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One of the most powerful algorithmic techniques for truthful mechanism design are maximal-in-
distributional-range (MIDR) mechanisms. Unfortunately, many algorithms using this paradigm rely on
heavy algorithmic machinery and require the ellipsoid method or (approximate) solution of convex pro-
grams. In this paper, we present a simple and natural correlated rounding technique for designing mecha-
nisms that are truthful in expectation. Our technique is elementary and can be implemented quickly. The
main property we rely on is that the domain offers fractional optimum solutions with a tree structure.

In auctions based on the generalized assignment problem, each bidder has a publicly known knapsack
constraint that captures the subsets of items that are of value to him. He has a private valuation for each
item and strives to maximize the value of assigned items minus payment. For this domain we design a
mechanism for social welfare maximization. Our technique gives a truthful 2-approximate MIDR mecha-
nism without using the ellipsoid method or convex programming. In contrast to some previous work, our
mechanism achieves exact truthfulness.

In restricted-related scheduling with selfish machines, each job comes with a public weight, and it must
be assigned to a machine from a public job-specific subset. Each machine has a private speed and strives
to maximize payments minus workload of jobs assigned to it. For this domain we design a mechanism
for makespan minimization. Although this is a single-parameter domain, the approximation status of the
underlying optimization problem is similar to unrelated scheduling: The best known algorithm gives a (non-
truthful) 2-approximation for unrelated machines, and there is 1.5-hardness. Our mechanism matches this
bound and provides a truthful 2-approximation.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Mechanism Design, Rounding, Combinatorial Auctions, Scheduling
Mechanisms

1. INTRODUCTION
A major issue in algorithmic mechanism design is understanding the impact of truth-
fulness constraints on the computational complexity and approximation factors of op-
timization problems. This question has received considerable interest in recent years,
most prominently in combinatorial auctions: The goal here is to assign a set of m items
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to a set of n bidders, where each bidder has a non-negative, monotone valuation func-
tion that assigns a value to each subset of items. The objective is to find an allocation
that (approximately) maximizes social welfare given by the sum of bidder valuations.

Randomization is often helpful in designing polynomial-time truthful mechanisms
with good approximation factors. A prominent and successful way to design random-
ized mechanisms is to formulate the allocation problem as an integer program, solve
a fractional relaxation optimally in polynomial time, and then round it to a feasible
allocation. In a celebrated result, Lavi and Swamy [2011] showed how to obtain truth-
ful mechanisms with small approximation ratios for social welfare based on a tech-
nique called randomized meta-rounding. Subsequently, this approach was identified as
an instance of a general technique termed maximum-in-distributional-range (MIDR)
by Dobzinski and Dughmi [2013]. Here, we define a fixed and bounded range of dis-
tributions over allocations that allows to efficiently obtain and round a distribution
maximizing a function of the bids. Using VCG arguments, we obtain a truthful-in-
expectation mechanism that incentivizes truth-telling among risk-neutral bidders op-
timizing expected utility. For classes of submodular coverage valuations, convex round-
ing techniques can be used to design MIDR mechanisms with constant approximation
factors [Dughmi et al. 2011]. These approaches, however, rely heavily on convex opti-
mization techniques and the ellipsoid method, which represents a serious bottleneck
for the intuitive understanding and the running time. While there exist some faster
mechanisms for these domains, they only provide approximate truthfulness. In addi-
tion, recent work has shown several strong lower bounds for approximation factors of
truthful mechanisms with different oracle access to bidder valuations. Finding simple
truthful mechanisms with small, near-optimal approximation guarantees has become
a serious challenge.

In this paper, we design a novel and elementary rounding technique for truthful-
in-expectation mechanisms. Our technique is applicable to two-sided allocation prob-
lems, and we outline the application for multi-item auctions based on the generalized
assignment problem (GAP). It yields truthful-in-expectation mechanisms with approx-
imation ratio 2. We avoid any dependence on the ellipsoid method and achieve exact
truthfulness. Our approach relies on the existence of a fractional optimum solution
with tree structure, which we round using a simple and elementary construction. In
addition, we indicate how to generalize the technique and apply it in different contexts
to covering-style problems with tree structure. As an example, we outline an applica-
tion to scheduling mechanisms with restricted-related machines, where we derive a
truthful-in-expectation mechanism with approximation ratio 2. This restricted-related
scenario is a single parameter domain but close in nature to the prominent unrelated
machines model. There is a huge gap between a linear upper bound to a constant lower
bound for the approximation ratio of truthful mechanisms for unrelated machines. In-
terestingly, our result shows that for the closely related problem of restricted-related
machines one can achieve a truthful mechanism with a constant approximation ratio.

1.1. Related Work
Combinatorial Auctions and GAP. Combinatorial auctions are a central domain in

(algorithmic) mechanism design, and the existing literature is too broad to review it
here in detail. We only provide a context of our results, for a more general overview
see, e.g., [Cramton et al. 2006; Milgrom 2004; Blumrosen and Nisan 2007].

Combinatorial auctions with general valuation functions are hard to approximate,
there exist several lower bounds close to m1/2−ε for constant ε > 0, e.g., in terms of
computational complexity [Lehmann et al. 2002], or for value oracle access [Mirrokni
et al. 2008], where we are only allowed to make a polynomial number of value queries
to the bidders. This motivated the study of relevant subclasses of valuations (for an



overview see, e.g., [Blumrosen and Nisan 2007]). Lavi and Swamy [2011] developed
a general framework for obtaining truthful-in-expectation mechanisms via random-
ized meta-rounding. Their framework yields mechanisms with approximation factors
of O(

√
m) for combinatorial auctions, (1+ ε) for multi-unit combinatorial auctions with

multiplicity Ω(logm), and 2 for multi-parameter knapsack problems.
A prominent class of valuations are submodular valuations, where social wel-

fare maximization without truthfulness is essentially solved. Optimal (1 − 1/e)-
approximation algorithms exist even for value oracle access [Vondrák 2008]. This fac-
tor cannot be improved assuming either polynomial communication in the value ora-
cle model [Mirrokni et al. 2008] or polynomial-time complexity in general [Khot et al.
2008]. For the strategic setting and general submodular functions, there is a truthful-
in-expectation mechanism with approximation factor O(logm/ log logm) in the com-
munication complexity model [Dobzinski et al. 2010] and a universally truthful mech-
anism with factor O(logm) using demand oracles [Krysta and Vöcking 2012]. For a
subclass called matroid-rank-sum valuations, Dughmi et al. [2011] proposed a convex
rounding technique to build MIDR mechanisms, and their approach yields an optimal
(1− 1/e)-approximation.

