
FR
E

E
C

O
P

Y
10

Shortest Paths
M

G

F

N

PK

S

Q
O

R

L

0

5

11

13

15

17
18

19
20

Distance to M

17

C

H

V
J

W

E

The problem of the shortest, quickest or cheapest path is ubiquitous. You solve it
daily. When you are in a location s and want to move to a location t, you ask for the
quickest path from s to t. The fire department may want to compute the quickest routes
from a fire station s to all locations in town – the single-source problem. Sometimes
we may even want a complete distance table from everywhere toeverywhere – the
all-pairs problem. In a road atlas, you will usually find an all-pairs distance table
for the most important cities.

Here is a route-planning algorithm that requires a city map and a lot of dexterity
but no computer. Lay thin threads along the roads on the city map. Make a knot
wherever roads meet, and at your starting position. Now liftthe starting knot until
the entire net dangles below it. If you have successfully avoided any tangles and the
threads and your knots are thin enough so that only tight threads hinder a knot from
moving down, the tight threads define the shortest paths. Theintroductory figure of
this chapter shows the campus map of the University of Karlsruhe1 and illustrates
the route-planning algorithm for the source node M.

Route planning in road networks is one of the many applications of shortest-
path computations. When an appropriate graph model is defined, many problems
turn out to profit from shortest-path computations. For example, Ahuja et al. [8]
mentioned such diverse applications as planning flows in networks, urban housing,
inventory planning, DNA sequencing, the knapsack problem (see also Chap. 12),
production planning, telephone operator scheduling, vehicle fleet planning, approx-
imating piecewise linear functions, and allocating inspection effort on a production
line.

The most general formulation of the shortest-path problem looks at a directed
graphG = (V,E) and a cost functionc that maps edges to arbitrary real-number

1 (c) Universität Karlsruhe (TH), Institut für Photogrammetrie und Fernerkundung.

FR
E

E
C

O
P

Y
192 10 Shortest Paths

costs. It turns out that the most general problem is fairly expensive to solve. So we
are also interested in various restrictions that allow simpler and more efficient al-
gorithms: nonnegative edge costs, integer edge costs, and acyclic graphs. Note that
we have already solved the very special case of unit edge costs in Sect. 9.1 – the
breadth-first search (BFS) tree rooted at nodes is a concise representation of all
shortest paths froms. We begin in Sect. 10.1 with some basic concepts that lead to
a generic approach to shortest-path algorithms. A systematic approach will help us
to keep track of the zoo of shortest-path algorithms. As our first example of a re-
stricted but fast and simple algorithm, we look at acyclic graphs in Sect. 10.2. In
Sect. 10.3, we come to the most widely used algorithm for shortest paths: Dijkstra’s
algorithm for general graphs with nonnegative edge costs. The efficiency of Dijk-
stra’s algorithm relies heavily on efficient priority queues. In an introductory course
or at first reading, Dijkstra’s algorithm might be a good place to stop. But there are
many more interesting things about shortest paths in the remainder of the chapter.
We begin with an average-case analysis of Dijkstra’s algorithm in Sect. 10.4 which
indicates that priority queue operations might dominate the execution time less than
one might think. In Sect. 10.5, we discussmonotone priority queues for integer keys
that take additional advantage of the properties of Dijkstra’s algorithm. Combining
this with average-case analysis leads even to a linear expected execution time. Sec-
tion 10.6 deals with arbitrary edge costs, and Sect. 10.7 treats the all-pairs problem.
We show that the all-pairs problem for general edge costs reduces to one general
single-source problem plusn single-source problems with nonnegative edge costs.
This reduction introduces the generally useful concept of node potentials. We close
with a discussion of shortest path queries in Sect. 10.8.

10.1 From Basic Concepts to a Generic Algorithm

We extend the cost function to paths in the natural way. The cost of a path is the
sum of the costs of its constituent edges, i.e., ifp = 〈e1,e2, . . . ,ek〉, thenc(p) =

∑1≤i≤k c(ei). The empty path has cost zero.
For a pairs andv of nodes, we are interested in a shortest path froms to v. We

avoid the use of the definite article “the” here, since there may be more than one
shortest path. Does a shortest path always exist? Observe that the number of paths
from s to v may be infinite. For example, ifr = pCq is a path froms to v containing a
cycleC, then we may go around the cycle an arbitrary number of times and still have
a path froms to v; see Fig. 10.1. More precisely,p is a path leading froms to u, C is
a path leading fromu to u, andq is a path fromu to v. Consider the pathr(i) = pCiq
which first usesp to go froms to u, then goes around the cyclei times, and finally
follows q from u to v. The cost ofr(i) is c(p)+ i ·c(C)+c(q). If C is anegative cycle,
i.e.,c(C) < 0, thenc(r(i+1)) < c(r(i)). In this situation, there is no shortest path from
s to v. Assume otherwise: say,P is a shortest path froms to v. Thenc(r(i)) < c(P)
for i large enough2, and soP is not a shortest path froms to v. We shall show next
that shortest paths exist if there are no negative cycles.

2 i > (c(p)+c(q)−c(P))/|c(C)| will do.

FR
E

E
C

O
P

Y
10.1 From Basic Concepts to a Generic Algorithm 193

...(2)p ps sq q
CC

v v
uu

Fig. 10.1.A nonsimple pathpCqfrom s to v

Lemma 10.1.If G contains no negative cycles and v is reachable from s, then a
shortest path P from s to v exists. Moreover P can be chosen to be simple.

Proof. Let x be a shortestsimplepath froms to v. If x is not a shortest path froms
to v, there is a shorter nonsimple pathr from s to v. Sincer is nonsimple we can,
as in Fig. 10.1, writer as pCq, whereC is a cycle andpq is a simple path. Then
c(x) ≤ c(pq), and hencec(pq)+ c(C) = c(r) < c(x) ≤ c(pq). Soc(C) < 0 and we
have shown the existence of a negative cycle. ⊓⊔

Exercise 10.1.Strengthen the lemma above and show that ifv is reachable froms,
then a shortest path froms to v exists iff there is no negative cycle that is reachable
from sand from which one can reachv.

For two nodessandv, we define the shortest-path distanceµ(s,v) from s to v as

µ(s,v) :=







+∞ if there is no path froms to v,

−∞ if there is no shortest path froms to v,

c(a shortest path froms to v) otherwise.

Since we uses to denote the source vertex most of the time, we also use the shorthand
µ(v) :=µ(s,v). Observe that ifv is reachable fromsbut there is no shortest path from
s to v, then there are paths of arbitrarily large negative cost. Thus it makes sense to
defineµ(v) = −∞ in this case. Shortest paths have further nice properties, which we
state as exercises.

Exercise 10.2 (subpaths of shortest paths).Show that subpaths of shortest paths
are themselves shortest paths, i.e., if a path of the formpqr is a shortest path, thenq
is also a shortest path.

Exercise 10.3 (shortest-path trees).Assume that all nodes are reachable fromsand
that there are no negative cycles. Show that there is ann-node treeT rooted ats
such that all tree paths are shortest paths. Hint: assume first that shortest paths are
unique, and consider the subgraphT consisting of all shortest paths starting ats. Use
the preceding exercise to prove thatT is a tree. Extend this result to the case where
shortest paths are not unique.

Our strategy for finding shortest paths from a source nodes is a generaliza-
tion of the BFS algorithm shown in Fig. 9.3. We maintain twoNodeArrays d and
parent. Here,d[v] contains our current knowledge about the distance froms to v, and
parent[v] stores the predecessor ofv on the current shortest path tov. We usually

FR
E

E
C

O
P

Y
194 10 Shortest Paths

42

0

0

0

0

5
2

2−1

−1
−1−2

−2

−2
−3

−3

+∞

−∞−∞ −∞

−∞

a b d f g

hijk s

Fig. 10.2.A graph with shortest-path distancesµ(v). Edge costs are shown as edge labels, and
the distances are shown inside the nodes. The thick edges indicate shortest paths

refer tod[v] as thetentative distanceof v. Initially, d[s] = 0 andparent[s] = s. All
other nodes have infinite distance and no parent.

