
FR
E

E
C

O
P

Y
146 7 Sorted Sequences

2 195 73 11 13 17

navigation data structure

∞

Fig. 7.1.A sorted sequence as a doubly linked list plus a navigation data structure

one for each element and one additional “dummy item”. We use the dummy item
to store a special key value+∞ which is larger than all conceivable keys. We can
then define the result oflocate(k) as the handle to the smallest list iteme≥ k. If
k is larger than all keys inM, locatewill return a handle to the dummy item. In
Sect. 3.1.1, we learned that doubly linked lists support a large set of operations; most
of them can also be implemented efficiently for sorted sequences. For example, we
“inherit” constant-time implementations forfirst, last, succ, andpred. We shall see
constant-amortized-time implementations forremove(h : Handle), insertBefore, and
insertAfter, and logarithmic-time algorithms for concatenating and splitting sorted
sequences. The indexing operator[·] and finding the position of an element in the
sequence also take logarithmic time. Before we delve into a description of the navi-
gation data structure, let us look at some concrete applications of sorted sequences.

Best-first heuristics. Assume that we want to pack some items into a set of bins.
The items arrive one at a time and have to be put into a bin immediately. Each itemi
has a weightw(i), and each bin has a maximum capacity. The goal is to minimize the
number of bins used. One successful heuristic solution to this problem is to put itemi
into the bin that fits best, i.e., the bin whose remaining capacity is the smallest among
all bins that have a residual capacity at least as large asw(i) [41]. To implement this
algorithm, we can keep the bins in a sequenceq sorted by their residual capacity. To
place an item, we callq.locate(w(i)), remove the bin that we have found, reduce its
residual capacity byw(i), and reinsert it intoq. See also Exercise 12.8.

Sweep-line algorithms.Assume that you have a set of horizontal and vertical line
segments in the plane and want to find all points where two segments intersect. A
sweep-line algorithm moves a vertical line over the plane from left to right and main-
tains the set of horizontal lines that intersect the sweep line in a sorted sequenceq.
When the left endpoint of a horizontal segment is reached, itis inserted intoq, and
when its right endpoint is reached, it is removed fromq. When a vertical line segment
is reached at a positionx that spans the vertical range[y,y′], we calls.locate(y) and
scanq until we reach the keyy′.2 All horizontal line segments discovered during this
scan define an intersection. The sweeping algorithm can be generalized to arbitrary
line segments [21], curved objects, and many other geometric problems [46].

2 This range queryoperation is also discussed in Sect. 7.3.

FR
E

E
C

O
P

Y
7.1 Binary Search Trees 147

Database indexes.A key problem in databases is to make large collections of data
efficiently searchable. A variant of the(a,b)-tree data structure described in Sect. 7.2
is one of the most important data structures used for databases.

The most popular navigation data structure is that ofsearch trees. We shall fre-
quently use the name of the navigation data structure to refer to the entire sorted
sequence data structure.3 We shall introduce search tree algorithms in three steps. As
a warm-up, Sect. 7.1 introduces (unbalanced)binary search treesthat supportlocate
in O(logn) time under certain favorable circumstances. Since binary search trees are
somewhat difficult to maintain under insertions and removals, we then switch to a
generalization,(a,b)-trees that allows search tree nodes of larger degree. Section 7.2
explains how(a,b)-trees can be used to implement all three basic operations inlog-
arithmic worst-case time. In Sects. 7.3 and 7.5, we shall augment search trees with
additional mechanisms that support further operations. Section 7.4 takes a closer
look at the (amortized) cost of update operations.

7.1 Binary Search Trees

Navigating a search tree is a bit like asking your way around in a foreign city. You
ask a question, follow the advice given, ask again, follow the advice again, . . . , until
you reach your destination.

A binary search treeis a tree whose leaves store the elements of a sorted sequence
in sorted order from left to right. In order to locate a keyk, we start at the root of
the tree and follow the unique path to the appropriate leaf. How do we identify the
correct path? To this end, the interior nodes of a search treestore keys that guide the
search; we call these keyssplitter keys. Every nonleaf node in a binary search tree
with n≥ 2 leaves has exactly two children, aleft child and aright child. The splitter
keysassociated with a node has the property that all keysk stored in the left subtree
satisfyk≤ sand all keysk stored in the right subtree satisfyk > s.

With these definitions in place, it is clear how to identify the correct path when
locatingk. Let s be the splitter key of the current node. Ifk ≤ s, go left. Otherwise,
go right. Figure 7.2 gives an example. Recall that the heightof a tree is the length
of its longest root–leaf path. The height therefore tells usthe maximum number of
search steps needed tolocatea leaf.

Exercise 7.1.Prove that a binary search tree withn≥ 2 leaves can be arranged such
that it has height⌈logn⌉.

A search tree with height⌈logn⌉ is calledperfectly balanced. The resulting loga-
rithmic search time is a dramatic improvement compared withtheΩ(n) time needed
for scanning a list. The bad news is that it is expensive to keep perfect balance when
elements are inserted and removed. To understand this better, let us consider the
“naive” insertion routine depicted in Fig. 7.3. We locate the keyk of the new element
e before its successore′, inserte into the list, and then introduce a new nodev with

3 There is also a variant of search trees where the elements arestored in all nodes of the tree.

FR
E

E
C

O
P

Y
148 7 Sorted Sequences

2 5 7 11 133 17 19

191152

133

7

17

∞ rotate left

rotate rightx

x

y

y
A

A BB C

C

Fig. 7.2. Left: the sequence〈2,3,5,7,11,13,17,19〉 represented by a binary search tree. In
each node, we show the splitter key at the top and the pointersto the children at the bot-
tom. Right: rotation of a binary search tree. The triangles indicate subtrees. Observe that the
ancestor relationship between nodesx andy is interchanged

e′ e′ e′e′ ee

u

u
u

u

TTT T

vv
inserteinserte

Fig. 7.3.Naive insertion into a binary search tree. A triangle indicates an entire subtree

∞∞∞∞

insert 17 insert 13 insert 11

11

11

13
13

1313

17
17

1717

17

1719

19
19

19
19

191919

Fig. 7.4.Naively inserting sorted elements leads to a degenerate tree

left child e and right childe′. The old parentu of e′ now points tov. In the worst
case, every insertion operation will locate a leaf at the maximum depth so that the
height of the tree increases every time. Figure 7.4 gives an example: the tree may
degenerate to a list; we are back to scanning.