More recently, strong lower bounds for approximation factors of truthful mecha-
nisms with submodular valuations have been established based on the structure of
the mechanism and the query model to access valuations. Universally truthful mech-
anisms using randomization over maximal-in-range mechanisms (the deterministic
analog to MIDR) that provide constant approximation factors have been ruled out for
all oracle models [Dobzinski and Nisan 2011]. In the value oracle model, the lower
bound on the approximation factor was strengthened to m1/2−ε [Dobzinski 2011].
Even for truthful-in-expectation mechanisms, lower bounds of mε exist in the value
oracle model [Dughmi and Vondrák 2011]. Moreover, there is a class of submodu-
lar valuations that allows a polynomial representation, but no truthful-in-expectation
mechanism with approximation factor of mε, for some constant ε > 0, unless NP⊆
P/poly [Dobzinski and Vondrák 2012a,b].

We here consider combinatorial auctions based on the generalized assignment prob-
lem (GAP). For GAP there are a variety of (non-truthful) approximation results. There
exists a (1 − 1/e)-approximation algorithm [Fleischer et al. 2011], which improves
on an earlier 2-approximation [Shmoys and Tardos 1993]. The best-known hardness
is 11/10 [Chakrabarty and Goel 2010], and the current best approximation ratio is
(1 − 1/e + ρ), ρ ≤ 10−5 [Feige and Vondrák 2006]. Fadaei and Bichler [2014] recently
gave a (1 − ε)-truthful (1 − 1/e)-approximation for auctions based on GAP using a
convex rounding approach. This mechanism, however, is only approximately truth-
ful. For a very different variant of the problem where valuations are known and only
the feasible bidder-item-pairs are private, an earlier logarithmic mechanism [Dughmi
and Ghosh 2010] was recently improved to a universally truthful constant-factor-
approximation [Chen et al. 2014].

Scheduling Mechanisms. For scheduling on unrelated machines, finding a truthful
mechanism with sublinear approximation ratio for makespan optimization is a long-
standing open problem since the seminal work of Nisan and Ronen [2001]. The main
technical difficulty in designing scheduling mechanisms is that makespan is not util-
itarian social welfare: The social objective is not to optimize the (expected) sum of
times when each machine completes all assigned jobs, but the maximum of these times.
Therefore standard approaches like VCG are not in line with the social objective. An-
other major complication is the multi-parameter domain: The private information of
every machine are processing times for each single job. For the non-strategic vari-
ant, there exists a 2-approximation algorithm [Lenstra et al. 1990]. However, truthful



mechanisms have only been obtained with ratios of O(m) [Lu and Yu 2008a,b; Lu
2009], while only a lower bound of 2.61 has yet been proven [Christodoulou et al.
2009; Koutsoupias and Vidali 2013]. The upper bound of O(m) is tight for the spe-
cial case of anonymous mechanisms [Ashlagi et al. 2012]. For the fractional problem,
a (1 + (n− 1)/2)-approximative mechanism exists [Christodoulou et al. 2010].

The paradigmatic problem in the single-parameter domain is scheduling on related
machines, where each machine only holds its speed as private information. The classic
approximation result is a PTAS for the non-strategic problem [Hochbaum and Shmoys
1988]. For truthful mechanisms, there exist a number of results that leverage the sim-
pler monotonicity conditions required for single-parameter domains [Archer and Tar-
dos 2001; Andelman et al. 2007; Kovács 2005]. The best mechanisms are PTAS’es that
are truthful-in-expectation [Dhangwatnotai et al. 2008] and deterministically truth-
ful [Christodoulou and Kovács 2013]. In addition, there exists a deterministic PTAS
that is applicable to a variety of other objective functions [Epstein et al. 2013].

The problem we consider in our work lies in between unrelated and related machine
scheduling: In restricted-related scheduling, although having only one single speed,
machines can be unfit to do certain jobs at all – each task has only a subset of allowed
machines it can be assigned to. Here – as for unrelated machines – the best-known
hardness is 1.5, and the best-known approximation for makespan without truthfulness
is 2 [Lenstra et al. 1990], which we match with our truthful-in-expectation mechanism.

1.2. Contribution and Overview
We present a general technique for truthful mechanism design in allocation problems
and apply it in two domains. Our technique allows to derive truthful-in-expectation
mechanisms when optimal solutions to a relaxation have a tree structure. This class
covers a variety of resource allocation problems with covering and packing objec-
tives, from which we consider generalized assignment problems and restricted-related
scheduling. Our approach starts with a fractional optimum, which we then round in
an iterative and correlated fashion.

From the packing domain, we apply our approach to combinatorial auctions based on
GAP and derive a truthful-in-expectation mechanism via fractional VCG that approx-
imates social welfare by a factor of 2. Note that a truthful 2-approximation for these
domains can, in principle, also be obtained using randomized meta-rounding and the
ellipsoid method. This contrast nicely outlines the strengths of our procedure – it of-
fers a combinatorial understanding of the rounding step, avoids explicit composition
of candidate solutions, and can thereby be implemented very quickly. GAP valuations
allow a compact representation of m numbers, so there is no need to resort to oracles.

In our approach, item valuations are private, but the constraints that describe feasi-
ble item sets that can be given to each bidder are public knowledge. The latter property
is crucial for truthfulness of our mechanisms, and we provide an example that our ap-
proach is not truthful if constraints are also private. Among other things, this implies
that our mechanisms cannot be directly applied to combinatorial auctions with budget-
additive valuations [Buchfuhrer et al. 2010; Chakrabarty and Goel 2010], which can
be modeled via GAP with private constraints.

From the covering domain, we consider truthful makespan optimization on
restricted-related machines. In this case, we rely on monotonicity arguments for the
solution to a relaxation to guarantee truthfulness. The rounding technique is then
applied to interpret the fractional relaxation as distribution and to sample one feas-
bile integral solution. Our mechanism achieves an approximation guarantee of 2 and
thereby matches the best-known approximation guarantee of any algorithm solving
the problem (with or without truthfulness).