The natural way to improve distance values is to propagate distance information
across edges. If there is a path froms to u of costd[u], ande= (u,v) is an edge out
of u, then there is a path froms to v of costd[u]+ c(e). If this cost is smaller than
the best previously known distanced[v], we updated andparentaccordingly. This
process is callededge relaxation:

Procedurerelax(e= (u,v) : Edge)
if d[u]+c(e) < d[v] then d[v] :=d[u]+c(e); parent[v] :=u

Lemma 10.2.After any sequence of edge relaxations, if d[v] < ∞, then there is a
path of length d[v] from s to v.

Proof. We use induction on the number of edge relaxations. The claimis certainly
true before the first relaxation. The empty path is a path of length zero froms to
s, and all other nodes have infinite distance. Consider next a relaxation of an edge
e= (u,v). By the induction hypothesis, there is a pathp of lengthd[u] from s to u
and a path of lengthd[v] from s to v. If d[u]+c(e) ≥ d[v], there is nothing to show.
Otherwise,pe is a path of lengthd[u]+c(e) from s to v. ⊓⊔

The common strategy of the algorithms in this chapter is to relax edges until ei-
ther all shortest paths have been found or a negative cycle isdiscovered. For example,
the (reversed) thick edges in Fig. 10.2 give us theparentinformation obtained after a
sufficient number of edge relaxations: nodesf , g, i, andh are reachable fromsusing
these edges and have reached their respectiveµ(·) values 2,−3,−1, and−3. Nodes
b, j, andd form a negative-cost cycle so that their shortest-path costis −∞. Nodea
is attached to this cycle, and thusµ(a) = −∞.

What is a good sequence of edge relaxations? Letp = 〈e1, . . . ,ek〉 be a path from
s to v. If we relax the edges in the ordere1 to ek, we haved[v] ≤ c(p) after the
sequence of relaxations. Ifp is a shortest path froms to v, thend[v] cannot drop
below c(p), by the preceding lemma, and henced[v] = c(p) after the sequence of
relaxations.

Lemma 10.3 (correctness criterion). After performing a sequence R of edge re-
laxations, we have d[v] = µ(v) if, for some shortest path p= 〈e1,e2, . . . ,ek〉 from

FR
E

E
C

O
P

Y
10.2 Directed Acyclic Graphs 195

s to v, p is a subsequence of R, i.e., there are indices t1 < t2 < · · · < tk such that
R[t1] = e1,R[t2] = e2, . . . ,R[tk] = ek. Moreover, the parent information defines a path
of lengthµ(v) from s to v.

Proof. The following is a schematic view ofRandp: the first row indicates the time.
At time t1, the edgee1 is relaxed, at timet2, the edgee2 is relaxed, and so on:

1,2, . . . , t1, . . . , t2, ,tk, . . .
R:= 〈 . . . ,e1, . . . , e2, ,ek, . . .〉
p:= 〈e1, e2, . . . ,ek〉

We haveµ(v) = ∑1≤ j≤k c(ej). For i ∈ 1..k, let vi be the target node ofei , and we
definet0 = 0 andv0 = s. Thend[vi]≤∑1≤ j≤i c(ej) after timeti , as a simple induction
shows. This is clear fori = 0, sinced[s] is initialized to zero andd-values are only
decreased. After the relaxation ofei = R[ti] for i > 0, we haved[vi]≤d[vi−1]+c(ei)≤
∑1≤ j≤i c(ej). Thus, after timetk, we haved[v] ≤ µ(v). Sinced[v] cannot go below
µ(v), by Lemma 10.2, we haved[v] = µ(v) after timetk and hence after performing
all relaxations inR.

Let us prove next that theparentinformation traces out shortest paths. We shall
do so under the additional assumption that shortest paths are unique, and leave the
general case to the reader. After the relaxations inR, we haved[vi] = µ(vi) for 1≤
i ≤ k. Whend[vi] was set toµ(vi) by an operationrelax(u,vi), the existence of a path
of lengthµ(vi) from s to vi was established. Since, by assumption, the shortest path
from s to vi is unique, we must haveu = vi−1, and henceparent[vi] = vi−1. ⊓⊔
Exercise 10.4.Redo the second paragraph in the proof above, but without theas-
sumption that shortest paths are unique.

Exercise 10.5.Let S be the edges ofG in some arbitrary order and letS(n−1) be
n−1 copies ofS. Show thatµ(v) = d[v] for all nodesv with µ(v) 6= −∞ after the
relaxationsS(n−1) have been performed.

In the following sections, we shall exhibit more efficient sequences of relaxations
for acyclic graphs and for graphs with nonnegative edge weights. We come back to
general graphs in Sect. 10.6.

10.2 Directed Acyclic Graphs

In a directed acyclic graph (DAG), there are no directed cycles and hence no negative
cycles. Moreover, we have learned in Sect. 9.2.1 that the nodes of a DAG can be
topologically sorted into a sequence〈v1,v2, . . . ,vn〉 such that(vi ,v j) ∈ E implies
i < j. A topological order can be computed in linear time O(m+n) using either
depth-first search or breadth-first search. The nodes on any path in a DAG increase
in topological order. Thus, by Lemma 10.3, we can compute correct shortest-path
distances if we first relax the edges out ofv1, then the edges out ofv2, etc.; see
Fig. 10.3 for an example. In this way, each edge is relaxed only once. Since every
edge relaxation takes constant time, we obtain a total execution time of O(m+n).

FR
E

E
C

O
P

Y
196 10 Shortest Paths

3

9

s
1

4
5

2 7

6
8

Fig. 10.3.Order of edge relaxations for the computation of the shortest paths from nodes in a
DAG. The topological order of the nodes is given by theirx-coordinates

Theorem 10.4.Shortest paths in acyclic graphs can be computed in timeO(m+n).

Exercise 10.6 (route planning for public transportation). Finding the quickest
routes in public transportation systems can be modeled as a shortest-path problem
for an acyclic graph. Consider a bus or train leaving a placep at timet and reaching
its next stopp′ at time t ′. This connection is viewed as an edge connecting nodes
(p,t) and(p′,t ′). Also, for each stopp and subsequent events (arrival and/or depar-
ture) atp, say at timest andt ′ with t < t ′, we have thewaiting link from (p,t) to
(p,t ′). (a) Show that the graph obtained in this way is a DAG. (b) You need an ad-
ditional node that models your starting point in space and time. There should also
be one edge connecting it to the transportation network. What should this edge be?
(c) Suppose you have computed the shortest-path tree from your starting node to all
nodes in the public transportation graph reachable from it.How do you actually find
the route you are interested in?

10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm)

We now assume that all edge costs are nonnegative.Thus thereare no negative cycles,
and shortest paths exist for all nodes reachable froms. We shall show that if the edges
are relaxed in a judicious order, every edge needs to be relaxed only once.

What is the right order? Along any shortest path, the shortest-path distances in-
crease (more precisely, do not decrease). This suggests that we should scan nodes (to
scan a node means to relax all edges out of the node) in order ofincreasing shortest-
path distance. Lemma 10.3 tells us that this relaxation order ensures the computation
of shortest paths. Of course, in the algorithm, we do not knowthe shortest-path dis-
tances; we only know thetentative distances d[v]. Fortunately, for an unscanned node
with minimal tentative distance, the true and tentative distances agree. We shall prove
this in Theorem 10.5. We obtain the algorithm shown in Fig. 10.4. This algorithm is
known as Dijkstra’s shortest-path algorithm. Figure 10.5 shows an example run.

Note that Dijkstra’s algorithm is basically the thread-and-knot algorithm we saw
in the introduction to this chapter. Suppose we put all threads and knots on a table
and then lift the starting node. The other knots will leave the surface of the table in
the order of their shortest-path distances.

Theorem 10.5.Dijkstra’s algorithm solves the single-source shortest-path problem
for graphs with nonnegative edge costs.