An easy solution to this problem is a healthy portion of optimism; perhaps it will
not come to the worst. Indeed, if we insertn elements inrandomorder, the expected
height of the search tree is≈ 2.99logn [51]. We shall not prove this here, but outline
a connection to quicksort to make the result plausible. For example, consider how
the tree in Fig. 7.2 can be built using naive insertion. We first insert 17; this splits
the set into subsets{2,3,5,7,11,13} and{19}. From the elements in the left subset,

FR
E

E
C

O
P

Y
7.2 (a,b)-Trees and Red–Black Trees 149

we first insert 7; this splits the left subset into{2,3,5} and{11,13}. In quicksort
terminology, we would say that 17 is chosen as the splitter inthe top-level call and
that 7 is chosen as the splitter in the left recursive call. Sobuilding a binary search tree
and quicksort are completely analogous processes; the samecomparisons are made,
but at different times. Every element of the set is compared with 17. In quicksort,
these comparisons take place when the set is split in the top-level call. In building
a binary search tree, these comparisons take place when the elements of the set are
inserted. So the comparison between 17 and 11 takes place either in the top-level
call of quicksort or when 11 is inserted into the tree. We haveseen (Theorem 5.6)
that the expected number of comparisons in a randomized quicksort ofn elements
is O(nlogn). By the above correspondence, the expected number of comparisons in
building a binary tree by random insertions is also O(nlogn). Thus any insertion
requires O(logn) comparisons on average. Even more is true; with high probability
each single insertion requires O(logn) comparisons, and the expected height is≈
2.99logn.

Can we guarantee that the height stays logarithmic in the worst case? Yes and
there are many different ways to achieve logarithmic height. We shall survey these
techniques in Sect. 7.7 and discuss two solutions in detail in Sect. 7.2. We shall
first discuss a solution which allows nodes of varying degree, and then show how to
balance binary trees using rotations.

Exercise 7.2.Figure 7.2 indicates how the shape of a binary tree can be changed by
a transformation calledrotation. Apply rotations to the tree in Fig. 7.2 so that the
node labelled 11 becomes the root of the tree.

Exercise 7.3.Explain how to implement animplicit binary search tree, i.e., the tree is
stored in an array using the same mapping of the tree structure to array positions as in
the binary heaps discussed in Sect. 6.1. What are the advantages and disadvantages
compared with a pointer-based implementation? Compare searching in an implicit
binary tree with binary searching in a sorted array.

7.2 (a,b)-Trees and Red–Black Trees

An (a,b)-tree is a search tree where all interior nodes, except for the root, have
an outdegree betweena and b. Here,a and b are constants. The root has degree
one for a trivial tree with a single leaf. Otherwise, the roothas a degree between 2
andb. For a ≥ 2 andb ≥ 2a− 1, the flexibility in node degrees allows us to effi-
ciently maintain the invariant thatall leaves have the same depth, as we shall see
in a short while. Consider a node with outdegreed. With such a node, we associate
an arrayc[1..d] of pointers to children and a sorted arrays[1..d−1] of d−1 splitter
keys. The splitters guide the search. To simplify the notation, we additionally define
s[0] = −∞ ands[d] = ∞. The keys of the elementse contained in thei-th child c[i],
1 ≤ i ≤ d, lie between thei − 1-th splitter (exclusive) and thei-th splitter (inclu-
sive), i.e.,s[i−1] < key(e)≤ s[i]. Figure 7.5 shows a(2,4)-tree storing the sequence
〈2,3,5,7,11,13,17,19〉.

FR
E

E
C

O
P

Y
150 7 Sorted Sequences

2 195 73 11 13 17

5

2 3 19

17

7 11 13

∞

r

ℓ

h
e
ig

h
t=

2
Fig. 7.5.Representation of〈2,3,5,7,11,13,17,19〉 by a(2,4)-tree. The tree has height 2

ClassABHandle: Pointer to ABItem or Item
// an ABItem (Item) is an item in the navigation data structure (doubly linked list)

ClassABItem(splitters: Sequenceof Key, children: Sequenceof ABHandle)
d = |children| : 1..b // outdegree
s = splitters : Array [1..b−1] of Key
c = children : Array [1..b] of Handle

Function locateLocally(k : Key) : N
return min{i ∈ 1..d : k≤ s[i]}

Function locateRec(k : Key, h: N) : Handle
i:=locateLocally(k)
if h = 1 then return c[i]
else returnc[i]→locateRec(k, h−1) //

7 11 13

13

1 2 4

12

3
i

k = 12

h = 1 h > 1

ClassABTree(a≥ 2 :N, b≥ 2a−1 :N) of Element
ℓ = 〈〉 : List of Element
r : ABItem(〈〉,〈ℓ.head〉)
height =1 :N //

r

ℓ
∞

// Locate the smallest Item with keyk′ ≥ k
Function locate(k : Key) : Handlereturn r.locateRec(k,height)

Fig. 7.6. (a,b)-trees. AnABItemis constructed from a sequence of keys and a sequence of
handles to the children. The outdegree is the number of children. We allocate space for the
maximum possible outdegreeb. There are two functions local toABItem: locateLocally(k)
locatesk among the splitters andlocateRec(k,h) assumes that theABItemhas heighth and
descendsh levels down the tree. The constructor forABTreecreates a tree for the empty
sequence. The tree has a single leaf, the dummy element, and the root has degree one. Locating
a keyk in an(a,b)-tree is solved by callingr.locateRec(k,h), wherer is the root andh is the
height of the tree

Lemma 7.1.An (a,b)-tree for n elements has a height at most

1+

⌊

loga
n+1

2

⌋

.

FR
E

E
C

O
P

Y
7.2 (a,b)-Trees and Red–Black Trees 151

Proof. The tree hasn+1 leaves, where the “+1” accounts for the dummy leaf+∞.
If n = 0, the root has degree one and there is a single leaf. So, assume n≥ 1. Leth
be the height of the tree. Since the root has degree at least two and every other node
has degree at leasta, the number of leaves is at least 2ah−1. Son+ 1 ≥ 2ah−1, or
h≤ 1+ loga(n+1)/2. Since the height is an integer, the bound follows. ⊓⊔

Exercise 7.4.Prove that the height of an(a,b)-tree for n elements is at least
⌈logb(n+1)⌉. Prove that this bound and the bound given in Lemma 7.1 are tight.

