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Abstract

We study distributed load balancing in networks with selfish agents. In the simplest model
considered here, there are n identical machines represented by vertices in a network and m� n
selfish agents that unilaterally decide to move from one vetex to another if this improves their
experienced load. We present several protocols for concurrent migration that satisfy desirable
properties such as being based only on local information and computation and the absence of
global coordination or cooperation of agents. Our main contribution is to show rapid convergence
of the resulting migration process to states that satisfy different stability or balance criteria. In
particular, the convergence time to a Nash equilibrium is only logarithmic in m and polynomial
in n, where the polynomial depends on the graph structure. In addition, we show reduced
convergence times to approximate Nash equilibria. Finally, we extend our results to networks of
machines with different speeds or to agents that have different weights and show similar results
for convergence to approximate and exact Nash equilibria.

1 Introduction

Load balancing is an essential requirement in large networks to ensure efficient utilization of resources
and satisfactory performance of the system. In many large computer networks load balancing
becomes a challenge because of the absence of global information and coordination. When there
is only local information available about the load situation and even the existence of machines, a
centralized approach to load balancing is inappropriate or even impossible. Instead, one then needs
to develop protocols that respect the informational and computational restrictions of the scenario.
In addition, the protocols should guarantee rapid convergence to balanced states.

Some distributed algorithmic approaches for load balancing have been proposed in algorithmic
game theory, see, e.g., [5, 15, 2, 18]. In this context tasks are considered as selfish agents that
act unilaterally and migrate concurrently between machines without global coordination. Such an
approach has two main advantages over protocols that use more centralized optimization. Firstly,
concurrent migration and unilateral decision making of multiple agents controlling the tasks reduce
the coordination overhead and may still allow for rapid convergence (i.e., sublinear in the number
of agents). Secondly, such “task agents” have an incentive to follow the protocol. This is an
advantage in modern computer networks that are influenced by a variety of economic incentives
and developments. In these networks centralized coordination is often absent and user actions are
made in a selfish manner. While these properties make protocols for concurrent selfish load balancing
desirable, their existence and convergence properties are not well-understood in many load balancing
contexts.
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In this paper, we present protocols for selfish load balancing in a discrete network balancing
model. There are n identical machines which represent vertices in an arbitrary, undirected graph
G = (V,E), and m tasks that are initially assigned arbitrarily to the machines. Our protocols
proceed in a round-based fashion. In each round, every task picks a neighboring machine at random
and decides probabilistically whether or not to migrate to that machine. Hence, the tasks only need
local information, i.e., they have to know the load of machine they are currently assigned to and
the load of the neighboring machines in the graph. The main challenge in the design of concurrent
protocols such as ours is to carefully choose appropriate migration probabilities in order to guarantee
rapid convergence while avoiding oscillation effects. Our scenario represents a significant extension
of the existing literature on selfish load balancing, as concurrent protocols have been considered
essentially only for complete graphs [4, 17, 2, 15, 5, 6]

In our model there are several concepts of a state in which the assignment of tasks is “stable”
or “balanced”. The standard notion of stability is the Nash equilibrium (NE), in which no player
can unilaterally improve by moving to a neighboring machine. Note that throughout this paper
we restrict to pure NE and states that do not involve randomization. A weaker and more rapidly
achievable condition is that of ε-approximate Nash equilibrium (ε-apx. NE), where no player can
decrease his personal load by less than a factor of (1 − ε). However, in an NE the load difference
between the least loaded and most loaded machines can still be in the order of the network diameter
in our model. In this paper, we consider protocols and study the convergence times to approximate
and exact NE. We extend our results to networks of machines with different speeds or to agents that
have different weights and show similar results for convergence to approximate and exact NE.

1.1 Contribution and Techniques

We propose and analyze concurrent probabilistic protocols to obtain approximate and exact NE for
identical machines or machines with speeds, and for weighted tasks on identical machines.

Identical machines. We present a protocol that reaches an exact NE after a number of rounds
that depends only logarithmically on m. Let ∆ be the maximum degree of the graph and µ2 be the
second smallest eigenvalue of the Laplace matrix of G. The dynamics reach a NE in expected time
O (∆/µ2 · (lnm+ lnn) + |E| ·∆/µ2). For m > δn4 and δ > 1, the first part of this convergence time
is the time needed to reach a 2/(1+δ)-apx. NE. The second part is the time needed so that no agent
wants to unilaterally deviate to a neighboring machine. Therefore, the convergence time is only
logarithmic in the number of agents m, but the dependency on n is polynomial and connected to
the structure of the graph. Obviously, in general a polynomial dependence on n cannot be avoided
(e.g., for paths).

Machines with speeds. In this case, each machine i ∈ V has a speed si ∈ N, si > 1, and thus
processes tasks at a different rate. Let S :=

∑
i∈V si and δ > 1, then using our protocol a set of

m > δ·8·n3·S agents converges to an 2/(1+δ)-apx. NE in expected timeO(ln(m)·poly(n)·poly(smax))
on any graph, where smax is the maximum speed. An exact NE is reached after additional time
O(poly(n) · poly(smax)), so in total also in time O(ln(m) · poly(n) · poly(smax)).

Weighted tasks. Finally, we also consider the case that each task ` has a weight w` ∈ N, w` > 1.
In this case, the expected convergence time to a NE is O(∆ ·W 3 ·wmax), where W is the sum of all
weights and wmax is the maximum weight.
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Outline of the paper. Due to technical reasons we present our results in a different order than
the one stated above. After presenting the necessary definitions and preliminaries in Section 2,
we first derive in Section 3 the results on load balancing with speeds (Theorems 3.1 and 3.2), as
this introduces the main technical framework. The results on networks with identical machines
are discussed in Section 4. Then we enhance the general approach for machines with speeds to
show convergence to apx. NE (Theorems 4.1 and 4.2). Finally, Section 5 contains the extension to
weighted tasks (Theorem 5.1) and is mainly based on our previous approach.

1.2 Related Work

Most closely related to our paper is [5], where the case of identical machines in a complete graph is
studied. There, a protocol that is equivalent to ours is shown to arrive at a NE in time O(log logm+
poly(n)). Note that for complete graphs the NE and optimal allocations are identical. An extension
of this model to weighted tasks is studied in [6]. There the authors consider a similar protocol for the
complete graph. They show that the expected time to reach an approximate NE is O(mn · w3

max).
Here we extend the results of both papers significantly by studying dynamics on general graphs and
machines that have speeds. This also requires to use different techniques that allow to capture the
connections between convergence time and graph structure.