2. NOTATION AND PRELIMINARIES
2.1. Combinatorial Auctions based on GAP
We consider auctions based on the well-known generalized assignment problem. In
this setting there is a set I of n bidders and a set J of m items. The goal is to determine
an allocation x with xij ∈ {0, 1} of items to bidders. Each item may only be assigned to
at most one bidder. Each bidder has a valuation function vi(x) that returns the value
for the set of items assigned to him. We consider valuations vi that are additive subject
to a public constraint: There are private item values rij ≥ 0 for all j ∈ J . Also, there
are public item weights bij ≥ 0 for all j ∈ J and a public capacity Bi ≥ 0. The valuation
for bidder i is a submodular function that captures the value of the best feasible subset
of items allocated to i

vi(x) = max
x′≤x

∑
j∈J

x′ijrij

∣∣∣∣∣∣
∑
j∈J

x′ijbij ≤ Bi


Our aim is to design truthful mechanisms where each bidder reports his private in-
formation as a bid r′i = (r′ij)j∈J , and based on r′ the mechanism computes a (possibly
randomized) assignment of items to bidders x(r′) along with payments pi(r′) for ev-
ery bidder i ∈ I. Bidder i has a quasi-linear utility ui(r′) = vi(x(r′)) − pi(r′), and the
mechanism is truthful in expectation if

E
[
ui((rij)j∈J , r

′
−i)
]
≥ E

[
ui(r

′
i, r
′
−i)
]

for all bidders i ∈ I, possible bids r′i and possible bids of other bidders r′−i. The expec-
tation is over internal randomization of the mechanism. We strive to design truthful
mechanisms such that the allocation x maximizes social welfare

∑
i∈I vi(x). We will

assume throughout that bij ≤ Bi for all i ∈ I and j ∈ J .

2.2. Restricted-Related Scheduling
In restricted-related scheduling, the set of bidders is a set of machines I with speeds
vi ∈ N for all i ∈ {1, . . . , n}. There is a set J of m jobs, and each job has a weight
wj ∈ N and a set of machines M (j) ⊆ I it may be assigned to. Our objective is to find an
assignment x = {xij} of jobs to machines that assigns each job j to a single machine
i ∈ M (j). In our setting, we will assume that speeds vi are private information of the
machine owners, while everything else is public and therefore known to the mechanism
designer. In a truthful mechanism, each machine reports the speed as a bid v′i, and
based on v′ the mechanism computes a (possibly randomized) assignment of jobs to
machines x(v′) along with payments pi(v′) to every machine i ∈ I. Machine i has a
quasi-linear utility ui(v′) = pi(v

′) −
∑
j∈J wjxij(v

′)/vi, and the mechanism is truthful
in expectation if revealing the private information truthfully is a dominant strategy in
expectation, i.e.:

E

pi(vi, v′−i)−∑
j∈J

wjxij(vi, v
′
−i)/vi

 ≥ E

pi(v′i, v′−i)−∑
j∈J

wjxij(v
′
i, v
′
−i)/vi


for all machines i ∈ I and possible bids v′i (where v′−i denotes the bids of all ma-
chines except i). We strive to design truthful mechanisms that minimize the makespan
maxi∈I

∑
j∈J wjxij/vi, i.e., the earliest time after which every machine has completed

all jobs assigned to it.



3. TREE ROUNDING
We assume that the underlying optimization problem is based on linear optimization
with variables xij ∈ {0, 1} and models a two-sided budgeted allocation scenario with
item set J and bidder set I. We consider this fundamental assignment problem in two
variants, a packing and a covering variant. In the packing variant, we assign each
item j ∈ J to at most one bidder i ∈ I in order to maximize a monotone function of x. In
the covering variant, we assign each item j ∈ J to exactly one bidder i ∈ I in order to
minimize a monotone function of x. The sets of items we can assign simultaneously to
i ∈ I can be described by a linear constraint of the form

∑
j∈J wijxij ≤ Wi, where the

weights wij and bound Wi are given by the problem. Furthermore, we assume that for
a linear relaxation with xij ∈ [0, 1] there is a fractional optimal solution with a (near)
tree structure.

Definition 1. A vector x = (xij)i∈I,j∈J with xij ∈ [0, 1] has tree structure iff the graph
G = (V,E) with V = {I ∪ J} and E = {{i, j} | i ∈ I, j ∈ J, xij > 0} is a forest.

We will use the tree structure in the fractional optima to apply a concise correlated
rounding scheme, which allows to turn a scaled fractional optimum into a distribu-
tion over integral solutions. We then apply suitable payments such that the resulting
mechanism becomes truthful in expectation. In addition, in our examples the rounding
does not deteriorate the mechanism’s objective significantly. We outline this approach
in two application domains, one packing and one covering problem.

3.1. Packing Rounding in GAP-based Auctions
In this section, we present a correlated rounding scheme for packing problems that
yields a 2-approximate truthful mechanism for combinatorial auctions based on GAP.

Theorem 1. There is a randomized polynomial-time tree-rounding mechanism for
combinatorial auctions based on GAP that is truthful in expectation and obtains an
approximation ratio of 2 for social welfare.

Consider the well-known linear relaxation for GAP:

max
∑

i∈I,j∈J
rijxij

s.t.
∑
j∈J

bijxij ≤ Bi ∀i ∈ I∑
i∈I

xij ≤ 1 ∀j ∈ J

xij ≥ 0 ∀i ∈ I, j ∈ J

(1)

This describes exactly a fractional relaxation of social welfare maximization with GAP
valuations. We assume free disposal, thereby we can say any bidder is only given an
amount of fractional items that does not exceed his capacity Bi. In what follows, we
describe a framework to obtain a truthful-in-expectation 2-approximate mechanism.

We first solve (1) optimally. The graph G, whose edges are defined by non-zero vari-
ables in the optimum x∗, can be assumed to be a pseudo-forest: A collection of trees
together with at most one additional edge. In general, there is at most one single cycle
in G. We can assume for simplicity that G is a pseudo-tree. For proofs of these well-
known properties and further polyhedral insights into GAP see, e.g., [Lenstra et al.
1990; Andelman 2006]. In the following, let us first assume G is a tree. We show below
how to deal with pseudo-trees.



