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Embedded Graphs

Drawings of graphs are ubiquitous. In this chapter we introduce important mathe-

matical concepts related to embedded graphs and we discuss algorithms that draw

and embed graphs and that deal with embedded graphs. We provide only a min-

imum of the required mathematics and refer the reader to [Whi73] for a detailed

treatment.

We start with the definition of what it means to draw a graph and an example

of a drawing algorithm. We discuss bidirected graphs and maps, our technical

vehicle for dealing with embedded graphs, in Section 8.2 and the concepts of em-

bedding and planar embedding in Section 8.3. In this section we also introduce

functions that test the planarity of a graph, that construct a plane embedding of

a planar graph, and that exhibit a Kuratowski subgraph in a non-planar graph.

Their implementation is discussed in Section 8.7. Sections 8.4 and 8.5 introduce

order-preserving embeddings, plane maps, face cycles, and the genus of maps. In

Section 8.6 and 8.12 we relate combinatorics and geometry. In particular, we prove

that a map is plane if and only if its genus is zero, we derive an upper bound on

the number of edges of any planar graph and we show how to construct the map

induced by geometric positions assigned to the nodes of a graph. In Section 8.8

we show how to modify maps, in Section 8.9 we discuss the generation of random

plane maps, and in Section 8.13 we introduce functions that five-color a planar

graph and choose a large independent set in a planar graph. Section 8.10 intro-

duces face items as a means of dealing with faces in the same way as with nodes

and edges. In Section 8.11 we discuss our design choice of representing maps by

directed graphs instead of undirected graphs.
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Figure 8.1 A drawing produced by one of the graph drawing algorithms in
AGD [JMN].

8.1 Drawings

We have already seen many drawings of graphs in this book. We have never defined

what we mean by a drawing, embedding, and planar embedding.

Let G be a graph and let S be a surface, e.g., the plane or the sphere or the torus.

We will be almost exclusively concerned with the plane in this book. However, the

concepts also apply to more complex surfaces.

A drawing I of G in S assigns a point I(v) ∈ S to every node v of G and a

Jordan curve1 I(e) to every edge e = (v,w) such that:

(1) distinct points are assigned to distinct nodes, i.e., I(v) 6= I(w) for v 6= w,

(2) the curve assigned to any edge connects the endpoints of the edge, i.e., if

e = (v,w) then I(e)(0) = I(v) and I(e)(1) = I(w).

A drawing in the plane is called a straight line drawing if every edge is drawn as

a straight line segment. Figure 8.2 shows some drawings.

An algorithm, that takes a graph and produces a drawing for it, is called a

graph drawing algorithm2. LEDA provides some graph drawing algorithms; see the

section on graph drawing in the manual and try the button layout in a GraphWin

for a demonstration. Many more graph drawing algorithms are available in the

1 A Jordan curve c is a curve without self-intersections, i.e., a continuous mapping c : [0, 1] −→ S with
c(x) 6= c(y) for 0 ≤ x < y < 1.

2 Graph drawing is an active area of research, see [BETT94, EM98, DETT98] for surveys.
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Figure 8.2 Some drawings of the same graph. All drawings except for the right upper
drawing are embeddings.

systems AGD [JMN] and GDToolkit [Bat]. Both systems are based on LEDA.

Figure 8.1 shows a drawing produced by an algorithm in AGD.

The functions
void SPRING EMBEDDING(const graph& G,

node array<double>& xpos, node array<double>& ypos,
double xleft, double xright, double ybottom, double ytop,
int iterations = 250);

void SPRING EMBEDDING(const graph& G, const list<node>& fixed,
node array<double>& xpos, node array<double>& ypos,
double xleft, double xright, double ybottom, double ytop,
int iterations = 250);

compute straight line drawings of a graph G using a so-called spring embedder3.

A spring embedder works iteratively. It models the nodes of a graph as points in

the plane that repulse each other, and it models each edge as a spring between the

endpoints of the edge. In each iteration the force acting on any node is computed

as the sum of repulsive forces (from all other nodes) and attractive forces (from

incident edges), and the node is moved accordingly. The number of iterations is

determined by the parameter iterations .

The x- and y-coordinates of the positions assigned to the nodes of G are returned

in xpos and ypos , respectively, and the points are constrained to lie in the rectangle

defined by xleft , xright , ybottom , and ytop. The second version of the function keeps

the positions of the nodes in fixed fixed.

Drawings in which edges do not cross are particularly nice. We call such drawings

embeddings. Out of the four drawings shown in Figure 8.1 three are embeddings.

Embeddings are the topic of Section 8.3. The graphs in Figure 8.2 are undirected.

For the purposes of this chapter it is convenient to distinguish between the two

3 The name spring drawer would be more appropriate, as spring embedders do not produce embeddings,
but drawings. However, the name spring embedder is in general use.
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Figure 8.3 A bidirected graph: We have reversal (e2i) = e2i+1 and
reversal (e2i+1) = e2i for all i with 0 ≤ i ≤ 2. Requirement (2) excludes the possibility
that reversal (e0) = e1, and reversal (e3) = e0, and requirement (3) excludes the
possibility that reversal (e4) = e4 and reversal (e5) = e5.

orientations of an edge. This leads to the concepts of bidirected graphs and maps,

which we treat in the next section.

Exercise for 8.1
1 Implement a spring embedder.

8.2 Bidirected Graphs and Maps

A directed graph G = (V,E) is called bidirected if there is a bijective function

reversal : E → E such that for every edge e = (v,w) with eR = reversal (e):

(1) eR = (w, v), i.e., source(e) = target(eR) and target(e) = source(eR),

(2) reversal(eR) = e, and

(3) e 6= eR.

Property (1) ensures that reversal deserves its name, and properties (2) and

(3) ensure that reversal behaves properly in the presence of parallel edges and

self-loops. Figure 8.3 shows an example of a bidirected graph and also illustrates

properties (2) and (3). A bidirected graph has an even number of edges.

The function
bool G.is bidirected();

returns true if G is bidirected and returns false otherwise. The function
void G.make bidirected(<list<edge>& R);

adds a minimum number of edges to G so as to make G bidirected. The added

edges are returned in R.

Every edge e of any graph G has a reversal information associated with it. It is

accessed through
G.reversal(e)

and has type edge. The reversal information of an edge is either undefined (= nil)

or is an edge eR satisfying (1) to (3). The operation
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Figure 8.4 A map: Every pair of edges {e, eR} with reversal (e) = eR and
reversal (eR) = e is drawn as two half-edges. For each half-edge the name of the
half-edge is shown on the left side of the half-edge.

G.set reversal(e,f)

sets the reversal information of e to f and the reversal information of f to e. The

function checks whether the created reversal information is legal and aborts if it is

not. If the reversal information of e was defined prior to the operation, the reversal

information of eR is set to nil by the operation. The same holds true for f .

A map is a graph in which the reversal information of every edge is defined.

A map is always a bidirected graph and every bidirected graph can be turned into

a map by setting the reversal information appropriately. The function
bool G.is map()

returns true if G is a map and the functions
bool G.make map()
void G.make map(list<edge>& R)

turn G into a map by setting the reversal information of every edge. The first

function requires that G is bidirected (if G is not bidirected, the function returns

false and sets the reversal information of a maximal number of edges), the second

function adds a minimum number of edges to G so as to make G bidirected and

then turns G into a map. Both functions preserve reversal information, i.e., if

reversal(e) is defined before the call, then reversal (e) is not changed by either call.

We call a pair of edges {e, eR} with reversal(e) = eR (and hence reversal (eR) = e)

a uedge (undirected edge) and say that e and eR form the uedge. The uedge

comprising e and eR is denoted {e, eR} or {v,w}, where v and w are the two

endpoints of e. The latter notation is ambiguous in the presence of parallel edges.

We depict maps as shown in Figure 8.4. For every uedge {e, eR} we draw “two

half-edges that meet” and label them e and eR, respectively.

We have no iteration statement that iterates over the uedges of a graph. However,

it is easy to obtain the effect of iterating over uedges.
forall edges(e,G)
{ if ( index(e) > index(G.reversal(e)) ) continue;
<body of loop>

}

Observe that the body of the loop is executed for exactly one edge in each uedge,

namely the one with smaller index.
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We describe the implementations of some of the functions introduced above. We

also introduce a function that checks whether the reversal information of all edges

is properly defined. This section may be skipped on first reading.

We start with a function check reversal inf that checks whether the reversal

information of every edge is either nil or satisfies (1) to (3) and raises an error if

this is not the case4. The function is non-trivial to write because it cannot assume

that the reversal information of an edge has a meaningful value, i.e., the function

has to cope with the possibility that G.reversal (e) is non-nil and not an edge of G

for some e.

We proceed as follows. We introduce a map is edge of G from edges to bool that

we initialize to false. We then set is edge of G [e] to true for all edges e of G. Next,

we iterate again over all edges e of G and make sure that reversal (e) is either nil

or an edge of G. In a third step we make sure that (1) to (3) holds for all edges e

whose reversal information is not nil .

〈check reversal inf.c〉+≡
bool check_reversal_inf(const graph& G)
{ map<edge,bool> is_edge_of_G(false);

edge e;
forall_edges(e,G) is_edge_of_G[e] = true;
forall_edges(e,G)
{ edge r = G.reversal(e);
if ( r == nil || !is_edge_of_G[r]) return false;

}
forall_edges(e,G)
{ edge r = G.reversal(e);
if (r == e || G.reversal(r) != e ||

G.source(e) != G.target(r) || G.target(e) != G.source(r) )
return false;

}
return true;

}

It is instructive to investigate what can go wrong when only the third forall edges

loop is executed. It would then be possible that r is different from nil but not an

edge of G. The access to the reversal, target, or source of r could then result in a

segmentation fault. The program above guards against this possibility by ensuring

first that the reversal of any edge e of G is either nil or an edge of G.

We next show the implementation of the function make map. Its implementation

is derived from the function Is Bidirected given in Section ??.

A call of G.make map( ) sets the reversal information of a maximal number of

edges. We proceed as follows: let v1, v2, . . . , vn be an arbitrary order on the nodes

4 We use the function check reversal inf for testing purposes. Of course, all functions of the LEDA
system are designed to preserve the invariant that the reversal of every function is either nil or an edge
of G satisfying (1) to (3) and hence, if none of the implementers of LEDA had ever made a mistake,
the function would have never raised an error.
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of G, e.g., the ordering given by the internal numbering of the nodes5. We make

two lists EST and ETS of all edges whose reversal information is undefined. EST

starts with all edges out of v1, followed by all edges out of v2, . . . . For each i, the

edges out of vi are in increasing order of their target node. ETS starts with all

edges into v1, followed by all edges into v2, . . . . For each i, the edges into vi are in

increasing order of the source node. We also want the self-loops incident to any vi
to appear in reverse order in the two lists.

The lists EST and ETS are easy to generate. We collect all edges whose reversal

information is undefined in a list EST and use bucket sort to rearrange EST in

increasing lexicographic order. We use the index of the source node of an edge as

the primary key and the index of the target node as the secondary key. For ETS

we interchange the roles of the primary and the secondary key, and we initialize

ETS to the reversal of EST . The effect of initializing ETS with the reversal of

EST instead of with ETS is that the self-loops incident to any vi appear in reverse

order in the two lists; this follows from the fact that bucket sort is stable.

Having rearranged both lists we establish the reversal information. EST starts

with all edges out of v1 sorted in order of increasing target and ETS starts with all

edges into v1 sorted in order of increasing source. Both lists start with all self-loops

incident to v1.

We scan over both lists and check whether the first edge on EST , call it e, can

be paired with the first edge on ETS , call it r. We can pair e and r if none of

them was paired previously and if source(e) = target(r), target(e) = source(r), and

e 6= r. If e and r can be paired, we pair them by setting their reversal information

appropriately. The function succeeds if all edges can be paired.

So assume that e and r cannot be paired. We show that at least one of e and r

will never find a partner.

Assume first that source(e) 6= target(r). If source(e) < target(r) then ETS con-

tains no further edge which ends in source(e). Thus e cannot be paired. Similarly,

if source(e) > target(r) then EST contains no further edge that starts in target(r).

Thus r cannot be paired.

Assume next that source(e) = target(r) and target(e) 6= source(r). If target(e)

is less than source(r) then ETS contains no further edge that starts in source(e)

and ends in target(e) and hence e cannot be paired. If target(e) is greater than

source(r) then EST contains no further edge that ends in target(r) and starts in

source(r) and hence r cannot be paired.

Assume finally that source(e) = target(r) and target(e) = source(r) and e = r,

i.e., e is a self-loop. Since EST and ETS contain the self-loops incident to any

node in reverse order this can only happen if there is an odd number of self-loops

incident to source(e) and if e is the middle element of the block of self-loops incident

5 The internal number of a node v is given by index(v).
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to source(e). In this situation it is OK if e stays unpaired and all other self-loops

incident to source(e) are paired.

〈make map.c〉≡
static int map_edge_ord1(const edge& e) { return index(source(e)); }
static int map_edge_ord2(const edge& e) { return index(target(e)); }

bool graph::make_map()
{

int n = max_node_index();
int count = 0;

edge e,r;

list<edge> EST;
forall_edges(e,(*this)) if (e->rev == nil) EST.append(e);

int number_of_undefined_reversals = EST.length();

list<edge> ETS = EST; ETS.reverse();

EST.bucket_sort(0,n,&map_edge_ord2); // secondary key
EST.bucket_sort(0,n,&map_edge_ord1); // primary key

ETS.bucket_sort(0,n,&map_edge_ord1); // secondary key
ETS.bucket_sort(0,n,&map_edge_ord2); // primary key

// merge EST and ETS to find corresponding edges

while (! EST.empty() && ! ETS.empty())
{ e = EST.head();
r = ETS.head();

if ( e->rev != nil ) { EST.pop(); continue; }
if ( r->rev != nil ) { ETS.pop(); continue; }

if ( target(r) == source(e) )
{ if ( source(r) == target(e) )
{ ETS.pop(); EST.pop();
if ( e != r )
{ e->rev = r; r->rev = e;
count += 2;

}
continue;

}
else // target(r) == source(e) && source(r) != target(e)
{ if (index(source(r)) < index(target(e)))

ETS.pop(); // r cannot be matched
else
EST.pop(); // e cannot be matched

}
}
else // target(r) != source(e)
{ if (index(target(r)) < index(source(e)))

ETS.pop(); // r cannot be matched
else
EST.pop(); // e cannot be matched

}
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}

return count == number_of_undefined_reversals;
}

Given the function above, it is trivial to extend a graph G to a map. A call

G.make map( ) determines the reversal information of a maximal number of edges.

For any edge whose reversal information is still undefined, we add the reversed edge

to G and set the reversal information accordingly.

〈make map.c〉+≡
void graph::make_map(list<edge>& R)
{ if (make_map()) return;

list<edge> el = all_edges();
edge e;
forall(e,el)
{ if (e->rev == nil)
{ edge r = new_edge(target(e),source(e));
e->rev = r;
r->rev = e;
R.append(r);

}
}

}

Exercises for 8.2
1 Does the function check reversal inf work if the map is edge of G is replaced

by an edge array?
2 Does the function check reversal inf work if the last two forall edges loops are

combined into one?

8.3 Embeddings

Embeddings are special drawings, namely drawings where no edge is drawn across

a node, where the images of distinct edges do not cross, and where the two edges

comprising a uedge are embedded the same. Formally, we define as follows:

A drawing I of a graph G into a surface S is called an embedding if the images of

edges contain no images of points in their relative interiors6, if the images of edges

belonging to distinct uedges are disjoint except for endpoints7, and if the curves

assigned to edges belonging to the same uedge are reversals of each other8.

Figure 8.1 shows three embeddings of a map M0 into the plane; M0 has nodes

6 I(e)(x) 6= I(v) for any edge e, node v, and real x with 0 < x < 1
7 I(e)(x) 6= I(e′)(y) for edges e and e′ with e 6= e′ and e′ 6= reversal(e) and all x and y with 0 < x, y < 1
8 I(eR)(x) = I(e)(1 − x) for all edges e, eR = reversal(e), and all x, 0 ≤ x ≤ 1
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v1, v2, v3, and v4 and uedges {v1, v2}, {v1, v3}, {v1, v4}, and {v2, v3}, and will be

used as the running example in this chapter. An embedding into the plane is called

a planar embedding, and a planar embedding in which every edge is mapped to a

straight line segment is called a straight line embedding. A graph G is called planar

if it has a planar embedding.

The function
bool Is Planar(const graph& G)

tests whether the graph G = (V,E) has a planar embedding. It returns true if G

is planar and false otherwise. The running time is O(n+m).

The functions
bool PLANAR(graph& G, bool embed = false);
bool HT PLANAR(graph& G, bool embed = false);
bool BL PLANAR(graph& G, bool embed = false);

also test whether the graph G is planar. When embed is true, G is a map, and G

is planar (the functions rise an error when embed is true and G is not a map), the

functions in addition reorder the adjacency lists of G such that G becomes a plane

map. The notion of plane map is explained in Section 8.4. All of this takes time

O(n+m).

There are two implementations of the planarity test and planar embedding al-

gorithm: HT PLANAR realizes the planarity testing algorithm of Hopcroft and

Tarjan, see [HT74] or [Meh84, IV.10], and the embedding algorithm of Mehlhorn

and Mutzel, see [MM95]. BL PLANAR realizes the planarity testing algorithm of

Lempel, Even, and Cederbaum, and Booth and Lueker, see [LEC67, Eve79, BL76],

and the embedding algorithm of Nishizeki and Chiba, see [NC88]. The imple-

mentation of HT PLANAR is documented in [MMN94] and the implementation

of BL PLANAR is discussed in Section 8.7. BL PLANAR is the faster of our

implementations and hence PLANAR is synonymous to BL PLANAR.

The functions
bool PLANAR(graph& G, list<edge>& el, bool embed = false);
bool HT PLANAR(graph& G, list<edge>& el, bool embed = false);
bool BL PLANAR(graph& G, list<edge>& el, bool embed = false);

behave like the functions above when G is planar. If G is non-planar, the functions

also return a proof of non-planarity in the form of the edges el of a Kuratowski

subgraph. The identification of Kuratowski subgraphs takes linear time O(n+m)

in BL PLANAR and PLANAR, and takes quadratic time O(n2) in HT PLANAR.

We explain the notion of Kuratowski subgraph.

Figure 8.5 shows two non-planar graphs, the complete graphK5 on five nodes and

the complete bipartite graphK3,3 with three nodes on each side. The non-planarity

of both graphs will be shown in Lemma 3 in Section 8.6. It is a famous theorem

of Kuratowski, see [Kur30, Whi73], that every non-planar graph G contains a

subdivision9 of either K5 or K3,3, i.e., there is a set el of edges in G forming a

9 Let K be an arbitrary graph. A subdivision of K is obtained from K by subdividing edges. To
subdivide an edge means to split the edge into two by placing a new vertex on the edge.
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K5 K3,3

Figure 8.5 The Kuratowski graphs K5 and K3,3.

Figure 8.6 A non-planar graph and the Kuratowski subgraph proving non-planarity.
The edges of the Kuratowski subgraph are shown in bold. This figure was generated
with the xlman-demo gw plan demo.

subdivision of either K5 or K3,3. Figure 8.6 shows a Kuratowski subgraph of a

non-planar graph.