FR
E

E
C

O
P

Y
10.3 Nonnegative Edge Costs (Dijkstra’s Algorithm) 197

Dijkstra’s Algorithm
declare all nodes unscanned and initialized andparent
while there is an unscanned node with tentative distance< +∞ do

u:= the unscanned node with minimal tentative distance
relax all edges(u,v) out of u and declareu scanned

s

scanned

u

Fig. 10.4.Dijkstra’s shortest-path algorithm for nonnegative edge weights

Operation Queue
insert(s) 〈(s,0)〉
deleteMin; (s,0) 〈〉
relax s

2→ a 〈(a,2)〉
relax s

10→ d 〈(a,2),(d,10)〉
deleteMin; (a,2) 〈(d,10)〉
relax a

3→ b 〈(b,5),(d,10)〉
deleteMin; (b,5) 〈(d,10)〉
relax b

2→ c 〈(c,7),(d,10)〉
relax b

1→ e 〈(e,6),(c,7),(d,10)〉
deleteMin; (e,6) 〈(c,7),(d,10)〉
relax e

9→ b 〈(c,7),(d,10)〉
relax e

8→ c 〈(c,7),(d,10)〉
relax e

0→ d 〈(d,6),(c,7)〉
deleteMin; (d,6) 〈(c,7)〉
relax d

4→ s 〈(c,7)〉
relax d

5→ b 〈(c,7)〉
deleteMin; (c,7) 〈〉

1
9

3 2

8

70

5

2 5 7

66

0
10

2

4

a

s

d e

b c

f

∞

Fig. 10.5.Example run of Dijkstra’s algorithm
on the graph given on theright. The bold edges
form the shortest-path tree, and the numbers in
bold indicate shortest-path distances. The table
on theleft illustrates the execution. Thequeue
contains all pairs(v,d[v]) with v reached and
unscanned. A node is calledreachedif its ten-
tative distance is less than+∞. Initially, s is
reached and unscanned. The actions of the al-
gorithm are given in the first column. The sec-
ond column shows the state of the queue after
the action

Proof. We proceed in two steps. In the first step, we show that all nodes reachable
from sare scanned. In the second step, we show that the tentative and true distances
agree when a node is scanned. In both steps, we argue by contradiction.

For the first step, assume the existence of a nodev that is reachable froms, but
never scanned. Consider a shortest pathp = 〈s= v1,v2, . . . ,vk = v〉 from s to v, and
let i be minimal such thatvi is not scanned. Theni > 1, sinces is the first node
scanned (in the first iteration,s is the only node whose tentative distance is less than
+∞) . By the definition ofi, vi−1 has been scanned. Whenvi−1 is scanned,d[vi]
is set tod[vi−1] + c(vi−1,vi), a value less than+∞. Sovi must be scanned at some
point during the execution, since the only nodes that stay unscanned are nodesu with
d[u] = +∞ at termination.

For the second step, consider the first point in timet, when a nodev is scanned
with µ [v] < d(v). As above, consider a shortest pathp =〈s= v1,v2, . . . ,vk = v〉 from
s to v, and leti be minimal such thatvi is not scanned before timet. Theni > 1, sinces
is the first node scanned andµ(s) = 0= d[s] whens is scanned. By the definition ofi,

FR
E

E
C

O
P

Y
198 10 Shortest Paths

Function Dijkstra(s : NodeId) : NodeArray×NodeArray // returns(d,parent)
d = 〈∞, . . . ,∞〉 : NodeArrayof R∪{∞} // tentative distance from root
parent =〈⊥, . . . ,⊥〉 : NodeArrayof NodeId
parent[s] :=s // self-loop signals root
Q : NodePQ // unscanned reached nodes
d[s] :=0; Q.insert(s)
while Q 6= /0 do

u:=Q.deleteMin // we haved[u] = µ(u)
foreach edge e= (u,v) ∈ E do

s

scanned

u

if d[u]+c(e) < d[v] then // relax
d[v] :=d[u]+c(e)
parent[v] :=u // update tree
if v∈ Q then Q.decreaseKey(v)

elseQ.insert(v)
u v

reached
return (d,parent)

Fig. 10.6.Pseudocode for Dijkstra’s algorithm

vi−1 was scanned before timet. Henced[vi−1] = µ(vi−1) whenvi−1 is scanned. When
vi−1 is scanned,d[vi] is set tod[vi−1]+c(vi−1,vi) = µ(vi−1)+c(vi−1,vi) = µ(vi). So,
at timet, we haved[vi] = µ(vi) ≤ µ(vk) < d[vk] and hencevi is scanned instead of
vk, a contradiction. ⊓⊔

Exercise 10.7.Let v1, v2, . . . be the order in which the nodes are scanned. Show that
µ(v1) ≤ µ(v2) ≤ . . ., i.e., the nodes are scanned in order of increasing shortest-path
distance.

Exercise 10.8 (checking of shortest-path distances).Assume that all edge costs are
positive, that all nodes are reachable froms, and thatd is a node array of nonnegative
reals satisfyingd[s] = 0 andd[v] = min(u,v)∈E d[u] + c(u,v) for v 6= s. Show that
d[v] = µ(v) for all v. Does the claim still hold in the presence of edges of cost zero?

We come now to the implementation of Dijkstra’s algorithm. We store all un-
scanned reached nodes in an addressable priority queue (seeSect. 6.2) using their
tentative-distance values as keys. Thus, we can extract thenext node to be scanned
using the queue operationdeleteMin. We need a variant of a priority queue where the
operationdecreaseKeyaddresses queue items using nodes rather than handles. Given
an ordinary priority queue, such aNodePQcan be implemented using an additional
NodeArraytranslating nodes into handles. We can also store the priority queue items
directly in aNodeArray. We obtain the algorithm given in Fig. 10.6. Next, we analyze
its running time in terms of the running times for the queue operations. Initializing
the arraysd andparentand setting up a priority queueQ = {s} takes time O(n).
Checking forQ = /0 and loop control takes constant time per iteration of the while
loop, i.e., O(n) time in total. Every node reachable froms is removed from the queue
exactly once. Every reachable node is alsoinserted exactly once. Thus we have at
mostn deleteMinand insert operations. Since each node is scanned at most once,

FR
E

E
C

O
P

Y
10.4 *Average-Case Analysis of Dijkstra’s Algorithm 199

each edge is relaxed at most once, and hence there can be at most m decreaseKey
operations. We obtain a total execution time of

TDijkstra = O
(
m·TdecreaseKey(n)+n · (TdeleteMin(n)+Tinsert(n))

)
,

whereTdeleteMin, Tinsert, and TdecreaseKeydenote the execution times fordeleteMin,
insert, anddecreaseKey, respectively. Note that these execution times are a function
of the queue size|Q| = O(n).

Exercise 10.9.Design a graph and a nonnegative cost function such that the relax-
ation ofm− (n−1) edges causes adecreaseKeyoperation.

In his original 1959 paper, Dijkstra proposed the followingimplementation of
the priority queue: maintain the number of reached unscanned nodes, and two arrays
indexed by nodes – an arrayd storing the tentative distances and an array storing,
for each node, whether it is unscanned or reached. TheninsertanddecreaseKeytake
time O(1). A deleteMintakes time O(n), since it has to scan the arrays in order to
find the minimum tentative distance of any reached unscannednode. Thus the total
running time becomes

TDijkstra59 = O
(
m+n2) .

Much better priority queue implementations have been invented since Dijkstra’s
original paper. Using the binary heap and Fibonacci heap priority queues described
in Sect. 6.2, we obtain

TDijkstraBHeap= O((m+n) logn)

and

TDijkstraFibonacci= O(m+nlogn) ,

respectively. Asymptotically, the Fibonacci heap implementation is superior except
for sparse graphs withm = O(n). In practice, Fibonacci heaps are usually not the
fastest implementation, because they involve larger constant factors and the actual
number ofdecreaseKeyoperations tends to be much smaller than what the worst case
predicts. This experimental observation will be supportedby theoretical analysis in
the next section.

10.4 *Average-Case Analysis of Dijkstra’s Algorithm

We shall show that the expected number ofdecreaseKeyoperations is O(nlog(m/n)).
Our model of randomness is as follows. The graphG and the source nodes

are arbitrary. Also, for each nodev, we have an arbitrary setC(v) of indegree(v)
nonnegative real numbers. So far, everything is arbitrary.The randomness comes
now: we assume that, for eachv, the costs inC(v) are assigned randomly to the
edgesinto v, i.e., our probability space consists of∏v∈V indegree(v)! assignments of

FR
E

E
C

O
P

Y
200 10 Shortest Paths

edge costs to edges. We want to stress that this model is quitegeneral. In particular,
it covers the situation where edge costs are drawn independently from a common
distribution.