Searching in an(a,b)-tree is only slightly more complicated than searching in a
binary tree. Instead of performing a single comparison at a nonleaf node, we have to
find the correct child among up tob choices. Using binary search, we need at most
⌈logb⌉ comparisons for each node on the search path. Figure 7.6 gives pseudocode
for (a,b)-trees and thelocateoperation. Recall that we use the search tree as a way to
locate items of a doubly linked list and that the dummy list item is considered to have
key value∞. This dummy item is the rightmost leaf in the search tree. Hence, there
is no need to treat the special case of root degree 0, and the handle of the dummy
item can serve as a return value when one is locating a key larger than all values in
the sequence.

Exercise 7.5.Prove that the total number of comparisons in a search is bounded by
⌈logb⌉(1+ loga(n+ 1)/2). Assumeb ≤ 2a. Show that this number is O(logb) +
O(logn). What is the constant in front of the logn term?

To insert an elemente, we first descend the tree recursively to find the smallest
sequence elemente′ ≥ e. If e ande′ have equal keys,e′ is replaced bye.

Otherwise,e is inserted into the sorted listℓ beforee′. If e′ was thei-th child
c[i] of its parent nodev, thene will become the newc[i] andkey(e) becomes the
corresponding splitter elements[i]. The old childrenc[i..d] and their corresponding
splitterss[i..d−1] are shifted one position to the right. Ifd was less thanb, d can be
incremented and we are finished.

The difficult part is when a nodev already has a degreed = b and now would
get a degreeb+1. Lets′ denote the splitters of this illegal node,c′ its children, and

c1c1 c2c2 c3c3 c4c4 c5c5

u u

vv t

k

k

Fig. 7.7. Node splitting: the nodev of degreeb+ 1 (here 5) is split into a node of degree
⌊(b+1)/2⌋ and a node of degree⌈(b+1)/2⌉. The degree of the parent increases by one. The
splitter key separating the two “parts” ofv is moved to the parent

FR
E

E
C

O
P

Y
152 7 Sorted Sequences

// Example:

5

2 3 12

122

3

5

5

2 3

2 53

5122

2 3 12

5

∞

∞

∞
r

r

r

k=3,t =

// 〈2,3,5〉.insert(12)
ProcedureABTree::insert(e : Element)

(k,t) := r.insertRec(e,height, ℓ)
if t 6= null then // root was split

r :=allocateABItem(〈k〉,〈r,t〉)
height++

// Insert a new element into a subtree of heighth.
// If this splits the root of the subtree,
// return the new splitter and subtree handle
Function ABItem::insertRec(e : Element, h: N, ℓ : List of Element) : Key×ABHandle

i := locateLocally(e)
if h = 1 then //base case

if key(c[i]→ e) = key(e) then
c[i]→ e:=e
return (⊥,null)

else
(k,t) :=(key(e), ℓ.insertBefore(e,c[i])) //

2 3 5

2 3 5 12

∞

∞
e c[i]

c[i]

else
(k,t) :=c[i]→ insertRec(e,h−1, ℓ)
if t = null then return (⊥,null)

endif

s′ := 〈s[1], . . . ,s[i−1],k,s[i], . . . ,s[d−1]〉
c′ := 〈c[1], . . . ,c[i−1],t,c[i], . . . ,c[d]〉 //

5

5

2 3 12

2 3

t

∞

s′

c′
12= k

if d < b then // there is still room here
(s,c,d) :=(s′,c′,d+1)
return (⊥,null)

else // splitthis node
d :=⌊(b+1)/2⌋
s:=s′[b+2−d..b]
c:=c′[b+2−d..b+1] //

5

5

2

2 3 12

12

return(3,)

∞

s
c

return (s′[b+1−d],allocateABItem(s′[1..b−d],c′[1..b+1−d]))

Fig. 7.8.Insertion into an(a,b)-tree

u the parent ofv (if it exists). The solution is tosplit v in the middle (see Fig. 7.7).
More precisely, we create a new nodet to the left ofv and reduce the degree ofv
to d = ⌈(b+1)/2⌉ by moving theb+ 1−d leftmost child pointersc′[1..b+ 1−d]
and the corresponding keyss′[1..b−d]. The old nodev keeps thed rightmost child
pointersc′[b+2−d..b+1] and the corresponding splitterss′[b+2−d..b].

FR
E

E
C

O
P

Y
7.2 (a,b)-Trees and Red–Black Trees 153

The “leftover” middle keyk = s′[b+1−d] is an upper bound for the keys reach-
able fromt. It and the pointer tot are needed in the predecessoru of v. The situation
for u is analogous to the situation forv before the insertion: ifv was thei-th child
of u, t displaces it to the right. Nowt becomes thei-th child, andk is inserted as the
i-th splitter. The addition oft as an additional child ofu increases the degree ofu. If
the degree ofu becomesb+ 1, we splitu. The process continues until either some
ancestor ofv has room to accommodate the new child or the root is split.

In the latter case, we allocate a new root node pointing to thetwo fragments of
the old root. This is the only situation where the height of the tree can increase. In this
case, the depth of all leaves increases by one, i.e., we maintain the invariant that all
leaves have the same depth. Since the height of the tree is O(logn) (see Lemma 7.1),
we obtain a worst-case execution time of O(logn) for insert. Pseudocode is shown
in Fig. 7.8.4

We still need to argue thatinsert leaves us with a correct(a,b)-tree. When we
split a node of degreeb+1, we create nodes of degreed = ⌈(b+1)/2⌉ andb+1−d.
Both degrees are clearly at mostb. Also, b+ 1− ⌈(b+1)/2⌉ ≥ a if b ≥ 2a− 1.
Convince yourself thatb = 2a−2 will not work.

Exercise 7.6.It is tempting to streamlineinsertby callinglocateto replace the initial
descent of the tree. Why does this not work? Would it work if every node had a
pointer to its parent?

We now turn to the operationremove. The approach is similar to what we already
know from our study ofinsert. We locate the element to be removed, remove it
from the sorted list, and repair possible violations of invariants on the way back up.
Figure 7.9 shows pseudocode. When a parentu notices that the degree of its child
c[i] has dropped toa− 1, it combines this child with one of its neighborsc[i − 1]
or c[i + 1] to repair the invariant. There are two cases illustrated in Fig. 7.10. If the
neighbor has degree larger thana, we canbalancethe degrees by transferring some
nodes from the neighbor. If the neighbor has degreea, balancing cannot help since
both nodes together have only 2a−1 children, so that we cannot givea children to
both of them. However, in this case we canfusethem into a single node, since the
requirementb≥ 2a−1 ensures that the fused node has degreeb at most.

To fuse a nodec[i] with its right neighborc[i + 1], we concatenate their child
arrays. To obtain the corresponding splitters, we need to place the splitters[i] of the
parent between the splitter arrays. The fused node replacesc[i+1], c[i] is deallocated,
andc[i], together with the splitters[i], is removed from the parent node.