Fig. 1. Schematic view of a tableau for bidder i

3.1.1. Tableaus. Given a tree-structured optimal solution together with a suitable,
constant scaling factor c, we can represent and round the fractional optimum x∗ in
a very convenient way. Intuitively, we represent each variable x∗ij in the fractional op-
timal solution by a rectangle taking up a width of x∗ij ≤ 1 and a height of bij . We scale
the rectangles down with a factor of c by width. Then, we pack all the rectangles for
those items j ∈ J with x∗ij > 0 into a single rectangle Ri of width 1 and height Bi
for bidder i. To do so, we allow a rectangle to be divided into several smaller ones by
width, but not by height. Also, two rectangles belonging to the same j ∈ J may never
be placed above the same point on the x-axis. If an axis-parallel packing with these
properties can be formed without overlap, we have a very nice property: For any ran-
dom point p ∈ [0, 1] along the x-axis of Ri, it is feasible to round those variables with
rectangles above p to 1 and all others to 0. (see Figure 1 for a schematic outline).

Let us describe this approach more formally. We define a tableau of bidder i ∈ I
according to a scaling factor c as follows. For each i ∈ I, let Ri be a rectangle of width
w(Ri) = 1 and height h(Ri) = Bi. We represent each variable xij by a rectangle Rij
of width w(Rij) = x∗ij/c and height h(Rij) = bij . Rij is split into an arbitrary set of
rectangles (Rkij)k=1,2,..., such that for all k the width w(Rkij) ≥ 0, height h(Rkij) = bij ,
and

∑
k w(Rkij) = x∗ij/c.

Definition 2. An axis-parallel packing of (Rkij)k=1,2,... for all j ∈ J into Ri is called a
(c-)tableau for i ∈ I if and only if the following two properties hold:

(1) All rectangles Rkij are mutually non-intersecting
(2) For each j ∈ J and each point p ∈ [0, 1] on the x-axis of Ri, there is at most one k

such that rectangle Rkij intersects the vertical line through p.

For ease of formulation, let us define the following concepts.

Definition 3. We say that at a point p ∈ [0, 1] of a tableau, j ∈ J is active iff some Rkij
is situated above p. For p ∈ [0, 1] let J(p) denote the active job set.

Obviously, j ∈ J is active at all points along the x-axis above which any rectangle
Rkij is placed. For convenience, we assume the Rkij don’t include their right border, i.e.,
j is always active in a union of half-open intervals of the form [l, r).



Definition 4. The height hi(p) at a point p ∈ [0, 1) of a tableau is the sum of heights of
jobs that are active at p, i.e., hi(p) =

∑
j∈J(p) bij .

Suppose we are given c-tableaus for each i ∈ I based on an optimal fractional so-
lution x∗. The rounding is done as outlined above: We choose some evaluation point
p ∈ [0, 1) on the x-axis of i’s tableau uniformly at random. Then, we set x′ij = 1 for
those rectangles that are active at p, and zero for all others. Therefore, for every x∗ij > 0

it follows that Pr
[
x′ij = 1

]
= x∗ij/c. Hence, E

[∑
j∈J rijx

′
ij

]
=
∑
j∈J rijx

∗
ij/c, i.e., each

bidder obtains an expected welfare of half the one from x∗. In addition, no bidder ever
exceeds his constraint capacity Bi because of the height of tableau Ri. Now, we have to
determine a suitable choice for c, and properly correlate the rounding of the different
tableaus.

Lemma 1. For an optimal fractional solution x∗ and c = 2, there is a 2-tableau for
every i ∈ I that can be computed efficiently. For c < 2, no c-tableau might exist.

PROOF. Let us first observe that c < 2 will not be sufficient. Let c = (2−3ε) for some
ε > 0, and fix some i ∈ I. Let exactly two of the variables {x∗ij | j ∈ J} be non-zero,
namely, x∗i1 = (1− ε) and x∗i2 = 1. Assume further that bi1 = (Bi− ε′), and bi2 = (ε′+ ε∗).
Now, choose ε′, ε∗ > 0 such that ε = ε∗

Bi−ε′ . It follows that this choice for x∗ is feasible,
because ∑

j∈J
bijx

∗
ij = (1− ε)bi1 + bi2 =

(
1− ε∗

Bi − ε

)
(Bi − ε) + ε+ ε∗ = Bi .

Consider now solution xc, which we get by scaling down x∗. Here i is still assigned
more than 1/2 of items 1 and 2 each. Therefore, we can never place a fraction of Ri1 on
top of one Ri2 (this would exceed Bi) nor can we place them all next to each other (this
would exceed width 1).

It remains to show that for c = 2, all tableaus can be efficiently computed. We give a
very simple procedure for constructing i’s tableau: Pick item j = 1. As long as not all of
Rij is packed do the following. Find the leftmost interval on the x-axis of the tableau
with current height at most Bi−bij where j is not active. Split off a maximum-possible
fraction of Rij that can be packed directly on top of the rectangles in this interval.
Place the part. After Rij is fully packed, apply the procedure to next item j until all
items are packed (see Figure 1).

So assume now that this strategy fails, and consider the iteration at which it does
not find space for any (fractional) rectangle, and therefore does not compute a feasi-
ble tableau. At this iteration, we can choose some p∗ ∈ [0, 1) with minimum height
hi(p

∗). Assume for contradiction that the height at p∗ is strictly positive. Let J(p∗) =
{j1, . . . , jl} and consider some arbitrary y ∈ [0, 1), p∗ 6= y, with hi(y) ≤ Bi − hi(x

∗).
Assume there is item js ∈ J(p∗) \ J(y) not active at y. Then, because of minimality of
hi(p

∗), there is some jr ∈ J(y) \ J(p∗). But now, js and jr could have been placed by the
algorithm at min(x∗, y). Thus, J(p∗) ⊆ J(y). Because of x∗ij/2 ≤ 1/2, we have that for
at least half the width of the tableau, the height is above Bi − hi(p∗), which makes the
area covered by rectangles strictly larger than Bi/2. This contradicts the feasibility of
x∗. Therefore, during the algorithm, there always exists some x ∈ [0, 1) with hi(x) = 0,
and we will successfully assign all fractional rectangles.

