
Kapitel 1

Multiplication of Long Integers
(Faster than Long Multiplication)

Arno Eigenwillig und Kurt Mehlhorn

An algorithm for multiplication of integers is taught already in primary
school: To multiply two positive integers a and b, you multiply a by each
digit of b and arrange the results as the rows of a table, aligned under the
corresponding digits of b. Adding up yields the product a × b. Here is an
example:

5 6 7 8 · 4 3 2 1
2 2 7 1 2

1 7 0 3 4
1 1 3 5 6

5 6 7 8

2 4 5 3 4 6 3 8

The multiplication of a by a single digit is called short multiplication, and the
whole method to compute a × b is called long multiplication. For integers a
and b with very many digits, long multiplication does indeed take long, even
if carried out by a modern computer. Calculations with very long integers
are used in many applications of computers, for example, in the encryption
of communication on the Internet (see Chapters ?? and ??), or, to name
another example, in the reliable solution of geometric or algebraic problems.

Fortunately, there are better ways to multiply. This is good for the ap-
plications needing it. But it is also quite remarkable in itself because long
multiplication is so familiar and looks so natural that any substantial impro-
vement comes as a surprise.

In the rest of this chapter, we will investigate:

1. How much effort does it take to do long multiplication of two numbers?
2. How can we do better?

Computer scientists do not measure the effort needed to carry out an
algorithm in seconds or minutes because such information will depend on the

Max Planck Institute for Informatics, Saarbrücken, Germany

1

2 Arno Eigenwillig und Kurt Mehlhorn

hardware, the programming language, and the details of the implementation
(and next year’s hardware will be faster anyway). Instead, computer scientists
count the number of basic operations performed by an algorithm. A basic
operation is something, a computer or a human can do in a single step.
The basic operations we need here are basic computations with the digits
0, 1, 2, . . . , 8, 9.

1. Multiplication of two digits: When given two digits x and y, we know
the two digits u and v that make up their product x× y = 10× u + v. We
trust our readers to remember the multiplication table!
Examples: For the digits x = 3 and y = 7 we have x × y = 3 × 7 = 21 =
10 × 2 + 1, so the resulting digits are u = 2 and v = 1. For x = 3 and
y = 2, the resulting digits are u = 0 and v = 6.

2. Addition of three digits: When given three digits x, y, z, we know the
two digits u and v of their sum: x + y + z = 10 · u+ v. It will soon become
obvious why we want to add three digits at once.
Example: For x = 3, y = 5 and z = 4 the result is u = 1 and v = 2
because 3 + 5 + 4 = 12 = 10 × 1 + 2.

How many of these basic operations are done in a long multiplication? Before
we can answer this question, we need to look at two simpler algorithms,
addition and short multiplication, used during long multiplication.

The addition of long numbers

How much effort does it take to add two numbers a and b? Of course, this
depends on how many digits they have. Let us assume that a and b both
consist of n digits. If one of them is shorter than the other, one can put zeros
in front of it until it is as long as the other. To add the two numbers, we write
one above the other. Going from right to left, we repeatedly do addition of
digits. Its result 10× u + v gives us the result digit v for the present column
as well as the digit u carried to the next column. Here is an example with
numbers a = 6917 and b = 4269 with n = 4 digits each:

6917
4269

1 1 0 1

11186

The carry digit v from the leftmost column is put in front of the result without
further computation. Altogether, we have done n basic operations, namely
one addition of digits per column.

1 Multiplication of Long Integers (Faster than Long Multiplication) 3

Short multiplication: a number times a digit

During long multiplication, we need to multiply the number a, the left factor,
with a digit y from the right factor. We now look at this short multiplication

in more detail. To do so, we write down its intermediate results more carefully
than usual: We go from right to left over the digits of a. We multiply each
digit x of a by the digit y and write down the result 10× u + v in a separate
row, aligned such that v is in the same column as x. When all digits are
multiplied, we add all the two-digit intermediate results. This gives us the
result of the short multiplication which is usually written as a single row.

As an example for this, we look again at the long multiplication 5678 ×

4321: The first of the short multiplications it needs is this one:

5 6 7 8 · 4
3 2

2 8
2 4

2 0
0 0 1 0

2 2 7 1 2

How many basic operations did we use? For each of the n digits of a, we have
done one multiplication of digits. In the example above: four multiplications
of digits for the four digits of 5678. After that, we have added the intermediate
results in n+1 columns. In the rightmost column, there is a single digit which
we can just copy to the result without computing. In the other n columns
are two digits and a carry from the column to its right, so one addition
of digits suffices to add them. This means we needed to do n additions of
digits. Together with the n multiplications of digits, it has taken 2× n basic
operations to multiply an n-digit number a with a digit y.