Our paper relates to a general stream of works for selfish load balancing on complete graphs.
There is a variety of issues that have been considered, starting with seminal papers on algorithms
and dynamics to reach NE [14, 16]. More directly related are concurrent protocols for selfish load
balancing in different contexts that allow convergence results similar to ours. Whereas some papers
consider protocols that use some form of global information [15] or coordinated migration [20], others
consider infinitesimal or splittable tasks [19, 4] or work without rationality assumptions [17, 2].
The machine models in these cases range from identical, uniformly related (linear with speeds) to
unrelated machines. The latter also contains the case when there are access restrictions of certain
agents to certain machines. In contrast, in our model players migrate over a network and can access
machines only depending on their current location. This is a fundamental difference to all previous
related work in this area. For an overview of work on selfish load balancing see, e.g., [31].

A slightly different approach for discrete selfish load balancing on networks are finite conges-
tion games [29], for which the convergence times of sequential best-response dynamics to exact
and approximate NE have been extensively studied [10, 3, 30]. A general approach for a concur-
rent better-response protocol is [1], which is inspired by similar results for non-atomic congestion
games [18]. In this protocol, agents pick strategies only by imitation of other agents, and there is
rapid convergence even for general delay functions, but only to an approximate equilibrium concept
where all agents experience a similar cost. While this represents a generally applicable approach,
the obtained approximate equilibrium might be far from any (apx.) NE. A different line of research
are no-regret and similar payoff-based learning dynamics [23, 24, 25, 26], but they usually converge
(quickly) only in the history of play and/or to classes of mixed NE. In contrast, we present protocols
that reach pure exact and approximate NE rapidly.

Our protocol is also related to a vast amount of literature on (non-selfish) load balancing over
networks, where results usually concern the case of identical machines and unweighted tasks. Often
there are additional restrictions on the graph structure such as regular graphs, expander graphs,
tori, etc. A central measure of balance is the discrepancy, i.e., the difference between most and least
loaded machine in the network. In expectation, our protocols mimic continuous diffusion, which
has been studied initially in [12, 9] and later, e.g., in [27]. This work established the connection
between convergence, discrepancy, and eigenvalues of graph matrices. Closer to our paper are
discrete diffusion processes – prominently studied in [28], where the authors introduce a general



2 NOTATION AND PRELIMINARIES 4

technique to bound the load deviations between an idealized and the actual processes. Recently,
randomized extensions of the algorithm in [28] have been considered, e.g., [13, 21]. However, either
machines have to communicate with their neighbors to determine the number of tasks that should
move [28, 21], or the tasks perform independent random walks [13]. In the first case, machines have
a strong control over their tasks, while in the second case tasks may jump from an underloaded to
an overloaded machine, which clearly is undesirable in a game-theoretic context.

2 Notation and Preliminaries

We consider an arbitrary, undirected and connected graph G = (V,E) with n = |V | vertices repre-
senting machines. The degree of a vertex i ∈ V is deg(i). ∆ denotes the maximum degree of any
vertex in V . For two vertices i, j, deg(i, j) = max{deg(i),deg(j)} is the maximum degree of i and
j.

There are m tasks in the system, which are initially assigned arbitrarily to the n machines.
We denote by x a state of the system, i.e., a fixed assignment of tasks to the machines. For any
machine i ∈ V , we denote by xi the set of tasks are that assigned to machine i in x. We consider
a probabilistic migration process, in which the state is a random variable in each time step. In
particular, let Xt be the state at (the end of) step t. Similarly, Xt

i is the subset of tasks assigned
to machine i ∈ V , and it is a random variable for every t > 1 due to the probabilistic nature of
our migration protocols. Each task ` has a weight w` ∈ N and, unless stated otherwise, we assume
uniform tasks with w` = 1.

Each vertex i ∈ V is a machine with a speed si ∈ N, si > 1. We define S =
∑n

i=1 si. Note
that we can also handle rational speeds by normalization to integers. By smax and smin we denote
the maximal and minimal speed of a machine, respectively. If smax = smin, we have a network of
identical machines and assume w.l.o.g. si = 1 for all i ∈ V .

In the case of uniform tasks the load of a machine is defined as the sum of tasks assigned to it,
divided by the speed of the machine. In the case of weighted tasks the load is the sum of the weights
of these jobs divided by the speed. In particular, by W (xi) we denote the weight on machine i in
state x, i.e., the sum of weights of all tasks that are located on i. Similarly, W (Xt

i ) is the weight
at the end of step t. Let W :=

∑
i∈V W (xi). For a state x the load of vertex i is denoted by L(xi)

and equals L(xi) = W (xi)/si. Each task on machine i experiences a disutility of L(xi) in state x.
Naturally, for our process at time t, we obtain the random variable L(Xt

i ). A task is a selfish agent
that strives to minimize the experienced load. The task is only aware of the load of the machine
it is currently located at and is able to inspect the load on one of the neighboring machines. We
consider a round-based process. In each iteration every task uses a protocol to decide to which of
the neighbouring machines it potentially migrates.

The Laplace L matrix is a standard matrix associated to undirected graphs, which is based on
adjacency and degree information (e.g., [11]). Formally, L is defined as the n× n-matrix where Li,j
is equal to deg(i) if j = i, −1 if {i, j} ∈ E(G) and 0 otherwise. The eigenvalues of the Laplace
matrix are known to encode valuable structural information for dynamic load balancing processes,
see, e.g. [22, 7].

A state x is an ε-approximate Nash equilibrium (ε-apx. NE) for any 0 6 ε 6 1 if no task can
decrease the experience load by more than factor of (1 − ε). In such a state we have for every
machine i and every neighboring machine j

(1− ε) · W (xi)

si
6
W (xj) + 1

sj
.

For ε = 0 we call such a state an (exact) Nash equilibrium (NE).
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Our game can be expressed as an atomic congestion game, and thus the following function due
to Rosenthal [29] is a potential function for our game with uniform tasks:

Φ1(x) =
∑
i∈V

W (xi)∑
k=1

k

si
=
∑
i∈V

W (xi) · (W (xi) + 1)

si
(2.1)

Whenever a single player makes a unilateral assignment change, the change in the potential function
equals the load change experienced by the player. Thus, the local optima of the potential function
are exactly the NE of the game, and the potential function measures the progress to NE from a
players point of view. We will also use the quadratic potential function that is standard in the load
balancing literature.

