that'the ‘choice of neighlmarf®nonobvious, and
that this heuristic sacrifices.gptimality. Youimay be abléhiok of an example from
your driving experience where shortcuts ovehsmall roadseqguired even far away
from the source and target. Exactness can be combined witdeh of hierarchies if
the hierarchy is defined algorithmically and is not takemfrine official classifica-
tion of roads. We now outline one such approachy[165], cdligway hierarchies
It first defines a notion of locality, say anything within atdisce of 10 km from
either the source or the target. An edgev) € E is ahighway edgevith respect to
this notion of locality if there is a source nodand a farget nodesuch thatu,v)

is on the fastest path fromito t, v is notiwithin the local search radius sfandu
is not within the local (backward) search radiud ofhe‘resulting network is called
thehighway networklt usually has many verticeésof degreetwo. Think of a faatlro
to which a slow road connects. The slow road Is not used onastgdt path outside
the local region of a nearby source or nearhy target, andehesit not be in the
highway network. Thus the intersection will have degreeéhn the original road
network, but will have degree two in the highway‘network. Tedes joined by a
degree-two node may be collapsed into a single edge. ln'i#ws thecore of the
highway network is determined. Iterating this procedtrérading a highway net-
work and contracting degree-two nodes leads to a hierartigaals. EOr example,
in the case of the road networks of Europe and North Amerida@g&archy,of up
to ten levels resulted. Route planning using the resultigbway hierarchy can be
several thousand times faster than Dijkstra’s algorithm.

10.8.3 Transit Node Routing

Using another observation from daily life, we can get evesteia[15]. When you
drive to somewhere “far away”, you will leave your currentation via one of only
a few “important” traffic junctions. It turns out that in reabrld road networks about

10.9 Implementation Notes 213

tween Saarbriicken and KarlsruRe amounts to retrieving thd access nodefiamonds),
performing 16 table look between al of accesssy@iwl checking that the two disks
defining thelocality filter do'net ove

Fig. 10.12.Finding the ptima%/el time between two points (the flagemewhere be-

99% of all quickest paths go
automatically selected, for e
particular source or target no
about ten of these transit nodes —
pute a complete distance table bet
nodes to their access nodes. Now,

odeshardistances from all
a way ttoatedl sources and

thatu(t) = p(as) + p(as,a) + p(ag,t). A
and there are only about ten candidatesgpand(fo tively, i.e., we need
(only) about 100 accesses to the distance e iman 1 000 000

times faster than Dijkstra’s algorithm. Local ered using some
and target. We can
also cover local queries using additional preco e local infor-

mation. Figure 10.12 from [15] gives an example.

10.9 Implementation Notes

Shortest-path algorithms work over the set of extendedsRal {+oo,
may ignore—oo, since it is needed only in the presence of negative
there, it is needed only for the output; see Sect. 10.6. Weatsan
noting thatparen{v) = L iff d[v] = 4o, i.e., whenparen{v) = L
d[v] = +o0 and ignore the number storeddfyv].

e assume that

5 We may need additional preprocessing to decide this.

214 10 Shortest Paths

A refined implementation of the Bellman—Ford algorithm [1831] explicitly
maintains a current approximatioh of the shortest-path tree. Nodes still to be
scanned in_th@ current iteration of the main loop are stoned $etQ. Consider
the relaxation of an\edge= (u,v) that reducesl|v]. All descendants of in T will
subgséquently receive a nedwalue. Hence, there is no reason to scan these nodes
with their cutrentd-values and one may remove them fr@randT. Furthermore,
negative cyclés can befdetected by checking whetiean ancestor afin T.

10.9.1 Cr+

LEDA [118] has af spegcial priority queue classde pq that implements priority
queues of graph/nodes. BothgLEDA and the Boost graph library fiave imple-
mentations of the Dijkstrafand Bellman—Ford algorithms ahthe algorithms for
acyclic graphs and thé all-pairs prablem. There is a gragshtior based on Dijkstra’s
algorithm that allows\more flexible control of the searchgess. For example, one
can use it to search until a given set of target nodes has beed fLEDA also pro-
vides a function that verifies the correetness of distanaetfans (see Exercise 10.8).

10.9.2 Java

JDSL [78] provides Dijkstra’s algorithmfor integer edgesto This implementation
allows detailed control over theisearch simitasly,to theptraierators of LEDA and
Boost.

10.10 Historical Notes and Further Findings

Dijkstra [56], Bellman [18], and Ford [63] foundftheir algthims in the 1950s. The
original version of Dijkstra’s algorithm had a running tin@(m—i— n2) and there
is a long history of improvements. Most of these improvemeasult from better
data structures for priority queues. We have discussedybh@aps [208], Fibonacci
heaps [68], bucket heaps [52], and radix heaps)[Ql=EXperiaieomparisons can
be found in [40, 131]. For integer keys, radix heaps are rogtid ofthe story. The
best theoretical result is @+ nloglogn) time [194]. Intefestingly, fomndirected
graphs, linear time can be achieved [190]. The latteraigorstill scans hodes one
after the other, but not in the same order as in Dijkstra’satlgm:

Meyer [139] gave the first shortest-path algorithm with éinaverage-gase run-
ning time. The algorithm ALD was found by Goldberg [76]. Foaphs with/bounded
degree, thé\-stepping algorithm [140] is even simpler. This uses bugkeues and
also yields a good parallel algorithm for graphs with bouhdegreeandismailiydi-
ameter.

Integrality of edge costs is also of use when negative edgts @re allowed.
If all edge costs are integers greater thaN, a scaling algorithmachieves a time
O(my/nlogN) [75].

10.10 Historical Notes and Further Findings 215

In Sect. 10.8, we outlined a small number of speedup teclesiépr route plan-
ning. Many other techniques exist. In particular, we have dune justice to ad-
vanced go ed techniques, combinations of diffetechniques, etc. Recent

ple, your grandfather might varknow the fastest
route for vi @ only wants routes where he dagsred to refuel his
car, or you may wantte the fastest route subject to tinelition that the road

toll does not exce imit. Constrained shompest-problems are discussed
in [86, 135].

Shortest paths ¢ puted in geometric settingsarticular, there
is an interesting ¢ . Different materiave different refractive

indices, which are r e speed of light in the makeAistonishingly, the
laws of optics dictate [ays travels glarshortest path.

commutative operatios, a
all x, y, andz, x <y implies <
work when the edge weights from an ordered semigroupehdiithem work