3.2. Tree Structure and Correlated Rounding
Note that rounding the tableaus cannot be done independently for each bidder i ∈ I,
since this infeasibly might assign an item j ∈ J to more than one bidder. We therefore



Fig. 2. Schematic view of bijective mappings for correlated rounding

employ the tree structure of x∗ to correlate the potential rounding points on the x-axes
of rectangles Ri for such bidders that might get the same item j.

Here, instead of randomly choosing independent evaluation points for every single
tableau, we do so only for one bidder which we define as root of our tree G. Then, the
evaluation points of all other tableaus are obtained by applying a bijective function
to the already chosen evaluation point of the according bidder’s grandparent in G,
subsequently. While at the same time preserving Pr

[
x′ij = 1

]
= x∗ij/2 for all i ∈ I, j ∈

J , our choice of the mapping functions will ensure feasibility of the resulting integral
solution. To define these bijective mappings formally, we need the following definition:

Definition 5. Every p ∈ [0, 1) where J(p) changes in a bidder’s tableau is a breakpoint.

Observe that by our tree graph G, in our optimal solution every pair of bidders can
share at most one item. We restrict our view to a conflict situation over an item j,
which always looks as follows: Top-down from the root, we have an evaluation point
chosen for j’s father in G, and now need to choose those of j’s children in a fashion that
avoids assigning j more than once. We do this in the natural way:

Consider item j and denote by i the parent of j, and by i1, i2, . . . the children of j. An
interval between consecutive breakpoints in [0, 1) of i’s tableau is free if j is not active
in this interval. Denote the set of free intervals for i by

Fi = {[a1, b1), . . . , [ar, br)} ,

with bk ≤ ak+1 for all k = 1, . . . , r − 1. If an interval is not free, we call it occupied.
Clearly, we want to map such points p in the tableau Rik of some ik where j is active
only to points in Fi – otherwise, j could be rounded to both i and ik. Also, we have to
make sure that any point in Fi is mapped to a set of points in the tableaus of i1, i2, . . .
such that j is active at at most one of these points.

We start with bidder i1, and then compute the other bijections accordingly. We de-
rive a suitable mapping between i1’s and i’s tableau as follows: Consider the leftmost
occupied interval in i1’s tableau. Choose the first interval [a1, b1) ∈ Fi. Going from left
to right, we map the first occupied interval in the tableau of i1 to this, until in one of
the tableaus a breakpoint is reached. At this point, delete the used-up (partial) inter-
val from F1. Then, repeat for all other occupied intervals left in the tableau of i1 (see
Figure 2 for a schematic outline).



More formally, for the tableau of bidder i1 consider the set of occupied intervals as

A1 = {[ai11 , b
i1
1 ), . . . , [ai1s , b

i1
s )} ,

where we assume bi1k ≤ ai1k+1 for k = 1, . . . , s − 1. We compute f i1 that maps the x-axis
of the tableau of i1 to the one of the tableau of i as follows. As long as A1 6= ∅ do the
following: For the leftmost interval [xi11 , y

i1
1 ) in A1, map it to the leftmost interval in Fi

by setting

f i1(xi11 ) = a1 and f i1(xi11 + α) = a1 + α

for all α ∈ (0,min{b1 − a1, yi11 − x
i1
1 }). Then remove (sub-)intervals [xi11 , x

i1
1 + α) from

A1 and [a1, a1 + α) from Fi, update the numbering in A1 and Fi, and repeat. Finally,
when A1 becomes empty, choose f i1(x) as some arbitrary, bijective mapping for all
other x ∈ [0, 1) in which it is not yet defined (this can be done similarly as before). This
yields the bijective mapping for machine i1. The inverse function is defined accordingly.

For bidder i2, we subsequently apply the same idea, where we initially remove from
Fi all subintervals to which an occupied interval was already mapped by f i1 . The algo-
rithm then proceeds similarly for the rest of the children, until the conflict over item j
is completely resolved. For all other items in the tree, we apply the same procedure.

Clearly, the above construction ensures that no item will be assigned more than once
in the according integral solution, as all occupied intervals from the ik are mapped
only without intersections to free intervals for i. Moreover, the algorithm terminates
correctly, as the overall width of all intervals in Fi is always at least the sum of widths
of all intervals in A1, A2, . . ., since

∑
i∈I x

∗
ij ≤ 1. Observe that due to the choice of the

bijections (no change in width of intervals, uniform choice of evaluation point in the
root tableau), we maintain Pr

[
x′ij = 1

]
= x∗ij/2 for all i ∈ I, j ∈ J .

Lemma 2. If the optimal solution to (1) has tree structure, the bijective mappings for
the tableaus can be computed in polynomial time.

PROOF. Due to the simple structure of the bijections, evaluating them for each job
will be of no greater complexity than their computation. We must therefore only con-
sider the construction of one single bijection. Consider our greedy algorithm to con-
struct tableaus. We observe that each single tableau has no more than O(m) break-
points: During the tableau’s greedy construction, each Rij can be split in a lot of frac-
tions, but all of those splittings are already caused by an existing breakpoint. Only
the last fraction will end at a point that possibly has not already been a breakpoint,
and therefore create a new one. Thus, all tableaus contain at most O(nm) breakpoints.
Every time we need to compute a new, continuous fraction of one bijection, this is
because a breakpoint is reached. Therefore, each bijection consists of at most O(nm)
continuous, simple parts and is obviously computable in polynomial time.

This proves the following lemma.

Lemma 3. The tree rounding procedure can be implemented in polynomial time and
yields a distribution over feasible integral solutions x′ such that for every i ∈ I we have
E
[∑

j∈J rijx
′
ij

]
=
∑
j∈J rijx

∗
ij/2, and

∑
j∈J bijx

′
ij ≤ Bi.

Truthfulness is now straightforward with fractional VCG payments, since we opti-
mize over a range of feasible fractional solutions that is public knowledge and fixed
independently of the bids. Hence, the mechanism is MIDR and truthful in expectation.

3.2.1. Correlated Rounding for Pseudo-Trees. The remaining difficulty is the existence of
at most one (non-resolvable) cycle in x∗. The tableaus can be computed in exactly the



same fashion as above. For correlated rounding via bijective mappings we must be
more careful to preserve feasibility. The following lemma shows that the scaled frac-
tional optimum can be rounded quickly. This proves our main theorem.