Φ0(x) =
∑
i∈V

(W (xi))
2

si

It measures progress to a completely balanced state from a global point of view. This function will
be helpful when we prove convergence to apx. NE. This leads to the following general definition.

Definition 2.1. For r ∈ {0, 1}, define

Φr(x) :=
∑
i∈V

W (xi) · (W (xi) + r)

si
.

For our migration process, we often consider the change of the potential, which is

∆Φr(X
t) := Φr(X

t−1)− Φr(X
t) .

We will also use a normalized formulation of Φ0(x) denoted by Ψ0(x).

Definition 2.2. The function Ψ0(x) is defined as

Ψ0(x) = Φ0(x)− m2

S
.

The potential change of Ψ0 is defined as

∆Ψ0(Xt) := Ψ0(Xt−1)−Ψ0(Xt) = ∆Φ0(Xt).

Note that for identical machines it holds

Ψ0(x) = Φ0(x)− 2m · m
n

+ n · m
2

n2
=
∑
i∈V

(
W (xi)−

m

n

)2
.

As a standard convention, the term “with high probability” means with probability at least
1− n−c for some constant c > 0. Our main results are upper bounds on the expected time for our
protocols to reach an (apx.) NE. We point out that one can get corresponding upper bounds which
hold with high probability at the cost of a multiplicative increase by O(log n).
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for each task ` in parallel do
Let i = i(`) the current machine of task `
Choose a neighboring machine j u.a.r.
if L(Xt−1

i )− L(Xt−1
j ) > 1/sj then

Move task ` from resource i to j with probability

deg(i)

deg(i, j)
·

L(Xt−1
i )− L(Xt−1

j )

α ·
(

1
si

+ 1
sj

)
·W (Xt−1

i )

end if
end for

Figure 1: Protocol I for uniform tasks and machines with speeds. We set α := 4smax.

3 Uniform Tasks and Related Machines

In this section, we first present our results on general networks and machines with speeds, as our
analysis of this case introduces our main approach. Protocol I in Figure 1 allows tasks to move
to neighboring machines with a smaller load. In more detail, in each round every player randomly
chooses a neighboring machine. If the anticipated load of the other machine is smaller, the player
moves to it with a probability that depends on several parameters: the degree of the actual vertices,
the speeds of both machines and their load difference. Note that these are all local parameters.

The factor deg(i)/ deg(i, j) = deg(i)/(max{deg(i), deg(j)}) is crucial to prevent that too many
tasks from low degree vertices move to neighbors with a much larger degree. Alternatively, we can
use 1/∆ in our analysis but this would require that all tasks know the maximum degree.

Our first result in this section shows that, for sufficiently large m, we reach an apx. NE in time
logarithmic in m. The second result bounds the time to reach a NE.

Theorem 3.1. Let m > δ · (8 · diam(G) ·n ·∆ ·S) for some δ > 1 and ε = 1/(1 + δ). Then Protocol
I reaches a ε-approximate Nash equilibrium in expected time

O
(

ln(m) · (diam(G))2 ·∆ · S · smax

smin

)
,

which is O(ln(m) · poly(n) · poly(smax)) on any graph.

Theorem 3.2. If m > 8 · diam(G) ·n ·∆ ·S, then Protocol I reaches a Nash equilibrium in expected
time

O
(

ln(m) · (diam(G))2 ·∆ · S · smax

smin
+ (diam(G))2 · n2 ·∆3 · S · s3

max

)
on any graph. Otherwise, Protocol I reaches a Nash equilibrium in expected time

O(diam(G))2 · n2 ·∆3 · S · s3
max) .

In both cases, the time is in O(ln(m) · poly(n) · poly(smax)) on any graph.

In expectation, the protocol behaves like a a continuous diffusion process. To avoid oscillation
we need α > 4smax. This, however, implies that even though tasks can have a large incentive for
migration (e.g., if they move from a full and slow to an empty and fast machine), they never migrate
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with a probability of more than 1/(4smax). Thus, to reach an apx. NE where all players have a
small incentive to migrate, it might take Ω(smax) many rounds for the last players to move. Thus,
a convergence time that polynomially depends on smax is unavoidable, given the way our protocol
is defined.

In Section 3.1 we prove some fundamental bounds on the potential change in one step of Protocol
I. Using these insights we show Theorem 3.1 and Theorem 3.2 in Section 3.2.

3.1 Potential Function Analysis

First we introduce some additional definitions. Note that throughout the paper we first estimate
the expected potential decrease occuring in a single round of the process. In particular, we usually
condition on the event that Xt−1 is some arbitrary but fixed state x.

Definition 3.3. For any i, j ∈ V with {i, j} ∈ E and any given state x, the expected flow along
this edge in a single round of our protocol starting from x is

fi,j(x) :=


L(xi)−L(xj)

α·deg(i,j)·
(

1
si

+ 1
sj

) if L(xi)− L(xj) >
1
sj

0 otherwise.

Note that fi,j(x) is always non-negative. Further, let

Ẽ(x) :=

{
(i, j) ∈ E : L(xi)− L(xj) >

1

sj

}
,

be the set of edges over which tasks have an incentive to move when the system is in state x. Finally,
for any r ∈ {0, 1} we define

Λri,j(x) := (2α− 2) · deg(i, j) ·
(

1

si
+

1

sj

)
· fi,j(x) +

r

si
− r

sj
.

We usually use the shorthand Ẽ instead of Ẽ(x). Our aim is to prove that in one round the
system makes progress towards a NE, i.e., to show that E

[
∆Φr(X

t) | Xt−1 = x
]
> 0. Let us first

consider the potential change when the number of tasks transferred over any edge is exactly its
expected number. Hence, we define

∆̃Φr(X
t |Xt−1

i = x) :=∑
i∈V

W (x) · (W (x) + r)

si
−
∑
i∈V

(E
[
W (Xt

i ) |Xt−1 = x
]
)2

si
− r ·

∑
i∈V

E
[
W (Xt

i ) |Xt−1 = x
]

si
.

Note that the expected load at machine i at step t given the load vector x at step t− 1 equals

E
[
W (Xt

i ) |Xt−1 = x
]

= W (xi) +
∑
j∈N(i)

(fj,i(x)− fi,j(x)) .

The following lemma generalizes [7, Lemma 2] to the setting with speeds.