Theorem 10.6.Under the assumptions above, the expected number of decreaseKey
operations isO(nlog(m/n)).

Proof. We present a proof due to Noshita [151]. Consider a particular nodev. In
any run of Dijkstra’s algorithm, the edges whose relaxationcan causedecreaseKey
operations forv have the formei := (ui ,v), whereµ(ui) ≤ µ(v). Say there arek
such edgese1, . . . , ek. We number them in the order in which their source nodesui

are scanned. We then haveµ(u1) ≤ µ(u2) ≤ . . . ≤ µ(uk) ≤ µ(v). These edges are
relaxed in the ordere1, . . . ,ek, no matter how the costs inC(v) are assigned to them.
If ei causes adecreaseKeyoperation, then

µ(ui)+c(ei) < min
j<i

µ(u j)+c(ej) .

Sinceµ(u j) ≤ µ(ui), this implies

c(ei) < min
j<i

c(ej),

i.e., only left-to-right minima of the sequencec(e1), . . . ,c(ek) can causedecreaseKey
operations. We conclude that the number ofdecreaseKeyoperations onv is bounded
by the number of left-to-right minima in the sequencec(e1), . . . , c(ek) minus one;
the “−1” accounts for the fact that the first element in the sequencecounts as a left-
to-right minimum but causes aninsert and nodecreaseKey. In Sect. 2.8, we have
shown that the expected number of left-to-right maxima in a permutation of sizek
is bounded byHk. The same bound holds for minima. Thus the expected number
of decreaseKeyoperations is bounded byHk −1, which in turn is bounded by lnk.
Also, k ≤ indegree(v). Summing over all nodes, we obtain the following bound for
the expected number ofdecreaseKeyoperations:

∑
v∈V

ln indegree(v) ≤ nln
m
n

,

where the last inequality follows from the concavity of the ln function (see (A.15)).
⊓⊔

We conclude that the expected running time is O(m+nlog(m/n) logn) with the
binary heap implementation of priority queues. For sufficiently dense graphs (m>
nlognlog logn), we obtain an execution time linear in the size of the input.

Exercise 10.10.Show that E[TDijkstraBHeap] = O(m) if m= Ω(nlognlog logn).

FR
E

E
C

O
P

Y
10.5 Monotone Integer Priority Queues 201

10.5 Monotone Integer Priority Queues

Dijkstra’s algorithm is designed to scan nodes in order of nondecreasing distance
values. Hence, a monotone priority queue (see Chapter 6) suffices for its implemen-
tation. It is not known whether monotonicity can be exploited in the case of general
real edge costs. However, for integer edge costs, significant savings are possible. We
therefore assume in this section that edge costs are integers in the range 0..C for
some integerC. C is assumed to be known when the queue is initialized.

Since a shortest path can consist of at mostn− 1 edges, the shortest-path dis-
tances are at most(n− 1)C. The range of values in the queue at any one time is
even smaller. Letmin be the last value deleted from the queue (zero before the first
deletion). Dijkstra’s algorithm maintains the invariant that all values in the queue are
contained inmin..min+C. The invariant certainly holds after the first insertion. A
deleteMinmay increasemin. Since all values in the queue are bounded byC plus
the old value ofmin, this is certainly true for the new value ofmin. Edge relaxations
insert priorities of the formd[u]+c(e) = min+c(e) ∈ min..min+C.

10.5.1 Bucket Queues

A bucket queue is a circular arrayB of C+ 1 doubly linked lists (see Figs. 10.7
and 3.8). We view the natural numbers as being wrapped aroundthe circular array;
all integers of the formi +(C+1) j map to the indexi. A nodev∈ Q with tentative
distanced[v] is stored inB[d[v] mod(C+ 1)]. Since the priorities in the queue are
always inmin..min+C, all nodes in a bucket have thesamedistance value.

Initialization createsC + 1 empty lists. Aninsert(v) insertsv into B[d[v] mod
C+ 1]. A decreaseKey(v) removesv from the list containing it and insertsv into
B[d[v] modC+1]. Thus insert and decreaseKeytake constant time if buckets are
implemented as doubly linked lists.

A deleteMinfirst looks at bucketB[min modC+ 1]. If this bucket is empty, it
incrementsmin and repeats. In this way, the total cost of alldeleteMinoperations
is O(n+nC) = O(nC), sincemin is incremented at mostnC times and at mostn
elements are deleted from the queue. Plugging the operationcosts for the bucket
queue implementation with integer edge costs in 0..C into our general bound for the
cost of Dijkstra’s algorithm, we obtain

TDijkstraBucket= O(m+nC) .

*Exercise 10.11 (Dinic’s refinement of bucket queues [57]).Assume that the edge
costs are positive real numbers in[cmin,cmax]. Explain how to find shortest paths in
time O(m+ncmax/cmin). Hint: use buckets of widthcmin. Show that all nodes in the
smallest nonempty bucket haved[v] = µ(v).

10.5.2 *Radix Heaps

Radix heaps [9] improve on the bucket queue implementation by using buckets of
different widths. Narrow buckets are used for tentative distances close tomin, and

FR
E

E
C

O
P

Y
202 10 Shortest Paths

b,30 30c,

e,33

d,31

a,29

f, 35

g,36

g,36 f, 35 e,33b,30 d,31 30c,a,29

0
1

2
3

45
6

7

8
9

min

−1

11101 11100 1111* 110** 10***

0 1 2 3

mod 10

Binary Radix Heap

content=

bucket queue withC = 9

4 = K

≥ 100000

〈(a,29),(b,30),(c,30),(d,31),(e,33),(f ,35),(g,36)〉 =

〈(a,11101),(b,11110),(c,11110),(d,11111),(e,100001),(f ,100011),(g,100100)〉

Fig. 10.7.Example of a bucket queue (upper part) and a radix heap (lower part). SinceC = 9,
we haveK = 1+⌊logC⌋ = 4. The bit patterns in the buckets of the radix heap indicate the set
of keys they can accommodate

wide buckets are used for tentative distances far away frommin. In this subsection,
we shall show how this approach leads to a version of Dijkstra’s algorithm with
running time

TDijkstraRadix:=O(m+nlogC) .

Radix heaps exploit the binary representation of tentativedistances. We need
the concept of themost significant distinguishing indexof two numbers. This is the
largest index where the binary representations differ, i.e., for numbersa andb with
binary representationsa= ∑i≥0 αi2i andb= ∑i≥0 βi2i , we define the most significant
distinguishing indexmsd(a,b) as the largesti with αi 6= βi , and let it be−1 if a = b.
If a < b, thena has a zero bit in positioni = msd(a,b) andb has a one bit.

A radix heap consists of an array of bucketsB[−1], B[0], . . . , B[K], whereK =
1+ ⌊logC⌋. The queue elements are distributed over the buckets according to the
following rule:

any queue elementv is stored in bucketB[i], wherei = min(msd(min,d[v]),K).

We refer to this rule as the bucket queue invariant. Figure 10.7 gives an example. We
remark that ifminhas a one bit in positioni for 0≤ i < K, the corresponding bucket
B[i] is empty. This holds since anyd[v] with i = msd(min,d[v]) would have a zero bit
in positioni and hence be smaller thanmin. But all keys in the queue are at least as
large asmin.

How can we computei :=msd(a,b)? We first observe that fora 6= b, the bitwise
exclusive ORa⊕b of a andb has its most significant one in positioni and hence
represents an integer whose value is at least 2i and less than 2i+1. Thusmsd(a,b) =

FR
E

E
C

O
P

Y
10.5 Monotone Integer Priority Queues 203

⌊log(a⊕b)⌋, since log(a⊕b) is a real number with its integer part equal toi and the
floor function extracts the integer part. Many processors support the computation of
msdby machine instructions.3 Alternatively, we can use lookup tables or yet other
solutions. From now on, we shall assume thatmsdcan be evaluated in constant time.

We turn now to the queue operations. Initialization,insert, anddecreaseKeywork
completely analogously to bucket queues. The only difference is that bucket indices
are computed using the bucket queue invariant.

