set up non-certifying and certifying planarity demo. Let the non-certifying demo run during introduction
Certifying Algorithms
Algorithms meet Software Engineering

Kurt Mehlhorn

MPI for Informatics and Saarland University
Saarbrücken
Germany
Outline of Talk

- Part I: Certifying Algorithms: An Overview
- Part II: Current Projects
The Problem

A user feeds x to the program, the program returns y.

How can the user be sure that, indeed,

$$y = f(x)?$$

The user has no way to know.
Warning Examples

- LEDA 2.0 planarity test was incorrect

- Rhino3d (a CAD systems) fails to compute correct intersection of two cyclinders and two spheres

- CPLEX (a linear programming solver) fails on benchmark problem `etamacro`.

- Mathematica 4.2 (a mathematics systems) fails to solve a small integer linear program

\[
\text{In}[1] := \text{ConstrainedMin}[x, \{x==1, x==2\}, \{x\}] \\
\text{Out}[1] = \{2, \{x\rightarrow 2\}\}
\]

\[
\text{In}[1] := \text{ConstrainedMax}[x, \{x==1, x==2\}, \{x\}] \\
\text{ConstrainedMax::lpsub}: \text{The problem is unbounded.} \\
\text{Out}[2] = \{\text{Infinity}, \{x \rightarrow \text{Indeterminate}\}\}
\]
The Proposal

Programs must justify (prove) their answers in a way that is easily checked by their users.
A certifying program returns the function value y and a certificate (witness) w.

- w proves $y = f(x)$ even to a dummy.
- and there is a simple program C, the checker, that verifies the validity of the proof.
Four Examples

Testing Bipartiteness
Maximum Matchings
Planarity Testing
Convex Hulls
Example I: Bipartite Graphs

- Is a given graph G bipartite?
- Two-coloring witnesses bipartiteness
- Odd cycle witnesses non-bipartiteness
Example I: Bipartite Graphs

- Is a given graph G bipartite?
- Two-coloring witnesses bipartiteness
- Odd cycle witnesses non-bipartiteness

An Algorithm

- construct a spanning tree of G
- use it to color the vertices with colors red and blue
- check for all non-tree edges: do endpoints have distinct colors?
- if yes, the graph is bipartite and the coloring proves it
- if no, declare the graph non-bipartite:
Example I: Bipartite Graphs

• Is a given graph G bipartite?
• Two-coloring witnesses bipartiteness
• Odd cycle witnesses non-bipartiteness

An Algorithm

• construct a spanning tree of G
• use it to color the vertices with colors red and blue
• check for all non-tree edges: do endpoints have distinct colors?
• if yes, the graph is bipartite and the coloring proves it
• if no, declare the graph non-bipartite: Let $e = \{u, v\}$ be a non-tree edge with equal colored endpoints
 • e together with the tree path from u to v is an odd cycle
 • tree path has even length since u and v have the same color
Example II: Maximum Matchings

- A matching M is a set of edges no two of which share an endpoint.

- The coloring certifies that M is of maximum cardinality:
 - Each edge have either two red or at least one black endpoint.
 - Therefore, any matching can use at most one edge with two red endpoints and at most four edges with a black endpoint.
 - The matching shown attains the lower bound.
Example III: Planarity Testing

- Given a graph G, decide whether it is planar
- Tarjan (76): planarity can be tested in linear time
- A story and a demo
- Combinatorial planar embedding is a witness for planarity
- Chiba et al (85): planar embedding of a planar G in linear time
- Kuratowski subgraph is a witness for non-planarity
- Hundack/M/Näher (97): Kuratowski subgraph of non-planar G in linear time

K_5 $K_{3,3}$
Example IV: Convex Hulls

Given a simplicial, piecewise linear closed hyper-surface F in d-space decide whether F is the surface of a convex polytope.