Lemma 3.4. For any round t ∈ N it holds that

∆̃Φr(X
t |Xt−1 = x) >

∑
(i,j)∈Ẽ(x)

fi,j(x) · Λri,j(x) .
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Proof. Let Xt−1 = x be fixed. For reasons of simplification we sometimes omit the condition-
ing in this proof. We order the edges in Ẽ(x) increasingly according to |fi,j(x)|. Let Ẽ(x) =

{e1, e2, . . . , e|Ẽ|(x)
} be the edges in that order. We activate the edges in Ẽ(x) sequentially and

bound the potential change after the activation of each edge. For any 1 6 k 6 |Ẽ(x)|, let X
(t,k)
i

be the set of tasks assigned to vertex i after the k-th activation of an edge in Ẽ(x) in round t.
Moreover, for any 1 6 k 6 |Ẽ(x)|,

∆̃Φr(X
(t,k)) = Φr(X

(t,k))− Φr(X
(t,k−1))

and

∆̃Φr(X
t) =

|Ẽ|∑
k=1

∆̃Φr(X
(t,k)).

Let us now fix k with ek = (i, j) and consider ∆̃Φr(X
(t,k)). Note that fi,j(x) > 0. We have

W (X
(t,k−1)
j ) 6W (xj) + (deg(j)− 1) · fi,j(x)

Similarly,

W (X
(t,k−1)
i ) >W (xi)− (deg(i)− 1) · fi,j(x).

Consequently,

∆̃Φr(X
(t,k)) =

W (X
(t,k−1)
i ) · (W (t,k−1)

i ) + r)

si
+
W (X

(t,k−1)
j ) · (W (X

(t,k−1)
j ) + r)

sj
−

−
W (X

(t,k)
i ) · (W (X

(t,k)
i ) + r)

si
−
W (X

(t,k)
j ) · (W (X

(t,k)
j ) + r)

sj

=
W (X

(t,k−1)
i ) · (W (X

(t,k−1)
i ) + r)

si
+
W (X

(t,k−1)
j ) · (W (X

(t,k−1
j )) + r)

sj
−

−
(W (X

(t,k−1)
i )− fi,j(x)) · (W (X

(t,k−1)
i )− fi,j(x) + r)

si
−

−
(W (X

(t,k−1)
j ) + fi,j(x)) · (W (X

(t,k−1)
j ) + fi,j(x) + r)

sj

= fi,j(x) ·

(
2 ·

(
W (X

(t,k−1)
i )

si
−
W (X

(t,k−1)
j )

sj

)
− fi,j(x)

si
− fi,j(x)

sj
+
r

si
− r

sj

)

> fi,j(x) · 2 ·
(
W (xi)− (deg(i)− 1) · fi,j(x)

si
− W (xj) + (deg(j)− 1) · fi,j(x)

sj

)
− fi,j(x) ·

(
fi,j(x)

si
− fi,j(x)

sj
+
r

si
− r

sj

)
> fi,j(x) ·

(
2 ·
(
W (xi)

si
− W (xj)

sj

)
− (2d(i, j)− 1) fi,j(x) ·

(
1

si
+

1

sj

)
+
r

si
− r

sj

)
,

(3.1)
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where until this point, we have not used the particular definition of fi,j(x). In the next step we use
the definition of fi,j(x) to obtain

> fi,j(x) ·
(

2 · αd(i, j) ·
(

1

si
+

1

sj

)
· fi,j(x)− 2d(i, j) · fi,j(x) ·

(
1

si
+

1

sj

)
+
r

si
− r

sj

)
= fi,j(x) ·

(
(2α− 2) · d(i, j) ·

(
1

si
+

1

sj

)
· fi,j(x) +

r

si
− r

sj

)
,

and summing up over all edges yields the claim.

The previous lemma lower bounds the potential improvement given that the expectations are
exactly attained. To relate this to the real potential change, we have to upper bound the variance
of the loads.

Lemma 3.5. For any step t and any state x,

∑
i∈V

Var
[
W (Xt

i ) | Xt−1 = x
]

si
=

∑
(i,j)∈Ẽ

fi,j(x)

(
1

si
+

1

sj

)
.

Proof. Note that ∑
i∈V

Var
[
W (Xt

i ) | Xt−1 = x
]

si
=
∑
i∈V

Var
[
Cti −Ati

]
si

,

where Cti and Ati are the random variables (conditioned on Xt−1 = x) defined as follows. Cti is the
random variable that counts the number of tasks that come to link i from another link in x, and Ati
is the random variable that counts the number of tasks that abandon link i in x. Note that linearity
of the variance for independent variables and the fact that Var [−Y ] = Var [Y ] yields

Var
[
Cti −Ati

]
si

=
Var

[
Cti
]

si
+

Var
[
−Ati

]
si

=
Var

[
Cti
]

si
+

Var
[
Ati
]

si
.

Observe that Cti =
∑

j : (j,i)∈Ẽ Z
t
j,i, where Ztj,i > 0 is the random variable that counts the number

tasks that move from j to i from x. We have

Ztj,i ∼ Bin

(
W (xj),

1

αd(i, j)
· L(xj)− L(xi)(

1
si

+ 1
sj

)
·W (xj)

)
.

Similarly,

Ati ∼ Bin

W (xi),
1

αd(i, j)
·
∑

j : (i,j)∈Ẽ

L(xi)− L(xj)(
1
si

+ 1
sj

)
·W (xi)

 .

Since
{
Ztj,i : j ∈ N(i)

}
is a set of independent random variables, we have

Var
[
Cti
]

=
∑

j : (j,i)∈Ẽ

Var

[
Bin

(
W (xj),

1

αd(i, j)
· L(xj)− L(xi)(

1
si

+ 1
sj

)
·W (xj)

)]

6
∑

j : (j,i)∈Ẽ

1

αd(i, j)
· L(xj)− L(xi)(

1
si

+ 1
sj

) ,
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where the last inequality follows from Var [Bin(n, p)] = np(1− p) 6 np. Similarly,

Var
[
Ati
]

= Var

Bin
W (xi),

1

αd(i, j)
·
∑

j : (i,j)∈Ẽ

L(xi)− L(xj)(
1
si

+ 1
sj

)
·W (xi)


6

∑
j : (i,j)∈Ẽ

1

αd(i, j)
· L(xi)− L(xj)(

1
si

+ 1
sj

) .