There is also a function that gives more information about the Kuratowski sub-

graph than just the list of its edges.
int KURATOWSKI(graph& G, list<node>& V, list<edge>& E,

node array<int>& deg);

returns zero ifG is planar and returns one otherwise. IfG is non-planar, it computes

a Kuratowski subdivisionK ofG as follows: V is the list of all nodes and subdivision

points of K. For all v ∈ V which are subdivision points, the degree deg [v] is equal

to 2. If K is a K5, then deg [v] is equal to 4 for all nodes v ∈ V that are not

subdivision points. If K is a K3,3, then deg [v] is equal to −3 (+3) for the nodes v

on the left (right) side of the K3,3.
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Figure 8.7 A straight line drawing produced by STRAIGHT LINE EMBEDDING.
This figure was generated with the xlman-demo gw plan demo.

If G is a plane map, the function
int STRAIGHT LINE EMBEDDING(graph& G, node array<int>& xcoord,

node array<int>& ycoord);

computes for each node v ofG a point (xcoord [v], ycoord [v]) with integer coordinates

in the range [0 .. 2(n − 1)] such that the straight line embedding defined by these

node positions is an order preserving embedding of G. The algorithm [Fár48,

dFPP88] has running time O(n2). G must not have parallel edges and it must

not have self-loops (since the existence of parallel edges or self-loops excludes the

existence of a straight line embedding). Figure 8.7 shows a straight line drawing

produced by this algorithm.

The function Is Planar played an important role in the development of LEDA.

We added the function to the system in 1991. The function had been implemented

as part of a master’s thesis and had been tested on a small number of examples

(we did not have a large collection of planar graphs available to us). The master’s

thesis described the implementation; the actual program was not part of the thesis.

In 1993 we were sent a planar graph which, however, our program declared non-

planar. When we started to revise the program we learned two things. First, we

learned that writing a function
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bool Is Planar(const graph& G)

means asking for trouble. A function that answers a complex question like

Is G planar?

should not just return “YES” or “NO”; it should justify its answer in a way that

is easily checked by the caller of the function.

Second, we learned that documentation and implementation had to be tied to-

gether more closely by the use of literate programming. Literate programming,

first advocated by D.E. Knuth, suggests to embed an implementation into a doc-

ument that describes the algorithm. All programs in this book are presented in

a literate programming style. We first used CWEB [KL93] and later switched to

noweb [Ram94].

In the case of planarity testing, the learning process led to reports [MMN94,

MM95, HMN96] and to function
bool PLANAR(graph& G, list<edge>& el, bool embed)

which justifies its answers:

• When G is non-planar the function returns a proof of non-planarity in the

form of the set el of edges of a Kuratowski subgraph. The caller can easily

check that the edges in el form a Kuratowski subdivision of G.

• When G is planar, embed is set to true, and G is a map, the function reorders

the adjacency lists of G such that G becomes a plane map. A caller of

PLANAR has two ways to check whether the returned map is plane. He can

either produce a planar drawing of G with the help of

STRAIGHT LINE EMBEDDING and visually inspect the result, or he can

compute the genus of G. The genus of maps will be discussed in Section 8.6

and it will be shown there that a map is plane iff its genus is zero. The genus

of a map can be computed by a simple program.

The fact that PLANAR justifies its answers and that the answers are easily

checked can be used to test the function on any input. Observe that testing is usu-

ally restricted to inputs where the answer is known by other means. The following

test program exploits the fact that PLANAR can be tested on any input.

We choose integers n and m such that a random map with n nodes and m uedges

has a fair chance of being planar and a fair chance of being non-planar, generate

random maps with n nodes and about m edges, test them for planarity, and check

the answer.

〈planar test.c〉+≡
int main(){

int n = read_int("n = "); int m = read_int("m = ");

graph G;
list<edge> el;
int P = 0; int K = 0;
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while (P + K < 1000)
{ random_graph(G,n,m);

list<edge> R;
G.make_map(R);
if ( PLANAR(G,el,true) )
{ assert(Genus(G) == 0); P++; }

else
{ assert(CHECK_KURATOWSKI(G,el)); K++; }

}
cout << "\n\nnumber of plane graphs = " << P;
cout << "\n\nnumber of non-plane graphs = " << K; newline;
}

In a run with n = 50 and m = 55, the program above found 308 planar graphs

and 692 non-planar graphs.

The function PLANAR was the first function in LEDA that justified its answers.

By now, many functions do. We have seen many examples already in the preceding

chapters and we will see more in the chapters to come. A general discussion of

the role of program checking in LEDA can be found in Section ??.

Exercises for 8.3
1 Let G be a non-planar graph. Show that the following strategy identifies the

edges of a Kuratowski subgraph. Iterate over all edges e of G. If G \ e is
non-planar, remove e from G, and if G \ e is planar leave G unchanged. The
edges remaining in G form a Kuratowski subgraph.

2 Write a function
bool CHECK KURATOWSKI(const graph& G, const list<edge>& el)

that returns true if the edges in el form a Kuratowski subdivision of G.

8.4 Order-Preserving Embeddings of Maps and Plane Maps

We define the notion of an order preserving embedding of a map.

For a vertex v, we use A(v) to denote the set of edges with source v. The set

A(v) is stored as a cyclic list. For an edge e,
G.cyclic adj succ(e);

G.cyclic adj pred(e);

return the successor and predecessor of e, respectively, in the cyclic list A(source(e)).

We will, from now on, assume that the adjacency lists of the mapM0, our running

example, are ordered as follows:

v1 : e1 = (v1, v2), e2 = (v1, v4), e3 = (v1, v3)

v2 : e4 = (v2, v3), e
R
1 = (v2, v1)

v3 : eR3 = (v3, v1), e
R
4 = (v3, v2)

v4 : eR2 = (v4, v1).
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cyclic adj succ

e

cyclic adj pred

Figure 8.8 Order-preserving embeddings: The cyclic order of the edges in A(v) agrees
with the counter-clockwise ordering of the edges around v in the drawing.
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Figure 8.9 Two planar embeddings of the map M0: In the embedding on the left the
counter-clockwise ordering of the edges in A(v1) is e1, e2, e3 and in the embedding on
the right the ordering is e1, e3, e2. The embedding on the left is order-preserving.

Consider a drawing of a map M into the plane (more generally, into any ori-

entable surface) and let v be any node of M . The drawing defines a cyclic ordering

on the edges A(v) emanating from v, namely the counter-clockwise ordering10 of

the curves I(e), e ∈ A(v), around I(v). A drawing is called order-preserving or

order-compatible if for every node v the counter-clockwise ordering of the curves

I(e), e ∈ A(v), around I(v) agrees with the cyclic ordering of the edges in A(v), see

Figure 8.8. In Figure 8.9 one of the embeddings of M0 is order-preserving and one

is not. In all further drawings of maps in this chapter we will use order-preserving

drawings.

A map is called plane if it has an order-preserving planar embedding. The

function
bool Is Plane Map(const graph& G)

10 A precise definition is as follows: for a positive real ǫ consider the first intersections of the curves I(e),
e ∈ A(v), with the circle of radius ǫ around I(v). For small enough ǫ this ordering does not depend on
ǫ.
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e0

e1

e2

e3

e4

Figure 8.10 Face cycle successors and predecessors: We have ei+1 = face cycle succ(ei)
for all i, 0 ≤ i < 5. Indices are mod 5. The drawing convention for maps is used.

returns true if G is a plane map and returns false otherwise. We will see its

implementation in Section 8.6.

8.5 The Face Cycles and the Genus of a Map

We define a partition of the edges of a map into cycles, the so-called face cycles.

We introduce face cycles as purely combinatorial objects and will interpret them

geometrically in the next section. Based on the concept of face cycles we will define

the genus of a map.

For an edge e of a map M we define the face cycle successor and face cycle

predecessor of e by:
face cycle succ(e) = cyclic adj pred(reversal(e))
face cycle pred(e) = reversal(cyclic adj succ(e)).

Figure 8.10 illustrates these definitions. The next lemma justifies the use of the

names succ and pred and also shows that the function face cycle succ decomposes

the edges of a map into cycles.

Lemma 1 Let M be a map and let e be an edge of M . Then

(a) face cycle pred (face cycle succ(e)) = e

(b) face cycle succ(face cycle pred(e)) = e

(c) Let e0 = e and set ei+1 = face cycle succ(ei) for i ≥ 0. Then there is a k such

that ek+1 = e0 and ei 6= ej for all i and j with 0 ≤ i < j ≤ k.

Proof (a) and (b) We have

face cycle pred(face cycle succ(e))

= reversal (cyclic adj succ(cyclic adj pred(reversal (e))))

= reversal (reversal (e))
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= e

and

face cycle succ(face cycle pred(e))

= cyclic adj pred(reversal (reversal (cyclic adj succ(e))))

= cyclic adj pred(cyclic adj succ(e))

= e

(c) Let k be minimal such that ek+1 = ei for some i ≤ k. Assume i > 0. From

ek+1 = face cycle succ(ek) and ei = face cycle succ(ei−1) and part (a) we conclude

ek = ei−1, a contradiction to the definition of k. Thus i = 0.

For an edge e of a map M we define the face cycle containing e as the cycle

[e0, e1, . . . , ek] where e0 = e, ei+1 = face cycle succ(ei) for i ≥ 0, ek+1 = e, and

ej 6= ei for 0 ≤ i < j ≤ k. Part (c) of the lemma above guarantees that this is a

good definition. Every edge of M belongs to exactly one face cycle and the face

cycles partition the edges of M .

We illustrate the concept of face cycle on our running example, the map M0.

The face cycle containing the edge e1 = (v1, v2) is

[e1, e4, e
R
3 , e2, e

R
2 ],

and the face cycle containing the edge eR1 = (v2, v1) is

[eR1 , e3, e
R
4 ].

Let us verify that this is indeed the case. We have

face cycle succ(eR1 ) = cyclic adj pred(reversal (eR1 )) = cyclic adj pred(e1) = e3,

face cycle succ(e3) = cyclic adj pred(reversal (e3)) = cyclic adj pred(eR3 ) = eR4 ,

and

face cycle succ(eR4 ) = cyclic adj pred (reversal (eR4 )) = cyclic adj pred(e4) = eR1 .

We want to stress that the concept of face cycles is purely combinatorial. It is

made without any reference to a drawing of a map. A geometric interpretation is

given in the next section.

We close this section with the definition of the genus of a map. Let M be a map

with m edges, c connected components, n nodes, nz isolated nodes, and fc face

cycles. Then

genus(M) = (m/2 + 2c− n− nz − fc)/2.

The genus of a map is always a non-negative integer, as we will show in the next

section, and characterizes the surfaces into which a map can be embedded. For

the map M0 we have m = 8, c = 1, n = 4, nz = 0, and f = 2, and hence
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genus(M0) = 0. We will see in the next section that this implies that M0 is a plane

map.

The following program computes the genus of a map. We determine the number

of nodes and edges and the number of isolated nodes in the obvious way, and

we call COMPONENTS to determine the number of connected components. We

determine the number of face cycles by tracing them one by one. We iterate over

all edges e of G. If the face cycle of e has not been traced yet, we trace it and mark

all edges on the cycle as considered.

〈genus.c〉≡
int Genus(const graph& G)
{ if ( !Is_Map(G) ) error_handler(1,"Genus only applies to maps");

int n = G.number_of_nodes();
if ( n == 0 ) return 0;
int nz = 0;
node v;
forall_nodes(v,G) if ( outdeg(v) == 0 ) nz++;
int m = G.number_of_edges();
node_array<int> cnum(G);
int c = COMPONENTS(G,cnum);

edge_array<bool> considered(G,false);
int fc = 0;
edge e;
forall_edges(e,G)
{ if ( !considered[e] )
{ // trace the face to the left of e
edge e1 = e;
do { considered[e1] = true;

e1 = G.face_cycle_succ(e1);
}

while (e1 != e);
fc++;

}
}
return (m/2 - n - nz - fc + 2*c)/2;

}

8.6 Faces, Face Cycles, and the Genus of Plane Maps

The purpose of this section is to relate combinatorics and geometry. We will define

the faces of an embedding and relate it to the face cycles of a map. We will prove

that a map is plane if and only if its genus is zero. We will also show that K5 and

K3,3 are non-planar graphs.

Consider a map M and an embedding I of M into an orientable surface S. The

removal of the embedding from S leaves us with a family of open connected subsets
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of S, called the faces of the embedding. In an embedding into the plane exactly

one of the faces is unbounded and all other faces are bounded. The unbounded

face is also called the outer face. We associate a set of edges with each face F ,

the boundary of F . An edge e belongs to the boundary of F if the “left side” of

I(e) is contained in F , formally, if for every point p in the relative interior of the

embedding I(e) of e and every sufficiently small disk centered at p, the part of the

disk lying to the left of I(e) is contained in F .

Consider the embeddings of M0 shown in Figure 8.9. In the embedding on the

left, the boundary of the unbounded face consists of the edges eR1 , e3, and eR4 , and

the boundary of the bounded face consists of the edges e1, e4, e
R
3 , e2, and eR2 . In

the embedding on the right, the boundary of the unbounded face consists of the

edges eR1 , e2, e
R
2 , e3, and eR4 , and the boundary of the bounded face consists of the

edges e1, e4, and eR3 . In the embedding on the left the face boundaries correspond

to the face cycles of M0.

The boundary of a face consists of one or more cycles11, which we call boundary

cycles. In the case of an order-preserving embedding boundary cycles and face

cycles are the same.

Lemma 2 Let I be an order-preserving embedding of a map M . The boundary

cycles of the faces of I are in one-to-one correspondence to the face cycles of M .

Proof Let e = (v,w) be any edge of M and consider the boundary cycle C con-

taining I(e). Let g = (w, z) be the edge such that I(g) follows I(e) in C. Then

I(g) follows I(reversal (e)) in the clockwise ordering of the embedded edges around

I(v). Since I is an order-preserving embedding we have g = face cycle pred(e).

Thus, boundary cycles and face cycles are the same.

The next theorem shows that the genus of a map gives a combinatorial condition

whether a map is plane. It is more generally true, see [Whi73], that the genus of a

map M characterizes the oriented surfaces into which M can be embedded in an

order-preserving way. The following theorem is due to Euler [Eul53] and Poincaré

[Poi93].

Theorem 1 Let M be any map. Then genus(M) ≥ 0. Moreover, M is a plane

map iff genus(M) = 0.

Proof We observe first that it suffices to prove the claims for a connected map M .

Let M1, . . . , Mc be the connected components of M . Then12 m =
∑

mi, n =
∑

ni,

nz =
∑

nz i, fc =
∑

fci, and c =
∑

ci and hence

genus(M) =
∑

genus(Mi).

11 In a connected graph the boundary of each face consists of exactly one cycle.
12 We use mi to denote the number of edges in Mi and analogously for ni, nz i, fci, and ci.
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Figure 8.11 The edges e and eR belong to distinct face cycles e ◦ p and eR ◦ q.
Removal of e and eR leaves us with a connected graph since p and q provide alternative
connections between v and w. Let e1 = face cycle succ(e), e2 = face cycle pred(e),
e3 = face cycle pred(eR), and e4 = face cycle succ(eR). Removal of e and eR makes e1
the face cycle successor of e3, and e4 the face cycle successor of e2. No other successor
relationship is affected. We conclude that the removal of e and eR generates the face
cycle p ◦ q and affects no other face cycles. Thus, fc′ = fc − 1.

Let us assume for the moment that the claims hold for connected maps, i.e., we

have genus(Mi) ≥ 0 and Mi is plane iff genus(Mi) = 0 for all i. We conclude

genus(M) ≥ 0. If M is plane then all Mi’s are plane. Thus, genus(Mi) = 0 for

all i and hence genus(M) = 0. Conversely, genus(M) = 0 implies genus(Mi) = 0

for all i (since genus(Mi) > 0 for some i would imply genus(Mj) < 0 for some j).

Thus, Mi is plane for all i and hence M is plane.

For connected maps we use induction on the number of edges. If m = 0 then

n = nz = 1 and fc = 0. Thus, M is plane and genus(M) = 0. We turn to the

induction step.

Assume first that M contains a uedge {e, eR} such that e and eR belong to

different face cycles. Removal of e and eR generates a map M ′ with m′ = m− 2,

n′ = n, c′ = c = 1, nz ′ = nz = 0, and fc′ = fc − 1, see Figure 8.11. Thus,

genus(M) = genus(M ′). By induction hypothesis, genus(M ′) ≥ 0 and M ′ is plane

iff genus(M ′) = 0. From genus(M ′) ≥ 0 we conclude genus(M) ≥ 0. We next show

that M is plane iff genus(M) = 0. If M is plane then M ′ is plane (since an order-

preserving embedding of M ′ is obtained from an order-preserving embedding of M

by removing the images of e and eR). Thus genus(M ′) = 0 by induction hypothesis

and hence genus(M) = 0. Conversely, if genus(M) = 0 then genus(M ′) = 0 and

hence there is an order-preserving embedding I ′ of M ′, by induction hypothesis.

By Lemma 2 there is a face F in the embedding I ′ with boundary cycle p ◦ q. We

embed e and eR into F and obtain an order-preserving embedding I of M .

Assume next that for every uedge {e, eR} of M , e and eR belong to the same

face cycle. Consider any node v and let A(v) = (e0, e1, . . . , ek−1) be the cyclic list

of edges out of v. Then

ei = face cycle succ(eRi+1)
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Figure 8.12 A node v with A(v) = (e0, e1, e2, e3). There is a face cycle containing eRi+1

and ei for all i, 0 ≤ i < 4. Indices are modulo 4.

for all i, 0 ≤ i < k, by the definition of face cycles, see Figure 8.12. Since ei and

eRi belong to the same face cycle by assumption, all edges incident to v belong to

the same face cycle and, since M is connected, all edges of M belong to the same

face cycle. Thus, fc = 1. Since M is connected, the number of uedges is at least

n − 1. Thus, m ≥ 2(n − 1), c = 1, nz = 0, and hence genus(M) ≥ 0. We next

show that M is plane iff genus(M) = 0. If M is plane consider an order-preserving

embedding I of M . The face cycles of M are in one-to-one correspondence to the

faces of the embedding. Since there is only one face cycle, there is only one face,

and hence M cannot contain a cycle. Thus, m = 2(n−1) and hence genus(M) = 0.

Conversely, if genus(M) = 0 then (m/2 + 2− n− 1) = 0 and hence m = 2(n − 1).

The number of uedges is therefore equal to n−1 and hence the uedges form a tree.

For a tree there is clearly an order-preserving embedding.

The theorem above implies that the test of whether a graph G is a plane map

is trivial to implement. We only have to test whether G is a map and whether the

genus of G is zero.
bool Is Plane Map(const graph& G) { return Is Map(G) && Genus(G) == 0; }

We draw some more consequences of Theorem 1. It implies an upper bound on

the number of edges in a planar graph (without self-loops and parallel edges) and

it implies that the Kuratowski graphs K5 and K3,3 are non-planar.

Lemma 3

(a) Let M be a connected plane map in which every face cycle consists of at least

d edges, where d ≥ 3. Then

m/2 ≤ d

d− 2
(n− 2),
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i.e., M has at most (d/(d − 2)) · (n− 2) uedges.

(b) Let M be a connected planar map without self-loops and without parallel edges.