FACT: F is convex iff it passes the following three tests

1. check local convexity at every ridge
2. $o = \text{center of gravity of all vertices}$
 check whether o is on the negative side of all facets
3. $p = \text{center of gravity of vertices of some facet } f$
 check whether ray \overrightarrow{op} intersects closure of facet different from f
Sufficiency of Test is a Non-Trivial Claim

- ray for third test cannot be chosen arbitrarily, since in R^d, $d \geq 3$, ray may “escape” through lower-dimensional feature.
The Advantages of Certifying Algorithms

• Certifying algs can be tested on
 • every input
 • and not just on inputs for which the result is known.

• Certifying algorithms are reliable:
 • Either give the correct answer
 • or notice that they have erred

• Trustless computing
 • There is no need to understand the program, understanding the
 witness property and the checking program suffices.
 • One may even keep the program secret and only publish the
 checker

• Formal verification of witness property and checkers is feasible
Odds and Ends

- General techniques
 - Linear programming duality
 - Characterization theorems
 - Program composition
- Probabilistic programs and checkers
- Reactive Systems (data structures)
- History: an ancient concept
 - al-Kwarizmi: multiplication Euclid: gcd
 - primal-dual algorithms in combinatorial optimization
 - Blum et al.: Programs that check their work
 - Mehlhorn and Näher make it design principle for LEDA
 - Kratsch/McConnell/Mehlhorn/Spinrad (SODA 2003) coin name
 - McConnell/M/Näher,Schweitzer (2010): 80 page survey
The Message

- Certifying algorithms are much superior to non-certifying algorithms.
- For complex algorithmic tasks only certifying algorithms are satisfactory.
- Consequence: A change of how algorithms are taught, researched and used.
Current Projects

- Universality
- Formal verification
- 3-connectivity of graphs
Universality

• Does every problem have a certifying algorithm? Can every program be converted into a certifying one?
Universality

• Does every problem have a certifying algorithm? Can every program be converted into a certifying one?

• I know 50+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (to appear in CS Review),
Universality

• Does every problem have a certifying algorithm? Can every program be converted into a certifying one?

• I know 50+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (to appear in CS Review),

• many programs in LEDA are certifying,
Universality

• Does every problem have a certifying algorithm? Can every program be converted into a certifying one?

• I know 50+ certifying algorithms, see survey by McConnell/M/Näher/Schweitzer (to appear in CS Review),

• many programs in LEDA are certifying, and

• Thm: Every deterministic program can be made certifying without asymptotic loss of efficiency (at least in principle)
Does every Function have a Certifying Alg?

- Formalize the notion of a certifying algorithm
 - Let P be a program and let f be the function computed by P
 - A program Q is a certifying program for f if there is a predicate W such that
 1. W is a witness predicate for f:
 - $\forall x, y \ (\exists w \ W(x, y, w))$ iff $(y = f(x))$.
 - Given x, y, and w, it is trivial to decide if $W(x, y, w)$ holds
 - $W(x, y, w) \implies (y = f(x))$ has a trivial proof
 2. On input x, Q computes a triple (x, y, w) with $W(x, y, w)$.
 3. The resource consumption (time, space) of Q on x is at most a constant factor larger than the resource consumption of P
Does every Function have a Certifying Alg?

- Formalize the notion of a certifying algorithm

- Theorem: Every deterministic program can be made certifying.

- Proof: witness = correctness proof in some formal system

- Construction is reassuring, but unnatural. The challenge is to find natural certifying algs.
Verification: Why Formal Proofs

- why a formal proof for something that has been proved already?

- standard theorems can only be trusted if a fair number of people have checked the proof, taught the result, . . .

- formal proofs are correct and complete (no hidden assumptions)
- are machine-checked (by a fairly simple program)
- add another layer of trust
- user has to understand even less; all that is needed is trust in the proof checker
- allow to build large libraries of trusted algorithms
Verification I: Witness Property

- bipartite matching: a node cover C is a set of vertices such that every edge has an endpoint in C.