Hence,∑
i∈V

Var
[
W (Xt

i ) | Xt−1 = x
]

si

6
∑
i∈V

1

si
·

 ∑
j : (j,i)∈Ẽ

1

αd(i, j)
· L(xj)− L(xi)(

1
si

+ 1
sj

) +
∑

j : (i,j)∈Ẽ

1

αd(i, j)
· L(xi)− L(xj)(

1
si

+ 1
sj

)
 .

Since every edge in Ẽ occurs exactly twice in above sum, once with weight 1/si and once with weight
1/sj , we obtain∑

i∈V

Var
[
W (Xt

i ) | Xt−1 = x
]

si
6

∑
(i,j)∈Ẽ

(
1

si
+

1

sj

)
· 1

αd(i, j)
· L(xi)− L(xj)(

1
si

+ 1
sj

)
=

∑
(i,j)∈Ẽ

L(xi)− L(xj)

αd(i, j)
=

∑
(i,j)∈Ẽ

fi,j(x) ·
(

1

si
+

1

sj

)
.

With Lemma 3.5 at hand, we will now provide a bound on the real potential change, i.e., we
include the deviation which occurs since the actual number of transferred tasks may differ from their
expected values.

Lemma 3.6. For any step t and any state x,

E
[
∆Φr(X

t) | Xt−1 = x
]

>
∑

(i,j)∈Ẽ(x)

fi,j(x) ·
(

Λri,j(x)− 1

si
− 1

sj

)
.

Proof. We obtain

E
[
∆Φr(X

t) | Xt−1 = x
]

= Φr(x)−E
[
Φr(X

t) | Xt−1 = x
]

=
∑
i∈V

W (xi) · (W (xi) + r)

si
−
∑
i∈V

r ·
E
[
W (Xt

i ) | Xt−1 = x
]

si
−

−
∑
i∈V

E
[
(W (Xt

i ))
2 | Xt−1 = x

]
si

=
∑
i∈V

W (xi) · (W (xi) + r)

si
−
∑
i∈V

r ·
E
[
W (Xt

i ) | Xt−1 = x
]

si
−

−
∑
i∈V

E
[
W (Xt

i ) | Xt−1 = x
]2

si
−
∑
i∈V

Var
[
W (Xt

i ) | Xt−1 = x
]

si
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= ∆̃Φr(X
t |Xt−1 = x)−

∑
i∈V

Var
[
W (Xt

i ) | Xt−1 = x
]

si

>
∑

(i,j)∈Ẽ

fi,j(x) ·
(

Λri,j(x)− 1

si
− 1

sj

)
,

where the last inequality follows by applying Lemma 3.4 and Lemma 3.5.

The next technical lemma builds on Lemma 3.6 and shows that every edge (i, j) ∈ Ẽ(x) with a
sufficiently large load difference contributes positively to E

[
∆Φr(X

t) | Xt−1 = x
]
.

Lemma 3.7. Set α := 4smax > 4. Then the following two statements hold for any state x:

(1) If r = 1, then for any (i, j) ∈ Ẽ(x) with

L(xi)− L(xj) >
1

sj
+

1

si · sj
,

we have

Λ1
i,j(x)− 1

si
− 1

sj
>

1

2smax

(
1

si
+

1

sj

)
.

(2) If r = 0, then for any (i, j) ∈ Ẽ(x) with

L(xi)− L(xj) >
1

sj
+

1

si
,

we have

Λ0
i,j(x)− 1

si
− 1

sj
>

1

2

(
1

si
+

1

sj

)
.

Proof. We first start with the claim for r = 1. We obtain that

Λ1
i,j(x) = (2α− 2) · d(i, j) ·

(
1

si
+

1

sj

)
· fi,j(x) +

r

si
− r

sj
(by definition)

= (2α− 2) · d(i, j) · L(xi)− L(xj)

αd(i, j)
+

1

si
− 1

sj

>

(
2− 1

2smax

)
·
(

1

sj
+

1

sisj

)
+

1

si
− 1

sj
(by assumption)

=
2

sj
− 1

2sjsmax
+

2

sisj
− 1

2smaxsisj
+

1

si
− 1

sj

>
1

si
+

1

sj
+

2

sisj
− 1

sjsmax
(since si > 1)

>
1

si
+

1

sj
+

1

sisj
=

(
1 +

1

si + sj

)
·
(

1

si
+

1

sj

)
>

(
1 +

1

2smax

)
·
(

1

si
+

1

sj

)
.
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Similarly, consider now the second claim where r = 0. Then

Λ0
i,j(x) = (2α− 2) · d(i, j) ·

(
1

si
+

1

sj

)
· fi,j(x) +

r

si
− r

sj
(by definition)

= (2α− 2) · d(i, j) · L(xi)− L(xj)

αd(i, j)

>

(
2− 1

2smax

)
·
(

1

sj
+

1

si

)
(by assumption)

=
2

sj
− 1

2sjsmax
+

2

si
− 1

2smaxsi

>
3

2si
+

3

2sj
. (since smax > 1)

3.2 Convergence to Approximate and Exact Nash Equilibria

In this section, we finally prove our main theorems. We use Lemma 3.4 for the migration in a single
round and consider the potential drop w.r.t. an “ideal” potential value if exactly the expected loads
are realized. Then, using Lemma 3.6, we bound the difference between ideal and realized potential
values by analyzing the variance of the migration process. This yields bounds on the expected drop
of the potential in one round and is the main ingredient to prove the theorems. Let us define for
any given state x the maximum load difference as

L∆(x) := max
i∈V
|L(xi)−m/S| .

In order to prove our first theorem, we use function Φ0 and its normalized version Ψ0. For any given
state x, we observe a simple relation between the potential value Φ0(x) and the maximum load
difference L∆(x). Note that Φ0(x) =

∑
i∈V (W (xi))

2/si is minimized when all W (xi) = m/S · si.
This implies

Φ0(x) >
∑
i∈V

(m2 · si)/S2 = m2/S.

The following observation considers the normalized version of Ψ0(x).

Observation 3.8. For any state x of the system it holds that

(L∆(x))2 6 Ψ0(x) = Φ0(x)− m2

S
6 S · (L∆(x))2.