Exercise 7.7.Suppose a nodev has been produced by fusing two nodes as de-
scribed above. Prove that the ordering invariant is maintained: an elementereachable
through childv.c[i] has keyv.s[i −1] < key(e) ≤ v.s[i] for 1≤ i ≤ v.d.

Balancing two neighbors is equivalent to first fusing them and then splitting the
result, as in the operationinsert. Since fusing two nodes decreases the degree of their

4 We borrow the notationC :: m from C++ to define a methodm for classC.

FR
E

E
C

O
P

Y
154 7 Sorted Sequences

// Example:〈2,3,5〉.remove(5)
ProcedureABTree::remove(k : Key) // 5

2 3

2

3

5

...

∞

r

k
r.removeRec(k,height, ℓ)
if r.d = 1∧height> 1 then

r ′ := r; r := r ′.c[1]; disposer ′ //
2 3

2 3

∞

r

ProcedureABItem::removeRec(k : Key,h : N, ℓ : List of Element)
i := locateLocally(k)
if h = 1 then //base case

if key(c[i]→ e) = k then // there is sth to remove
ℓ.remove(c[i])
removeLocally(i) //

2

3

2 3

i

∞

r

s
c

else
c[i]→ removeRec(e,h−1, ℓ)
if c[i]→ d < a then // invariant needs repair

if i = d then i-- // make surei andi +1 are valid neighbors
s′ :=concatenate(c[i]→ s,〈s[i]〉,c[i +1]→ s))
c′ :=concatenate(c[i]→ c,c[i +1] → c)
d′ := |c′|
if d′ ≤ b then // fuse

(c[i +1] → s,c[i +1] → c,c[i +1]→ d) :=(s′,c′,d′)
disposec[i]; removeLocally(i) //

2 3

2 3

∞

r
s
c

s′

c′

i

else //balance
m:= ⌈d′/2⌉
(c[i]→ s,c[i]→ c,c[i]→ d) :=(s′[1..m−1],c′[1..m],m)
(c[i +1] → s, c[i +1]→ c, c[i +1]→ d) :=

(s′[m+1..d′−1], c′[m+1..d′], d′−m)
s[i] :=s′[m]

// Remove thei-th child from an ABItem
ProcedureABItem::removeLocally(i : N)

c[i..d−1] :=c[i +1..d]
s[i..d−2] :=s[i +1..d−1] // b c da a c d

zxx zy
i i

c
s

d--

Fig. 7.9.Removal from an(a,b)-tree

parent, the need to fuse or balance might propagate up the tree. If the degree of the
root drops to one, we do one of two things. If the tree has height one and hence
contains only a single element, there is nothing to do and we are finished. Otherwise,
we deallocate the root and replace it by its sole child. The height of the tree decreases
by one.

The execution time ofremoveis also proportional to the height of the tree and
hence logarithmic in the size of the sorted sequence. We summarize the performance
of (a,b)-trees in the following theorem.

FR
E

E
C

O
P

Y
7.2 (a,b)-Trees and Red–Black Trees 155

c1 c1c1 c1 c2 c2c2 c2 c3 c3c3 c3c4 c4

vv v

k1

k1k2

k2 k

k

Fig. 7.10. Node balancing and fusing in (2,4)-trees: nodev has degreea−1 (here 1). In the
situation on theleft, it has a sibling of degreea+ 1 or more (here 3), and webalancethe
degrees. In the situation on theright, the sibling has degreea and wefuse vand its sibling.
Observe how keys are moved. When two nodes are fused, the degree of the parent decreases

or

Fig. 7.11. The correspondence between (2,4)-trees and red–black trees. Nodes of degree 2, 3,
and 4 as shown on theleft correspond to the configurations on theright. Red edges are shown
in bold

Theorem 7.2.For any integers a and b with a≥ 2 and b≥ 2a−1, (a,b)-trees sup-
port the operations insert, remove, and locate on sorted sequences of size n in time
O(logn).

Exercise 7.8.Give a more detailed implementation oflocateLocallybased on binary
search that needs at most⌈logb⌉ comparisons. Your code should avoid both explicit
use of infinite key values and special case treatments for extreme cases.

Exercise 7.9.Supposea = 2k andb = 2a. Show that(1+ 1
k) logn+1 element com-

parisons suffice to execute alocateoperation in an(a,b)-tree. Hint: it isnot quite
sufficient to combine Exercise 7.4 with Exercise 7.8 since this would give you an
additional term+k.

Exercise 7.10.Extend(a,b)-trees so that they can handle multiple occurrences of
the same key. Elements with identical keys should be treatedlast-in first-out, i.e.,
remove(k) should remove the least recently inserted element with keyk.

*Exercise 7.11 (red–black trees).A red–black treeis a binary search tree where
the edges are colored either red or black. Theblack depthof a nodev is the number
of black edges on the path from the root tov. The following invariants have to hold:

FR
E

E
C

O
P

Y
156 7 Sorted Sequences

(a) All leaves have the same black depth.
(b) Edges into leaves are black.
(c) No path from the root to a leaf contains two consecutive red edges.

Show that red–black trees and(2,4)-trees are isomorphic in the following sense:
(2,4)-trees can be mapped to red–black trees by replacing nodes ofdegree three
or four by two or three nodes, respectively, connected by rededges as shown in
Fig. 7.11. Red–black trees can be mapped to(2,4)-trees using the inverse transfor-
mation, i.e., components induced by red edges are replaced by a single node. Now
explain how to implement(2,4)-trees using a representation as a red–black tree.5 Ex-
plain how the operations of expanding, shrinking, splitting, merging, and balancing
nodes of the(2,4)-tree can be translated into recoloring and rotation operations in
the red–black tree. Colors are stored at the target nodes of the corresponding edges.

7.3 More Operations

Search trees support many operations in addition toinsert, remove, andlocate. We
shall study them in two batches. In this section, we shall discuss operations directly
supported by(a,b)-trees, and in Sect. 7.5 we shall discuss operations that require
augmentation of the data structure.

• min/max.The constant-time operationsfirst and last on a sorted list give us the
smallest and the largest element in the sequence in constanttime. In particular,
search trees implementdouble-ended priority queues, i.e., sets that allow locat-
ing and removing both the smallest and the largest element inlogarithmic time.
For example, in Fig. 7.5, the dummy element of listℓ gives us access to the
smallest element, 2, and to the largest element, 19, via itsnextandprevpointers,
respectively.