The analysis of long multiplication

Let us now analyze the number of basic operations used by long multiplication
of two numbers a and b, each of which has n digits. In case one is shorter
than the other, we can pad it with zeros at the front.

For each digit y of b we need to do one short multiplication a × y. This
needs 2×n basic operations, as we saw above. Because there are n digits in b,
long multiplication needs n short multiplications which together account for
n × (2 × n) = 2 × n2 basic operations.

The results of the short multiplications are aligned under the respecti-
ve digits of b. To simplify the further analysis, we put zeros in the empty
positions:

4 Arno Eigenwillig und Kurt Mehlhorn

5 6 7 8 · 4 3 2 1

2 2 7 1 2 0 0 0
0 1 7 0 3 4 0 0
0 0 1 1 3 5 6 0
0 0 0 0 5 6 7 8

2 4 5 3 4 6 3 8

The results of short multiplication are added with the method described
previously. We add the first row to the second row, their sum to the third
row, and so on, until all n rows have been added. This needs n− 1 additions
of long numbers. In our example, n is equal to 4, and we need these n−1 = 3
additions: 22712000 + 1703400 = 24415400, 24415400 + 113560 = 24528960
and 24528960 + 5678 = 24534638.

How many basic operations do these n−1 additions need? To answer this,
we have to know how many digits are required for the intermediate sums in
this chain of additions. With a little bit of thinking, we can convince ourselves
that the final result a× b has at most 2×n digits. While we add the parts of
this result, the numbers can only get longer. Therefore, all intermediate sums
have at most 2×n digits, like the final result. Therefore, we do n−1 additions
of numbers with at most 2 × n digits. According to our analysis of addition,
this requires at most (n − 1) × (2 × n) = 2 × n2

− 2 × n basic operations.
Together with the 2 × n2 basic operations used by the short multiplications,
this yields a grand total of at most 4 × n2

− 2 × n basic operations carried
out in the long division of two n-digit numbers.

Let us see what this means for a concrete example. If we have to multiply
really long numbers, say, with 100 000 digits each, then it takes almost 40
billion basic operations to do one long multiplication, including 10 billion
multiplications of digits. In other words: Per digit in the result, this long
multiplication needs, on average, 200 000 basic operations which is clearly a
bad ratio. This ratio gets much worse if the number of digits increases: For
1 million digits, long multiplication needs almost 4 trillion basic operations
(of which 1 trillion are multiplications of digits). On average, it spends about
2 million basic operations for a single digit in the result.

Karatsuba’s method

Let us now do something smarter. We look at an algorithm for multiplying
two n-digit numbers that needs much fewer basic operations. It is named
after the Russian mathematician Anatolii Alexeevitch Karatsuba, who came
up with its main idea (published 1962 with Yu. Ofman1). We first describe

1 A. Karatsuba, Yu. Ofman: “Multiplication of multidigit numbers on automata” (in Rus-
sian), Doklady Akad. Nauk SSSR 145 (1962), pp. 293–294; English translation in Soviet

1 Multiplication of Long Integers (Faster than Long Multiplication) 5

the method for numbers with one, two, or four digits, and then for numbers
of any length.

The simplest case is, of course, the multiplication of two numbers con-
sisting of one digit each (n = 1). Multiplying them needs a single basic
operation, namely one multiplication of digits, which immediately gives the
result.

The next case we look at is the case n = 2, that is, the multiplication of
two numbers a and b having two digits each. We split them into halves, that
is, into their digits:

a = p × 10 + q and b = r × 10 + s.

For example, we split the numbers a = 78 and b = 21 like this:

p = 7, q = 8, and r = 2, s = 1.

We can now rewrite the product a × b in terms of the digits:

a × b = (p × 10 + q) × (r × 10 + s)

= (p × r) × 100 + (p × s + q × r) × 10 + q × s.

Continuing the example a = 78 and b = 21, we get

78 · 21 = (7 · 2) · 100 + (7 · 1 + 8 · 2) · 10 + 8 · 1 = 1638.

Writing the product a×b of the two-digit numbers a and b as above shows
how it can be computed using four multiplications of one-digit numbers,
followed by additions. This is precisely what long multiplication does.

Karatsuba had an idea that enables us to multiply the two-digit numbers
a and b with just three multiplications of one-digit numbers. These three
multiplications are used to compute the following auxiliary products:

u = p × r,

v = (q − p) × (s − r),

w = q × s.

Computing v deserves extra attention because it involves the subtraction of
digits. We need a new kind of basic operation: subtraction of digits. It is used
twice in computing v: subtraction of digits. The results (q − p) and (s − r)
are again single digits, but possibly with a negative sign. Multiplying them
to get v requires a multiplication of digits and an application of the usual
rules to determine the sign (“minus times minus gives plus”, and so on).