Proof. Clearly,

Φ0(x)− m2

S
=
∑
i∈V

(m/S · si + (W (xi)−m/S · si))2

si
− m2

S

=
∑
i∈V

(m/S · si)2

si
+ 2

∑
i∈V

m/S · si · (W (xi)−m/S · si)
si

+
∑
i∈V

(W (xi)−m/S · si)2

si
− m2

S

= 2
∑
i∈V

m/S · si ·W (xi)− (m/S)2 · s2
i

si
+
∑
i∈V

(W (xi)−m/S · si)2

si

=
∑
i∈V

(W (xi)−m/S · si)2

si
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and

(L∆(x))2 6

(
max
i∈V

∣∣∣∣W (xi)

si
−m/S

∣∣∣∣)2

= max
i∈V

(W (xi)−m/S · si)2

s2
i

6
∑
i∈V

(W (xi)−m/S · si)2

si
.

Moreover,

∑
i∈V

(W (xi)−m/S · si)2

si
=
∑
i∈V

si · (W (xi)/si −m/S)2 6 S · (L∆(x))2.

Lemma 3.9. Let γ := 32S · (diam(G))2 · smax/smin · ∆. Let x be a state such that L∆(x) >
8 · diam(G) · n ·∆. Then

E
[
Ψ0(Xt) | Xt−1 = x

]
6

(
1− 1

γ

)
·Ψ0(x)

Proof. In this proof, we consider the progress of Φ0(Xt) for an arbitrary but fixed assignment
Xt−1 = x. Consider now the protocol before the execution of the next step t. Let l ∈ V be a vertex
with |L(xl) −m/S| = L∆(x), and assume w.l.o.g. that L(x) > m/S. Then there must be another
vertex k ∈ V with L(xk) 6 m/S. This implies that there is an edge {p, q} ∈ E on a path from l to
k such that

L(xp)−m/S > L(xq)−m/S + L∆(x)/ diam(G) ,

which is equivalent to
L(xp)− L(xq) > L∆(x)/diam(G) .

By Lemma 3.6,

E
[
∆Φ0(Xt) | Xt−1 = x

]
>

∑
(i,j)∈Ẽ

fi,j(x) ·
(

Λi,j(x)− 1

si
− 1

sj

)
.

Let us now define for any edge (i, j) ∈ Ẽ,

∆i,jΦ0(Xt |Xt−1 = x) := fi,j(x) ·
(

Λ0
i,j(x)− 1

si
− 1

sj

)
,

so that

E
[
∆Φ0(Xt) | Xt−1 = x

]
>

∑
(i,j)∈Ẽ

∆i,jΦ(Xt | Xt−1 = x).

Let us now group Ẽ into three disjoint groups (where we omit the argument x throughout):

Ẽ1 :=

{
(i, j) ∈ Ẽ : L(xi)− L(xj) >

1

si
+

1

sj

}∖
(p, q)

Ẽ2 :=

{
(i, j) ∈ Ẽ : L(xi)− L(xj) <

1

si
+

1

sj

}∖
(p, q)

Ẽ3 := (p, q)
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The intuition behind this grouping is as follows. Ẽ1 contains all edges with a load difference large
enough so that, in expectation, the edge yields a decrease of the potential. Ẽ2 contains all edges
with a small load difference. Due to the variance, these edges could increase the potential. However,
since the load difference is small, their total impact on the potential is limited. Finally, Ẽ3 consists
of the edge (p, q) which has a large load difference and thereby decreases the potential significantly
(in expectation).

Group 1: Lemma 3.7 with r = 0 shows that∑
(i,j)∈Ẽ1

∆i,jΦ0(Xt |Xt−1 = x) =
∑

(i,j)∈Ẽ1

fi,j(x) ·
(

Λ0
i,j(x)− 1

si
− 1

sj

)
> 0 .

Group 2: In this case we consider the value of
∑

(i,j)∈Ẽ2
∆i,jΦ0(Xt |Xt−1 = x). Let (i, j) be an

edge in Ẽ2. Then, plugging in the definition of Λ0
i,j(x) and fi,j(x) yields

∆i,jΦ0(Xt |Xt−1 = x)

= fi,j(x) · Λ0
i,j(x)− fi,j(x) ·

(
1

si
+

1

sj

)
=

L(xi)− L(xj)

α · d(i, j)
(

1
si

+ 1
sj

) · (
(2α− 2) · d(i, j) ·

(
1

si
+

1

sj

)
· fi,j(x)

)
− L(xi)− L(xj)

α · d(i, j)

=
L(xi)− L(xj)

α · d(i, j)
(

1
si

+ 1
sj

) ·
(2− 2

α

)
· (L(xi)− L(xj))︸ ︷︷ ︸

>0

− L(xi)− L(xj)

α · d(i, j)

> −L(xi)− L(xj)

α · d(i, j)
> −

1
sj

+ 1
si

α
> − 2

α
,

since we assumed that all speeds are larger than one. Summing up over all edges in Ẽ2, we obtain∑
(i,j)∈Ẽ2

∆i,jΦ0(Xt |Xt−1 = x) > −2|E|
α

.

Group 3: Consider now the edge (p, q), i.e., the set Ẽ3:

∆p,qΦ0(Xt |Xt−1 = x) = fp,q(x) ·
(

Λ0
p,q(x)− 1

sp
− 1

sq

)
>

L(xp)− L(xq)

α · d(p, q)
(

1
sp

+ 1
sq

) · ((2− 2

α

)
· (L(xp)− L(xq))− 2

)
>

L(xp)− L(xq)

α · d(p, q)
(

1
sp

+ 1
sq

) · ( L∆(x)

diam(G)
− 2

)
>

L∆(x)/diam(G)

α · d(p, q)
(

1
sp

+ 1
sq

) · L∆(x)

2 diam(G)

=
(L∆(x))2

2(diam(G))2 · α · d(p, q)
(

1
sp

+ 1
sq

) ,
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where the second last inequality holds since L(xp)− L(xq) > L∆(x)/ diam(G) and α > 2. The last
inequality holds since by assumption, L∆(x) > 8 · diam(G) · n ·∆. Combining the contribution of
all three groups yields

E
[
∆Φ0(Xt) | Xt−1 = x

]
>

∑
{i,j}∈Ẽ1

∆i,jΦ0(Xt |Xt−1 = x) +
∑

{i,j}∈Ẽ2

∆i,jΦ0(Xt |Xt−1 = x) + ∆p,qΦ0(Xt |Xt−1 = x)

> 0− 2|E|
α

+
(L∆(x))2

2 (diam(G))2 · α · d(p, q) ·
(

1
sp

+ 1
sq

)
>

(L∆(x))2

4 (diam(G))2 · α · d(p, q) ·
(

1
sp

+ 1
sq

) ,
where the last inequality uses L∆(x) > 8 · diam(G) · n ·∆.