A deleteMinfirst finds the minimumi such thatB[i] is nonempty. Ifi = −1,
an arbitrary element inB[−1] is removed and returned. Ifi ≥ 0, the bucketB[i] is
scanned andmin is set to the smallest tentative distance contained in the bucket.
Sincemin has changed, the bucket queue invariant needs to be restored. A crucial
observation for the efficiency of radix heaps is that only thenodes in bucketi are
affected. We shall discuss below how they are affected. Let us consider first the
bucketsB[j] with j 6= i. The bucketsB[j] with j < i are empty. Ifi = K, there are
no j ’s with j > K. If i < K, any keya in bucketB[j] with j > i will still have
msd(a,min) = j, because the old and new values ofminagree at bit positions greater
thani.

What happens to the elements inB[i]? Its elements are moved to the appro-
priate new bucket. Thus adeleteMintakes constant time ifi = −1 and takes time
O(i + |B[i]|) = O(K + |B[i]|) if i ≥ 0. Lemma 10.7 below shows that every node in
bucketB[i] is moved to a bucket with a smaller index. This observation allows us to
account for the cost of adeleteMinusing amortized analysis. As our unit of cost (one
token), we shall use the time required to move one node between buckets.

We chargeK + 1 tokens for operationinsert(v) and associate theseK + 1 to-
kens withv. These tokens pay for the moves ofv to lower-numbered buckets in
deleteMinoperations. A node starts in some bucketj with j ≤ K, ends in bucket
−1, and in between never moves back to a higher-numbered bucket. Observe that a
decreaseKey(v) operation will also never move a node to a higher-numbered bucket.
Hence, theK + 1 tokens can pay for all the node moves ofdeleteMinoperations.
The remaining cost of adeleteMinis O(K) for finding a nonempty bucket. With
amortized costsK +1+O(1) = O(K) for an insertand O(1) for a decreaseKey, we
obtain a total execution time of O(m+n · (K +K)) = O(m+nlogC) for Dijkstra’s
algorithm, as claimed.

It remains to prove thatdeleteMinoperations move nodes to lower-numbered
buckets.

Lemma 10.7.Let i be minimal such that B[i] is nonempty and assume i≥ 0. Let min
be the smallest element in B[i]. Then msd(min,x) < i for all x ∈ B[i].

3 ⊕ is a direct machine instruction, and⌊logx⌋ is the exponent in the floating-point represen-
tation ofx.

FR
E

E
C

O
P

Y
204 10 Shortest Paths

1

1

1

1

j 0
0

0

1

h
Case i=K

min
i 0
0

min

x

o

Casei<K

α

α

α

α

α

α

β

β

Fig. 10.8.The structure of the keys relevant to the proof of Lemma 10.7.In the proof, it is
shown thatβ starts withj −K zeros

Proof. Observe first that the casex = min is easy, sincemsd(x,x) = −1 < i. For the
nontrivial casex 6= min, we distinguish the subcasesi < K andi = K. Letmino be the
old value ofmin. Figure 10.8 shows the structure of the relevant keys.

Casei < K. The most significant distinguishing index ofmino and anyx ∈ B[i] is
i, i.e., mino has a zero in bit positioni, and allx ∈ B[i] have a one in bit position
i. They agree in all positions with an index larger thani. Thus the most significant
distinguishing index forminandx is smaller thani.

Case i = K. Consider anyx ∈ B[K]. Let j = msd(mino,min). Then j ≥ K, since
min∈ B[K]. Let h = msd(min,x). We want to show thath < K. Let α comprise the
bits in positions larger thanj in mino, and letA be the number obtained frommino by
setting the bits in positions 0 toj to zero. Thenα followed by j +1 zeros is the binary
representation ofA. Since thej-th bit of mino is zero and that ofmin is one, we have
mino < A+2 j andA+2 j ≤ min. Also,x≤ mino+C < A+2 j +C≤ A+2 j +2K . So

A+2 j ≤ min≤ x < A+2 j +2K,

and hence the binary representations ofmin and x consist ofα followed by a 1,
followed by j −K zeros, followed by some bit string of lengthK. Thusmin andx
agree in all bits with indexK or larger, and henceh < K.

In order to aid intuition, we give a second proof for the casei = K. We first
observe that the binary representation ofmin starts withα followed by a one. We
next observe thatx can be obtained frommino by adding someK-bit number. Since
min≤ x, the final carry in this addition must run into positionj. Otherwise, thej-th
bit of x would be zero and hencex < min. Sincemino has a zero in positionj, the
carry stops at positionj. We conclude that the binary representation ofx is equal to
α followed by a 1, followed byj −K zeros, followed by someK-bit string. Since
min≤ x, the j−K zeros must also be present in the binary representation ofmin. ⊓⊔

*Exercise 10.12.Radix heaps can also be based on number representations withbase
b for anyb ≥ 2. In this situation we have bucketsB[i, j] for i = −1,0,1, . . . ,K and
0≤ j ≤ b, whereK = 1+ ⌊logC/ logb⌋. An unscanned reached nodex is stored in
bucketB[i, j] if msd(min,d[x]) = i and thei-th digit of d[x] is equal to j. We also
store, for eachi, the number of nodes contained in the buckets∪ jB[i, j]. Discuss
the implementation of the priority queue operations and show that a shortest-path

FR
E

E
C

O
P

Y
10.5 Monotone Integer Priority Queues 205

algorithm with running time O(m+n(b+ logC/ logb)) results. What is the optimal
choice ofb?

If the edge costs are random integers in the range 0..C, a small change to Dijk-
stra’s algorithm with radix heaps guarantees linear running time [139, 76]. For every
nodev, let cin

min(v) denote the minimum cost of an incoming edge. We divideQ into
two parts, a setF which contains unscanned nodes whose tentative-distance label
is known to be equal to their exact distance froms, and a partB which contains all
other reached unscanned nodes.B is organized as a radix heap. We also maintain a
valuemin. We scan nodes as follows.

WhenF is nonempty, an arbitrary node inF is removed and the outgoing edges
are relaxed. WhenF is empty, the minimum node is selected fromB andmin is set
to its distance label. When a node is selected fromB, the nodes in the first nonempty
bucketB[i] are redistributed ifi ≥ 0. There is a small change in the redistribution
process. When a nodev is to be moved, andd[v] ≤ min+ cin

min(v), we movev to F .
Observe that any future relaxation of an edge intov cannot decreased[v], and hence
d[v] is known to be exact at this point.

We call this algorithm ALD (average-case linear Dijkstra).The algorithm ALD
is correct, since it is still true thatd[v] = µ(v) whenv is scanned. For nodes removed
from F , this was argued in the previous paragraph, and for nodes removed fromB,
this follows from the fact that they have the smallest tentative distance among all
unscanned reached nodes.

Theorem 10.8.Let G be an arbitrary graph and let c be a random function from E
to 0..C. The algorithm ALD then solves the single-source problem in expected time
O(m+n).

Proof. We still need to argue the bound on the running time. To do this, we modify
the amortized analysis of plain radix heaps. As before, nodes start out inB[K]. When
a nodev has been moved to a new bucket but not yet toF , d[v] > min+cin

min(v), and
hencev is moved to a bucketB[i] with i ≥ logcin

min(v). Hence, it suffices ifinsertpays
K − logcin

min(v)+1 tokens into the account for nodev in order to cover all costs due
to decreaseKeyanddeleteMinoperations operating onv. Summing over all nodes,
we obtain a total payment of

∑
v

(K − logcin
min(v)+1) = n+∑

v
(K − logcin

min(v)) .

We need to estimate this sum. For each vertex, we have one incoming edge contribut-
ing to this sum. We therefore bound the sum from above if we sumover all edges,
i.e.,

∑
v

(K − logcin
min(v)) ≤ ∑

e
(K− logc(e)) .

K− logc(e) is the number of leading zeros in the binary representation of c(e) when
written as aK-bit number. Our edge costs are uniform random numbers in 0..C, and
K = 1+ ⌊logC⌋. Thus prob(K− logc(e) = i) = 2−i . Using (A.14), we conclude that

FR
E

E
C

O
P

Y
206 10 Shortest Paths

E

[

∑
e

(k− logc(e))

]

= ∑
e

∑
i≥0

i2−i = O(m) .