Then M has at most 3n− 6 uedges, if n > 3, and a node of degree at most five.

(c) Let M be a connected bipartite planar map without self-loops and without par-

allel edges. Then M has at most 2n− 4 uedges, if n ≥ 4.

(d) The complete graph K5 on five nodes is not planar.

(e) The complete bipartite graph K3,3 with three nodes on each side is not planar.

Proof (a) If every face cycle consists of at least d edges then m ≥ d · fc. Thus,
0 = genus(M) = m/2 + 2− n− fc ≥ m/2 + 2− n−m/d

and hence (m/2) · (1− 2/d) ≤ n− 2 or m/2 ≤ (d/(d − 2)) · (n− 2).

(b) and (c) Reorder the adjacency lists of M such that M becomes a plane map.

If M has no self-loops and no parallel edges, every face cycle of M consists of at

least three edges. If, in addition, M is bipartite, every face cycle of M consists of

at least four edges. The bounds on the number of edges now follow from part (a).

If every node would have degree six or more, the total number of edges would be

at least 6n/2 = 3n.

(d) A planar graph with five nodes and no self-loops and no parallel edges has

at most nine uedges by part (b). The graph K5 has 5 · 4/2 = 10 uedges.

e) A planar bipartite graph with six nodes and no self-loops and no parallel edges

has at most eight uedges by part (c). The graph K3,3 has 3 · 3 = 9 uedges.

Exercise for 8.6
1 It is obvious from the definition of genus(M) that 2 · genus(M) is an integer.

The purpose of this exercise is to show that genus(M) is an integer. In
the proof of Theorem 1 we have constructed for every connected map M a
connected map M ′ such that genus(M) = genus(M ′) and such that M ′ has a
single face cycle. Let M ′′ be obtained from M ′ by removing an edge e and its
reversal eR. Determine the number of edges, nodes, face cycles, and connected
components of M ′′ and conclude that genus(M ′) − genus(M ′′) is an integer.
Use this observation and induction to show that the genus of every map is an
integer.

8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs

This section is joint work with D. Ambras, R. Hesse, Christoph Hundack, and E. Kalliwoda.

We give the details of the planarity test, the planar embedding algorithm, and

the algorithm for finding Kuratowski subgraphs. For each algorithm we will first
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derive the required theory and then give an implementation. All implementations

run in linear time and are collected in the file

〈 bl planar.c〉≡
#include <LEDA/graph_alg.h>
#include <LEDA/pq_tree.h>
#include <LEDA/array.h>
#include <assert.h>

〈auxiliary functions〉
〈planarity test〉
〈planar embedding of biconnected maps〉
〈planar embedding of arbitrary maps〉
〈Kuratowski graphs in biconnected maps〉
〈Kuratowski graphs in arbitrary graphs〉

8.7.1 The Lempel–Even–Cederbaum Planarity Test

We discuss the planarity testing algorithm invented by Lempel, Even, and Ceder-

baum [LEC67, Eve79]. We assume that G = (V,E) is a biconnected graph13, that

e0 = (s, t) is an arbitrary edge of G, and that the nodes of G are st-numbered, i.e.,

s is numbered 1, t is numbered n, and every node distinct from s and t has a lower

and a higher numbered neighbor.

We will first discuss the required theory and then describe an implementation

based on PQ-trees.

The Theory: We identify nodes with their st-number, i.e., V = {1, . . . , n}. Fig-

ure 8.13 shows an example of an st-numbered biconnected graph. We will use it as

our running example.

Let Vk = {1, . . . , k} and let Gk = (Vk, Ek) be the graph induced by Vk, i.e., Ek

consists of all edges of G whose endpoints are both in Vk. We extend Gk to a graph

Bk. For each edge (v,w) of G with v ≤ k and w ≥ k + 1 there is a node and an

edge in Bk. They are called virtual nodes and virtual edges, respectively. We label

every virtual node with its counterpart in G. Figure 8.14 shows the graph B7 for

our running example.

If G is planar, Bk has a plane embedding which resembles a bush: node v,

1 ≤ v ≤ k, is drawn at height v, all virtual nodes are put on a horizontal line

at height k + 1, and all edges are drawn as y-monotone curves14. We call such

an embedding a bush form for Bk and we call the horizontal line at height k + 1

the horizon. The existence of bush forms will follow from the discussion to come.

Figures 8.15 and 8.16 shows two bush forms for the graph of Figure 8.14.

The leaf word of a bush form is a sequence in {N,E}∗, where E represents a

13 The rather trivial extension to arbitrary graphs will be given at the end of the section.
14 A curve is y-monotone if any horizontal line intersects the curve at most once.
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Figure 8.13 A biconnected st-numbered graph G. Node s is labeled 1 and node t is
labeled 9.
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Figure 8.14 The graph B7 for the graph G of Figure 8.13. There are three virtual
nodes labeled 8, one for each edge connecting node 8 to a node labeled 7 or less in G,
and there are five virtual nodes labeled 9, one for each edge connecting node 9 to a
node labeled 7 or less in G. The nodes 4, 6, and 7 comprise a biconnected component
which we denote H0 for later reference.

virtual node labeled k+1, N represents a virtual node labeled k+2 or larger, and

the virtual nodes are listed in their left-to-right order on the horizon. The bush

form in Figure 8.15 has leaf word ENNNENEN and the bush form in Figure

8.16 has leaf word NEEENNNN . A bush form for Bk is called extendible if all

virtual nodes labeled k + 1 are consecutive on the horizon, i.e., if its leaf word is

in N∗E∗N∗. An extendible bush form B̂k is readily extended to a bush form B̂k+1

for Bk+1. We move all nodes v, v > k + 1, to height k + 2, we merge all virtual

nodes labeled k + 1 into a single node (since they are consecutive on the horizon,
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Figure 8.15 A bush form for the graph B7 of Figure 8.14.
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Figure 8.16 An extendible bush form for B7.

merging does not destroy planarity), and add a new virtual edge and node for each

edge (k + 1, w) with w > k + 1.

The question is now how to decide whether Bk has an extendible bush form, and

how to find an extendible bush form. We show:

Theorem 2 Bk+1 has a bush form iff Bk has a bush form and no obstructions.

Moreover, if Bk has no obstructions then any bush form B̂k of Bk can be trans-

formed into an extendible bush form of Bk by a sequence of permutations and

flippings.

We still need to define several of the terms used in the theorem above. An

obstruction is either an obstructing articulation point or an obstructing biconnected

component. In the definition of either kind of obstruction we need the concepts of
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clean, mixed, or full subgraph. A subgraph of Bk is called clean, mixed, or full if

none, some but not all, or all of its virtual nodes are labeled k + 1.

An articulation point v of Bk is obstructing if there are three or more components

of Bk \ v that are mixed.

Consider the graph B7 of Figure 8.14. Node 4 is an articulation point and

B7 \ 4 has three components: Two of them are mixed and one is full. Node 4 is

non-obstructing. Please convince yourself that none of the articulation points is

obstructing.

We come to biconnected components of Bk. A node y of a biconnected component

H is called an attachment node of H if it is also the endpoint of an edge outside

H. Attachment nodes are articulation points of Bk and hence are embedded on

the boundary of the outside face in every bush form of Bk. In the graph B7 the

biconnected component H0 has attachment nodes 4, 6, and 7.

Let y0, y1, . . . , yp−1 be the attachment nodes of a biconnected component H

of Bk. We use y0 for the lowest numbered attachment node; y0 is also the lowest

numbered node in H. Any bush form B̂k of Bk induces an embedding of H (simply

remove all nodes outside H and their incident edges). In this embedding of H the

boundary of the outside face of H is a simple cycle, which we call the boundary

cycle15 of H in B̂k. A counter-clockwise traversal of the boundary cycle yields a

cyclic order on the attachment nodes, which we call the cyclic order induced by

the bush form. Consider Figures 8.15 and 8.16. The cyclic order of the attachment

nodes 4, 6, and 7 is 4, 6, 7 in the first figure and is 4, 7, 6 in the second figure.

Lemma 4 Let y0, y1, . . . , yp−1 be the attachment nodes of a biconnected component

H of Bk in the cyclic order induced by some bush form B̂k of Bk. Then any other

bush form of Bk induces either the same cyclic order or its reversal.

Proof Assume otherwise, i.e., there is a bush form B̂′
k such that the attachment

nodes appear in a different cyclic order in B̂′
k. Then there must be indices h, i,

and j such that yh and yh+1 (indices are mod p) are separated by yi and yj in the

boundary cycle of H in B̂′
k, see Figure 8.17. The embedding B̂′

k implies that any

pair of paths connecting yh to yh+1 and yi to yj, respectively, must cross. On the

other hand, the embedding B̂k implies the existence of non-crossing paths.

Let y0, y1, . . . , yp−1 be the attachments of H in one of their cyclic orders16. The

component of Bk opposite to H at yi is the subgraph of Bk spanned by all nodes

that are reachable from yi without using an edge of H. We denote it by Ci. Each

15 A node of H which is not an attachment node of H may lie on the boundary cycle of H in some bush
forms and may not lie on the boundary cycle in others. Attachment nodes belong to the boundary
cycle in every bush form.

16 There are two by the preceding lemma. For the definition in this paragraph it does not matter which
one is chosen.
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Figure 8.17 yh and yh+1 are adjacent attachment nodes on the boundary cycle of H
in B̂k, but are separated by yi and yj in the boundary cycle of H in B̂′

k.

Ci is either clean, mixed, or full. We define the signature of H as the word

s0s1 . . . sp−1 ∈ {clean,mixed,full}∗

where si describes the status of Ci. In the graph B7, the component opposite to

H0 at 6 is full, the component opposite to H0 at 7 is clean, and the component

opposite to H0 at 4 is mixed. The signature of H0 is “mixed clean full” for the

ordering 4, 7, 6 and “mixed full clean” for the ordering 4, 6, 7.

A biconnected component H is non-obstructing iff a cyclic shift of its signature

is in

clean∗ mixed10 full∗ mixed10 clean∗,

where mixed10 denotes zero or one occurrence of mixed, and is obstructing otherwise.

We come to permutations and flippings. Permutations apply to articulation

points of Bk. Let v be an articulation point of Bk. Then, if v > 1, exactly one

component of Bk with respect to v contains nodes lower than v, and if v = 1, no

component does17. We call the component containing lower numbered nodes the

root component of v and all other components non-root components of v.

In the graph B7 of Figure 8.14 the root component of node 4 contains nodes 5,

1, 2, 3, two copies of 8, and three copies of 9.

Consider now any bush form B̂k of Bk. A sub-bush of B̂k with lowest numbered

node v is the restriction of B̂k to the union of some non-root components with

respect to v. In particular, each non-root component of v corresponds to a sub-

bush of B̂k. A permutation operation permutes the sub-bushes corresponding to

the non-root components with respect to an articulation point v and a flipping

operation flips over a sub-bush, see Figure 8.18.

We are now ready for the if-direction of Theorem 2.

Lemma 5 If Bk has a bush form and no obstructions then any bush form B̂k can

be transformed into an extendible bush form by a sequence of permutations and

flippings.

17 Observe that any node u with u < v can reach 1 without passing through v by the virtue of
st-numberings.
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B CA A BC
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A B C C B A

Figure 8.18 Permuting and flipping.

Proof We want to use induction over sub-bushes and therefore prove a slightly

stronger claim. We call a sub-bush incomplete if there is a virtual node labeled

k + 1 outside the sub-bush and we call a sub-bush strongly extendible if its leaf

word is in N∗E∗ or E∗N∗. We show that every sub-bush can be transformed into

an extendible sub-bush, i.e., a sub-bush whose leaf word is in N∗E∗N∗, and that

every incomplete sub-bush can be transformed into a strongly extendible sub-bush.

Let B̂ be any sub-bush. If B̂ has only one virtual node, the claims are obvious.

So, assume otherwise and let v be the lowest numbered node in B̂. We distinguish

cases according to whether v is an articulation point of B̂ or not.

If v is an articulation point of B̂ then at most two of the components of B̂ with

respect to v are mixed. We can therefore permute the components such that all full

and all clean components are consecutive and such that the two mixed components

bracket the full components, see Figure 8.19. We apply the induction hypothesis

to the sub-bushes and therefore may assume that the sub-bushes are extendible or

even strongly extendible (for incomplete sub-bushes). We complete the induction

step with two observations. First, the mixed sub-bushes are incomplete except if

there is at most one mixed sub-bush and this sub-bush contains all virtual nodes

labeled k + 1. Second, if B̂ is incomplete then there is at most one mixed sub-

bush since the root component of Bk with respect to v is mixed. Thus, B̂ can

be transformed into an extendible bush form and into a strongly extendible bush

form if B̂ is incomplete. The transformation consists of transformations of the
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F M F M

v

F FM MC C

Figure 8.19 Permuting the sub-bushes of B̂ with respect to v. C, M, and F stand for
clean, mixed, and full sub-bushes, respectively.

sub-bushes, permuting the sub-bushes, and maybe flipping one of the mixed sub-

bushes.

If v is not an articulation point of B̂, let H be the biconnected component of B̂

containing v. Let y0, y1, . . . , yp−1 with v = y0 be the attachment points of H in Bk

in one of their two cyclic orders. We have a sub-bush B̂i of B̂ for the component

Ci of Bk opposite to yi for all i, 1 ≤ i ≤ p − 1. Since H is non-obstructing and

since C0 is either clean or mixed (it cannot be full since it contains the edge (s, t)),

we have

s1 . . . sp−1 ∈ clean∗ mixed10 full∗ mixed10 clean∗

if C0 is clean and we have

s1 . . . sp−1 ∈ clean∗ mixed10 full∗ ∪ full∗ mixed10 clean∗

if C0 is mixed. In either case we conclude that B̂ can be transformed into an

extendible bush form and into a strongly extendible bush form if B̂ is incomplete

and hence C0 is mixed. The transformation consists of transformations of sub-

bushes followed (maybe) by a flipping of the two mixed sub-bushes.

Figure 8.20 illustrates Lemma 5. It shows a sequence of transformations that

transform the bush form of Figure 8.15 into the extendible bush form of Figure 8.16.

We summarize. The Lempel–Even–Cederbaum planarity test constructs a se-

quence B̂0, B̂1, B̂2, . . . , B̂n of bush forms. In iteration k + 1 the bush form B̂k

is first transformed into an extendible bush form B̂′
k and then extended to a bush

form B̂k+1. The transformation to an extendible bush form uses permutations and

flippings and is possible if B̂k contains no obstructions.

The running time of the Lempel–Even–Cederbaum test is O(n2) in its original

form. Booth and Lueker improved the running time to O(n+m) by the introduc-

tion of the PQ-tree data structure, which we will discuss in the next section. In
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Figure 8.20 Transforming the bush form of Figure 8.15 into an extendible bush form.

Section 8.7.3 we will show that the existence of an obstruction implies the existence

of a Kuratowski graph in G.

The PQ-Tree Data Structure: Booth and Lueker [BL76] introduced the PQ-

data structure to keep track of the sequence of bush forms arising in the Lempel–
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Even–Cederbaum planarity test. PQ-trees have wider applications than planarity

testing but we will not discuss them here.

PQ-trees have the following interface.
pq tree T(m);

declares a PQ-tree T which can represent bush forms in which every edge is labeled

with an integer in [1 ..m]. After the declaration T represents the empty bush form

with no nodes and no edges. We use S to denote the set of virtual edges in the

current bush form. S is empty initially.

The operation
bool T.replace(list<int>& L, list<int>& U, list<int>& I)

adds a node to the current bush form. The node is incident to the virtual edges

L in the current bush form and introduces new virtual edges U . We must have

L ⊆ S, U is a set of integers (= edges) that have never been in S before, and

L = ∅ iff S = ∅; the latter requirement corresponds to the fact that only node 1 is

incident to no edge from below. The new set of virtual edges becomes (S \L)∪U .

The function returns true if the current bush form is extendible, i.e., can be

transformed to a bush form in which all edges in L are contiguous on the horizon.

The function returns false otherwise. Once a call of replace has returned false , the

PQ-tree becomes non-functional and no further operations can be applied to it.

The last argument I is irrelevant for the planarity test and is only required for

the construction of a planar embedding. We will discuss it in the next section.

The amortized running time of replace is proportional to the length of L plus

the length of U and the running time of the declaration T (m) is O(m).

We are now ready for the planarity test. The function PLANTEST expects

a biconnected graph G, an st-numbering st num of its nodes, and a list st list

containing the nodes of G in increasing order of st-number, and returns true iff G

is a planar graph.

If G has less than five nodes then G is planar. So assume that G has at least

five nodes. We declare a PQ-tree T (m), where m is one larger than the maximal

index of any edge18. We use T to maintain the bush forms B̂k for k = 0, 1, 2, . . . .

We iterate over the nodes in increasing order of st-number. For each v, we collect

the edges that connect v to lower numbered nodes in L, and we collect the edges

that connect v to higher numbered nodes in U . Self-loops are ignored as they do

not affect planarity. We update the bush form by
T.replace(L,U,I),

where I is a dummy argument. If the call is not successful, we break from the loop

and return false , if the call is successful, we proceed to the next node. If all nodes

can be added to the bush form we return true.
18 The data type graph numbers edges with non-negative integers. The number of an edge is called its

index. Since PQ-trees expect positive numbers, we identify any edge with its index plus one.
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〈planarity test〉≡
static bool PLANTEST(graph& G, node_array<int>& st_num,

list<node>& st_list)
{

int n = G.number_of_nodes();
int m = G.max_edge_index() + 1;

if (n < 5) return true;

pq_tree T(m);

int stv = 1;

node v;
forall(v,st_list)
{
list<int> L, U, I;

edge e;
forall_inout_edges(e,v)
{ node w = G.opposite(v,e);
int stw = st_num[w];
if (stw < stv) L.push(index(e)+1);
if (stw > stv) U.push(index(e)+1);

}

if ( !T.replace(L,U,I) ) break;

stv++;
}

return stv == n+1;
}

The program above performs the planarity test in time O(n + m). This follows

from the fact that the declaration of T requires time O(m) and that the total cost

of all replace operations is O(n +m) and that an st-numbering can be computed

in linear time (see Section ??).

The program above is short and elegant. It performs a complex task, namely, to

test whether a graph is planar, in linear time and a few lines of code. Of course,

all the complexity is hidden in the implementation of PQ-trees.

Can you trust the program above? “Yes, you can trust it”, but “it would be

unwise to do so”. We have not explained the inner workings of PQ-trees, their

implementation is complex (almost 2000 lines), and most seriously there is no

way to check the answer of the program above. It just says “yes” or “no”. In

the sections to come we will extend the program above to a program that can

be checked. We show how to compute planar embeddings of planar graphs and

Kuratowski subgraphs of non-planar graphs.

8.7.2 Planar Embeddings

Chiba et al [CNAO85, NC88] have shown how to extend the planarity test of Lem-

pel, Even, and Cederbaum to an embedding algorithm. We review their algorithm

and give the implementation of functions
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static bool PLAN EMBED(graph& G, node array<int>& st num,
list<node>& st list);

bool BL PLANAR(graph& G, bool embed);

The first function takes a biconnected map G, an st-numbering st num of G, and

the list of nodes of G in increasing order of st-number, and tests whether G is

planar. If G is planar, it reorders the adjacency lists of G such that G becomes a

plane map.