Now we continue with the normalized version of Φ0(x), i.e., with Ψ0(x). By Observation 3.8,
Ψ0(x) 6 S · (L∆(x))2. Since ∆Ψ0(Xt) = ∆Φ0(Xt) and α = 4smax we obtain (as long as L∆(x) >
8 · diam(G) · n ·∆) that

E
[
∆Ψ0(Xt) | Xt−1 = x

]
>

(L∆(x))2

4 (diam(G))2 · α · d(p, q) ·
(

1
sp

+ 1
sq

)
>

Ψ0(x)

4S · (diam(G))2 · α ·∆ ·
(

1
sp

+ 1
sq

)
>

Ψ0(x)

32S · (diam(G))2 · smax
smin
·∆

.

With γ := 32S · (diam(G))2 · smax/smin · ∆ we have E
[
∆Ψ0(Xt) | Xt−1 = x

]
> 1

γ · Ψ0(x), or
equivalently

E
[
Ψ0(Xt) | Xt−1 = x

]
6

(
1− 1

γ

)
·Ψ0(x).

Lemma 3.10. Let γ := 32S · (diam(G))2 · smax/smin ·∆ and τ := γ · (2 lnn+ ln(Ψ0(X0))). Then,
with probability at least 1− n−1, there exists a round t ∈ [1, τ ] such that

L∆(Xt) < 8 diam(G) · n ·∆.

Proof. Let us define an auxiliary random variable Ψ̃0 by Ψ̃0(X0) := Ψ0(X0), and for any round
t > 1,

Ψ̃0(Xt) =

{
Ψ0(Xt) if [L∆(Xt−1) > 8 diam(G) · n ·∆] ∧ [Ψ̃0(Xt−1) > 0]

0 otherwise.

Then, for any t > 1, it follows by Lemma 3.9,

E
[
Ψ̃0(Xt) | Xt−1 = x

]
6

(
1− 1

γ

)
· Ψ̃0(Xt−1).
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We have for τ = γ · (2 lnn+ ln Ψ0(X0)),

E
[
Ψ̃0(Xt)

]
=
∑
x

E
[
Ψ̃0(Xt) | Xt−1 = x

]
· P [Xt−1 = x]

6
∑
x

(
1− 1

γ

)
· Ψ̃0(Xt−1) · P [Xt−1 = x]

6

(
1− 1

γ

)τ
· Ψ̃0(X0) 6 n−2.

Hence by Markov’s inequality,

Pr
[
Ψ̃0(Xτ ) > n−1

]
6 n−1.

We consider two cases.

Case 1: For all time-steps t ∈ [0, . . . , τ ], Ψ̃0(Xt) = Ψ0(Xt). Then by Observation 3.8,

L∆(Xτ ) 6
√

Ψ0(Xt) =

√
Ψ̃0(Xt) 6 n−1/2.

Case 2: There exists a step t ∈ [1, . . . , τ ] such that Ψ̃0(Xt) 6= Ψ0(Xt). Let t be the smallest time
step with that property. Hence, Ψ̃0(Xt) 6= Ψ0(Xt), but Ψ̃0(Xt−1) = Ψ0(Xt−1). If Ψ̃0(Xt−1) = 0,
then

L∆(Xt−1) 6
√

Ψ0(Xt−1) =

√
Ψ̃0(Xt−1) = 0.

If Ψ̃0(Xt−1) 6= 0, then by definition of Ψ̃0(Xt),(
Ψ̃0(Xt) 6= Ψ0(Xt)

)∧(
Ψ̃0(Xt−1) 6= 0

)
⇒ L∆(Xt) < 8 diam(G) · n ·∆.

In all cases we have shown that there exists a step ∈ [0, τ ] so that L∆(Xt) < 8 diam(G) · n ·∆.
This completes the proof of the lemma.

3.2.1 Proof of Theorem 3.1

First note that for any state x we have Ψ0(x) 6 m2/smin 6 m2. We now show that for m > 8δ · n3,
any state x with L∆(x) 6 8 · diam(G) · n ·∆ 6 8 · n3 is indeed a 1/(1 + δ)-apx. NE. For every i ∈ V
we have

|W (xi)/si −m/S| 6 L∆(x) 6 8 · n3 .

Consider now any pair i, j with {i, j} ∈ E. Then W (xi)/si 6 8 · n3 +m/S and similarly

(W (xj) + 1)/sj > max
{

1/sj , (m/S)− 8n3 + (1/sj)
}
.

We are looking for the smallest possible ε ∈ [0, 1) such that (1− ε) ·W (XT
i )/si 6 (W (XT

j ) + 1)/sj .

Plugging in our bounds from above, a simple calculation yields the result m > 8δ · n3.
From Lemma 3.10, it follows now that with probability at least 1− n−4 after

τ = (32S · (diam(G))2 · smax/smin ·∆) · (4 lnn+ ln Ψ0(X0))

= O
(

ln(m) · (diam(G))2 ·∆ · S · smax

smin

)
steps, we reach a 1/(1 + δ)-apx. NE in the time-interval [0, 1, . . . , τ ]. Hence after expected

O
(

ln(m) · (diam(G))2 ·∆ · S · smax
smin

)
rounds, we have reached a 1/(1 + δ)-apx. NE. This proves

Theorem 3.1.
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3.2.2 Proof of Theorem 3.2

Now we show that there is still a small potential drop even if L∆ is already relatively small. First
we show some results that will be needed in our later proofs.

Observation 3.11. Let x be a state that is not a Nash equilibrium. Then there exist two neigh-
bouring vertices i, j such that L(xi)− L(xj) >

1
sj

. If all speeds are integers, then we also have

L(xi)− L(xj) >
1

sj
+

1

sisj
.

Proof. The fact that two neighbouring vertices i, j exist with L(xi) − L(xj) >
1
sj

follows directly

from the definition of a NE. Also,

W (xi)

si
− W (xj)

sj
>

1

sj
⇔W (xi) >

si
sj
· (W (xj) + 1). (3.2)

Let us now fix any si, sj and sum of weighted tasks W (xj). Our goal is to lower bound the smallest
possible W (xi) such that the strict inequality above is fulfilled. We proceed by a case distinction.
First we assume si/sj · (W (xj) + 1) is an integer. Then,

W (xi) >
si
sj
· (W (xj) + 1) + 1,

and therefore,

L(xi)− L(xj) =
W (xi)

si
− W (xj)

sj
>

1

sj
+

1

si
>

1

sj
+

1

sisj
.