Thus the total expected cost of thedeleteMinanddecreaseKeyoperations is O(m+n).
The time spent outside these operations is also O(m+n). ⊓⊔

It is a little odd that the maximum edge costC appears in the premise but not in
the conclusion of Theorem 10.8. Indeed, it can be shown that asimilar result holds
for random real-valued edge costs.

**Exercise 10.13.Explain how to adapt the algorithm ALD to the case wherec is
a random function fromE to the real interval(0,1]. The expected time should still
be O(m+n). What assumptions do you need about the representation of edge costs
and about the machine instructions available? Hint: you mayfirst want to solve Ex-
ercise 10.11. The narrowest bucket should have a width of mine∈E c(e). Subsequent
buckets have geometrically growing widths.

10.6 Arbitrary Edge Costs (Bellman–Ford Algorithm)

For acyclic graphs and for nonnegative edge costs, we got away with m edge re-
laxations. For arbitrary edge costs, no such result is known. However, it is easy to
guarantee the correctness criterion of Lemma 10.3 using O(n ·m) edge relaxations:
the Bellman–Ford algorithm [18, 63] given in Fig. 10.9 performsn− 1 rounds. In
each round, it relaxes all edges. Since simple paths consistof at mostn−1 edges,
every shortest path is a subsequence of this sequence of relaxations. Thus, after the
relaxations are completed, we haved[v] = µ(v) for all v with −∞ < d[v] < ∞, by
Lemma 10.3. Moreover,parentencodes the shortest paths to these nodes. Nodesv
unreachable fromswill still have d[v] = ∞, as desired.

It is not so obvious how to find the nodesv with µ(v) = −∞. Consider any edge
e = (u,v) with d[u] + c(e) < d[v] after the relaxations are completed. We can set
d[v] :=−∞ because if there were a shortest path froms to v, we would have found it
by now and relaxingewould not lead to shorter distances anymore. We can now also
setd[w] = −∞ for all nodesw reachable fromv. The pseudocode implements this
approach using a recursive functioninfect(v). It sets thed-value ofv and all nodes
reachable from it to−∞. If infect reaches a nodew that already hasd[w] = −∞,
it breaks the recursion because previous executions ofinfect have already explored
all nodes reachable fromw. If d[v] is not set to−∞ during postprocessing, we have
d[x]+c(e)≥ d[y] for any edgee= (x,y) on any pathp froms to v. Thusd[s]+c(p)≥
d[v] for any pathp from s to v, and henced[v]≤ µ(v). We conclude thatd[v] = µ(v).

Exercise 10.14.Show that the postprocessing runs in time O(m). Hint: relateinfect
to DFS.

Exercise 10.15.Someone proposes an alternative postprocessing algorithm: setd[v]
to−∞ for all nodesv for which following parents does not lead tos. Give an example
where this method overlooks a node withµ(v) = −∞.

FR
E

E
C

O
P

Y
10.7 All-Pairs Shortest Paths and Node Potentials 207

Function BellmanFord(s : NodeId) : NodeArray×NodeArray
d = 〈∞, . . . ,∞〉 : NodeArrayof R∪{−∞,∞} // distance from root
parent =〈⊥, . . . ,⊥〉 : NodeArrayof NodeId
d[s] :=0; parent[s] := s // self-loop signals root
for i :=1 to n−1 do

forall e∈ E do relax(e) // roundi

forall e= (u,v) ∈ E do // postprocessing
if d[u]+c(e) < d[v] then infect(v)

return (d,parent)

Procedure infect(v)
if d[v] > −∞ then

d[v] :=−∞
foreach (v,w) ∈ E do infect(w)

Fig. 10.9.The Bellman–Ford algorithm for shortest paths in arbitrarygraphs

Exercise 10.16 (arbitrage). Consider a set of currenciesC with an exchange rate
of r i j between currenciesi and j (you obtainr i j units of currencyj for one unit of
currencyi). A currency arbitrageis possible if there is a sequence of elementary
currency exchange actions (transactions) that starts with one unit of a currency and
ends with more than one unit of the same currency. (a) Show howto find out whether
a matrix of exchange rates admits currency arbitrage. Hint:log(xy)= logx+ logy. (b)
Refine your algorithm so that it outputs a sequence of exchange steps that maximizes
the average profitper transaction.

Section 10.10 outlines further refinements of the Bellman–Ford algorithm that
are necessary for good performance in practice.

10.7 All-Pairs Shortest Paths and Node Potentials

The all-pairs problem is tantamount ton single-source problems and hence can be
solved in time O

(
n2m

)
. A considerable improvement is possible. We shall show

that it suffices to solve one general single-source problem plus n single-source
problems with nonnegative edge costs. In this way, we obtaina running time of
O(nm+n(m+nlogn)) = O

(
nm+n2 logn

)
. We need the concept of node potentials.

A (node) potential functionassigns a numberpot(v) to each nodev. For an edge
e= (v,w), we define itsreduced cost̄c(e) as

c̄(e) = pot(v)+c(e)−pot(w) .

Lemma 10.9. Let p and q be paths from v to w. Thenc̄(p) = pot(v)+c(p)−pot(w)
andc̄(p)≤ c̄(q) iff c(p)≤ c(q). In particular, the shortest paths with respect toc̄ are
the same as those with respect to c.

FR
E

E
C

O
P

Y
208 10 Shortest Paths

All-Pairs Shortest Paths in the Absence of Negative Cycles
add a new nodesand zero length edges(s,v) for all v // no new cycles, time O(m)
computeµ(v) for all v with Bellman–Ford // time O(nm)
setpot(v) = µ(v) and compute reduced costs ¯c(e) for e∈ E // time O(m)
forall nodesx do // time O(n(m+nlogn))

use Dijkstra’s algorithm to compute the reduced shortest-path distances̄µ(x,v)
using sourcex and the reduced edge costs ¯c

// translate distances back to original cost function // time O(m)
forall e= (v,w) ∈V ×V do µ(v,w) := µ̄(v,w)+pot(w)−pot(v) // use Lemma 10.9

Fig. 10.10.Algorithm for all-pairs shortest paths in the absence of negative cycles

Proof. The second and the third claim follow from the first. For the first claim, let
p = 〈e0, . . . ,ek−1〉, whereei = (vi ,vi+1), v = v0, andw = vk. Then

c̄(p) =
k−1

∑
i=0

c̄(ei) = ∑
0≤i<k

(pot(vi)+c(ei)−pot(vi+1))

= pot(v0)+ ∑
0≤i<k

c(ei)−pot(vk) = pot(v0)+c(p)−pot(vk) . ⊓⊔

Exercise 10.17.Node potentials can be used to generate graphs with negativeedge
costs but no negative cycles: generate a (random) graph, assign to every edgee a
(random) nonnegative costc(e), assign to every nodev a (random) potentialpot(v),
and set the cost ofe = (u,v) to c̄(e) = pot(u)+ c(e)− pot(v). Show that this rule
does not generate negative cycles.

Lemma 10.10.Assume that G has no negative cycles and that all nodes can be
reached from s. Let pot(v) = µ(v) for v∈V. With these node potentials, the reduced
edge costs are nonnegative.

Proof. Since all nodes are reachable froms and since there are no negative cycles,
µ(v)∈R for all v. Thus the reduced costs are well defined. Consider an arbitrary edge
e= (v,w). We haveµ(v)+c(e)≥ µ(w), and thus ¯c(e) = µ(v)+c(e)−µ(w)≥ 0. ⊓⊔

Theorem 10.11.The all-pairs shortest-path problem for a graph without negative
cycles can be solved in timeO

(
nm+n2 logn

)
.

Proof. The algorithm is shown in Fig. 10.10. We add an auxiliary nodes and zero-
cost edges(s,v) for all nodes of the graph. This does not create negative cycles
and does not changeµ(v,w) for any of the existing nodes. Then we solve the single-
source problem for the sources, and setpot(v) = µ(v) for all v. Next we compute the
reduced costs and then solve the single-source problem for each nodex by means of
Dijkstra’s algorithm. Finally, we translate the computed distances back to the original
cost function. The computation of the potentials takes timeO(nm), and then shortest-
path calculations take time O(n(m+nlogn)). The preprocessing and postprocessing
take linear time. ⊓⊔

FR
E

E
C

O
P

Y
10.8 Shortest-Path Queries 209

The assumption thatG has no negative cycles can be removed [133].