The second function applies to any map G. It returns true if G is planar and it

returns false otherwise. If G is planar and embed is true, G is turned into a plane

map. If embed is true and G is not a map, the function aborts. If embed is false,

the function applies to any graph G.

Biconnected st-numbered Maps: We discuss the function PLAN EMBED.

The planarity testing algorithm constructs a sequence of bush forms B̂0, B̂1, B̂2,

. . . , B̂n. The construction is implicit in the sense that the bush forms are hidden

in the internal structure of the PQ-tree. We want B̂n. The construction of B̂k+1

from B̂k consists of two steps: first, B̂k is transformed into an extendible bush form

B̂′
k and then node k + 1 is added to obtain B̂k+1.

For a node v let L(v) be the set of edges (v,w) with w < v, and for any integer

k with k ≥ v let Lk(v) be the counter-clockwise order of the edges in L(v) in the

bush form B̂k. The embedding algorithm is based on the following observations:

• The cyclic order of the adjacency lists A(v), v ∈ V , can be constructed from

the lists Ln(v), v ∈ V .

• The sequence Lk(k) is readily extracted from the PQ-tree data structure.

• The sequence Lk+1(v) is equal to Lk(v) or L
rev
k (v) for k ≥ v.

We provide more details on the last item and postpone the discussion of the

other two items.

Bush forms are transformed by permutations and flippings. Permutations have

no effect on the order of the lists L(v) for any v. They have a dramatic effect on

the order of the lists U(v), where U(v) is the set of edges (v,w) with v < w. For

this reason we do not keep track of the order of the U(v)’s during the construction

process but determine their orders in a second phase (this is the subject of the first

item). A flipping of a sub-bush with lowest numbered vertex w reverses the order

of L(v) for all v in the sub-bush with v 6= w and does not affect the order of L(v) for

any other v. We conclude that Lk+1(v) is equal to either Lk(v) or L
rev
k (v) for any

v with v ≤ k. We say that node v is flipped in iteration k+1 if Lk+1(v) = Lrev
k (v).

If v is not flipped in iteration k + 1 then Lk+1(v) = Lk(v).

We conclude that Ln(v) is equal to Lv(v) if v is flipped an even number of times

and is equal to Lrev
v (v) if v is flipped an odd number of times. We next show how to

determine efficiently how often nodes are flipped. We could maintain a counter for
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Figure 8.21 The biconnected components of Bk are indicated as ovals and articulation
points are indicated as solid circles. The hatched biconnected components become part
of Hk+1.

each node and increment it whenever the node is flipped. Since a linear number of

nodes may be flipped in each iteration, this would result in a quadratic algorithm.

We are aiming for linear running time and hence need a more compact way to

maintain the counters.

In the graph Bk+1 there is a unique biconnected component Hk+1 having k + 1

as its highest numbered node. We call Hk+1 the biconnected component formed in

iteration k + 1.

Lemma 6 All edges in L(k + 1) are contained in Hk+1 and any biconnected com-

ponent H of Bk is either contained in Hk+1 or edge-disjoint from Hk+1, see Figure

8.21.

Proof Consider any two lower neighbors u and v of k + 1. They are connected

by a path of length two through k + 1 and they are connected by a path which

avoids k+1, the second half-sentence being a consequence of st-numbering. Thus,

all edges in L(k + 1) belong to Hk+1 and the first part of the lemma is shown.

Any two edges belonging to the same biconnected component of Bk belong to the

same biconnected component of Bk+1. This proves the second part of the lemma.

For a biconnected component H of Bk let V +(H) denote the set of nodes of H

except for the lowest numbered node of H. A flipping operation changes either the
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Figure 8.22 The bush form B̂8 obtained from adding node 8 to the bush form of
Figure 8.16. The biconnected component H8 consists of the biconnected components
H3, H5, and H7 and the edges in L(8). The counter-clockwise order of the edges in L(8)
is (8, 3), (8, 1), (8, 6). The biconnected components H3 and H7 are flipped when going
from the bush form B̂7 of Figure 8.15 to B̂8. Thus I = 3,−3, 5,−7, (8, 3), (8, 1), (8, 6),
where the first 3 indicates that three components are merged into H8, the sequence
−3, 5,−7 indicates that the merged components are H3, H5, and H7 and that H3 and
H7 are flipped, and where (8, 3), (8, 1), (8, 6) form L(8).

order of L(v) for all nodes v ∈ V +(H) or for no node v ∈ V +(H). This follows

from the fact that a biconnected component is either contained in a sub-bush or

disjoint from it. We say that a biconnected component H is flipped in iteration

k + 1 if all nodes in V +(H) are flipped in iteration k + 1.

Lemma 7 There is a transformation of B̂k to an extendible bush form in which

only biconnected components H of Bk are flipped that become part of Hk+1.

Proof Let B̂′
k be the extendible bush form produced by the strategy of Lemma 5

and assume that some biconnected component H that does not become part of

Hk+1 is flipped by the transformation from B̂k to B̂′
k. Let y = y(B̂′

k) be the lowest

numbered node that is part of a biconnected component H that is flipped by the

transformation to B̂′
k and does not become part of Hk+1. Consider the bush form

B̂′′
k obtained by flipping the smallest sub-bush B̂ that contains H. B̂′′

k is extendible

since no leaf labeled k + 1 is contained in B̂. Moreover, either no biconnected

component that does not become part of Hk+1 is flipped in B̂′′
k or y(B̂′′

k) > y(B̂′
k).

We conclude that B̂k can be transformed into an extendible bush form in which

only biconnected components are flipped that become part of Hk+1.

We can now explain the third argument of function replace of class pq tree . It

consists of three parts, which in iteration k + 1 are as follows (see Figure 8.22):

• An integer l specifying the number of components of Bk that are merged into

Hk+1.
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• A sequence j0, j1, . . . , jl−1 of integers, where H|j0|, . . . , H|jl−1| are the

biconnected components of Bk that are merged into Hk+1, and ji is positive if

Hji is not flipped in iteration k + 1 and is negative otherwise.

• The edges19 in L(k+1) in their counter-clockwise order around k+1 in B̂k+1.

We denote the third argument of replace by I because it contains the instructions

of how to obtain B̂k+1 from B̂k.

We are now ready for the implementation of PLAN EMBED. It consists of three

phases. In the first phase, we run the planarity test of the preceding section with

three changes:

• We are now dealing with a map and therefore store only one direction of each

edge in the PQ-tree. In phase one we are dealing with lists L(v) and hence we

store the direction from larger to smaller nodes. We construct the lists L(v)

and U(v) by iterating over all edges out of v: edges to lower numbered nodes

are put into L(v) and the reversals of edges to higher numbered nodes are put

into U(v). We put edge reversals into U(v) in order to guarantee that for each

uedge the direction going from higher to smaller st-number is put into the

PQ-tree. Self-loops are ignored in phase one.

• We define an array EDGE that stores for each integer in [1..m] the edge

corresponding to it.

• In iteration k we store the output I of PQ-tree operation replace in I[k].

Here comes phase one.

〈PLAN EMBED: phase 1 〉≡
int n = G.number_of_nodes();
if ( G.number_of_edges() == 0 ) return true;
int m = G.max_edge_index() + 1;

// interface for pq_tree

pq_tree T(m);

list<int>* I = new list<int>[n+1];
edge* EDGE = new edge[m+1]; // EDGE[i+1] = edge with index i

edge e;
forall_edges(e,G) EDGE[index(e)+1] = e;

// planarity test

int stv = 1;

node v;
forall(v,st_list)
{

list<int> L, U;

edge e;

19 More precisely, the sequence of numbers identifying the edges.
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forall_adj_edges(e,v)
{ int stw = st_num[target(e)];
if (stw < stv) L.push(index(e) + 1);
if (stw > stv) U.push(index(G.reversal(e)) + 1);

}

if ( !T.replace(L,U,I[stv]) ) break;

stv++;
}

At the end of phase one, we either have stv < n + 1 and then G is non-planar, or

stv = n+ 1 and then G is planar and I[k] contains the instruction list of the k-th

iteration for all k, 1 ≤ k ≤ n. Thus:

〈planar embedding of biconnected maps〉≡
static int PLAN_EMBED_K(graph& G, node_array<int>& st_num,

list<node>& st_list)
{ 〈PLAN EMBED: phase 1 〉

if (stv == n+1) { 〈PLAN EMBED: phase 2 〉 }

delete[] EDGE;
delete[] I;

return stv - 1;
}

static bool PLAN_EMBED(graph& G, node_array<int>& st_num,
list<node>& st_list)

{ return PLAN_EMBED_K(G,st_num,st_list) == G.number_of_nodes(); }

The first version of the function is needed for the search for Kuratowski subgraphs

in the next section. It returns the largest integer k such that Bk has a bush form.

We come to the second phase. The purpose of the second phase is to determine

for each node the order of L(v) in B̂n. This is either Lv(v) or Lrev
v (v) depending

on whether v is flipped an even or an odd number of times.

Node n is not flipped at all. Consider now a node j < n and assume that Hj is

merged into Hk in iteration k. Then j is not flipped in iterations j + 1 to k − 1,

is flipped in iteration k if I[k] contains −j in its second part and is not flipped in

iteration k if I[k] contains +j in its second part, and is flipped in iterations later

than k iff node k is flipped. Thus it is easy to compute the number of times any

node v is flipped by iterating over all nodes in downward order of st-number.

It actually suffices to compute the parity of the number of times a node is flipped;

the parity is +1 if the number is even and is −1 otherwise. Assume that we process

node k and let j be such that Hj is merged into Hk in iteration k. Then the parity

of j is equal to the sign of the occurrence of j in I[k] times the parity of k. In the

piece of code below, node k tells node j, if the parity of j is odd, by putting the

indicator ODD as the first element of I[j].

The order of Ln(v) is equal to the third part of I(v), if v is flipped an even

number of times, and is equal to the reversal of the third part of I(v) otherwise.
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〈PLAN EMBED: phase 2 〉≡
node_array<list<edge> > L_n(G);

const int EVEN = +1; const int ODD = -1;

int stv = n;

forall_rev(v,st_list)
{

if (stv == 1) break; // for v = t down to s+1

list<int>* I_v = &I[stv];

int d = 1;
int l = I_v->pop();

if ( l == ODD )
{ d = -1;
l = I_v->pop();

}

// l = number of components merged into H_v

int i;
for( i = 0; i < l; i++)
{ int j = d * I_v->pop();
if (j < 0) I[-j].push(ODD); // tell j that it is odd

}
if (d > 0)
forall(i,*I_v) L_n[v].append(EDGE[i]);

else
forall(i,*I_v) L_n[v].push(EDGE[i]);

stv--;
}

〈PLAN EMBED: phase 3 〉

We come to the third and last phase of PLAN EMBED. We know Ln(v) for

every node v and want to compute the counter-clockwise order of the edges in

U(v), where U(v) is the set of edges connecting v to higher numbered nodes. Self-

loops will be treated as an add-on. We compute the ordering of the edges in U(v)

by so-called leftmost depth-first search.

Consider a depth-first search starting in t that uses only edges in L(v) and that

considers the edges in L(v) in their counter-clockwise order. Such a depth-first

search is called a leftmost depth-first search, as the edges in L(v) are explored in

left-to-right order (if drawn downwards from v) for any v and, more generally, the

graph B̂n is explored in a left-to-right fashion. This implies that for any node v,

the edges in U(v) are explored in left-to-right fashion, i.e., clockwise order, see

Figure 8.23.

Lemma 8 A leftmost depth-first search explores the edges in U(u) in clockwise

order for any node u.

Proof Assume otherwise. Let u be the highest numbered node such that U(v) is
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Figure 8.23 A leftmost depth-first search starting in t. For every node v the edges
going to lower numbered neighbors are explored in left-to-right order. The edge labels
indicate the order in which the edges are explored.
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Figure 8.24 The edge (u, v) is after (u,w) in the clockwise order of edges in U(u) but
(v, u) is explored before (w, u).

ordered incorrectly, say edge (u, v) is after edge (u,w) in the clockwise order of

edges in U(u), but (v, u) is explored before (w, u). Consider the paths Pv and Pw

from t to u, which follow the tree paths to v and w in the depth-first search tree,

respectively, and then take the edge (v, u) or (w, u), respectively, see Figure 8.24.

Let z be the node furthest from t and different from u that is common to both

path. Let Qv and Qw be the induced paths from z to u passing through v and w,

respectively, and let ev and ew be the first edges on these paths. Then ev precedes

ew in the counter-clockwise order of the edges in L(z).

The paths Qv and Qw are y-monotone, Qv is left of Qw “near” z, and Qv is right

of Qw “near” u, and hence the two paths must cross. By definition of z they do

not cross in a node and hence B̂n is not a bush form of Bn.

The following function LMDFS realizes leftmost depth-first search and builds
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a list embed list containing all edges in ∪uU(u) in the order in which they are

explored; the edge which is explored first comes last in the list, and the edge which

is explored last comes first (since edges are pushed on the list and not appended).

In other words, for each node u the edges in U(u) occur in counter-clockwise order

in embed list . The edges do not necessarily occur consecutively.

LMDFS reuses the array st num to record whether a node has been visited.

leftmost depth-first search

〈auxiliary functions〉≡
static void LMDFS(graph& G, node v, const node_array<list<edge> >& L_n,

node_array<int>& st_num, list<edge>& embed_list)
{

if (st_num[v] < 0) return;

st_num[v] = -1;

edge e;
forall(e,L_n[v])
{ embed_list.push(G.reversal(e));
LMDFS(G,target(e),L_n,st_num,embed_list);

}
}

We use LMDFS in a function embedding that reorders the adjacency lists. We

first build a list embed list containing for each node v the set of edges in A(v) in

counter-clockwise order but not necessarily consecutively, and then use the sorting

function G.sort edges(embed list) to rearrange the adjacency lists accordingly.

We build embed list in three steps. In the first step we copy the lists L n[v] to

embed list , in the second step we call LMDFS to add the edges in ∪vU(v) in their

counter-clockwise order, and in the third step we deal with all self-loops. The self-

loops can be added in any order, we only have to make sure that the two directions

of a self-loop are placed next to each other. In this way there will be no crossings

between self-loops.

〈auxiliary functions〉+≡
static void embedding(graph& G, node t, node_array<int>& st_num,

node_array<list<edge> >& L_n)
{

list<edge> embed_list;

node v; edge e;
forall_nodes(v,G)
forall(e,L_n[v]) embed_list.append(e);

LMDFS(G,t,L_n,st_num,embed_list);

// append self-loops at the end of the list

edge_map<bool> treated(G,false);
forall_nodes(v,G)
{ edge e;
forall_adj_edges(e,v)
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if (target(e) == v && !treated[e])
{ embed_list.append(e); embed_list.append(G.reversal(e));
treated[e] = treated[G.reversal(e)] = true;

}
}

G.sort_edges(embed_list);
}

After all this preparatory work phase three reduces to a call of embedding.

〈PLAN EMBED: phase 3 〉≡
node t = st_list.tail();
embedding(G,t,st_num,L_n);

The running time of PLAN EMBED is O(n+m). We have already argued that

phase one takes linear time. Phase two touches every edge once and hence takes

also linear time. Phase three consists of a depth-first search followed by extracting

the adjacency lists from embed list and hence takes linear time.

Arbitrary Maps: We give the implementation of BL PLANAR(G, embed ). Recall

that G must be a map if embed is true. The implementation is fairly simple.

We extend G to a biconnected graph (if embed is false) and to a biconnected

map (if embed is true), compute an st-numbering of G, call the planarity test

for biconnected graphs and maps, respectively, and remove the added edges. The

function Make Biconnected is discussed in the exercises of Section ??. It makes a

graph biconnected by adding edges. It does so without destroying planarity.

〈planar embedding of arbitrary maps〉≡
bool BL_PLANAR(graph& G, bool embed)
{ if (G.number_of_edges() <= 0) return true;

// prepare graph

list<edge> el;

if (embed)
{ if ( !G.make_map() )

error_handler(1,"BL_PLANAR: can only embed maps.");
Make_Biconnected(G,el);
edge e;
forall(e,el)
{ edge x = G.new_edge(target(e),source(e));
el.push(x);
G.set_reversal(e,x);

}
}
else
Make_Biconnected(G,el);

node_array<int> st_num(G);
list<node> st_list;
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ST_NUMBERING(G,st_num,st_list);

bool plan;

if (embed)
plan = PLAN_EMBED(G,st_num,st_list);

else
plan = PLANTEST(G,st_num,st_list);

// restore graph

edge e; forall(e,el) G.del_edge(e);

return plan;
}

8.7.3 Kuratowski Subgraphs

We describe functions to extract Kuratowski subgraphs. We first give a simple

algorithm with quadratic running time, then a linear time algorithm for biconnected

graphs, and finally a linear time algorithm for arbitrary graphs.

We start with a simple algorithm that computes Kuratowski subgraphs in quadratic

time O((n + m)m). We iterate over all edges e of G. We hide e and check the

planarity of G\e. If G\e is non-planar, we leave e hidden, and if G\e is planar, we

add e to the set of edges of the Kuratowski subgraph and restore it. At the end we

restore all edges. The running time of this algorithm is m times the running time

of the planarity test. The running time can be improved to O(n2) by observing

that it suffices to consider 3n + 7 uedges of G, since a planar graph with n nodes

can have at most 3n+ 6 edges according to Lemma 3. We leave it to the exercises

to implement this improvement.

〈auxiliary functions〉+≡
static void KURATOWSKI_SIMPLE(graph& G, list<edge>& K)
{ K.clear();

if ( BL_PLANAR(G,false) )
error_handler(1,"KURATOWSKI_SIMPLE: G is planar");

list<edge> L = G.all_edges();
edge e;
forall(e,L)
{ G.hide_edge(e);
if (BL_PLANAR(G,false))
{ G.restore_edge(e);
K.append(e);

}
}
G.restore_all_edges();

}

We turn to the linear time algorithm of Karabeg and Hundack, Mehlhorn, and

Näher [Kar90, HMN96] to find Kuratowski subgraphs. We assume that G a bicon-

nected non-planar map without self-loops and parallel edges.
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When the planarity test algorithm is run on G there will be a minimal k such

that Bk has a bush form but Bk+1 does not, because Bk contains an obstruction.

Then k + 1 < n since B̂n−1 can always be extended. We show

Lemma 9 If Bk has a bush form and contains an obstruction then G contains a

Kuratowski subgraph.

An obstruction is either an obstructing articulation point or an obstructing bi-

connected component. We deal with obstructing articulation points first and then

with obstructing biconnected components. For both cases we need some simple

facts about trees. For a tree T and a subset S of its nodes we use T (S) to denote

the smallest subtree of T connecting all nodes in S. If |S| ≤ 3 then T (S) contains

a node r, called the join of S in T , such that the paths from r to the nodes in S

are pairwise edge-disjoint (r ∈ S is allowed). If |S| = 3, the join is unique.

Lemma 10 Let v be an articulation point of Bk and let T be a depth-first search

tree of Bk rooted at v. If w and z are distinct virtual nodes in some connected

component C of Bk with respect to v then the join of {v,w, z} in T is distinct from

v, w, and z.

Proof Let u be the first node reached in a depth-first search of C starting in v.

Since C is a component with respect to v, C\v is connected. This implies that all

nodes in C\v are descendants of u in T .