Lemma 4. The bijective mappings for the tableaus in GAP can be computed in polyno-
mial time.

PROOF. If G contains a cycle C = (i1, j1, . . . , is, js), we will pick a bidder node i1 in
the cycle as root for the computation of our allocation points. We first focus only on the
nodes in C before applying our rounding anywhere else. If we map regions for tableaus
of bidders iteratively along the cycle, the only problem occurs when we close the cycle,
because the last bidder node is a grandchild of i1. We have to ensure that their shared
item js cannot be picked in is’s tableau if it already is present in the tableau of i1.

Intuitively, we need to account for possible allocation of item js already while we
move along C: We can just, in each step from a bidder node ik to ik+1, record a set Rk+1

of the points in [0, 1) that were reached from an allocation point in i1’s tableau where
js was active. (R1 then is just the set of intervals where js is active in i1’s tableau.)

We will show that this can be implemented in polynomial time. R1, as mentioned
above, will consist of no more than O(m) intervals because each tableau has only this
many breakpoints. Let us analyze a step from Rk to Rk+1 and consider some interval
I ∈ Rk. If fik+1

(I) is also an interval in Rk + 1, the number of intervals does not in-
crease. If not so, I must have been split up by fik+1

. This can only happen at the borders
between continuous parts of fik+1

, and each such point will only split up at most one
interval in Rk into at most one additional part. The continuous parts of fik+1

, however,
do all correspond to a breakpoint in one of the tableaus neighboring the corresponding
shared item. Furthermore, because of the structure of G, each tableau’s breakpoints
will be taken into account no more than two times during the process. Overall, Rs−1
cannot consist of more than O(mn) intervals because each breakpoint in any consid-
ered tableau can cause only a constant number of additional intervals in Rs−1, and
there exist at most O(mn) such points.

Based onRs−1 we must define the last bijection fis differently from the other ones: In
addition to making sure no conflicts can occur regarding item js−1, it is also necessary
to map all the intervals in Rs−1 to such ones in is’s tableau where item js is inactive.

Define wjs,js−1 as the overall width that item js−1 and Rs−1 take up in the tableau
of bidder is−1. Then, because we are considering a scaled-down solution, it holds that
in at most a width of 1 − w in is’s tableau, any of the items js−1 or js is active. Let
L denote the set of these intervals. We consider the non-critical points, i.e., x /∈ Rs−1
where js−1 is not active in is−1’s tableau. Our goal is to map only non-critical points to
L. We can do this similarly as in the other bijections, maintaining an overall number
of at most O(nm) continuous parts due to the above analysis of Rs−1.

In this fashion, we first compute tableaus and bijections for bidders in the cycle.
Subsequently, we proceed along the tree as described above – with the exception of
any bidders which are in conflict with item js, but not ∈ C. Here, the bijections to
be chosen must take into account both the allocation points where js is active in i1’s
tableau, and those that were mapped to a point with active js in the tableau of bidder
is. To determine the set of these points, it will be necessary to track the according
intervals backwards through all the bijections along the cycle, again causing a similar
rise in the number of intervals to that for the set Rs before. Although, differently from
R1, our starting set may already consist of up to O(mn) intervals, we still manage
to keep polynomial-time computation and a resulting set of at most O(mn) intervals:
Just as in the other direction, moving backwards through the bijections around the
cycle will cause no more than O(nm) additional intervals to keep track of.



After that, also these missing bijections will be computable in the usual way, just
starting with a slightly different Fs which contains both the critical points from the
tableau of i1, and the tracked-back ones from that of is.

3.3. Private Constraints and Budget-Additive Valuations
In this section, we show an example that our mechanism is not truthful if constraints
of GAP are also private knowledge. In our example, rij , bij are public and Bi is private.
Similar examples can be constructed also if Bi is public and rij , bij are private. Note
that in the example we assume rij = bij , which captures the case of budget-additive
combinatorial auctions. Hence, our mechanisms do not guarantee truthfulness when
applied directly to this domain.

Example 1. Consider an instance with two bidders and two items. The true values
are r11 = r12 = 4, r21 = r22 = 2. For the constraints we have bij = rij for all i, j = 1, 2
and budgets B1 = 4, B2 = 2. If both bidders report truthfully, an optimal solution is
x∗11 = x∗22 = 1 and x∗12 = x∗21 = 0, giving item 1 to bidder 1 and item 2 to bidder 2.
The mechanism takes x∗/2 and rounds it to integral solutions. Thus, bidder 1 has an
expected valuation of 2. Fractional VCG payments imply a payment of p1 = 0, since
without bidder 1 we would get the same optimal fractional assignment for bidder 2.
Thus, the utility for bidder 1 is 2.

Now suppose bidder 1 deviates and lies a budget of B′1 = 6. An optimum with tree
structure is x′11 = 1, x′12 = x′22 = 0.5 and x′21 = 0. The mechanism takes x′/2 and
rounds it to integral solutions. However, since the heights of b12 + b22 > B′1, it never
assigns both items to bidder 1 simultaneously. Thus, the resulting integral solution
also does not exceed the true budget of bidder 1, and he obtains an expected value of 3.
Furthermore, bidder 2 has value x′22/2 = 0.5, whereas without bidder 1 he would get
value 1. This implies a payment of 0.5 for bidder 1 and a utility of 2.5 > 2. �

3.4. Covering Rounding in Restricted-Related Scheduling
In this section, we outline our correlated rounding scheme for covering problems.
We adjust with very few changes the mechanism for packing problems to makespan
scheduling with restricted-related machines and obtain the following result.

Theorem 2. There is a randomized polynomial-time tree-rounding mechanism for
makespan scheduling with restricted-related machines that is truthful in expectation
and obtains an approximation ratio of 2.

As above, we first solve a fractional relaxation of the problem, for which we obtain an
optimal solution with forest structure. Essentially the same tree rounding serves then
to round the fractional optimum x∗ to an integral solution. Although it yields the same
approximation factor, it is quite different from the tree-based rounding in [Lenstra
et al. 1990]. Truthfulness requires us to maintain the fractional values as probabili-
ties for assignment, and we cannot rely on an arbitrary matching between jobs and
machines in the tree.