• Range queries.To retrieve all elements with keys in the range[x,y], we first locate
x and then traverse the sorted list until we see an element witha key larger than
y. This takes time O(logn+output size). For example, the range query[4,14]
applied to the search tree in Fig. 7.5 will find the 5, it subsequently outputs 7, 11,
13, and it stops when it sees the 17.

• Build/rebuild.Exercise 7.12 asks you to give an algorithm that converts a sorted
list or array into an(a,b)-tree in linear time. Even if we first have to sort the
elements, this operation is much faster than inserting the elements one by one.
We also obtain a more compact data structure this way.

Exercise 7.12.Explain how to construct an(a,b)-tree from a sorted list in linear
time. Which(2,4)-tree does your routine construct for the sequence〈1..17〉? Next,
remove the elements 4, 9, and 16.

5 This may be more space-efficient than a direct representation, if the keys are large.

FR
E

E
C

O
P

Y
7.3 More Operations 157

7.3.1 *Concatenation

Two sorted sequences can be concatenated if the largest element of the first se-
quence is smaller than the smallest element of the second sequence. If sequences
are represented as(a,b)-trees, two sequencesq1 andq2 can be concatenated in time
O(logmax(|q1|, |q2|)). First, we remove the dummy item fromq1 and concatenate
the underlying lists. Next, we fuse the root of one tree with an appropriate node of
the other tree in such a way that the resulting tree remains sorted and balanced. More
precisely, ifq1.height≥ q2.height, we descendq1.height−q2.heightlevels from the
root ofq1 by following pointers to the rightmost children. The nodev, that we reach
is then fused with the root ofq2. The new splitter key required is the largest key in
q1. If the degree ofv now exceedsb, v is split. From that point, the concatenation
proceeds like aninsert operation, propagating splits up the tree until the invariant
is fulfilled or a new root node is created. The caseq1.height< q2.height is a mir-
ror image. We descendq2.height−q1.heightlevels from the root ofq2 by following
pointers to the leftmost children, and fuse If we explicitly store the heights of the
trees, the operation runs in time O(1+ |q1.height−q2.height|) = O(log(|q1|+ |q2|)).
Figure 7.12 gives an example.

175

19

197 11 13 172 5

2 3

3 197 11 13 17

7 11 13

2 5

2 3

3

5 11 13 19

17 5:insert

1:delete 2:concatenate

3:fuse

4:split

∞

∞∞

q1

q2

Fig. 7.12.Concatenating(2,4)-trees for〈2,3,5,7〉 and〈11,13,17,19〉

7.3.2 *Splitting

We now show how to split a sorted sequence at a given element inlogarithmic time.
Consider a sequenceq = 〈w, . . . ,x,y, . . . ,z〉. Splitting q at y results in the sequences
q1 = 〈w, . . . ,x〉 andq2 = 〈y, . . . ,z〉. We implement splitting as follows. Consider the
path from the root to leafy. We split each nodev on this path into two nodes,vℓ

andvr . Nodevℓ gets the children ofv that are to the left of the path andvr gets the
children, that are to the right of the path. Some of these nodes may get no children.
Each of the nodes with children can be viewed as the root of an(a,b)-tree. Concate-
nating the left trees and a new dummy sequence element yieldsthe elements up to
x. Concatenating〈y〉 and the right trees produces the sequence of elements starting
from y. We can do these O(logn) concatenations in total time O(logn) by exploiting
the fact that the left trees have a strictly decreasing height and the right trees have
a strictly increasing height. Let us look at the trees on the left in more detail. Let

FR
E

E
C

O
P

Y
158 7 Sorted Sequences

r1, r2 to rk be the roots of the trees on the left and leth1, h2 to hh be their heights.
Thenh1 ≥ h2 ≥ . . . ≥ hk. We first concatenaterk−1 andrk in time O(1+hk−1−hk),
then concatenaterk−2 with the result in time O(1+hk−2−hk−1), then concatenate
rk−3 with the result in time O(1+hk−2−hk−1), and so on. The total time needed
for all concatenations is O

(

∑1≤i<k(1+hi −hi+1)
)

= O(k+h1−hk) = O(logn). Fig-
ure 7.13 gives an example.

Exercise 7.13.We glossed over one issue in the argument above. What is the height
of the tree resulting from concatenating the trees with roots rk to r i? Show that the
height ishi +O(1).

Exercise 7.14.Explain how to remove a subsequence〈e∈ q : α ≤ e≤ β 〉 from an
(a,b)-treeq in time O(logn).

1913

1911 13 17

2 3

2 5 73 2 5 73

3

2 5 7

11 17 1913

11

13

17 19

∞∞∞ ∞

split < 2,3,5,7,11,13,17,19 > at 11

Fig. 7.13.Splitting the(2,4)-tree for〈2,3,5,7,11,13,17,19〉 shown in Fig. 7.5 produces the
subtrees shown on theleft. Subsequently concatenating the trees surrounded by the dashed
lines leads to the(2,4)-trees shown on theright

7.4 Amortized Analysis of Update Operations

The best-case time for an insertion or removal is considerably smaller than the worst-
case time. In the best case, we basically pay for locating theaffected element, for
updating the sequence, and for updating the bottommost internal node. The worst
case is much slower.Split or fuseoperations may propagate all the way up the tree.

Exercise 7.15.Give a sequence ofn operations on(2,3)-trees that requiresΩ(nlogn)
split andfuseoperations.

We now show that theamortizedcomplexity is essentially equal to that of the
best case ifb is not at its minimum possible value but is at least 2a. In Sect. 7.5.1,
we shall see variants ofinsert andremovethat turn out to have constant amortized
complexity in the light of the analysis below.

Theorem 7.3.Consider an(a,b)-tree with b≥ 2a that is initially empty. For any
sequence of n insert or remove operations, the total number of split or fuse operations
is O(n).