Exercise 10.18.Thediameter Dof a graphG is defined as the largest distance be-
tween any two of its nodes. We can easily compute it using an all-pairs compu-
tation. Now we want to consider ways toapproximatethe diameter of a strongly
connected graph using a constant number of single-source computations. (a) For
any starting nodes, let D′(s) := maxu∈V µ(u). Show thatD′(s) ≤ D ≤ 2D′(s) for
undirected graphs. Also, show that no such relation holds for directed graphs. Let
D′′(s) :=maxu∈V µ(u,s). Show that max(D′(s),D′′(s)) ≤D ≤ D′(s)+D′′(s) for both
undirected and directed graphs. (b) How should a graph be represented to support
both forward and backward search? (c) Can you improve the approximation by con-
sidering more than one nodes?

10.8 Shortest-Path Queries

We are often interested in the shortest path from a specific source nodes to a spe-
cific target nodet; route planning in a traffic network is one such scenario. We shall
explain some techniques for solving suchshortest-path queriesefficiently and argue
for their usefulness for the route-planning application.

We start with a technique calledearly stopping. We run Dijkstra’s algorithm to
find shortest paths starting ats. We stop the search as soon ast is removed from the
priority queue, because at this point in time the shortest path tot is known. This helps
except in the unfortunate case wheret is the node farthest froms. On average, early
stopping saves a factor of two in scanned nodes in any application. In practical route
planning, early stopping saves much more because modern carnavigation systems
have a map of an entire continent but are mostly used for distances up to a few
hundred kilometers.

Another simple and general heuristic isbidirectional search, from s forward and
from t backward until the search frontiers meet. More precisely, we run two copies
of Dijkstra’s algorithm side by side, one starting froms and one starting fromt (and
running on the reversed graph). The two copies have their ownqueues, sayQs and
Qt , respectively. We grow the search regions at about the same speed, for example
by removing a node fromQs if min Qs ≤ minQt and a node fromQt otherwise.

It is tempting to stop the search once the first nodeu has been removed from
both queues, and to claim thatµ(t) = µ(s,u)+ µ(u,t). Observe that execution of
Dijkstra’s algorithm on the reversed graph with a starting nodet determinesµ(u,t).
This is not quite correct, but almost so.

Exercise 10.19.Give an example whereu is not on the shortest path froms to t.

However, we have collected enough information once some node u has been
removed from both queues. Letds anddt denote the tentative-distance labels at the
time of termination in the runs with sources and sourcet, respectively. We show
that µ(t) < µ(s,u) + µ(u,t) implies the existence of a nodev ∈ Qs with µ(t) =
ds[v]+dt[v].

FR
E

E
C

O
P

Y
210 10 Shortest Paths

Let p = 〈s= v0, . . . ,vi ,vi+1, . . . ,vk = t〉 be a shortest path froms to t. Let i be
maximal such thatvi has been removed fromQs. Thends[vi+1] = µ(s,vi+1) and
vi+1 ∈ Qs when the search stops. Also,µ(s,u)≤ µ(s,vi+1), sinceu has already been
removed fromQs, butvi+1 has not. Next, observe that

µ(s,vi+1)+ µ(vi+1,t) = c(p) < µ(s,u)+ µ(u,t) ,

sincep is a shortest path froms to t. By subtractingµ(s,vi+1), we obtain

µ(vi+1,t) < µ(s,u)− µ(s,vi+1)
︸ ︷︷ ︸

≤0

+µ(u,t) ≤ µ(u,t)

and hence, sinceu has been scanned fromt, vi+1 must also have been scanned from
t, i.e.,dt [vi+1] = µ(vi+1,t) when the search stops. So we can determine the shortest
distance froms to t by inspecting not only the first node removed from both queues,
but also all nodes in, say,Qs. We iterate over all such nodesv and determine the
minimum value ofds[v]+dt [v].

Dijkstra’s algorithm scans nodes in order of increasing distance from the source.
In other words, it grows a circle centered on the source node.The circle is defined by
the shortest-path metric in the graph. In the route-planning application for a road net-
work, we may also consider geometric circles centered on thesource and argue that
shortest-path circles and geometric circles are about the same. We can then estimate
the speedup obtained by bidirectional search using the following heuristic argument:
a circle of a certain diameter has twice the area of two circles of half the diameter.
We could thus hope that bidirectional search will save a factor of two compared with
unidirectional search.

Exercise 10.20 (bidirectional search).(a) Consider bidirectional search in a grid
graph with unit edge weights. How much does it save over unidirectional search? (*b)
Try to find a family of graphs where bidirectional search visits exponentially fewer
nodes on average than does unidirectional search. Hint: consider random graphs or
hypercubes. (c) Give an example where bidirectional searchin a real road network
takeslonger than unidirectional search. Hint: consider a densely inhabitated city
with sparsely populated surroundings. (d) Design a strategy for switching between
forward and backward search such that bidirectional searchwill neverinspect more
than twice as many nodes as unidirectional search.

We shall next describe two techniques that are more complex and less generally
applicable: however, if they are applicable, they usually result in larger savings. Both
techniques mimic human behavior in route planning.

10.8.1 Goal-Directed Search

The idea is to bias the search space such that Dijkstra’s algorithm does not grow
a disk but a region protruding toward the target; see Fig. 10.11. Assume we know
a function f : V → R that estimates the distance to the target, i.e.,f (v) estimates

FR
E

E
C

O
P

Y
10.8 Shortest-Path Queries 211

µ(v,t) for all nodesv. We use the estimates to modify the distance function. For
eache = (u,v), let4 c̄(e) = c(e) + f (v)− f (u). We run Dijkstra’s algorithm with
the modified distance function. We know already that node potentials do not change
shortest paths, and hence correctness is preserved. Tentative distances are related via
d̄[v] = d[v] + f (v)− f (s). An alternative view of this modification is that we run
Dijkstra’s algorithm with the original distance function but remove the node with
minimal valued[v]+ f (v) from the queue. The algorithm just described is known as
A∗-search.

ss tt

Fig. 10.11. The standard Dijkstra search grows a circular region centered on the source; goal-
directed search grows a region protruding toward the target

Before we state requirements on the estimatef , let us see one specific example.
Assume, in a thought experiment, thatf (v) = µ(v,t). Thenc̄(e) = c(e)+ µ(v,t)−
µ(u,t) and hence edges on a shortest path froms to t have a modified cost equal to
zero and all other edges have a positive cost. Thus Dijkstra’s algorithm only follows
shortest paths, without looking left or right.

The function f must have certain properties to be useful. First, we want the
modified distances to be nonnegative. So, we needc(e)+ f (v) ≥ f (u) for all edges
e= (u,v). In other words, our estimate of the distance fromu should be at most our
estimate of the distance fromv plus the cost of going fromu to v. This property is
called consistency of estimates. We also want to be able to stop the search whent
is removed from the queue. This works iff is a lower bound on the distance to the
target, i.e.,f (v) ≤ µ(v,t) for all v ∈ V. Then f (t) = 0. Consider the point in time
whent is removed from the queue, and letp be any path froms to t. If all edges ofp
have been relaxed at termination,d[t]≤ c(p). If not all edges ofp have been relaxed
at termination, there is a nodev on p that is contained in the queue at termination.
Thend(t)+ f (t) ≤ d(v)+ f (v), sincet was removed from the queue butv was not,
and hence

d[t] = d[t]+ f (t)≤ d[v]+ f (v) ≤ d[v]+ µ(v,t)≤ c(p) .

In either case, we haved[t] ≤ c(p), and hence the shortest distance froms to t is
known as soon ast is removed from the queue.

What is a good heuristic function for route planning in a roadnetwork? Route
planners often give a choice betweenshortestand fastestconnections. In the case

4 In Sect. 10.7, we added the potential of the source and subtracted the potential of the target.
We do exactly the opposite now. The reason for changing the sign convention is that in
Lemma 10.10, we usedµ(s,v) as the node potential. Now,f estimatesµ(v,t).