Since we have a single-parameter problem, we first show how to obtain truthfulness
based on monotonicity.

3.4.1. Lexicographically-Optimal Fractional Solutions. To obtain the fractional relaxation,
we allow each job to be assigned fractionally over all machines it can access. The ob-
jective here is makespan minimization, so there could be many solutions with optimal
makespan that give different loads to machines which do not attain the makespan.
This could potentially imply that when a machine lowers its speed, it still gets assigned
more load - a contradiction to monotonicity and truthfulness. Instead, we compute a



lexicographically-optimal fractional solution in polynomial time with a min-max vector
of loads. Such a solution yields monotone load assignments for each machine.

Lemma 5. A lexicographically optimal fractional solution x∗ with forest structure can
be computed in polynomial time. The load

∑
j∈J wjx

∗
ij assigned to machine i is mono-

tone in vi.

PROOF. Algorithms for computing lexicographically-optimal fractional solutions
with forest structure are known, see, e.g., [Azar et al. 2004; Tamir 1995]. For com-
pleteness, we describe an approach for restricted-related machines in Appendix A.

Let us observe the monotonicity property. Fix some machine i and suppose it reports
a speed v′i > vi. Consider the optimal values T and T ′ for the respective reports of i. As
they are some rational numbers of the form

∑
j∈S wj/

∑
k∈S′ vk, it is obvious that for

v′i > vi we have T ′ ≤ T . We consider two cases.
If T = T ′, then i can only move up in priority, since speed v′i > vi allows to add more

load on i until T is reached. Hence, i will only be fixed at an earlier iteration, where
more fractional load is still available. This clearly results in at least the same load that
i received when reporting vi.

Otherwise if T ′ < T , this decrease must result from the increased speed of i. Hence, i
attracts only more load from other machines, which allows them to potentially decrease
their finishing time in the optimum. Note that this implies that the priority of machine
i increases - it allows to accomodate at least as much load as for T , while the lower T ′
decreases the priority of other machines. Hence, it can only receive an increased load
in the lexicographically optimal assignment when reporting v′i > vi.

3.4.2. Tableaus. Given an optimum solution x∗ with tree structure, we now apply our
tree rounding procedure. The outcome x′ will have assignment probabilities that cor-
respond exactly to Pr

[
x′ij = 1

]
= x∗ij and assigns all jobs,

∑
i∈I x

′
ij = 1 for all j ∈ J .

The final step is to show that the expected makespan of x′ is at most 2T .
Again, we represent each variable x∗ij by a rectangle taking up a width of x∗ij/c and

a height of wj – observe that this time, rectangles are scaled down by height. We pack
all the rectangles for items j ∈ J into a single rectangle Ri for bidder i with width 1
and height Tvi. We allow splitting by width and avoid two rectangles belonging to the
same job j ∈ J placed above the same point on the x-axis. If such a packing can be done
without any intersections, then at each point p ∈ [0, 1] along the x-axis of Ri, rounding
all variables with rectangles above p to 1 and all others to 0 will be feasible. By picking
a point on the x-axis uniformly at random, this produces a random assignment x′ with
Pr
[
x′ij = 1

]
= x∗ij and

∑
j wjx

′
ij/vi ≤ 2T .

More formally, for each i ∈ I, let Ri be a rectangle of width w(Ri) = 1 and height
h(Ri) = T . We represent each variable xij by a rectangle Rij of width w(Rij) = x∗ij and
height h(Rij) = wj/2. Rij is split into an arbitrary set of rectangles (Rkij)k=1,2,..., such
that for all k the width w(Rkij) > 0, height h(Rkij) = wj/2, and

∑
k w(Rkij) = x∗ij .

Based on this adjusted definition of Rkij , a c-tableau is now defined exactly the same
as above in Definition 2. For each p ∈ [0, 1), we again refer to active items j ∈ J(p) as
in Definition 3. Also, we define the height of a point in the tableau as in Definition 4.

Lemma 6. For an optimal fractional solution x∗ and c = 2, there is a 2-tableau for
every i ∈ I that can be computed efficiently. For c < 2, no c-tableau might exist.

PROOF. Let us first observe that c < 2 will not be sufficient. Let c = 2 − ε for some
ε > 0. Let exactly two of the variables {x∗ij | j ∈ J} be non-zero, namely, x∗i1 = 1

2 and
x∗i2 = ( 1

2 + ε′), for some small ε′ > 0. Let w1 = w2 = Tvi
2 . Now Ri1 and Ri2 do not fit into



the tableau next to each other, and so we must split them. Then, at some point p ∈ [0, 1]
both must be active, and this point reaches a height of Tvi

(2−ε) + Tvi
(2−ε)(1+2ε′) > Tvi for a

suitable ε′ � ε.
It remains to show that for c = 2, all tableaus can be efficiently computed. We use

a similar greedy packing strategy as outlined in Lemma 1: We pack each fraction of
an item not into the leftmost place it fits, but into the leftmost one with lowest so-far
overall height. If the algorithm succeeds, the running time is polynomial by similar
arguments as outlined above.

To show that the algorithm works correctly, assume it fails to pack some fraction
Rkij of Rij , and for simplicity, let this have width wk ≤ 1 and height hk ≤ Tvi

2 . Then,
in a fraction of more than (1 − wk) of the tableau’s x-axis, which is given by a finite
number of half-open intervals, every point p has already hi(p) > Tvi − hk. Also, for the
remaining fraction of less than wk of the x-axis, again having the above form, every
point p already has hi(p) > (Tvi/2)− hk, since obviously |hi(x)− hi(x′)| < Tvi/2 due to
our algorithm. Together with Rij , the total area Di of packed rectangles into i’s tableau
must be

Di > (1− wk)(Tvi − hk) + wk((Tvi/2)− hk) + wkhk ⇐⇒
Di > Tvi − hk − Tviwk + wkhk + (Tvi/2)wk − wkhk + wkhk ⇐⇒
Di > Tvi(1− (wk/2)) + hk(wk − 1)

(2)

Now, with Di ≤ Tvi/2, this gives us 2hk(1/2 − wk/2) > Tvi(1/2 − wk/2) and therefore
hk > Tvi/2. This is a contradiction, since by construction there is no j ∈ J with x∗ij > 0
and wj > Tvi.