In the sequel we use Tt to denote a tree on nodes {k+1, . . . , n} rooted at t(= n)

and where each node v, v < n, has an incoming edge from a higher numbered node.

Such a tree exists since G is st-numbered.

We also use Ts to denote a depth-first search tree of Bk. Ts is rooted at s except

if explicitly specified otherwise.

An Obstructing Articulation Point: Let v be an obstructing articulation point,

i.e., at least three of the components with respect to v are mixed. Let Ci, 0 ≤ i ≤ 2,

be a mixed component with respect to v, let wi be a leaf20 labeled k+1 in Ci and

let zi be a large21 leaf in Ci. Let Ts be a depth-first search tree of Bk rooted at v.

Let Ti be the subgraph of Ts spanned by v, wi, and zi, and let xi be the join of

Ti. Consider the subgraph K of G consisting of:

• T0, T1, T2, and the tree Tt(z0, z1, z2).

Let r be the join of z0, z1, and z2 in Tt. Then r 6= k+1 and hence K is a subdivision

of K3,3 with sides {x0, x1, x2} and {k + 1, v, r}, see Figure 8.25.

20 We will use leaf and virtual node as synonyms in this section.
21 A large leaf is a leaf that is labeled k + 2 or larger.
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Figure 8.25 A K3,3 with sides {x0, x1, x2} and {v, k + 1, r}.

An Obstructing Biconnected Component: Let H be a biconnected compo-

nent with attachment nodes y0, y1, . . . , yp−1. We assume that y0 is the lowest

numbered attachment node and that y0, y1, . . . , yp−1 appear in this order on the

boundary cycle of H in B̂k, where B̂k is a bush form of Bk. Let Ci be the part of

Bk opposite to H at yi and let s(Ci) ∈ {clean,mixed, full} be the status of Ci. We

have

s(C0)s(C1) . . . s(Cp−1) /∈ clean∗ mixed10 full∗ mixed10 clean∗,

since H is obstructing.

Lemma 11 One of the cases below arises:

(1) There are indices a, b, c, and d such that ya, yb, yc, and yd occur in this order

on the boundary cycle of H, and Ca and Cc are non-clean and Cb and Cd are

non-full.

(2) There are indices a, b, and c such that ya, yb, and yc occur in this order on

the boundary cycle of H, and Ca, Cb, and Cc are mixed.

In either case, 0 is among the selected indices.

Proof Observe first, that C0 is either clean or mixed, but never full (since there is

a leaf labeled n in C0 and k + 1 < n). If

s(C1) . . . s(Cp−1) /∈ clean∗ mixed10 full∗ mixed10 clean∗,

then there are a, b, c with 1 ≤ a < b < c ≤ p− 1 and Ca and Cc are non-clean and

Cb is non-full. Since C0 is non-full we are in case (1) with d = 0. So assume that

s(C1) . . . s(Cp−1) ∈ clean∗ mixed10 full∗ mixed10 clean∗.

Then C0 is non-clean (and hence mixed) and p− 1 ≥ 2 since H is non-obstructing

otherwise.
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Figure 8.26 An obstructing cycle with four alternating attachments gives rise to a
K3,3 with sides {ya, yc, r} and {yb, yd, k + 1}.

If case (1) does not arise with a = 0 then there are no b, c, and d with 1 ≤ b <

c < d ≤ p − 1 with Cb and Cd non-full and Cc non-clean, i.e., any Cc between two

non-full Cb and Cd is clean. Thus, either p− 1 = 2 or

s(C1) . . . s(Cp−1) ∈ clean∗ mixed10 full∗ ∪ full∗ mixed10 clean∗.

In the latter situation H is non-obstructing, and hence this case is excluded. In

the former situation C1 and C2 must be mixed sinceH is non-obstructing otherwise.

Thus, (2) arises.

We next exhibit Kuratowski subgraphs for cases (1) and (2).

Assume first that there are indices a, b, c, and d such that ya, yb, yc, and yd occur

in this order on the boundary cycle of H, Ca and Cc are non-clean and Cb and Cd

are non-full. We call this an obstructing cycle with four alternating attachments.

Consider the subgraph K of G consisting of:

• the boundary cycle of H,

• a path from ya to a copy of k + 1 in Ca,

• a path from yc to a copy of k + 1 in Cc,

• a path from yb to a large leaf zb in Cb,

• a path from yd to a large leaf zd in Cd,

• the tree Tt({k + 1, zb, zd}).
Let r be a join of k + 1, zb, and zd in Tt; we may assume that r 6= k + 1 (observe

that zb 6= k+1 and zd 6= k+1). K is a subdivision of K3,3 with sides {yb, yd, k+1}
and {ya, yd, r}, see Figure 8.26.
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Figure 8.27 An obstructing cycle with three mixed attachments yields a K5 after
contraction of the paths from yi to y′

i for i ∈ {a, b, c} and contraction of the edges in
tree Tt({za, zb, zc}).

Assume next that there are indices a, b, and c such that ya, yb, and yc occur in

this order on the boundary cycle of H and Ca, Cb, and Cc are mixed. We call this

a cycle with three mixed attachments. Consider the subgraph K of G consisting of:

• the boundary cycle of H,

• trees Ts({yi, wi, zi}) where i ∈ {a, b, c}, wi is a leaf labeled k + 1 in Ci, and zi
is a large leaf in Ci,

• tree Tt({k + 1, z1, z2, z3}).
Let y′i be the join of yi, zi, and wi. Then y′i is distinct from zi and wi but may be

equal to yi. Figure 8.27 illustrates the situation.

We can obtain a K5 from K by contracting the paths connecting yi with y′i for

i ∈ {a, b, c} and by contracting the edges in Tt({za, zb, zc}). We can now appeal to

the fact that if a graph K can be contracted to a subdivision of K3,3 or K5 then

it contains a subdivision of K3,3 or K5 before the contraction, see [NC88, Lemma

1.2] and the exercises. We will exploit this fact in our implementation.

For completeness we also exhibit the Kuratowski subgraphs directly. We distin-

guish three cases.

If yi = y′i for all i ∈ {a, b, c} and Tt({k + 1, za, zb, zc}) contains a node of degree

four then K is a subdivision of K5.
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Figure 8.28 An obstructing cycle with three mixed attachments yields a K3,3 if
yi = y′

i for i ∈ {a, b, c} and Tt({k + 1, za, zb, zc}) contains no node of degree four. In the
figure, k + 1 is paired with za.

If yi = y′i for all i ∈ {a, b, c} and Tt({k+1, za, zb, zc}) contains no node of degree

four then Tt({k + 1, za, zb, zc}) contains two nodes of degree three, say r1 and r2.

The removal of the path joining r1 and r2 pairs k + 1 with some zi. We remove

from K the path from yi to the copy of k + 1 in Ci and the part of the boundary

cycle of H joining the other two y’s and obtain a subdivision of K3,3, see Figure

8.28, with sides {ya, k + 1, r2} and {yb, yc, r1}.
If yi 6= y′i for some i ∈ {a, b, c}, say ya 6= y′a, let r be the join of za, zb, zc

in Tt({za, zb, zc}). We obtain a subdivision of K3,3 with sides {ya, k + 1, r} and

{y′b, y′c, y′a} from K by deleting the part of the boundary cycle of H that connects

yb and yc, and by replacing Tt({k+1, za, zb, zc}) by Tt({za, zb, zc}), see Figure 8.29.
This completes the proof of Lemma 9.

We turn to a linear time implementation. The following function assumes that G

is a biconnected non-planar map without self-loops and parallel edges. It computes

the set of edges of a Kuratowski subgraph of G in K.

〈Kuratowski graphs in biconnected maps〉≡
static void Kuratowski(graph& G, list<edge>& K)
{ node v; edge e;

string current_case; // for debugging purposes

〈compute st-numbering〉
int k = PLAN_EMBED_K(G,st_num,st_list);
if ( k == G.number_of_nodes() )
error_handler(1,"Kuratowski: G must be non-planar");

〈compute bush form B for B k〉
〈obstructing articulation point〉
〈obstructing biconnected component〉

}
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Figure 8.29 An obstructing cycle with three mixed attachments yields a K3,3 if
ya 6= y′

a.

We start by computing an st-numbering of G. Next we call PLAN EMBED K to

find k such that Bk has a bush form but Bk+1 has not. We compute a bush form

B for Bk and then search for an obstruction in B. This will be the most difficult

part of the implementation. Having found an obstruction we extract a Kuratowski

subgraph as shown in the proof of Lemma 9.

Compute st-Numbering: We compute an st-numbering and the nodes s and t.

〈compute st-numbering〉≡
node_array<int> st_num(G);
list<node> st_list;
ST_NUMBERING(G,st_num,st_list);
node s = st_list.head();
node t = st_list.tail();

The Bush Form B for Bk: We construct a bush form B for Bk. We declare B

of type GRAPH <node , edge> and let every node and edge of B know its original in

G. We add a node top B to B and connect it to every virtual node (by a uedge).

In this way B becomes a biconnected map.

We st-number the nodes of B by first numbering the non-virtual nodes, then the

virtual nodes, and finally the node top B . We store the st-numbering in st numB ,

the ordered list of nodes in st listB . Finally, sB is the node in B that corresponds

to s and tB is a virtual node in B that is connected to sB by an edge. tB is a
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large leaf in the root component of every articulation point and in the part of B

opposite to y0 for any biconnected component H with lowest attachment node y0.

Having constructed the st-numbering we call PLAN EMBED to compute a pla-

nar embedding of B. We restore the st-numbers as they are destroyed by the planar

embedding program, and we delete the auxiliary node top B from B and st listB .

〈compute bush form B for B k〉≡
GRAPH<node,edge> B;
list<node> st_listB;

node_array<node> v_in_B(G,nil);

forall(v,st_list)
{ if ( st_num[v] > k ) break;

node vB = v_in_B[v] = B.new_node(v);
st_listB.append(vB);

}

node top_B = B.new_node();

forall_nodes(v,G)
{ if (st_num[v] > k) continue;

forall_adj_edges(e,v)
{ node w = G.target(e);
if ( st_num[w] < st_num[v] ) continue;
edge r = G.reversal(e);
node wB;
if ( st_num[w] > k )
{ wB = B.new_node(w);
st_listB.append(wB);
B.set_reversal(B.new_edge(wB,top_B),B.new_edge(top_B,wB));

}
else
wB = v_in_B[w];

edge e1 = B.new_edge(v_in_B[v],wB,e);
edge r1 = B.new_edge(wB,v_in_B[v],r);
B.set_reversal(e1,r1);

}
}

node sB = v_in_B[s]; node tB;
forall_adj_edges(e,sB)

if ( B[B.target(e)] == t) tB = B.target(e);

B.set_reversal(B.new_edge(sB,top_B),B.new_edge(top_B,sB));

st_listB.append(top_B);

node_array<int> st_numB(B);
int stn = 1;
forall(v,st_listB) st_numB[v] = stn++;

PLAN_EMBED(B,st_numB,st_listB); // destroys st-numbers

stn = 1;
forall(v,st_listB) st_numB[v] = stn++;

B.del_node(top_B); st_listB.Pop(); // remove top_B
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Obstructing Articulation Points: We search for an obstructing articulation

point and, if successful, extract a Kuratowski subgraph.

〈obstructing articulation point〉≡
array<node> z(3);
array<node> spec(3);

A successful search for an obstructing articulation point will store the obstructing

articulation point in v, and for i, 0 ≤ i < 3, will store a large leaf in the i-th mixed

component with respect to v in z[i] and a leaf labeled k + 1 in spec[i].

The search (successful or not) will also compute some auxiliary information for

internal use and for later use in the search for obstructing biconnected components.

We define an enum that we use to distinguish between leafs labeled k + 1 and

large leafs, and we define two functions so that node arrays can be used as type

parameters.

〈auxiliary functions〉+≡
enum { K_PLUS_1 = 0, OTHERS = 1};

ostream& operator<<(ostream& o, const node_array<node>&) { return o; }
istream& operator>>(istream& i, node_array<node>&) { return i; }

We give the declarations of the auxiliary informations and explain them below.

〈obstructing articulation point〉+≡
list<node> dfs_list;
node_array<edge> tree_edge(B,nil);
node_array<int> dfs_num(B,-1);
int dfs_count = 0;

DFS(B,sB,dfs_list,dfs_num,dfs_count,tree_edge);

edge_array<int> comp_num(B);
int num_comps = BICONNECTED_COMPONENTS(B,comp_num);

node_array<edge> up_tree_edge(G,nil);

array<node_array<node> > leaf(2);
leaf[K_PLUS_1] = leaf[OTHERS] = node_array<node>(B,nil);

array<node_array<node> > leaf_in_upper_part(2);
leaf_in_upper_part[K_PLUS_1] =

leaf_in_upper_part[OTHERS] = node_array<node>(B,nil);

node_array<int> num_mixed_non_root_comps(B,0);

node_array<node> spec_leaf_in_root_comp(B,nil);

array<node_array<node> > child(1,2); // want indices one and two
child[1] = child[2] = node_array<node>(B,nil);

The auxiliary information is as follows: let Ts be a depth-first search tree of B

rooted at s.

tree edge[v] is the tree edge into v in Ts for v 6= s and is nil for v = s, dfs num [v]
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is the dfs-number of v, and dfs list is the list of nodes of B in increasing order of

dfs-number. All quantities just mentioned are computed by a call of the auxiliary

function DFS, see below.

num comps is the number of biconnected components, and comp num[e] is the

number of the biconnected component containing e for any edge e of B. Both

values are computed by calling the biconnected components function. We call

comp num[e] the component number of e.

up tree edge[v] is for any node v of G with st num[v] > k and v 6= t an edge from a

higher numbered node. It is nil for all other nodes of G. The up-tree edges define

a tree Tt rooted at t on the nodes labeled k + 1 and larger.

leaf [K PLUS 1 ][v] is a leaf labeled k+1 in the subtree of Ts rooted at v (nil if no

such leaf exists).

leaf [OTHERS ][v] is a large leaf in the subtree of Ts rooted at v (nil if no such leaf

exists).

The next four pieces of information are only defined for articulation points.

The upper part with respect to an articulation point is the union of the non-root

components with respect to the articulation point.

leaf in upper part [K PLUS 1 ][v] is a leaf labeled k + 1 in the upper part of v (nil

if there is no such leaf).

leaf in upper part [OTHERS ][v] is a large leaf in the upper part of v (nil if there is

no such leaf).

child [1][v] is a child of v in Ts that lies in a mixed non-root component with respect

to v (nil if there is no such child).

child [2][v] is a child of v in Ts that lies in a second mixed non-root component with

respect to v (nil if there is no such child).

We next discuss how the auxiliary information is computed. The quantities related

to depth-first search are computed by a variant of depth-first search.

〈auxiliary functions〉+≡
void DFS(const graph& G, node v,

list<node>& dfs_list, node_array<int>& dfs_num,
int& dfs_count, node_array<edge>& tree_edge)

{ dfs_list.append(v);
dfs_num[v] = dfs_count++;
edge e;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( dfs_num[w] == -1 )
{ tree_edge[w] = e;
DFS(G,w,dfs_list,dfs_num,dfs_count,tree_edge);

}
}

}
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k + 1
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Figure 8.30 The root component of v consists of the nodes s, v, a, and b. Tree edges
are drawn in bold. The tree edge (v, a) belongs to the same biconnected component as
the tree edge into v, but the tree edge (v, k + 1) does not. The tree edge (v, k + 1)
belongs to a non-root component with respect to v.

The up-tree is easily computed. We simply select for each node labeled larger

than k an edge going to a node with higher st-number and then put the reversal

of the edge into the tree.

〈obstructing articulation point〉+≡
forall_nodes(v,G)
{ if (st_num[v] <= k ) continue;

edge e;
forall_adj_edges(e,v)
{ node w = G.target(e);
if ( st_num[w] > st_num[v] )
{ up_tree_edge[v] = G.reversal(e); break; }

}
}

All other auxiliary information is computed by scans over Ts. We start with

some simple observations, see Figure 8.30. We have, for any node v, the following:

• The tree edge into v belongs to the root component with respect to v.

• A tree edge out of v belongs to the root component with respect to v iff it

belongs to the same biconnected component as the tree edge into v iff it has

the same component number as the tree edge into v.

• A tree edge out of v belongs to a non-root component with respect to v iff its

component number is different from the component number of the tree edge

into v or if v is equal to (the copy of) s in B.

• The non-root components with respect to v are in one-to-one correspondence

to the tree edges out of v.
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The node labels leaf [K PLUS 1 ] and leaf [OTHERS ] are computed by a leaf to

root scan of Ts.

〈obstructing articulation point〉+≡
forall_nodes(v,B)
{ if (st_numB[v] <= k) continue;

if ( st_num[B[v]] == k + 1 )
leaf[K_PLUS_1][v] = v;

else
leaf[OTHERS][v] = v;

}

forall_rev(v,dfs_list) // down the tree
{ if (v == sB) continue;

node pv = B.source(tree_edge[v]);
assign(leaf[K_PLUS_1][pv],leaf[K_PLUS_1][v]);
assign(leaf[OTHERS][pv], leaf[OTHERS][v]);

}

where we used the following conditional assignment function assign to propagate

information.

〈auxiliary functions〉+≡
void assign(node& x, const node& y) { if ( x == nil) x = y; }

We next compute for each articulation point v the number of mixed non-root

components with respect to v and leaf in upper part [][v].

A node v identifies a non-root component of its parent pv if either pv is equal

to sB and sB has more than one child or if the tree edges into v and pv belong to

different biconnected components. Actually, sB always has at least two children,

one is a copy of t and the other contains a copy of k + 1 in its subtree. Note that

k + 1 6= t since the planarity test cannot fail when node t is to be added.

The non-root component of pv identified by v is mixed if it contains a leaf labeled

k + 1 as well as a large leaf.

We are propagating information from the leaves to the root and hence know the

number of mixed non-root components of v when v is reached. If a node v has

three mixed non-root components we extract a Kuratowski subgraph.

〈obstructing articulation point〉+≡
forall_rev(v,dfs_list) // down the tree
{ if (num_mixed_non_root_comps[v] >= 3)

{ 〈v has three mixed non-root components〉 }

if ( v == sB) continue;
node pv = B.source(tree_edge[v]);
if ( pv == sB || comp_num[tree_edge[v]] != comp_num[tree_edge[pv]] )
{ if ( leaf[K_PLUS_1][v] && leaf[OTHERS][v] )

num_mixed_non_root_comps[pv]++;
assign(leaf_in_upper_part[K_PLUS_1][pv],leaf[K_PLUS_1][v]);
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assign(leaf_in_upper_part[OTHERS][pv],leaf[OTHERS][v]);
}

}

Assume that v has three mixed non-root components. We iterate over all chil-

dren of v and search for three children that define mixed non-root components.

Whenever such a child is found we copy its two leaves to y[i] and spec[i] for i = 0,

1, and 2.

〈v has three mixed non-root components〉≡
current_case = "three mixed non-root components";

int i = 0;

forall_adj_edges(e,v)
{ node w = B.target(e);

if ( w == sB || v != B.source(tree_edge[w]) ) continue;
if ( leaf[K_PLUS_1][w] && leaf[OTHERS][w] )
{ z[i] = leaf[OTHERS][w]; spec[i] = leaf[K_PLUS_1][w];
i++;
if ( i == 3) break;

}
}

〈obstructing articulation point: extract Kuratowski graph〉

The actual extraction of the Kuratowski subgraph will be discussed below.