Why does all this help to multiply a and b? The answer comes from this
formula:

Physics Doklady 7 (1963), pp. 595–596. Karatsuba describes his method to efficiently com-
pute the square a2 of a long number a. The multiplication of numbers a and b is reduced
to squaring with the formula a × b = 1

4
((a + b)2 − (a − b)2).

6 Arno Eigenwillig und Kurt Mehlhorn

u + w − v = p × r + q × s − (q − p) × (s − r) = p × s + q × r.

Karatsuba’s trick consists in using this formula to express the product a × b
in terms of the three auxiliary products u, v, and w:

a × b = u × 102 + (u + w − v) × 10 + w.

Let us carry out Karatsuba’s trick for our example a = 78 and b = 21 from
above. The three Karatsuba multiplications are

u = 7 × 2 = 14,

v = (8 − 7) × (1 − 2)= −1,

w = 8 × 1 = 8.

We obtain

78 × 21 = 14 × 100 + (14 + 8 − (−1)) × 10 + 8

= 1400 + 230 + 8

= 1638.

We have used two subtractions of digits, three multiplications of digits, and
several additions and subtractions of digits to combine the results of the three
multiplications.

Karatsuba’s method for 4-digit numbers

Having dealt with the case of n = 2 digits above, we now look at the case
of n = 4 digits, that is, the multiplication of two numbers a and b with four
digits each. Just like before we can split each of them into two halves p and q,
or r and s, respectively. These halves are not digits anymore, but two-digit
numbers:

a = p × 102 + q and b = r × 102 + s.

Again, we compute the three auxiliary products from these four halves:

u = p × r,

v = (q − p) × (s − r),

w = q × s.

Just like before, we obtain the product a × b from the auxiliary products as

a × b = u × 104 + (u + w − v) × 102 + w.

Example: We look again at the task of multiplying a = 5678 and b = 4321.
We begin by splitting a and b into the halves p = 56 and q = 78 as well as

1 Multiplication of Long Integers (Faster than Long Multiplication) 7

r = 43 and s = 21. We compute the auxiliary products

u = 56 × 43 = 2408,

v = (78 − 56) × (21 − 43) = −484,

w = 78 × 21 = 1638.

It follows that

5678 × 4321 = 2408 × 10000 + (2408 + 1638− (−484)) × 100 + 1638

= 24080000 + 453000 + 1638

= 24534638.

In this calculation, we had to compute three auxiliary products of two-
digit numbers. In the previous section, we investigated how to do that with
Karatsuba’s method, using only three multiplications of digits each time.
This way, we can compute the three auxiliary products using only 3 × 3 = 9
multiplications of digits and several additions and subtractions. Long division
would have taken 16 multiplications of digits and several additions.

Karatsuba’s method for numbers of any length

Recall how we have built Karatsuba’s method for multiplying 4-digit numbers
from Karatsuba’s method for 2-digit numbers. Continuing in the same way,
we can build the multiplication of 8-digit numbers from three multiplications
of 4-digit numbers, and the multiplication of 16-digit numbers from three
multiplications of 8-digit numbers, and so on. In other words, Karatsuba’s
method works for any number n of digits that is a power of 2, such as 2 = 21,
4 = 2 × 2 = 22, 8 = 2 × 2 × 2 = 23, 16 = 2 × 2 × 2 × 2 = 24, and so on.

The general form of Karatsuba’s method is this: Two numbers a and b,
each consisting of n = 2 × 2 × 2 × · · · × 2 = 2k digits, are split into

a = p × 10n/2 + q and b = r × 10n/2 + s.

Then their product a × b is computed as follows, using three multiplications
of numbers having n/2 = 2k−1 digits each:

a × b = p × r × 10n + (p × r + q × s − (q − p) × (s − r)) × 10n/2 + q × s

Multiplying two numbers of 2k digits in this way takes only three times
(and not four times) as many multiplications of digits as multiplying two
numbers with 2k−1 digits. This leads to the following table which compares
how many multiplications of digits are used by Karatsuba’s method, or by
long multiplication, respectively, to multiply numbers with n digits.

8 Arno Eigenwillig und Kurt Mehlhorn

digits Karatsuba long multiplication

1 = 20 1 1
2 = 21 3 4
4 = 22 9 16
8 = 23 27 64

16 = 24 81 256
32 = 25 243 1024
64 = 26 729 4096

128 = 27 2187 16 384
256 = 28 6561 65 536
512 = 29 19 638 262 144

1024 = 210 59 049 1 048 576
1 048 576 = 220 3 486 784 401 1 099 511 627 776

.
n = 2k 3k 4k

Using logarithms, it is easy to express the entries in the table as functions
of n: For n = 2k, the column for long multiplication contains the value 4k.
We write log for the logarithm with base 2. We have k = log(n) and

4k = 4log(n) = (2log(4))log(n) = nlog(4) = n2.