Again, it is important to maintain the correct marginal probabilities while avoiding
that a job gets assigned to several machines simultaneously. We correlate the tableaus
by bijectively mapping the x-axes among tableaus in exactly the same manner as
outlined in Section 3.2 for packing rounding. Since we have

∑
i∈I x

∗
ij = 1, a feasible

mapping exists and can be found by the greedy algorithm. Lemma 2 shows that this
procedure can be implemented in polynomial time.

Truthfulness holds via monotonicity of the loads in x∗ shown above. This concludes
the proof of the main theorem.

4. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we present a general correlated rounding technique that is applicable to
resource allocation problems. We outlined the technique in a packing and a covering
domain. For combinatorial auctions based on GAP our technique provides a truthful
2-approximation in polynomial time. It works with fractional VCG payments, offers a
combinatorial understanding of the rounding step, avoids explicit composition of can-
didate solutions, and can thereby be implemented very quickly. It would be interesting
to see to which extent the techniques here can be generalized to other problems, and
in which way the tree assumption can be relaxed. For example, it is an open problem
if our results can help to derive truthful mechanisms in budget-additive combinatorial
auctions.

For restricted-related scheduling, the objective function is not social welfare. We
show how to combine our technique with monotonicity arguments of the fractional op-
timum solution to obtain a truthful 2-approximation, which matches the best-known
approximation guarantee for the problem. This result could potentially have conse-
quences for unrelated scheduling, since using auxiliary machines with speeds as a



power of 2, it is simple to apply any algorithm for restricted-related to unrelated
scheduling. For m machines, this reduction increases the ratio only by an O(logm)-
factor. It is an open problem if this be implemented in a truthful manner to obtain a
truthful mechanism with sublinear guarantees for unrelated scheduling.
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A. FINDING A LEXICOGRAPHICALLY-OPTIMAL FRACTIONAL SOLUTION
We first determine an optimal fractional solution xij with smallest maximum finishing
time T , where the finishing time of each machine i is assumed as the maximum of the
set {

∑
j wjxij/vi} ∪ {wj/vi | xij > 0}. Hence, the finishing time results either from the

total fractional load assigned to i or the full load of the largest job that is assigned
fractionally to i. If xij is integral, this coincides with the makespan. Hence, when opti-
mizing over fractional x, the optimal T is a lower bound for the optimal makespan. We
can find the optimal T by repeated solution of the following linear program LP(T):

max
∑

i∈I,j∈J
xij

s.t.
∑
j∈J

wjxij ≤ Tvi ∀i ∈ I∑
i∈I

xij = 1 ∀j ∈ J

xij = 0 ∀i, j s.t. i /∈M (j) or wj > Tvi

xij ≥ 0 ∀i ∈ I, j ∈ J

(3)

The objective function serves only as a feasibility check, as the value for every feasible
solution will always be |J |. The program ensures that in each feasible solution (1) no
machine has a makespan greater than T , (2) each job j is assigned exactly once in
total, (3) a job j is never (fractionally) assigned to a machine outside its feasible set
M (j), (4) if machine i gets a fraction of job j, then i would need at most time T to run
the whole job j, and (5) each assigned fraction of any job is non-negative.

Lemma 7. We can find the smallest value T for which LP(T) allows a feasible solution
in polynomial time.

PROOF. For a fixed T we can solve the LP in polynomial time. Using binary search,
we can repeatedly solve the LP to find the smallest value T such that the resulting LP
has a feasible solution. The value of T is obviously lower bounded by

∑
j∈J wj/

∑
i∈I vi

and upper bounded by mini∈I
∑
j∈J wj/vi. In addition, it is attained by an expression∑

j∈S wj/
∑
i∈S′ vi for some subsets S ⊆ J, S′ ⊆ I with S, S′ 6= ∅. Thus, the optimal T

can be expressed as rational number with a denominator of
∏
i∈I vi, and binary search

will return the optimal bound on T in at most O(n log(maxj∈J wj) + m log(maxi∈I vi))
rounds.



For known T , we now construct a fractional allocation xij that is feasible for T and
is lexicographically optimal among all fractional feasible allocations for T . Thereby it
guarantees the monotonicity property: Increasing speed vi for any machine i will never
result in a decreased load

∑
j∈J wjxij . In the beginning, each machine i gets as priority

the total load that can be assigned to i without exceeding T . Among those with highest
priority we pick the first one according to an arbitrary fixed tie-breaking rule. More
formally, for each single machine i∗ ∈ I, solve the following LP (1, i∗).

max
∑
j∈J

wjxi∗j

s.t.
∑
j∈J

wjxij ≤ Tvi ∀i ∈ I∑
i∈I

xij = 1 ∀j ∈ J

xij = 0 ∀i, j s.t. i /∈M (j) or wj > Tvi

xij ≥ 0 ∀i ∈ I, j ∈ J

(4)

This is an adjustment of LP (T ) with an objective to maximize load of machine i∗.
Among those machines with maximum possible load, apply the tie-breaking rule and
denote the resulting machine l1. For l1 we denote the maximum load by Ll1 . Next,
we determine l2 and Ll2 by solving the similar LP (2, i∗), for each remaining machine
i∗ 6= Ml1 , with the constraint that we keep a load of Ll1 on l1. More generally, for all
k ∈ {2, ...,m}, we repeat these steps using LP (k, i∗)

max
∑
j∈J

wjxi∗j

s.t.
∑
j∈J

wjxij ≤ Tvi ∀i ∈ I∑
i∈I

xij = 1 ∀j ∈ J

xij = 0 ∀i, j s.t. i /∈M (j) or wj > Tvi∑
j∈J

wjxli,j = Lli ∀i < k

xij ≥ 0 ∀i ∈ I, j ∈ J

(5)

This LP adjusts the preceding one by pinpointing the load of all fixed machines li
during the following iterations. In this way, we obtain a lexicographically optimal frac-
tional solution x∗.

Finally, we transform the solution into one with forest structure by applying a shift-
ing idea. We shift weight along the cycles of the graph and make the smallest edge
of the cycle disappear. By doing so, the overall load on every machine stays the same
and the cycle breaks. Repeated application of this step resolves all cycles in polynomial
time.
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