Let M be a matching and C be a node cover. If $|M| = |C|$, then M has maximum cardinality.

- map $e \in M$ to its endpoint in C.
- mapping is well-defined, since C is a node cover
- mapping is injective, since M is a matching
- thus $|M| \leq |C|$

- we have formalized the proof in Isabelle (a proof support system)
Verification II: The Checker

- Input for Checker: a graph $G = (V, E)$, a subset M of the edges, a node cover C.
 - check $M \subseteq E$
 - check M is a matching
 - check $C \subseteq V$
 - check C is a node cover
 - check $|M| = |C|$.

- we have written a C-program for the above and verified it in VCC (a verification system for C-programs)

- the checker in LEDA checks only items 2, 4, and 5.
Triconnectivity

- $C \subseteq V$ is a *cut set* if $G \setminus C$ is not connected.

Cut sets of size one, two, three: separation vertex, separation pair, separation triple.

- Triconnected graph = a graph with no separation pair.

- Linear Time Decision Algorithms: Hopcroft/Tarjan (73) and Miller/Ramachandran (92)

 algs return separation pair or state that graph is triconnected.

Gutwenger/Mutzel (00): former alg misclassifies some non-triconnected graphs, provide a correction.
Contractible Edges

- Contraction of an edge xy: contract x and y into a single vertex and remove parallel edges and self-loops

- If $\text{mindeg}(G) \geq 3$ and G is not triconnected, then G/xy is not triconnected

 If $G = G_n, G_{n-1}, \ldots, G_4 = K_4$, $\text{mindeg}(G_i) \geq 3$ and G_{i-1} is obtained from G_i by a contraction, then G is triconnected.

- Tutte (61): Every triconnected graph contains a contractible edge, i.e., an edge xy such that G/xy is triconnected.

- A certifying algorithm for triconnectivity returns a separation pair if input graph is not triconnected

 returns a contraction sequence if input graph is triconnected

- Open Problem: Is there a linear time certifying algorithm for triconnectivity?

 $O(n^2)$ is known; Jens M. Schmidt, STACS 2010
Structural Results for Triconnected Graphs

- Tutte: at least one contractible edge
- Ando et al: $\Omega(n)$ contractible edges
- Elmasry/M/Schmidt (2010)
 - every DFS tree contains at least one contractible edge
 - there are DFS trees with exactly one contractible edge
 - there are spanning trees with no contractible edge
Algorithmic Result

Linear-time Certifying Algorithm for Hamiltonian graphs (Elmasry/M/Schmidt (2010))

Hamiltonian Graph = Path + Chords

Why Hamiltonian Graphs:

- HT-algorithm is recursive; merge step is essentially triconnectedness of Hamiltonian graphs.
- MR-alg is based on ear decomposition; in Hamiltonian graph, ears are edges

Technique: DFS-tree is a path; dynamic data structure for testing whether a tree edge is contractible
The Algorithm

- Data structure: $O(1)$ test whether a tree edge is contractible;
- Tree edges are labelled “non-contractible” or “don’t know”

The algorithm
- label all tree edges as don’t know;
- while graph has more than 4 vertices
 - select a tree edge labelled don’t know and test it
 - if contractible, contract and set label of two above and below to don’t know
 - else label non-contractible

- $5 \cdot \# \text{ of edges} + \# \text{ of edges labelled “don’t know” decreases in every iteration}$
Open Problems

• Arrangements of Algebraic Curves
 • numerical algs, symbolic algs, geometric algs

• 3-connectivity of graphs (recently solved by J. Schmidt)

• Formal proofs

• Boolean operations on polygons and polyhedra

• ...
Summary

• Certifying algs have many advantages over standard algs:
 • can be tested on every input
 • are reliable
 • can be relied on without knowing code
 • are a way to trustless computing

• They exist: every deterministic alg has a certifying counterpart.

• They are non-trivial to find.

• Most programs in the LEDA system are certifying.

When you design your next algorithm, make it certifying.