If no articulation point has three mixed non-root components, we need to check

whether there is an articulation point with two mixed non-root components and a

mixed root component. It is slightly tricky to determine whether root components

are mixed. We observe first that node s and hence node t is contained in any root

component. Thus there is always a large leaf in the root component. In fact, it is

the node tB .

We want to compute for each node v a leaf labeled k + 1 in its root component

(if any). Consider any path p in Ts from v to a leaf labeled k+1. The leaf belongs

to the root component of v iff the target of the first edge of p belongs to the root

component of v. This is the case if the first edge of p is the tree edge into v or

is a tree edge out of v which belongs to the same biconnected component as the

tree edge into v. We compute spec leaf in root comp by considering the two kinds

of paths separately.

For the second kind of path we propagate information down the tree. We pass

information about a leaf along a tree edge (v,w) if this edge belongs to the root

component of v, i.e., if it has the same component number as the tree edge into v.

〈obstructing articulation point〉+≡
forall_rev(v,dfs_list) // down the tree
{ if (v == sB) continue;

node pv = B.source(tree_edge[v]);
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if ( pv != sB && comp_num[tree_edge[v]] == comp_num[tree_edge[pv]] )
assign(spec_leaf_in_root_comp[pv],leaf[K_PLUS_1][v]);

}

For the first kind of path we compute for every node v, spec leaf via tree edge[v], a

leaf labeled k+1 in the root component of v that is reachable through the tree edge

into v (nil if there is no such leaf). A leaf labeled k + 1 in the root component is

then either a leaf that was already computed above or the leaf that can be reached

via the tree edge into v.

spec leaf via tree edge is computed from the root towards the leaves of Ts. Let

v be any node and consider the time when we process v. Let c be any child of v.

A leaf in the root component of c that is reachable through the tree edge into c is

either reachable through the tree edge into v or through a sibling of c.

If v has a leaf labeled k + 1 that is reachable through the tree edge into v we

simply pass this leaf to all children of v.

So assume that v has no leaf labeled k+1 that is reachable through the tree edge

into v. We try to determine two children c1 and c2 of v that have a leaf labeled

k + 1 in their subtree. If there is none, then no child of v can reach a leaf labeled

k + 1 through one of its siblings, if there is exactly one child, then all siblings of

this child can reach a leaf labeled k + 1 through it, and if there are two children,

then all children of v can reach a leaf labeled k + 1 through a sibling.

When a node v is encountered that has two mixed non-root components and a

mixed root component we have found an obstructing articulation point and proceed

to extract a Kuratowski subgraph.

〈obstructing articulation point〉+≡
node_array<node> spec_leaf_via_tree_edge(B,nil);

forall(v,dfs_list) // up the tree
{ assign(spec_leaf_in_root_comp[v],spec_leaf_via_tree_edge[v]);

if ( num_mixed_non_root_comps[v] == 2 && spec_leaf_in_root_comp[v] )
{ 〈v has two mixed non-root and a mixed root component〉 }

if ( spec_leaf_via_tree_edge[v] != nil )
{ forall_adj_edges(e,v)
{ node c = B.target(e);
if ( c == sB || v != B.source(tree_edge[c]) ) continue;
spec_leaf_via_tree_edge[c] = spec_leaf_via_tree_edge[v];

}
}
else
{ forall_adj_edges(e,v)
{ node c = B.target(e);
if ( c == sB || v != B.source(tree_edge[c]) ) continue;
if ( leaf[K_PLUS_1][c] )
{ if ( child[1][v] == nil )

child[1][v] = c;
else
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child[2][v] = c;
}

}
if ( child[1][v] )
{ forall_adj_edges(e,v)
{ node c = B.target(e);
if ( c == sB || v != B.source(tree_edge[c]) ) continue;
if ( c != child[1][v] )
spec_leaf_via_tree_edge[c] = leaf[K_PLUS_1][child[1][v]];

else
if ( child[2][v] )
spec_leaf_via_tree_edge[c] = leaf[K_PLUS_1][child[2][v]];

}
}

}
}

Assume that v has two mixed non-root and a mixed root component. A leaf labeled

k + 1 in the root component of v is given by spec leaf in root comp[v] and a large

leaf is given by tB . For the other components we find the leaf labeled k + 1 and

the large leaf as in the case of three mixed non-root components.

〈v has two mixed non-root and a mixed root component〉≡
current_case = "two mixed non-root and a mixed root component";

z[0] = tB;
spec[0] = spec_leaf_in_root_comp[v];

int i = 1;

forall_adj_edges(e,v)
{ node w = B.target(e);

if ( w == sB || v != B.source(tree_edge[w]) ) continue;
if ( v != sB && comp_num[e] == comp_num[tree_edge[v]] ) continue;
if ( leaf[K_PLUS_1][w] && leaf[OTHERS][w] )
{ z[i] = leaf[OTHERS][w]; spec[i] = leaf[K_PLUS_1][w];
i++;
if ( i == 3) break;

}
}

〈obstructing articulation point: extract Kuratowski graph〉

Obstructing Articulation Point: Extraction of Kuratowski Graph: The

node v is an obstructing articulation point. For every i, 0 ≤ i < 3, we have a large

leaf in the i-th component in z[i] and a leaf labeled k + 1 in spec[i].

We reroot the depth-first search tree at v and then extract the Kuratowski sub-

graph as described in the proof of Lemma 9.
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〈obstructing articulation point: extract Kuratowski graph〉≡
// reroot the DFS-tree at v

dfs_list.clear();
dfs_num.init(B,-1);
tree_edge.init(B,nil);
int dfs_count = 0;
DFS(B,v,dfs_list,dfs_num,dfs_count,tree_edge);

list<edge> join_edges;
for (i = 0; i < 3; i++)
{ join(z[i],spec[i],v,tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.conc(join_edges);
}

join(B[z[0]],B[z[1]],B[z[2]],up_tree_edge,G,join_edges);
K.conc(join_edges);

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,
B,st_numB,sB,current_case);

return;

The function check before return calls CHECK KURATOWSKI (G,K) to check

whether K is a Kuratowski subgraph. If not, it opens two GraphWins and dis-

plays the edges in K in one of them and the bush form B in the other. We do

not give details here. This visual debugging aid proved very valuable during the

development phase of the algorithm.

The Join Function: Let T be a tree and let a, b, and c be the three nodes to be

joined in T . For each node v the tree edge into v is stored in tree edge [v].

We trace the paths to the root from all three nodes and count, for each node of

T , the number of paths containing it. Let r be the highest node which is reachable

from all three nodes. The subtree joining the three nodes is the union of the paths

from the three nodes to r. This union is not necessarily a disjoint union. We want

to output each edge in the subtree only once and therefore mark nodes as we trace

the paths. When a node is marked, its tree edge is added to the set L of edges

comprising the subtree. The function returns r.

〈auxiliary functions〉+≡
node join(node a, node b, node c, const node_array<edge>& tree_edge,

graph& B, list<edge>& L)
{ L.clear();

node_array<int> num_desc(B,0);
array<node> A(3); A[0] = a; A[1] = b; A[2] = c;
int i;
for (i = 0; i < 3; i++)
{ node v = A[i];
num_desc[v]++;
while ( tree_edge[v] != nil )
{ v = B.source(tree_edge[v]);
num_desc[v]++;
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}
}
node r;
for (i = 0; i < 3; i++)
{ node v = A[i];
while (num_desc[v] < 3)
{ L.append(tree_edge[v]);
num_desc[v] = 3;
v = B.source(tree_edge[v]);

}
if ( i == 0 ) r = v;

}
return r;

}

void translate_to_G(list<edge>& L, const GRAPH<node,edge>& B)
{ list_item it;

forall_items(it,L) L[it] = B[L[it]];
}

The function translate takes a list L of edges of B and replaces each edge by its

counterpart in G.

Obstructing Biconnected Component: We come to obstructing biconnected

components. We describe the search for an obstructing biconnected component

and the extraction of a Kuratowski subgraph once an obstructing component has

been found.

We exploit the fact that B is a plane map in our search for obstructing bicon-

nected components. Consider any node v and the cyclic list A(v) of edges out of v.

If v is not an articulation point then all edges in A(v) belong to the same bicon-

nected component. If v is an articulation point then A(v) decomposes into blocks,

one for each biconnected component containing v. This follows from the fact that

the boundary cycles of all biconnected component are part of the boundary of the

outer face in every bush form.

Blocks that consist of at least two edges indicate the boundary cycle of a bicon-

nected component. We find such blocks as follows. We iterate over all edges f

out of v. If the cyclic predecessor of f in A(v) belongs to a different biconnected

component and the cyclic successor belongs to the same biconnected component,

then f belongs to the boundary cycle of a non-trivial biconnected component, i.e.,

a biconnected component which is not just a single uedge. We maintain an edge ar-

ray treated component to record which biconnected components have already been

treated.

If the component having f in its boundary cycle has not been treated yet, we

determine its boundary cycle in cycle edges and then determine whether one of the

cases (1) or (2) of Lemma 11 applies.

In our search for biconnected components we iterate over the nodes of Ts from the
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root to the leaf. This has the advantage that we hit every biconnected component

at its lowest node.

Let H be a biconnected component with attachment cycle [y0, y1, . . . , yk], where

y0 is the lowest numbered node in the biconnected component. We need to know

whether the component of B opposite to H at y0 is mixed, i.e., contains a leaf

labeled k + 1. We compute such a leaf in spec leaf in opposite part . For all i

different from zero, the part of B opposite to H at yi is simply the upper part of

B with respect to yi. We have collected information about upper parts already.

If the search for an obstructing biconnected component is unsuccessful, we give

debugging information. After all, there must be either an obstructing articulation

point or an obstructing biconnected component.

〈obstructing biconnected component〉≡
array<bool> treated_component(num_comps);
edge f;

forall(v,dfs_list) // upwards
{ forall_adj_edges(f,v)

{ edge e1 = B.cyclic_adj_succ(f);
edge e_pred = B.cyclic_adj_pred(f);
if ( comp_num[e1] != comp_num[f] ||

comp_num[f] == comp_num[e_pred] ) continue;
if ( treated_component[comp_num[f]] ) continue;

list<edge> cycle_edges;
treated_component[comp_num[f]] = true;

〈determine boundary cycle of component with lowest node y 0 = v〉
node spec_leaf_in_opposite_part = nil;

〈compute leaf labeled k+1 in part opposite to y 0 〉
〈obstructing cycle with four alternating attachments〉
if ( spec_leaf_in_opposite_part )
{ 〈obstructing cycle with three mixed attachments〉 }

}
}

〈unreachable point: give debugging information〉

The boundary cycle of a biconnected component H is easily traced. We start

with an edge f that emanates from v, the lowest node in the component, and that

lies on the boundary cycle of the component. The unbounded face is to the right

of f , see Figure 8.31. We will trace the boundary cycle in clockwise direction, i.e.,

keeping the unbounded face to our left, and store it in cycle edges .

Assume that e is an edge such that its reversal belongs to the boundary cycle.

Initially, e is equal to f . We show how to find the successor edge of erev in the

boundary cycle. Let e1 be the cyclic adjacency successor of e. We advance e1 until

the successor of e1 belongs to a different biconnected component or the successor

of e1 is equal to e. The former case happens for nodes v that are attachment nodes

of H and the latter case happens for nodes that lie on the boundary cycle of H



8.7 Planarity Testing, Planar Embeddings, and Kuratowski Subgraphs 61

u

v

y0

erev
e

f

wH

Figure 8.31 Scanning the boundary of a biconnected component H . We scan the
boundary in clockwise direction. At each node, the reversal of a boundary edge is
turned clockwise (i.e., through H) until the next boundary edge is reached. Two
stopping criteria apply to the turning process: we stop if the cyclic adjacency successor
does not belong to H or if all edges incident to the boundary node have been considered.
The edge erev is a boundary edge into u. We turn its reversal e clockwise until the next
boundary edge is reached. At node v the first stopping criterion applies and at a node
which has no incident edge outside H the second stopping criterion applies.

but are not attachment nodes of H. Edge e1 is the successor of erev on the cycle.

We proceed in this way until the cycle is completely traced.

〈determine boundary cycle of component with lowest node y 0 = v〉≡
edge e0 = f;
node y0 = v;
edge e = f; // e1 was set to B.cyclic_adj_succ(f) above

do { while ( comp_num[B.cyclic_adj_succ(e1)] == comp_num[e] &&
B.cyclic_adj_succ(e1) != e )

{ e1 = B.cyclic_adj_succ(e1); }
cycle_edges.append(e1);
e = B.reversal(e1);
e1 = B.cyclic_adj_succ(e);

} while ( e != e0 );

We next show how to compute a leaf labeled k + 1 in the part of B opposite

to H at y0 in constant time. Constant time is needed since y0 can be the lowest

numbered node of many biconnected components.

The part of B opposite to H at y0 consists of the root component of y0 and all

non-root components with respect to y0 that do not contain H. We have computed

above two children of y0 (if they exist) that define mixed non-root components. A

leaf labeled k+1 can be found in either the root component or in one of the mixed

children that does not contain H. A non-root component does not contain H if

the tree edge into the child does not belong to H.
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〈compute leaf labeled k+1 in part opposite to y 0 〉≡
spec_leaf_in_opposite_part = spec_leaf_in_root_comp[v];

for (int i = 1; i <= 2; i++)
{ node c = child[i][v];

if ( spec_leaf_in_opposite_part == nil
&& c && comp_num[tree_edge[c]] != comp_num[e0] )

spec_leaf_in_opposite_part = leaf[K_PLUS_1][c];
}

Obstructing Cycle with Four Alternating Attachments: We search for a

cycle with four alternating attachments. By Lemma 11 there are two ways such a

cycle may occur: The component opposite to y0 contributes either a large leaf or

a leaf labeled k + 1. We therefore perform two searches. In the first search we set

y0 type to OTHERS and let C0 contribute a large leaf and in the second search we

set y0 type to K PLUS 1 and let C0 contribute a leaf labeled k + 1. The second

search is only performed when spec leaf in opposite part is defined.

For an attachment yi different from y0 the part opposite to H at yi is equal to

the upper part of B with respect to yi.

We store the four attachments in y[0] to y[3] and we store the selected leaf in

the i-th component in z[i].

〈obstructing cycle with four alternating attachments〉≡
list<int> kinds;
kinds.append(OTHERS); kinds.append(K_PLUS_1);

int y0_type;

forall(y0_type, kinds)
{ array<node> y(4);

y[0] = y0; y[1] = y[2] = y[3] = nil;

array<node> z(4);
if (y0_type == OTHERS)
{ z[0] = tB;
current_case = "cycle with 4 attachments; y_0 connects to t";

}
else
{ z[0] = spec_leaf_in_opposite_part;
current_case = "cycle with 4 attachments; y_0 connects to k + 1";
if ( !spec_leaf_in_opposite_part ) break;

}

list_item it0 = cycle_edges.first();
list_item it = cycle_edges.cyclic_succ(it0);

int i = 1;
while (it != it0)
{ node v = B.source(cycle_edges[it]);
int kind = (i == 2 ? y0_type : 1 - y0_type);
if ( leaf_in_upper_part[kind][v] )
{ y[i] = v;
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z[i] = leaf_in_upper_part[kind][v];
i++;

}
if ( i == 4 )
{ 〈build the Kuratowski graph〉
return;

}
it = cycle_edges.cyclic_succ(it);

}
}

Assume that we have found an obstructing cycle with four alternating attachments.

We have the four attachments in y[0] to y[3] and the selected leaf in the i-th

component in z[i]. Also y0 type tells us the type of the component C0.

In the upper tree we need to take the subtree spanned by the two large leaves

and node k + 1.

〈build the Kuratowski graph〉≡
translate_to_G(cycle_edges,B); K.conc(cycle_edges);

list<edge> join_edges;

int i;
for (i = 0; i < 4; i++)
{ join(y[i],z[i],z[i],tree_edge,B,join_edges);

translate_to_G(join_edges,B); K.conc(join_edges);
}

// subtree of T_t spanned by k+1 and two large leaves.

if (y0_type == OTHERS) i = 0; else i = 3;
join(B[z[i]],B[z[1]],B[z[2]],up_tree_edge,G,join_edges);

K.conc(join_edges);

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,
B,st_numB,sB,current_case);

Obstructing Biconnected Component with Three Mixed Opposing Parts:

For case (2) we need that the component opposite to y0 is mixed and that there

are ya, yb such that Ca and Cb are mixed.

〈obstructing cycle with three mixed attachments〉≡
array<node> y(3);
array<node> spec_leaf_opposing(3);
array<node> other_leaf_opposing(3);

y[0] = y0;
spec_leaf_opposing[0] = spec_leaf_in_opposite_part;
other_leaf_opposing[0] = tB;

int i = 1;

list_item it0 = cycle_edges.first();
list_item it = cycle_edges.cyclic_succ(it0);
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while (it != it0)
{ node v = B.source(cycle_edges[it]);

if ( leaf_in_upper_part[OTHERS][v] && leaf_in_upper_part[K_PLUS_1][v])
{ y[i] = v;
spec_leaf_opposing[i] = leaf_in_upper_part[K_PLUS_1][v];
other_leaf_opposing[i] = leaf_in_upper_part[OTHERS][v];
i++;

}
if ( i == 3 )
{ 〈obstructing cycle with three mixed attachments: extract Kuratowski〉
return;

}
it = cycle_edges.cyclic_succ(it);

}

It remains to extract the Kuratowski subgraph. We proceed as described in the

proof of Lemma 9. We collect all edges shown in Figure 8.27 in K. K is not a

Kuratowski graph yet, but is guaranteed to contain one.

〈obstructing cycle with three mixed attachments: extract Kuratowski〉≡
current_case = "obstructing cycle with three mixed attachments";

translate_to_G(cycle_edges,B); K.conc(cycle_edges);

list<edge> join_edges;

for(int j = 0; j <= 2; j++)
{ join(spec_leaf_opposing[j], other_leaf_opposing[j], y[j],

tree_edge,B,join_edges);
translate_to_G(join_edges,B); K.conc(join_edges);

}

node r = join(B[other_leaf_opposing[1]], B[other_leaf_opposing[2]],
B[spec_leaf_opposing[0]], up_tree_edge,G,join_edges);

K.conc(join_edges);

join(r,r,t,up_tree_edge,G,join_edges);

K.conc(join_edges);

{ 〈thin out K 〉 }

check_before_return(G,K,st_num,leaf,tree_edge,dfs_num,k,
B,st_numB,sB,current_case);

Thinning Out: K is now an appropriate set of edges in G. It might still be too

big. We want to thin it out so that only a K3,3 or a K5 remains. This is easy

to do. We construct an auxiliary graph AG , which has a node for each node of

G that has degree three or more in K and which has an edge for each path in K

connecting two such nodes and having only intermediate nodes of degree two. We

associate with every edge of AG the path in G represented by it.

AG is a small graph; in fact, it has at most twelve nodes. We call the quadratic
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version of the Kuratowski algorithm to find a Kuratowski subgraph of AG and

then translate is back to G.