For n = 2k, the column for Karatsuba’s method contains the value

3k = 3log(n) = (2log(3))log(n) = nlog(3) = n1,58....

Let us return to the question how much effort it takes to multiply two
numbers of one million digits each. Long multiplication takes almost 4 trillion
basic operations, including 1 trillion multiplication of digits. To use Karatsu-
ba’s method instead, we first need to put zeros in front of both numbers,
to bring their length up to the next power of two which is 220 = 1 048 576.
Without this padding, we could not split the numbers in halves again and
again until we reach a single digit. With Karatsuba’s method, we can mul-
tiply the two numbers using “only” 3.5 billion multiplications of digits, one
287th of what long multiplication needed. For comparison: one second is a
300th of the proverbial “five minutes”. So we see: Karatsuba’s method in-
deed requires much less computational effort, at least when counting only
multiplications of digits, as we have done. A precise analysis also has to ta-
ke the additions and subtractions of intermediate results into account. This
will show that long multiplication is actually faster for numbers with only a
few digits. But as numbers get longer, Karatsuba’s method becomes superior
because it produces less intermediate results. It depends on the properties
of the particular computer and the representation of long numbers inside it
when exactly Karatsuba’s method is faster than long multiplication.

1 Multiplication of Long Integers (Faster than Long Multiplication) 9

Summary

The recipe for success in Karatsuba’s method has two ingredients:
The first is a very general one: The task “multiply two numbers of n digits

each” is reduced to several tasks of the same form, but of smaller size, namely
“multiply two numbers of n/2 digits each”. We keep on subdividing until
the problem has become simple: “multiply two digits”. This problem-solving
strategy is called divide and conquer, and it has appeared before in this book
(for example, in Chapter ?? on fast sorting). Of course, a computer does not
need a separate procedure for each size of the problem. Instead, there is a
general procedure with a parameter n for the size of the problem, and this
procedure invokes itself several times for the reduced size n/2. This is called
recursion, and it is one of the most important and fundamental techniques
in computer science. Recursion also has appeared before in this book (for
example, in Chapter ?? on depth-first search).

The second ingredient in Karatsuba’s method, specifically aimed at mul-
tiplication, is his trick to divide the problem in a way that results in three
(instead of four) sub-problems of half the size. Accumulated over the who-
le recursion, this seemingly miniscule difference results in significant savings
and gives Karatsuba’s method its big advantage over long multiplication.

Further reading

1. A. A. Karatsuba: The Complexity of Computations. Proceedings of the
Steklov Institute of Mathematics, Vol. 211, 1995, pages 169 - 183, available
at http://www.ccas.ru/personal/karatsuba/divcen.pdf.

A. A. Karatsuba reports about the history of his invention and describes
it in his own words.

2. A. K. Dewdney: The (New) Turing Omnibus. Computer Science Press,
Freeman, 2nd ed., 1993; reprint (paperback) 2001.

These “66 excursions in computer science” include a visit to the multipli-
cation algorithms of Karatsuba (for long numbers) and Strassen (a similar
idea for matrices).

3. Wolfram Koepf: Computeralgebra. Springer, 2006.

A gentle introduction to computer algebra. Unfortunately, only available
in German.

4. Joachim von zur Gathen, Jürgen Gerhard: Modern Computer Algebra.
Cambridge University Press, 2nd ed., 2003.

This beautifully prepared textbook for advanced students of computer
science and mathematics discusses Karatsuba’s method and more advan-

10 Arno Eigenwillig und Kurt Mehlhorn

ced methods (based on Fast Fourier Transformation) for the multiplication
of polynomials.

5. Donald E. Knuth: The Art of Computer Programming, volume 2: Semi-
numerical Algorithms. Addison-Wesley, 3rd ed., 1998.

This heavyweight classic of theoretical computer science treats Karatsu-
ba’s method and other, more advanced algorithms for efficient multipli-
cation of integers, in particular the algorithm of Schönhage and Strassen,
whose running time has a bound proportional to n× log(n)× log(log(n)).

6. Martin Fürer: Faster integer multiplication. Annual ACM Symposium on
Theory of Computing archive Proceedings of the thirty-ninth annual ACM
symposium on Theory of Computing, 2007, pages 57 - 66

The currently asymptotically best method for multiplying long integers.
Its running time is proportional to n log(n)2O(log∗(n)).

7. Wikipedia:
http://en.wikipedia.org/wiki/Karatsuba_algorithm

http://en.wikipedia.org/wiki/Multiplication_algorithm

Acknowledgements

The authors thank H. Alt, M. Dietzfelbinger and C. Klost for helpful remarks
on an earlier version of this chapter.