FR
E

E
C

O
P

Y
7.4 Amortized Analysis of Update Operations 159

cost

remove

insert

balance: or

for parent+ for fuse +

splitfor+ + for parent

operation

operand

token
=leftover

split:
fuse:

Fig. 7.14.The effect of(a,b)-tree operations on the token invariant. Theupper partof the
figure illustrates the addition or removal of a leaf. The two tokens charged for an insert are
used as follows. When the leaf is added to a node of degree three or four, the two tokens are
put on the node. When the leaf is added to a node of degree two, the two tokens are not needed,
and the token from the node is also freed. Thelower part illustrates the use of the tokens in
balance, split, andfuseoperations

Proof. We give the proof for(2,4)-trees and leave the generalization to Exer-
cise 7.16. We use the bank account method introduced in Sect.3.3. Split and fuse
operations are paid for by tokens. These operations cost onetoken each. We charge
two tokens for eachinsertand one token for eachremove. and claim that this suffices
to pay for allsplit andfuseoperations. Note that there is at most onebalanceopera-
tion for eachremove, so that we can account for the cost ofbalancedirectly without
an accounting detour. In order to do the accounting, we associate the tokens with the
nodes of the tree and show that the nodes can hold tokens according to the following
table (the token invariant):

degree 1 2 3 4 5
tokens ◦◦ ◦ ◦◦ ◦◦◦◦

Note that we have included the cases of degree 1 and 5 that occur during rebalancing.
The purpose of splitting and fusing is to remove these exceptional degrees.

Creating an empty sequence makes a list with one dummy item and a root of
degree one. We charge two tokens for thecreateand put them on the root. Let us
look next at insertions and removals. These operations add or remove a leaf and
hence increase or decrease the degree of a node immediately above the leaf level.
Increasing the degree of a node requires up to two additionaltokens on the node (if
the degree increases from 3 to 4 or from 4 to 5), and this is exactly what we charge for
an insertion. If the degree grows from 2 to 3, we do not need additional tokens and
we are overcharging for the insertion; there is no harm in this. Similarly, reducing the
degree by one may require one additional token on the node (ifthe degree decreases

FR
E

E
C

O
P

Y
160 7 Sorted Sequences

from 3 to 2 or from 2 to 1). So, immediately after adding or removing a leaf, the
token invariant is satisfied.

We need next to consider what happens during rebalancing. Figure 7.14 summa-
rizes the following discussion graphically.

A split operation is performed on nodes of (temporary) degree five and results
in a node of degree three and a node of degree two. It also increases the degree of
the parent. The four tokens stored on the degree-five node arespent as follows: one
token pays for thesplit, one token is put on the new node of degree two, and two
tokens are used for the parent node. Again, we may not need theadditional tokens
for the parent node; in this case, we discard them.

A balanceoperation takes a node of degree one and a node of degree threeor
four and moves one child from the high-degree node to the nodeof degree one. If the
high-degree node has degree three, we have two tokens available to us and need two
tokens; if the high-degree node has degree four, we have fourtokens available to us
and need one token. In either case, the tokens available are sufficient to maintain the
token invariant.

A fuseoperation fuses a degree-one node with a degree-two node into a degree-
three node and decreases the degree of the parent. We have three tokens available.
We use one to pay for the operation and one to pay for the decrease of the degree of
the parent. The third token is no longer needed, and we discard it.

Let us summarize. We charge two tokens for sequence creation, two tokens for
eachinsert, and one token for eachremove. These tokens suffice to pay one token
each for everysplit or fuseoperation. There is at most a constant amount of work for
everything else done during aninsertor removeoperation. Hence, the total cost forn
update operations is O(n), and there are at most 2(n+1) split or fuseoperations. ⊓⊔

*Exercise 7.16.Generalize the above proof to arbitrarya andb with b≥ 2a. Show
thatn insertor removeoperations cause only O(n/(b−2a+1)) fuseor split opera-
tions.

*Exercise 7.17 (weight-balanced trees [150]).Consider the following variant of
(a,b)-trees: the node-by-node invariantd ≥ a is relaxed to the global invariant that
the tree has at least 2aheight−1 leaves. Aremovedoes not perform anyfuseor balance
operations. Instead, the whole tree is rebuilt using the routine described in Exer-
cise 7.12 when the invariant is violated. Show thatremoveoperations execute in
O(logn) amortized time.

7.5 Augmented Search Trees

We show here that(a,b)-trees can support additional operations on sequences if
we augment the data structure with additional information.However, augmentations
come at a cost. They consume space and require time for keeping them up to date.
Augmentations may also stand in each other’s way.

FR
E

E
C

O
P

Y
7.5 Augmented Search Trees 161

Exercise 7.18 (reduction).Some operations on search trees can be carried out with
the use of the navigation data structure alone and without the doubly linked list. Go
through the operations discussed so far and discuss whetherthey require thenextand
prevpointers of linear lists. Range queries are a particular challenge.

7.5.1 Parent Pointers

Suppose we want to remove an element specified by the handle ofa list item. In the
basic implementation described in Sect. 7.2, the only thingwe can do is to read the
key k of the element and callremove(k). This would take logarithmic time for the
search, although we know from Sect. 7.4 that the amortized number offuseopera-
tions required to rebalance the tree is constant. This detour is not necessary if each
nodev of the tree stores a handle indicating itsparent in the tree (and perhaps an
indexi such thatv.parent.c[i] = v).

Exercise 7.19.Show that in(a,b)-trees with parent pointers,remove(h : Item) and
insertAfter(h : Item) can be implemented to run in constant amortized time.

*Exercise 7.20 (avoiding augmentation).Outline a classABTreeIteratorthat al-
lows one to represent a position in an(a,b)-tree that has no parent pointers. Creating
an iteratorI is an extension ofsearchand takes logarithmic time. The class should
support the operationsremoveandinsertAfterin constant amortized time. Hint: store
the path to the current position.

*Exercise 7.21 (finger search).Augment search trees such that searching can profit
from a “hint” given in the form of the handle of afinger element e′. If the sought
element has rankr and the finger elemente′ has rankr ′, the search time should be
O(log|r − r ′|). Hint: one solution links all nodes at each level of the search tree into
a doubly linked list.

*Exercise 7.22 (optimal merging).Explain how to use finger search to implement
merging of two sorted sequences in time O(nlog(m/n)), wheren is the size of the
shorter sequence andm is the size of the longer sequence.

7.5.2 Subtree Sizes

Suppose that every nonleaf nodet of a search tree stores itssize, i.e., t.sizeis the
number of leaves in the subtree rooted att. Thek-th smallest element of the sorted
sequence can then be selected in a time proportional to the height of the tree. For
simplicity, we shall describe this for binary search trees.Let t denote the current
search tree node, which is initialized to the root. The idea is to descend the tree while
maintaining the invariant that thek-th element is contained in the subtree rooted at
t. We also maintain the numberi of elements that are to theleft of t. Initially, i = 0.
Let i′ denote the size of the left subtree oft. If i + i′ ≥ k, then we sett to its left
successor. Otherwise,t is set to its right successor andi is increased byi′. When a
leaf is reached, the invariant ensures that thek-th element is reached. Figure 7.15
gives an example.