FR
E

E
C

O
P

Y
212 10 Shortest Paths

of shortest paths, a feasible lower boundf (v) is the straight-line distance betweenv
andt. Speedups by a factor of roughly four are reported in the literature. For fastest
paths, we may use the geometric distance divided by the speedassumed for the best
kind of road. This estimate is extremely optimistic, since targets are frequently in the
center of a town, and hence no good speedups have been reported. More sophisticated
methods for computing lower bounds are known; we refer the reader to [77] for a
thorough discussion.

10.8.2 Hierarchy

Road networks usually contain a hierarchy of roads: throughways, state roads, county
roads, city roads, and so on. Average speeds are usually higher on roads of higher
status, and therefore the fastest routes frequently followthe pattern that one starts
on a road of low status, changes several times to roads of higher status, drives the
largest fraction of the path on a road of high status, and finally changes down to
lower-status roads near the target. A heuristic approach may therefore restrict the
search to high-status roads except for suitably chosen neighborhoods of the source
and target. Observe, however, that the choice of neighborhood is nonobvious, and
that this heuristic sacrifices optimality. You may be able tothink of an example from
your driving experience where shortcuts over small roads are required even far away
from the source and target. Exactness can be combined with the idea of hierarchies if
the hierarchy is defined algorithmically and is not taken from the official classifica-
tion of roads. We now outline one such approach [165], calledhighway hierarchies.
It first defines a notion of locality, say anything within a distance of 10 km from
either the source or the target. An edge(u,v) ∈ E is ahighway edgewith respect to
this notion of locality if there is a source nodes and a target nodet such that(u,v)
is on the fastest path froms to t, v is not within the local search radius ofs, andu
is not within the local (backward) search radius oft. The resulting network is called
thehighway network. It usually has many vertices of degree two. Think of a fast road
to which a slow road connects. The slow road is not used on any fastest path outside
the local region of a nearby source or nearby target, and hence will not be in the
highway network. Thus the intersection will have degree three in the original road
network, but will have degree two in the highway network. Twoedges joined by a
degree-two node may be collapsed into a single edge. In this way, thecore of the
highway network is determined. Iterating this procedure offinding a highway net-
work and contracting degree-two nodes leads to a hierarchy of roads. For example,
in the case of the road networks of Europe and North America, ahierarchy of up
to ten levels resulted. Route planning using the resulting highway hierarchy can be
several thousand times faster than Dijkstra’s algorithm.

10.8.3 Transit Node Routing

Using another observation from daily life, we can get even faster [15]. When you
drive to somewhere “far away”, you will leave your current location via one of only
a few “important” traffic junctions. It turns out that in real-world road networks about

FR
E

E
C

O
P

Y
10.9 Implementation Notes 213

Fig. 10.12.Finding the optimal travel time between two points (the flags) somewhere be-
tween Saarbrücken and Karlsruhe amounts to retrieving the 2×4 access nodes(diamonds),
performing 16 table lookups between all pairs of access nodes, and checking that the two disks
defining thelocality filter do not overlap. The small squares indicate further transit nodes

99% of all quickest paths go through about O(
√

n) importanttransit nodesthat can be
automatically selected, for example using highway hierarchies. Moreover, for each
particular source or target node, all long-distance connections go through one of
about ten of these transit nodes – theaccess nodes. During preprocessing, we com-
pute a complete distance table between the transit nodes, and the distances from all
nodes to their access nodes. Now, suppose we have a way to tellthat a sources and
a targett are sufficiently far apart.5 There must then be access nodesas andat such
that µ(t) = µ(as)+ µ(as,at)+ µ(at ,t). All these distances have been precomputed
and there are only about ten candidates foras and forat , respectively, i.e., we need
(only) about 100 accesses to the distance table. This can be more than 1 000 000
times faster than Dijkstra’s algorithm. Local queries can be answered using some
other technique that will profit from the closeness of the source and target. We can
also cover local queries using additional precomputed tables with more local infor-
mation. Figure 10.12 from [15] gives an example.

10.9 Implementation Notes

Shortest-path algorithms work over the set of extended reals R∪ {+∞,−∞}. We
may ignore−∞, since it is needed only in the presence of negative cycles and, even
there, it is needed only for the output; see Sect. 10.6. We canalso get rid of+∞ by
noting thatparent(v) = ⊥ iff d[v] = +∞, i.e., whenparent(v) = ⊥, we assume that
d[v] = +∞ and ignore the number stored ind[v].

5 We may need additional preprocessing to decide this.

FR
E

E
C

O
P

Y
214 10 Shortest Paths

A refined implementation of the Bellman–Ford algorithm [187, 131] explicitly
maintains a current approximationT of the shortest-path tree. Nodes still to be
scanned in the current iteration of the main loop are stored in a setQ. Consider
the relaxation of an edgee= (u,v) that reducesd[v]. All descendants ofv in T will
subsequently receive a newd-value. Hence, there is no reason to scan these nodes
with their currentd-values and one may remove them fromQ andT. Furthermore,
negative cycles can be detected by checking whetherv is an ancestor ofu in T.

10.9.1 C++

LEDA [118] has a special priority queue classnode_pq that implements priority
queues of graph nodes. Both LEDA and the Boost graph library [27] have imple-
mentations of the Dijkstra and Bellman–Ford algorithms andof the algorithms for
acyclic graphs and the all-pairs problem. There is a graph iterator based on Dijkstra’s
algorithm that allows more flexible control of the search process. For example, one
can use it to search until a given set of target nodes has been found. LEDA also pro-
vides a function that verifies the correctness of distance functions (see Exercise 10.8).

10.9.2 Java

JDSL [78] provides Dijkstra’s algorithm for integer edge costs. This implementation
allows detailed control over the search similarly to the graph iterators of LEDA and
Boost.

10.10 Historical Notes and Further Findings

Dijkstra [56], Bellman [18], and Ford [63] found their algorithms in the 1950s. The
original version of Dijkstra’s algorithm had a running timeO

(
m+n2

)
and there

is a long history of improvements. Most of these improvements result from better
data structures for priority queues. We have discussed binary heaps [208], Fibonacci
heaps [68], bucket heaps [52], and radix heaps [9]. Experimental comparisons can
be found in [40, 131]. For integer keys, radix heaps are not the end of the story. The
best theoretical result is O(m+nloglogn) time [194]. Interestingly, forundirected
graphs, linear time can be achieved [190]. The latter algorithm still scans nodes one
after the other, but not in the same order as in Dijkstra’s algorithm.

Meyer [139] gave the first shortest-path algorithm with linear average-case run-
ning time. The algorithm ALD was found by Goldberg [76]. For graphs with bounded
degree, the∆ -stepping algorithm [140] is even simpler. This uses bucketqueues and
also yields a good parallel algorithm for graphs with bounded degree and small di-
ameter.

Integrality of edge costs is also of use when negative edge costs are allowed.
If all edge costs are integers greater than−N, a scaling algorithmachieves a time
O(m

√
nlogN) [75].

FR
E

E
C

O
P

Y
10.10 Historical Notes and Further Findings 215

In Sect. 10.8, we outlined a small number of speedup techniques for route plan-
ning. Many other techniques exist. In particular, we have not done justice to ad-
vanced goal-directed techniques, combinations of different techniques, etc. Recent
overviews can be found in [166, 173]. Theoretical performance guarantees beyond
Dijkstra’s algorithm are more difficult to achieve. Positive results exist for special
families of graphs such as planar graphs and when approximate shortest paths suf-
fice [60, 195, 192].

There is a generalization of the shortest-path problem thatconsiders several cost
functions at once. For example, your grandfather might wantto know the fastest
route for visiting you but he only wants routes where he does not need to refuel his
car, or you may want to know the fastest route subject to the condition that the road
toll does not exceed a certain limit. Constrained shortest-path problems are discussed
in [86, 135].

Shortest paths can also be computed in geometric settings. In particular, there
is an interesting connection to optics. Different materials have different refractive
indices, which are related to the speed of light in the material. Astonishingly, the
laws of optics dictate that a ray of light always travels along a shortest path.

Exercise 10.21.An ordered semigroup is a setS together with an associative and
commutative operation+, a neutral element 0, and a linear ordering≤ such that for
all x, y, andz, x ≤ y impliesx+ z≤ y+ z. Which of the algorithms of this chapter
work when the edge weights are from an ordered semigroup? Which of them work
under the additional assumption that 0≤ x for all x?

FR
E

E
C

O
P

Y