〈thin out K 〉≡
node v; edge e;

edge_array<bool> in_K(G,false);
node_array<int> deg_in_K(G,0);
forall(e,K)
{ in_K[e] = true;

deg_in_K[G.source(e)]++; deg_in_K[G.target(e)]++;
}

GRAPH<node,list<edge> > AG;
node_array<node> link(G,nil);

forall_nodes(v,G)
if ( deg_in_K[v] > 2 ) link[v] = AG.new_node(v);

forall_nodes(v,G)
{ if ( !link[v] ) continue;

edge e;
forall_inout_edges(e,v)
{ if ( in_K[e] )
{ // trace path starting with e
list<edge> path;
edge f = e; node w = v;
while (true)
{ in_K[f] = false; path.append(f);
w = G.opposite(w,f);
if ( link[w] ) break;
// observe that w has degree two and hence ...
forall_inout_edges(f,w)
if ( in_K[f] ) break;

}
edge e_new = AG.new_edge(link[v],link[w]);
AG[e_new].conc(path); // O(1) assignment

}
}

}

list<edge> el;
KURATOWSKI_SIMPLE(AG,el);

K.clear();
forall(e,el) K.conc(AG[e]);

There is a small optimization in the program above which we want to mention.

Instead of
edge e new = AG.new edge(link[v],link[w]);
AG[e new].conc(path); // O(1) assignment

we could have written more elegantly
AG.new edge(link[v],link[w],path);

The second version calls the copy constructor to construct a copy of path as the edge

information of the new edge of AG, the first version concatenates path to the edge
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information of the new edge (which is initialized to the default value of lists, i.e., the

empty list, by the new edge operation). Concatenation is a constant time operation.

Concatenation empties path and this is all right. We have now completed the

implementation of the linear time Kuratowski graph finder for biconnected graphs.

Arbitrary Graphs: We extend the algorithm to arbitrary graphs G. We first call

the embedding algorithm to find out if G is planar. If it is, we are done.

So assume that G is non-planar. Then one of the biconnected components of G

is non-planar. The idea is to search for a non-planar biconnected component of G

and to call the algorithm of the preceding section for the biconnected component.

We give more details. A call BICONNECTED COMPONENTS(G, comp num)

returns the number num c of biconnected components of G and computes for each

edge of G the index of the biconnected component containing e.

We iterate over all edges of G and construct for every c, 0 ≤ c < num c, the set

E[c] of edges in the component and the set V [c] of nodes of the component. We

determine the set V [c] as the set of endpoints of edges in E[c] and hence this set

may contain duplicates.

When the edge and node sets of all biconnected components are determined, we

iterate over all components. For each c, 0 ≤ c < num c, we construct a copy of the

component in H. The nodes and edges of H know their counterparts in G. Since

V [c] may contain duplicates, we maintain a node array link , in which we store for

each node v in G, whether a copy of v has already been constructed in H. We

reset link when the construction of H is completed. In this way the extraction of

a biconnected component has cost proportional to the size of the component.

When the extraction of a component is completed, we test it for planarity. We

break from the loop once a non-planar biconnected component is found.

If G is biconnected we take a short cut and make H a copy of G.

The identification of Kuratowski graphs is simplified if H is a map without self-

loops and parallel edges. We therefore remove self-loops (or do not put them into

H in the first place) and parallel edges, and we turn H into a map by adding

edges. Every added edge is made to point to the same edge in G as its reversal.

We then call Kuratowski to find a Kuratowski subgraph K of H. We turn K into

a Kuratowski subgraph of G by replacing every edge by its counterpart in G.

〈Kuratowski graphs in arbitrary graphs〉≡
bool BL_PLANAR(graph& G, list<edge>& K, bool embed)
{

if (BL_PLANAR(G, embed)) return true;

edge_array<int> comp_num(G);
int num_c = BICONNECTED_COMPONENTS(G,comp_num);

GRAPH<node,edge> H;

edge e;
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if ( num_c == 1 )
{ CopyGraph(H,G);
Delete_Loops(H);

}
else
{ node_array<node> link(G,nil);

array<list<edge> > E(num_c);
array<list<node> > V(num_c);

forall_edges(e,G)
{ node v = source(e); node w = target(e);
if (v == w) continue;
int c = comp_num[e]; E[c].append(e);
V[c].append(v); V[c].append(w);

}
int c; node v;
for(c = 0; c < num_c; c++)
{ H.clear();

forall(v,V[c]) if ( link[v] == nil ) link[v] = H.new_node(v);

forall(e,E[c])
{ node v = source(e); node w = target(e);
H.new_edge(link[v],link[w],e);

}

forall(v,V[c]) link[v] = nil;

if (!BL_PLANAR(H,false)) break;
}

}

K.clear();

// H is a biconnected non-planar graph; we turn it into map

Make_Simple(H);

list<edge> R;
H.make_map(R);

forall(e,R) H[e] = H[H.reverse(e)];

// auxiliary edges inherit original edge from their reversal

Kuratowski(H,K);

list_item it;
forall_items(it,K) K[it] = H[K[it]];

return false;
}

8.7.4 Running Times

Table 8.1 shows the running times of the functions discussed in this section. We

used five kinds of graphs:

• Random planar maps with n nodes and m = 2n uedges (P).

• Random planar maps with n nodes and m = 2n uedges plus a K3,3 on six

randomly chosen nodes (P + K3,3).
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Graph Gen BL PLANAR Check HT PLANAR

T T + J T T + J

P 0.76 1.59 1.82 0.23 2.6 4.18

1.72 3.27 3.71 0.47 5.41 8.87

3.47 6.67 7.43 0.95 11.38 19.22

P + K3,3 0.97 1.1 5.66 0.17 2.54 –

1.74 2.4 12.65 0.34 5.16 –

3.56 5.47 20.01 0.69 11.02 –

P + K5 1 0.98 5.72 0.16 2.61 –

1.75 1.81 12.91 0.34 5.35 –

3.58 3.26 22.06 0.67 10.86 –

MP 0.87 2.28 2.41 0.33 3.88 6.24

1.5 4.59 4.84 0.66 7.81 12.98

3.05 9.23 9.66 1.34 16.06 26.84

MP + e 0.87 1.26 5.47 0.23 1.05 –

1.49 2.19 9.61 0.49 2.1 –

3.06 5.87 23.81 0.96 4.28 –

Table 8.1 The running times of functions related to planarity: The column labeled
Gen contains the time needed to generate the input graph. All other columns are as
described in the text. We used n = 2i · 5000 for i = 0, 1, and 2. This table was
generated with the program planarity time in the demo directory.

• Random planar maps with n nodes and m = 2n uedges plus a K5 on five

randomly chosen nodes (P + K5).

• Maximal planar maps with n nodes (MP).

• Maximal planar maps on n nodes plus one additional edge between two

random nodes that are not connected in G (MP + e).

We constructed the graphs using the generators discussed in Section 8.9 and then

permuted the adjacency lists, so as to hide the graph structure.

We ran the following algorithms:

• BL PLANAR(G), the Booth–Lueker planarity test (T) that gives a yes-no

answer, but does not justify its answer.
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• BL PLANAR(G,K, true), the Booth–Lueker planarity test that justifies its

answers (T + J). If G is planar, it turns G into a planar map, and if G is

non-planar, it exhibits a Kuratowski subgraph of G.

• The check whether the algorithm in the previous item worked correctly, i.e.,

the check Genus(G) == 0, if G is planar, and

CHECK KURATOWSKI (G,K), if G is non-planar.

• HT PLANAR(G), the Hopcroft–Tarjan planarity test (T) that gives a yes-no

answer, but does not justify its answer.

• HT PLANAR(G,K, true), the Hopcroft–Tarjan planarity test that justifies its

answers (T + J). This algorithm was only run when the previous item

declared G planar. The extraction of the Kuratowski subgraph would have

taken hours, since there is no efficient Kuratowski finder implemented for the

Hopcroft–Tarjan planarity test.

Exercises for 8.7
1 Show that the number of distinct permutations in which the virtual leaves of

Bk can appear on the horizon is

2C · P,
where C is the number of biconnected components of Bk with three or more
attachments and P =

∏
pv! where the product is over all articulation points

of Bk and pv is the number of non-root components of Bk with respect to v.
2 Improve the running time of the simple search for Kuratowski subgraphs to

O(n2). Make sure that your algorithm works in the presence of parallel edges
and self-loops.

3 Let G be a graph, let e = (a, b) be an edge of G, and let G′ be obtained from
G by contraction of e. Show that if G′ contains a Kuratowski subgraph then
G does.

4 We have shown in Lemma 9 that the existence of an obstruction in Bk guaran-
tees the existence of the Kuratowski subgraph of G. Show that it guarantees
that Bk+1 has no bush form.

8.8 Manipulating Maps and Constructing Triangulated Maps

In the chapter on graphs we saw functions that allow us to add new nodes and

edges to a graph G. In particular,
edge G.new edge(node v, node w)

adds a new edge (v,w) to G and returns it. The edge is appended to out edges(v)

and to either in edges(w) (if G is directed) or out edges(w) (if G is undirected).
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In this chapter the cyclic ordering of the adjacency lists plays a crucial role and

hence we need much finer control over the positions where edges are inserted into

adjacency lists. The following function gives full control:
edge G.new edge(edge e1, edge e2,

int d1 = LEDA::after, int d2 = LEDA::after)

adds a new edge x = (v,w) to G, where v = source(e1 ) and w = target(e2 ),

and returns the new edge. The new edge is inserted before or after edge e1 into

out edges(v) as directed by d1 . If G is directed, it is also inserted before or af-

ter edge e2 into in edges(w) as directed by d2 . If G is undirected, it is also

inserted before or after edge e2 into out edges(w) as directed by d2 . The constants

LEDA::after and LEDA :: before are predefined constants.

If control about the position of insertion is needed at only one endpoint of the

edge (or if the new edge is the first edge incident to a node) the functions
edge G.new edge(edge e, node w, int dir = LEDA::after)
edge G.new edge(node v, edge e, int dir = LEDA::after)

should be used. The former function adds a new edge x = (source(e), w) to G. x

is inserted before or after edge e into out edges(source(e)) as directed by dir and

appended to in edges(w) (if G is directed) or out edges(w) (if G is undirected). The

operation returns the new edge x. If G is undirected we must have source(e) 6= w.

The latter function is symmetric to the former.

Related to the new edge function is the move edge function. The call
G.move edge(edge e, node v, node w)

requires that e is an edge of G. It makes v the source of e and w the target of e.

For all versions of the new edge function mentioned above, there is a correspond-

ing version of the move edge function, which takes the edge to be moved as an

additional argument. The effect of move edge(e, v, w) is similar, but distinct to the

combined effect of del edge(e) followed by new edge(v,w). The effect is similar as

e ceases to make the connection between its old source and target and as there is

now an edge from v to w. The effect is distinct, as move edge moves an already

existing edge (which may for example have associated entries in edge arrays) and

new edge creates a new edge.

For maps it is frequently convenient to add an edge and its reversal in a single

operation.
edge M.new map edge(edge e1, edge e2)

inserts a new edge e = (source(e1 ), source(e2 )) after e1 into the adjacency list of

source(e1 ) and the reversal to e after e2 into the adjacency list of source(e2 ).

The following function splits a uedge in a map M .
edge M.split map edge(edge e)

splits edge e = (v,w) and its reversal r = (w, v) into edges (v, u), (u,w), (w, u),

and (u, v), where u is a new node. It returns the edge (u,w).

We give an application of the functions above. We show how to triangulate a

map. Let M be a map. The task is to add edges to M such that:

• the genus is not increased, in particular, a plane map stays plane, and
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• every face cycle of the resulting map consists of at most three edges.

Both items are easy to achieve. As long as M is not connected we take any two

nodes v and w in distinct components and join them by a uedge. This increases the

number of edges by two, decreases the number of components by one, and either

decreases the number of isolated nodes by two and increases the number of face

cycles by one, or decreases the number of isolated nodes by one and leaves the num-

ber of face cycles unchanged, or leaves the number of isolated nodes unchanged and

decreases the number of face cycles by one. In either case the genus is unchanged.

So assume that M is connected. As long as there is a face cycle consisting of

four or more edges, we consider any such face cycle C and two nodes v and w on

C that are not neighbors on C, say

C = [. . . , e2, v, e4, . . . , e3, w, e1, . . .].

We split C by adding edges (v,w) and (w, v). The edge (v,w) is added after e4 to

the list of out-edges of v and the edge (w, v) is added after e1 to the list of out-edges

of w; this is the reverse of the operation illustrated in Figure 8.11. Adding the two

edges increases the number of face cycles by one; thus the genus is not changed.

We use the triangulation routine as a subroutine in our straight line drawing

routine for planar graphs. The straight line drawing routine assumes that its input

is a triangulated graph without parallel edges. We therefore have to make sure that

the triangulation routine does not introduce parallel edges. Unfortunately, when

face cycles are split independently, parallel edges may be introduced. We want to

avoid this.

• If the genus of M is zero then no new edge is parallel to another edge of the

graph (new or old).

Christian Uhrig and Torben Hagerup suggested a triangulation algorithm that

achieves all three items above. Their algorithm runs in linear time O(n+m). The

algorithm steps through the nodes of M . For each node v, it triangulates all faces

incident on v. For each node v, this consists of the following:

First, the neighbors of v are marked. During the processing of v, a node will be

marked exactly if it is a neighbor of v.

Then the faces incident on v are processed in any order. A face with boundary

[v = x1, x2, . . . , xn] is triangulated as follows: if n ≤ 3, nothing is done. Otherwise,

(1) if x3 is not marked, a uedge {x1, x3} is added, x3 is marked, and the same

strategy is applied to the face with boundary [x1, x3, x4, ..., xn].

(2) if x3 is marked, a uedge {x2, x4} is added, and the same strategy is applied to

the face with boundary [x1, x2, x4, x5, ..., xn].

When all faces incident to v are triangulated, all neighbors of v are unmarked.

The algorithm just described clearly triangulates all face cycles. We need to

show that it does not introduce parallel edges.
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x4

x3

x2

v = x1

Figure 8.32 x1, x2, x3, and x4 are consecutive nodes on a face and the uedge {x1, x3}
exists. Then {x2, x4} cannot exist.

During the processing of a node v, the marks on neighbors of v clearly prevent

the addition of a parallel edge with endpoint v. After the processing of v, such

an edge is not added because all faces incident on v have been triangulated. This

takes care of the edges added in (1).

Whenever a uedge {x2, x4} is added in step (2), the presence of a uedge {x1, x3}
implies that x2 and x4 are incident on exactly one common face, namely the face

currently being processed, see Figure 8.32. Hence another edge {x2, x4} will never

be added.

The linear running time can be seen as follows. The time to process a node

v is proportional to the degree of v plus the number of edges added during the

processing of v. The total running time is therefore proportional to O(n + m′)

where m′ is the number of edges in the final graph. The number of uedges in the

final graph is at most 3n by Lemma 3.

The following program implements the algorithm. We first add edges to make

the graph connected, then make sure that all reversal informations are properly

set, and finally add edges to triangulate the graph.

〈triangulate.c〉≡
list<edge> graph::triangulate_map()
{ node v;

edge x, e, e1, e2, e3;
list<edge> L;

〈add edges to make the graph connected〉
if ( !make_map() )
error_handler(1,"TRIANGULATE_PLANAR_MAP: graph is not a map.");

node_array<int> marked(*this,0);

forall_nodes(v,*this)
{ list<edge> El = adj_edges(v);

// mark all neighbors of v
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forall(e1,El) marked[target(e1)] = 1;

〈process faces incident to v〉
//unmark all neighbors of v
node w;
forall_adj_nodes(w,v) marked[w] = 0;

} // end of stepping through nodes

return L;

}

The two sub-steps are both fairly easy to implement. For the first sub-step we

call COMPONENTs to determine the number of connected components and to

label each node with its component number. If there is more than one component,

we create an array still disconnected with index set [0 .. c−1], where c is the number

of connected components. For each component except the one which contains s, the

first node of G, we state that the component still needs to be connected with the

component containing s. We then iterate over all nodes. Whenever we encounter

a node v whose component still needs to be connected with s, we add the uedge

{v, s}, and record that the component of v is now connected with the component

of s.

〈add edges to make the graph connected〉≡
node_array<int> comp(*this);
int c = COMPONENTS(*this, comp);
if ( c > 1 )
{ node s = first_node();

array<bool> still_disconnected(c);
for (int i = 0; i < c; i++)
still_disconnected[i] = ( i == comp[s] ? false : true);

forall_nodes(v,(*this))
{ if ( still_disconnected[comp[v]] )
{ set_reversal(e1 = new_edge(s,v), e2 = new_edge(v,s));
L.append(e1); L.append(e2);
still_disconnected[comp[v]] = false;

}
}

}

The faces incident to a node v are processed as described above. We store three

consecutive edges of the face in e1 , e2 , and e3 , respectively. If either of the three

edges ends in v, the face cycle has length at most three and we are done.

So assume otherwise and let w be the endpoint of e2 .

If w is not marked, we mark w and add the uedge {v,w} inside the current face,

i.e., we add the edge (w, v) after e3 to A(w) and we add the edge (v,w) after e1

to A(v). Also (v,w) becomes the new e1 , e2 becomes e3 , and e3 becomes the face

cycle successor of e2 .

If w is marked, we add the uedge {source(e2 ), target(e3 )} inside the current
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face, i.e., after edge e2 at source(e2 ) and after the face cycle successor of e3 at

target(e3 ).

〈process faces incident to v〉≡
forall(e,El)
{

e1 = e;
e2 = face_cycle_succ(e1);
e3 = face_cycle_succ(e2);
if (target(e1) == v || target(e2) == v || target(e3) == v) continue;

while (target(e3) != v)
{ node w = target(e2);
if ( !marked[w] )
{ // we mark w and add the uedge {v,w}

marked[w] = 1;
L.append(x = new_edge(e3,v));
L.append(e1 = new_edge(e1,w));
set_reversal(x,e1);
e2 = e3;
e3 = face_cycle_succ(e2);

}
else
{ //add the uedge {source(e2),target(e3)}

e3 = face_cycle_succ(e3);
L.append(x = new_edge(e3,source(e2)));
L.append(e2 = new_edge(e2,source(e3)));
set_reversal(x,e2);

}
}//end of while

} //end of stepping through incident faces

8.9 Generating Plane Maps and Graphs

We discuss the generation of random plane maps and random plane graphs. We

describe two methods to generate plane maps, a combinatorial method and a ge-

ometric method. We warn the reader that neither method generates plane maps

according to the uniform distribution.

Combinatorial Constructions: The function
void maximal planar map(graph& G, int n);

generates a plane map with n nodes and 3n−6 uedges, no self-loops and no parallel

edges. The number of edges is the maximal possible, see Lemma 3, and, if n ≥ 3,

every face cycle is a triangle.

We give the implementation. If n = 0 we return the empty graph, if n = 1 we

return the graph consisting of a single isolated node, and if n = 2 we return the
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graph consisting of two nodes and a single uedge. So let n > 2 and assume, that

we have already constructed a maximal planar map with n − 1 nodes. We select

one of the existing edges, say e, at random and put a new node v into the face to

the left of e.

Let [e1, e2, e3] be the face cycle containing e (when the third node is inserted the

face cycle has length 2 instead of 3). For each i we add the edge (source(ei), v) to

A(source(ei)) after ei and we append the edge (v, source(ei)) to A(v).