FR
E

E
C

O
P

Y
162 7 Sorted Sequences

3

7

1952

2 195 7 11 13 173

17

11

134

7

222

select 6th element 9
subtree
size

2

3

∞

0+7≥6

4+2≥6

0+4<6

4+1<6

i =0

i =4

i =4

i =5

Fig. 7.15. Selecting the 6th smallest
element from〈2,3,5,7,11,13,17,19〉
represented by a binary search tree.
The thick arrows indicate the search
path

Exercise 7.23.Generalize the above selection algorithm to(a,b)-trees. Develop two
variants: one that needs time O(blogan) and stores only the subtree size and another
variant that needs only time O(logn) and storesd−1 sums of subtree sizes in a node
of degreed.

Exercise 7.24.Explain how to determine the rank of a sequence element with keyk
in logarithmic time.

Exercise 7.25.A colleague suggests supporting both logarithmic selection time
and constant amortized update time by combining the augmentations described in
Sects. 7.5.1 and 7.5.2. What will go wrong?

7.6 Implementation Notes

Our pseudocode for(a,b)-trees is close to an actual implementation in a language
such as C++ except for a few oversimplifications. The temporary arrayss′ andc′ in
the proceduresinsertRecandremoveReccan be avoided by appropriate case distinc-
tions. In particular, abalanceoperation will not require calling the memory manager.
A split operation of a nodev might be slightly faster ifv keeps the left half rather than
the right half. We did not formulate the operation this way because then the cases of
inserting a new sequence element and splitting a node would no longer be the same
from the point of view of their parent.

For largeb, locateLocallyshould use binary search. For smallb, a linear search
might be better. Furthermore, we might want to have a specialized implementation
for small, fixed values ofa andb thatunrolls6 all the inner loops. Choosingb to be a
power of two might simplify this task.

Of course, the values ofa andb are important. Let us start with the cost oflocate.
There are two kinds of operation that dominate the executiontime of locate: besides
their inherent cost, element comparisons may cause branch mispredictions (see also
Sect. 5.9); pointer dereferences may cause cache faults. Exercise 7.9 indicates that

6 Unrolling a loop “for i :=1 to K do bodyi ” means replacing it by thestraight-line program
“body1; . . . ; bodyK”. This saves the overhead required for loop control and may give other
opportunities for simplifications.

FR
E

E
C

O
P

Y
7.6 Implementation Notes 163

element comparisons can be minimized by choosinga as a large power of two and
b = 2a. Since the number of pointer dereferences is proportional to the height of the
tree (see Exercise 7.4), large values ofa are also good for this measure. Taking this
reasoning to the extreme, we would obtain the best performance for a ≥ n, i.e., a
single sorted array. This is not astonishing. We have concentrated on searches, and
static data structures are best if updates are neglected.

Insertions and deletions have an amortized cost of onelocateplus a constant
number of node reorganizations (split, balance, or fuse) with cost O(b) each. We
obtain a logarithmic amortized cost for update operations if b = O(logn). A more
detailed analysis (see Exercise 7.16) would reveal that increasingb beyond 2a makes
split andfuseoperations less frequent and thus saves expensive calls to the memory
manager associated with them. However, this measure has a slightly negative effect
on the performance oflocateand it clearly increasesspace consumption. Hence,b
should remain close to 2a.

Finally, let us take a closer look at the role of cache faults.A cache of sizeM can
holdΘ(M/b) nodes. These are most likely to be the frequently accessed nodes close
to the root. To a first approximation, the top loga(M/b) levels of the tree are stored
in the cache. Below this level, every pointer dereference isassociated with a cache
fault, i.e., we will have about loga(bn/Θ(M)) cache faults in eachlocateoperation.
Since the cache blocks of processor caches start at addresses that are a multiple of
the block size, it makes sense toalign the starting addresses of search tree nodes with
a cache block, i.e., to make sure that they also start at an address that is a multiple of
the block size. Note that(a,b)-trees might well be more efficient than binary search
for large data sets because we may save a factor of loga in cache faults.

Very large search trees are stored on disks. Under the nameB-trees[16], (a,b)-
trees are the workhorse of the indexing data structures in databases. In that case,
internal nodes have a size of several kilobytes. Furthermore, the items of the linked
list are also replaced by entire data blocks that store betweena′ andb′ elements, for
appropriate values ofa′ andb′ (see also Exercise 3.20). These leaf blocks will then
also be subject to splitting, balancing, and fusing operations. For example, assume
that we havea= 210, the internal memory is large enough (a few megabytes) to cache
the root and its children, and the data blocks store between 16 and 32 Kbyte of data.
Then two disk accesses are sufficient tolocateany element in a sorted sequence that
takes 16 Gbyte of storage. Since putting elements into leaf blocks dramatically de-
creases the total space needed for the internal nodes and makes it possible to perform
very fast range queries, this measure can also be useful for acache-efficient internal-
memory implementation. However, note that update operations may now move an
element in memory and thus will invalidate element handles stored outside the data
structure. There are many more tricks for implementing (external-memory)(a,b)-
trees. We refer the reader to [79] and [141, Chaps. 2 and 14] for overviews. A good
free implementation of B-trees is available in STXXL [48].

From the augmentations discussed in Sect. 7.5 and the implementation trade-
offs discussed here, it becomes evident thattheoptimal implementation of sorted se-
quences does not exist but depends on the hardware and the operation mix relevant to
the actual application. We believe that(a,b)-trees withb= 2k = 2a= O(logn), aug-

FR
E

E
C

O
P

Y
164 7 Sorted Sequences

mented with parent pointers and a doubly linked list of leaves, are a sorted-sequence
data structure that supports a wide range of operations efficiently.

Exercise 7.26.What choice ofa andb for an(a,b)-tree guarantees that the number
of I/O operations required forinsert, remove, or locateis O(logB(n/M))? How many
I/O operations are needed tobuild ann-element(a,b)-tree using the external sorting
algorithm described in Sect. 5.7 as a subroutine? Compare this with the number of
I/Os needed for building the tree naively using insertions.For example, tryM =
229 bytes,B = 218 bytes7, n = 232, and elements that have 8-byte keys and 8 bytes of
associated information.

7.6.1 C++

The STL has four container classesset, map, multiset, andmultimapfor sorted se-
quences. The prefixmulti means that there may be several elements with the same
key.Maps offer the interface of an associative array (see also Chap.4). For example,
someMap[k] := x inserts or updates the element with keyk and sets the associated
information tox.