〈generate planar map.c〉≡
void maximal_planar_map(graph& G, int n)
{

G.clear();

if (n <= 0 ) return;

node a = G.new_node();
n--;

if (n == 0) return;

node b = G.new_node();
n--;

edge* E = new edge[n == 0? 2 : 6*n];

E[0] = G.new_edge(a,b); E[1] = G.new_edge(b,a);
G.set_reversal(E[0],E[1]);

int m = 2;

while (n--)
{ edge e = E[rand_int(0,m-1)];
node v = G.new_node();
while (target(e) != v)
{ edge x = G.new_edge(v,source(e));
edge y = G.new_edge(e,v,LEDA::after);
E[m++] = x; E[m++] = y;
G.set_reversal(x,y);
e = G.face_cycle_succ(e);

}
}

delete[] E;
}

The function
void random planar map(graph& G, int n, int m);

generates a plane map with n nodes and min(m, 3n − 6) uedges. It first generates

a maximal plane map and then deletes a random set of uedges until the desired

number of edges is obtained.

The functions
void maximal planar graph(graph& G, int n);

void random planar graph( graph& G, int n, int m);

first construct a plane map with the same parameters and then keep only one of

the edges comprising each uedge.
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Geometric Constructions: Geometry is a rich source of planar graphs. A simple

way to generate a planar map is to choose n random points in the plane and to

triangulate the resulting point set. We will see how to triangulate a point set

in Section ??. Alternatives are to compute the Delaunay triangulation of a set

of random points, see Section ??, or to choose a random set of segments and to

compute the arrangement of the segments, see Section ??.

The functions
void triangulation map(graph& G, int n);

void triangulation map(graph& G, node array<double>& xcoord,
node array<double>& ycoord, int n);

void triangulation map(graph& G, list<node>& outer face,
node array<double>& xcoord,
node array<double>& ycoord,
int n);

choose n random points in the unit square and set G to some triangulation. G

will be a plane map. The first function only returns the triangulation, the second

function also returns the point coordinates, and the third function also returns the

list of vertices lying on the convex hull (in clockwise order).

The function
void random planar map(graph& G, node array<double>& xcoord,node array<double>& ycoord, int n, int m);

first constructs a triangulated planar map and then deletes all but m edges.

All functions above are also available with map replaced by graph in the function

name. The modified functions keep only one edge of each uedge.

8.10 Faces as Objects

The face cycles of maps played an important role in the preceding sections. It is

therefore only natural to introduce them as a type of their own. For succinctness,

we use the type name face.

8.10.1 Concepts

The operation
M.compute faces()

computes the set of face cycles of the map M ; the function aborts if M is not

a map. After this operation and till the next modification of M by a new node ,

new edge, del node , or del edge operation, the face cycles of M are available in

much the same way as the edges and nodes of M are available.

For example,
int M.number of faces();
list<face> M.all faces();

return the number of faces and the list of all faces of M , respectively. If f is a

face, the predecessor and successor face of f in the list of all faces is returned by
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M.succ face(f) and M.pred face(f), respectively, and the first and last face in the

list of all faces is returned by M.first face( ) and M.last face( ), respectively. The

four functions just mentioned return nil if the requested object does not exist. The

iteration statement
forall faces(f,M)

iterates over all face cycles of M .

The function
face M.face of(edge e)

returns the face cycle of M which contains the edge e and the functions
list<edge> M.adj edges(face f)
edge M.first face edge(face f)
int M.size(face f)

return the list of all edges in the face cycle f , the first edge in this cycle, and the

number of edges in the face cycle, respectively. The iteration statement
forall face edges(e,f)

iterates over all edges e in the face cycle f .

For a node v, the function
list<face> M.adj faces(node v)

returns the list of faces incident to v. More precisely, if A(v) = [e0, e1, . . . , ek−1] is

the list of edges out of v then the list [face of (e0), . . . , face of (ek−1)] is returned.

Similarly, for a face f , the function
list<node> M.adj nodes(face f)

returns the list of all nodes ofM incident to f . More precisely, if f = [e0, e1, . . . , ek−1],

the list [source(e0), . . . , source(ek−1)] is returned.

There is a small number of update operations which do not destroy the list of

faces of a map. The operation
edge M.split face(edge e1, edge e2)

inserts the edge e = (source(e1), source(e2)) and its reversal into M and returns e.

The edges e1 and e2 must belong to the same face. This face cycle is split into two

by the operation by inserting e after e1 into the list of edges out of source(e1) and

by inserting eR after e2 into the list of edges out of source(e2). The operation
face M.join faces(edge e)

deletes the edge e and its reversal from M and updates the list of faces accordingly.

Let f and g be the face cycles containing e and eR, respectively. Assume first that

f 6= g. If both f and g consist of a single edge22 then the number of face cycles goes

down by two and nil is returned. If at least one of f or g consists of more than one

edge, then f and g are joined into a single face and this face is returned. When we

coined the name for the operations we assumed that the latter case would be the

“normal” use of the operation. Assume next that f = g. If f consists of exactly

two edges, namely e and eR then the number of face cycles goes down by one and

nil is returned. If f consists of at least three edges and either e or eR is the face

cycle successor of the other then the number of face cycles is unchanged and f is

22 This case occurs, for example, in a graph with one node and one uedge.
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Figure 8.33 The dual of our map M0. The dual has two nodes (shown as squares) and
four uedges (drawn dashed).

returned. Finally, if neither e nor eR is the face cycle successor of the other, then

the number of faces goes up by one and one of the new faces is returned.

8.10.2 The Dual of a Map

The (combinatorial) dual of a map M is another map D, see Figure 8.33:

• D has one node for each face cycle of M . More precisely, the nodes of D and

the face cycles of M are in one-to-one-correspondence. We use d(f) to denote

the node of D corresponding to the face cycle f of M .

• D has one edge for each edge of M . Let e be any edge of M , let f be the face

cycle containing e, and let g be the face cycle containing eR. Then D contains

the edge d(e) = (d(f), d(g)).

• Let f = [e0, e1, . . . , ek−1] be a face cycle of M . Then the cyclic adjacency list

of the node d(f) of D is equal to [d(e0), d(e1), . . . , d(ek−1)].

The following program computes the dual D of a map M . We first compute the

face cycles of M . We then put a node into D for each face cycle of M and record

the correspondence in a face array<node>. We then iterate over all face cycles

of M and for each face cycle over the edges comprising the face cycle. For each

edge we constructs its dual and record the correspondence. Observe that the edges

incident to any dual node are constructed in the order in which they are supposed

to appear in the adjacency list of the dual node. Finally, we establish the reversal

information of all dual edges.

〈dual.c〉≡
void graph::dual_map(graph& D) const
{ D.clear();

graph& M = *((graph*)this); // cast away the const
M.compute_faces();
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face f; edge e;
face_array<node> dual(M);
forall_faces(f,M) dual[f] = D.new_node();

edge_array<edge> dual_edge(M);
forall_faces(f,M)
{ node df = dual[f];
forall_face_edges(e,f)
{ face g = M.face_of(M.reversal(e));
dual_edge[e] = D.new_edge(df,dual[g]);

}
}

forall_edges(e,M)
D.set_reversal(dual_edge[e],dual_edge[M.reversal(e)]);

}

8.10.3 Faces of Planar Maps

There are two functions that deal with faces of planar maps. The function
void M.make planar map()

assumes that M is a bidirected graph. It first calls M.make map( ) to turn M into

a map. It then calls PLANAR(M, true) to turn M into a plane map. It finally

calls M.compute faces( ) to compute the face cycles of M .

The function
list<edge> M.triangulate planar map()

calls M.triangulate map( ) followed by M.compute faces( ) and returns the list of

edges added to M by the former call.

Exercise for 8.10
1 Is the dual of the dual of a map M isomorphic to M? Give a counterexample.

Under which conditions does the claim hold? State and prove a lemma.

8.11 Embedded Graphs as Undirected Graphs

The reader may wonder about the use of directed graphs in this chapter. After

all, in maps we always combine a pair of directed edges into a uedge. We chose

bidirected graphs to represent maps mainly for two reasons.

Although maps are basically undirected graphs, the two orientations of an undi-

rected edge play a major role in the functions operating on maps. In particular, the

face cycle successor of an edge and the reversal of an edge are “directed concepts”

and hence would require additional arguments if maps were realized by undirected

graphs. For example, one could distinguish the two orientations of an undirected

edge by specifying a node to indicate the source node of the oriented edge. This

would, however, not work for self-loops.
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The second reason is that maps are frequently constructed incrementally and

that the two orientations of an edge are constructed at different moments of time.

We saw one example already in the program dual map that constructs the dual of

a map. Such constructions are difficult to implement with a representation that

can only represent maps. The problem is that we arrive at a map at the end of the

construction process but have no map during the construction process.

Our choice of directed graphs to represent maps wastes space, since the two edges

comprising a uedge are stored in two lists at each endpoint of the uedge. One list

for each endpoint would suffice for most functions presented in this chapter.

8.12 Order from Geometry

The following problem arises frequently. A graph is constructed by drawing it in a

GraphWin and the combinatorial structure of the graph is supposed to reflect the

drawing, i.e., for every node v the cyclic order of A(v) is supposed to agree with

the counter-clockwise order of the edges out of v in the drawing.

Let us be more precise. For every edge e let d(e) be a vector (not necessarily,

non-zero) in the plane. We define an order on two-dimensional vectors. For a non-

zero vector d let α(d) be the angle between the positive x-axis and d, i.e., the angle

by which the positive x-axis has to be turned in counter-clockwise direction until

it aligns with d. A vector d1 precedes a vector d2 if α(d1) < α(d2) and a vector d1
is equivalent to a vector d2 if α(d1) = α(d2). The zero vector precedes all other

vectors. The implementation of this order on vectors is discussed in Chapter ?? on

geometry kernels.

The functions
bool SORT EDGES(graph &G,

const edge array<NT>& dx, const edge array<NT>& dy)

bool SORT EDGES(graph &G,
const node array<NT>& x, const node array<NT>& y)

reorder all adjacency lists in non-decreasing order of the vectors d(e), e ∈ E. For

the first function, the vector associated with an edge e is (dx [e], dy [e]), and for the

second function, the vector associated with an edge e = (v,w) is (x[w]−x[v], y[w]−
y[v]).

The functions return true if G is a plane map after the reordering. When will

this be the case? Assume that G is a map and that the vectors d(e) come from a

planar drawing of G, i.e., d(e) is a vector tangent to the image of e as it leaves its

source. If G has no self-loops and no parallel edges23 then G will be a plane map

after the call of SORT EDGES . In fact, it will be a plane map for which the given

drawing is an order-preserving embedding.

23 Observe that sorting edges by angle leaves the relative order of self-loops and the relative order of
parallel edges undefined.
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We next give an application of the function SORT EDGES to the task described

in the introductory paragraph. The goal is to deduce a plane map from a straight

line drawing of the map. Assume that gw is a GraphWin with an associated graph

G, i.e., defined by

〈gw sort edges demo〉≡
graph G;

〈gw sort edges demo: auxiliary functions〉
int main()
{ GraphWin gw(G,"Plane Map from Geometry");

gw.set_init_graph_handler(init_handler);
gw.set_new_edge_handler(new_edge_handler);
gw.set_del_edge_handler(del_edge_handler);
gw.set_new_node_handler(new_node_handler);
gw.set_del_node_handler(del_node_handler);
gw.set_move_node_handler(move_node_handler);

gw.set_directed(true);

gw.display();
gw.add_help_text("gw_sort_edges_demo");
gw.display_help_text("gw_sort_edges_demo");
gw.edit();

return 0;
}

We define an auxiliary function sort that queries for each node v of G its position

in gw and then calls SORT EDGES. We call sort whenever an edge is added to

the graph (and hence the new edge handler is called) or if a new graph is read in

by gw (and hence the init handler is called). When an edge is added, we also add

the reversal to make sure that we deal with a map.

The effect of the call of sort is to rearrange the adjacency lists according to

the counter-clockwise order in which the edges incident to any node appear in the

drawing. We print the graph at the end of sort in order to allow a visual comparison

between the drawing and the representation of the graph. The graph will be a plane

map as long as the drawing is a planar embedding.

〈gw sort edges demo: auxiliary functions〉≡
void sort(GraphWin& gw)
{

node_array<double> x(G), y(G);

node v;

forall_nodes(v,G)
{ point p = gw.get_position(v);
x[v] = p.xcoord(); y[v] = p.ycoord();

}

SORT_EDGES(G,x,y);

cout << "\n\nThe adjacency lists are:\n";
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G.print();
}

void init_handler(GraphWin& gw)
{ list<edge> L;

G.make_map(L);
sort(gw);

}

void new_edge_handler(GraphWin& gw, edge e)
{ G.set_reversal(e,gw.new_edge(G.target(e),G.source(e)));

sort(gw);
}

bool del_edge_handler(GraphWin& gw, edge e)
{ gw.del_edge(G.reversal(e)); return true; }

void new_node_handler(GraphWin& gw,node) {}
void del_node_handler(GraphWin& gw) {}

void move_node_handler(GraphWin& gw,node v) { sort(gw); }

We will see more functions that relate geometry and graphs in Chapter ?? on

geometric algorithms.

Exercises for 8.12
1 Extend the gw drawing demo.c such that it can also cope with edges that

contain bends.
2 Write a function that checks whether the geometric positions assigned to the

nodes of a map define a straight line embedding of the map. Hint: Read
Section ?? on line segment intersection before working on this exercise.

8.13 Miscellaneous Functions on Planar Graphs

There are many problems that are simpler for planar graphs than for arbitrary

graphs. We collect two in this section.

8.13.1 Five Coloring

Every planar graph can be four-colored, i.e., the nodes of the graph can be labeled

with the integers 1 to 4 such that any edge connects two nodes of distinct color. We

have not implemented a four coloring algorithm but only a five coloring algorithm.

The function
void FIVE COLOR(graph& G, node array<int>& C);

attempts to color the nodes of G using five colors, more precisely, it computes for

every node v a color C[v] ∈ {1, . . . , 5}, such that C[source(e)] 6= C[target(e)] for
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every edge e. The function runs in linear time and is guaranteed to succeed if G is

planar and contains no self-loops and no parallel edges24.

We sketch how the algorithms works. In a planar graph there is always a node

with at most five neighbors (Lemma 3). Let v be a node with at most five neighbors.

If v has less than five neighbors, we recursively five-color the graph G \ v and then

use a color for v which is not used by any of its neighbors. If v has degree 5, we

have to work slightly harder. We observe that there must be two neighbors of G

which are not connected by an edge (otherwise the neighbors of v would form a

complete graph on five nodes; this is, however, impossible in a planar graph by

Lemma 3). Let w and z be two neighbors of v that are not connected by an edge.

We remove v and merge w and z into a single node. This can be done without

destroying planarity as Figure 8.34 shows. When merging w and z we also delete

any parallel edges which may result from the merging process. We five-color the

resulting graph G′ recursively. In order to obtain a coloring of G we unmerge w

and z, give w and z the color of the node that represented them both in G′, and

give v a color which is not used on its neighbors.

To obtain linear running time is slightly tricky and we leave it for the exercises.

w

v

z

w

z

Figure 8.34 Merging the neighbors w and z of v.

8.13.2 Independent Sets of Small Degree

An independent set in a graph G is a set I of nodes no two of which are connected

by an edge. A five coloring of a graph yields an independent set of size at least

n/5, since at least one of the colors is used on at least n/5 of the nodes and since

all edges have their endpoints in different color classes. Sometimes, it is desirable

to have an independent set all of whose nodes have small degree.

24 Self-loops are clearly an obstruction to colorability. Parallel edges are no “real” problem; it is just that
our algorithm is not able to handle them.
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The function
void INDEPENDENT SET(const graph& G, list<node>& I)

computes an independent set I all of whose nodes have degree at most 9. If G is

planar and has no parallel edges, it is guaranteed that |I | ≥ n/6. The algorithm is

due to David Kirkpatrick and Jack Snoeyink [KS97] and is extremely simple and

elegant.

The algorithm starts by removing all nodes that have degree 10 or more. It then

repeatedly chooses a node v of smallest degree, adds v to I, and removes v and its

neighbors from G.

We describe an implementation. We start by making an isomorphic copy H of

G; H is of type GRAPH <node , edge>, and each node v of H stores in H[v] the

node of G to which it corresponds. We saw the implementation of CopyGraph in

Section ??. We will work on H.

We delete all self-loops from H and turn H into a map. Recall that turning a

graph into a map pairs a maximum number of edges and adds reversals for the

unpaired edges. After turning H into a map, each edge is part of a uedge.

We then determine all nodes of degree at least 10 and delete all such nodes.

Next we collect all nodes of H of degree i, 0 ≤ i ≤ 9 in a linear list LD [i]. In

the course of the algorithm the lists LD [i] may contain nodes that were already

deleted from H. We need to be able to identify those nodes and therefore maintain

an array node of H .

The construction of the independent set can now begin. As long as H is not

empty, we select a node v from the lowest indexed non-empty list. We continue

the selection process until we select a node that belongs to the current H. We add

H[v] to I (recall that H[v] is the node in G that corresponds to v), and we delete v

and its neighbors from H; we do not remove them from the lists LD though (this

could be done by maintaining an array pos in LD that stores for each node v the

item in LD that contains v). We collect all neighbors of v in a list affected nodes

and add them to the lists LD according to their new degrees.

〈 independent set〉≡
void INDEPENDENT_SET(const graph& G, list<node>& I)
{ I.clear();

GRAPH<node,edge> H;
CopyGraph(H,G);

node v; edge e;
list<edge> E = H.all_edges();
forall(e,E) { if (H.source(e) == H.target(e) ) H.del_edge(e); }

H.make_map(E); // E is a dummy argument

list<node> HD; // high degree nodes
forall_nodes(v,H) if (H.degree(v) >= 10) HD.append(v);

forall(v,HD) H.del_node(v);

array<list<node> > LD(10);
forall_nodes(v,H) LD[H.degree(v)].append(v);
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node_array<bool> node_of_H(H,true);

while (H.number_of_nodes() > 0)
{ int i = 0;
while (i < 10)
{ if ( LD[i].empty() ) { i++; continue; }
v = LD[i].pop();
if ( node_of_H[v] ) break;

}

I.append(H[v]);
list<node> affected_nodes;

forall_inout_edges(e,v)
{ node w = H.opposite(v,e);
edge f;
forall_inout_edges(f,w)
affected_nodes.append(H.opposite(w,f));

H.del_node(w); node_of_H[w] = false;
}
H.del_node(v); node_of_H[v] = false;

forall(v,affected_nodes)
if ( node_of_H[v] ) LD[H.degree(v)].append(v);

}
}

Exercises for 8.13
1 Extend the function FIVE COLORING so that it can handle parallel edges.
2 Implement the function FIVE COLORING. Try to achieve linear running

time.
3 Modify the implementation of INDEPENDENT SET such that the lists LD

contain only nodes of H and every node at most once.
4 A separator in a graph G is a set S of nodes of G such that removal of S

decomposes G into two or more subgraphs none of which has more than 2n/3
nodes. Planar graphs have separators of size O(

√
n) and there are linear time

algorithms to compute them, see [Tar77] or [Meh84, IV.10]. Implement the
planar separator theorem and provide it as a LEP.
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