The most widespread implementation of sorted sequences in STL uses a variant
of red–black trees with parent pointers, where elements arestored in all nodes rather
than only in the leaves. None of the STL data types supports efficient splitting or
concatenation of sorted sequences.

LEDA [118] offers a powerful interfacesortseqthat supports all important op-
erations on sorted sequences, including finger search, concatenation, and splitting.
Using an implementation parameter, there is a choice between (a,b)-trees, red–black
trees, randomized search trees, weight-balanced trees, and skip lists.

7.6.2 Java

The Java libraryjava.util offers the interface classesSortedMapandSortedSet, which
correspond to the STL classessetandmap, respectively. The corresponding imple-
mentation classesTreeMapandTreeSetare based on red–black trees.

7.7 Historical Notes and Further Findings

There is an entire zoo of sorted sequence data structures. Just about any of them will
do if you just want to supportinsert, remove, andlocatein logarithmic time. Perfor-
mance differences for the basic operations are often more dependent on implementa-
tion details than on the fundamental properties of the underlying data structures. The
differences show up in the additional operations.

7 We are making a slight oversimplification here, since in practice one will use much smaller
block sizes for organizing the tree than for sorting.

FR
E

E
C

O
P

Y
7.7 Historical Notes and Further Findings 165

The first sorted-sequence data structure to supportinsert, remove, andlocatein
logarithmic time was AVL trees [4]. AVL trees are binary search trees which main-
tain the invariant that the heights of the subtrees of a node differ by one at the most.
Since this is a strong balancing condition,locate is probably a little faster than in
most competitors. On the other hand, AVL trees donot have constant amortized up-
date costs. Another small disadvantage is that storing the heights of subtrees costs
additional space. In comparison, red–black trees have slightly higher costs forlocate,
but they have faster updates and the single color bit can often be squeezed in some-
where. For example, pointers to items will always store evenaddresses, so that their
least significant bit could be diverted to storing color information.

(2,3)-trees were introduced in [6]. The generalization to(a,b)-trees and the
amortized analysis of Sect. 3.3 come from [95]. There, it wasalso shown that the
total number of splitting and fusing operations at the nodesof any given height de-
creases exponentially with the height.

Splay trees [183] and some variants of randomized search trees [176] work even
without any additional information besides one key and two successor pointers. A
more interesting advantage of these data structures is their adaptabilityto nonuni-
form access frequencies. If an elemente is accessed with probabilityp, these search
trees will be reshaped over time to allow an access toe in a time O(log(1/p)). This
can be shown to be asymptotically optimal for any comparison-based data structure.
However, this property leads to improved running time only for quite skewed access
patterns because of the large constants.

Weight-balanced trees [150] balance the size of the subtrees instead of the height.
They have the advantage that a node of weightw (= number of leaves of its subtree)
is only rebalanced afterΩ(w) insertions or deletions have passed through it [26].

There are so manysearch treedata structures forsorted sequencesthat these two
terms are sometimes used as synonyms. However, there are also some equally inter-
esting data structures for sorted sequences that arenot based on search trees. Sorted
arrays are a simplestaticdata structure. Sparse tables [97] are an elegant way to make
sorted arrays dynamic. The idea is to accept some empty cellsto make insertion eas-
ier. Reference [19] extended sparse tables to a data structure which is asymptotically
optimal in an amortized sense. Moreover, this data structure is a crucial ingredient
for a sorted-sequence data structure [19] that iscache-oblivious[69], i.e., it is cache-
efficient on any two levels of a memory hierarchy without evenknowing the size of
caches and cache blocks. The other ingredient is obliviousstatic search trees [69];
these are perfectly balanced binary search trees stored in an array such that any search
path will exhibit good locality in any cache. We describe here thevan Emde Boas
layout used for this purpose, for the case where there aren = 22k

leaves for some
integerk. We store the top 2k−1 levels of the tree at the beginning of the array. After
that, we store the 2k−1 subtrees of depth 2k−1, allocating consecutive blocks of mem-
ory for them. We recursively allocate the resulting 1+ 2k−1 subtrees of depth 2k−1.
Static cache-oblivious search trees are practical in the sense that they can outperform
binary search in a sorted array.

Skip lists[159] are based on another very simple idea. The starting point is a
sorted linked listℓ. The tedious task of scanningℓ during locatecan be accelerated

FR
E

E
C

O
P

Y
166 7 Sorted Sequences

by producing a shorter listℓ′ that contains only some of the elements inℓ. If corre-
sponding elements ofℓ andℓ′ are linked, it suffices to scanℓ′ and only descend toℓ
when approaching the searched element. This idea can be iterated by building shorter
and shorter lists until only a single element remains in the highest-level list. This data
structure supports all important operations efficiently inan expected sense. Random-
ness comes in because the decision about which elements to lift to a higher-level list
is made randomly. Skip lists are particularly well suited for supporting finger search.

Yet another family of sorted-sequence data structures comes into play when
we no longer consider keys as atomic objects. If keys are numbers given in bi-
nary representation, we can obtain faster data structures using ideas similar to the
fast integer-sorting algorithms described in Sect. 5.6. For example, we can obtain
sorted sequences withw-bit integer keys that support all operations in time O(logw)
[198, 129]. At least for 32-bit keys, these ideas bring a considerable speedup in prac-
tice [47]. Not astonishingly, string keys are also important. For example, suppose we
want to adapt(a,b)-trees to use variable-length strings as keys. If we want to keep
a fixed size for node objects, we have to relax the condition onthe minimal degree
of a node. Two ideas can be used to avoid storing long string keys in many nodes.
Common prefixesof keys need to be stored only once, often in the parent nodes.
Furthermore, it suffices to store thedistinguishing prefixesof keys in inner nodes,
i.e., just enough characters to be able to distinguish different keys in the current
node [83]. Taking these ideas to the extreme results intries [64], a search tree data
structure specifically designed for string keys: tries are trees whose edges are labeled
by characters or strings. The characters along a root–leaf path represent a key. Using
appropriate data structures for the inner nodes, a trie can be searched in time O(s)
for a string of sizes.

We shall close with three interesting generalizations of sorted sequences. The
first generalization ismultidimensional objects, such as intervals or points ind-
dimensional space. We refer to textbooks on geometry for this wide subject [46].
The second generalization ispersistence. A data structure is persistent if it supports
nondestructive updates. For example, after the insertion of an element, there may be
two versions of the data structure, the one before the insertion and the one after the
insertion – both can be searched [59]. The third generalization is searching many
sequences[36, 37, 130]. In this setting, there are many sequences, andsearches need
to locate a key in all of them or a subset of them.