Now we assume that si
sj
· (W (xj) + 1) is not an integer. Hence,

W (xi) >

⌈
si
sj
· (W (xj) + 1)

⌉
.

We now use the fact that dab e −
a
b > 1

b for any pair of integers a, b (where a is not a multiple of b)
to conclude that

W (xi) >
si
sj
· (W (xj) + 1) +

1

sj

and

L(xi)− L(xj) =
W (xi)

si
− W (xj)

sj
>

1

sj
+

1

si · sj
.

Again, we define a normalized version of Φ1. For every state x, we define

Ψ1(x) = Φ1(x)−
(
m2

S
+ n · m

S
− n

4smin

)
.

The next Lemma shows a relation between L∆ and Ψ1.

Lemma 3.12. Let x be an arbitrary state. With the definition above we have

0 6 Ψ1(x) 6 S · (L∆(x))2 + n · L∆(x) + n .
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Proof. We first show the left inequality, i.e., we show a lower bound on Φ1(x). In order to bound
the minimum, we characterize the NE with minimum potential. The loads are equilibrated to m/S
on all machines when the weight is W (xi) = m · si/S for every machine i. Thus, in every state x
of the game we have a weight W (xi) = m · si/S + δi, where δi ∈

[
−msi

S ,m− msi
S

]
and

∑
i∈V δi = 0.

Using this insight, we bound

Φ1(x) =
∑
i∈V

(
msi
S + δi

)2
si

+
msi
S + δi

si

=
∑
i∈V

m2si
S2

+
2mδi
S

+
δ2
i

si
+
m

S
+
δi
si

=
m2

S
+
nm

S
+

2m

S

(∑
i∈V

δi

)
+
∑
i∈V

δ2
i

si
+
δi
si

=
m2

S
+
nm

S
+
∑
i∈V

δi(δi + 1)

si

>
m2

S
+
nm

S
− n

4smin
,

because the function y(y + 1) > −1/4 for any y. This proves the lower bound in the lemma.
To show the upper bound, we note that L(xi)−m/S 6 L∆(x) and calculate

Φ1(x)− m2

S
− nm

S
+

n

4smin

= Φ0(x) +

(∑
i∈V

L(xi)

)
− m2

S
− nm

S
+

n

4smin

6 S · (L∆(x))2 +

(∑
i∈V

L(xi)−
m

S

)
+

n

4smin

6 S · (L∆(x))2 + n · L∆(x) + n ,

where the first inequality follows from Observation 3.8. This finishes the proof of the lemma.

Lemma 3.13. Assume that at step t the system is not in a Nash equilibrium. We have

E
[
Ψ1(Xt+1) |Xt = x

]
6 Ψ1(x)− 1

8∆s3
max

.

Proof. Note that Observation 3.11 provides the minimum decrease required to apply Lemma 3.7 for
Φ1(x). Plugging in this bound for Λ1

i,j in Lemma 3.6 yields an expected (additive) decrease of at

least 1/(8∆s3
max) per round, as long as x is not a NE.

Lemma 3.14. Assume that at step τ we have L∆(Xτ ) 6 8 · diam(G) ·n ·∆. Let T be the additional
number of steps such that Xτ+T is a Nash equilibrium. Then

E [T ] 6 560 · (diam(G))2 · n2 ·∆3 · S · s3
max .

Proof. For reasons of simplification let us assume τ = 0. Lemma 3.12 implies that for every state x
with L∆(x) 6 8 · diam(G) · n ·∆

Ψ1(x) 6 S · (8 · diam(G) · n ·∆)2 + n · 8 · diam(G) · n ·∆ + n

6 S · 70 · (diam(G))2 · n2 ·∆2 .
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Hence we can assume that E
[
Ψ1(X0)

]
6 70 · S · (diam(G))2 · n2 ·∆2.

The rest of the proof is done by a standard martingale argument. Let T be the end of the
first time step after the system reaches a NE. Let t ∧ T be the minimum of t and T and let
V = 1/(8∆s3

max). We define Zt = Ψ1(Xt) + t · V . Observe that T is a stopping time for (Zt)t>0.
{Zt}t∧T is a supermartingale since by Lemma 3.13 with Xt = x,

E [Zt+1 |Zt = z] = E
[
Ψ1(Xt+1) + V · (t+ 1) | Ψ1(x) + t · V = z

]
6 E

[
Ψ1(Xt+1) | Ψ1(x) = z − t · V

]
+ (t+ 1) · V

6 (z − tV − V ) + (t+ 1)V = z.

Hence E [Zt+1] =
∑

z E [Zt+1 |Zt = z] ·Pr [Zt = z] 6
∑

z z ·Pr [Zt = z] = E [Zt]. We obtain

V · E[T ] 6 E[Ψ(XT )] + V · E[T ]

= E[ZT ] 6 . . . 6 E[Z0]

6 70 · S · (diam(G))2 · n2 ·∆2 .

Therefore,

E[T ] 6 70 · S · (diam(G))2 · n2 ·∆2 · (1/V )

6 70 · S · (diam(G))2 · n2 ·∆2 · (8∆s3
max)

= 560 · (diam(G))2 · n2 ·∆3 · S · s3
max .

Now we are ready to show the theorem. From Lemma 3.10 we know that there is an integer

T1 6 γ · (2 lnn+ ln Ψ0(X0))

such that
Pr
[
¬∃t 6 T1 : L∆(Xt) 6 8 · diam(G) · n ·∆

]
6 1/4 .

Let T2 be the additional number of steps until Xt+T2 is a NE. From Lemma 3.14 we get

E [T2] 6 560 · (diam(G))2 · n2 ·∆3 · S · s3
max ,

which implies
Pr
[
T2 > 4 · 560 · (diam(G))2 · n2 ·∆3 · S · s3

max

]
6 1/4 .

Hence, for
T = T1 + 2240 · (diam(G))2 · n2 ·∆3 · S · s3

max ,

the probability that XT is not a NE is at most 2/4. Now divide the time into intervals of length
T . The expected number of these time intervals is at most 1 + 1/2 + (1/2)2 + (1/2)3 . . . 6 2. In
addition, after c · log2 n intervals the state Xt is a NE with probability at least 1−1/nc. This proves
Theorem 3.2.
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4 Uniform Tasks and Identical Machines

In this section we consider the case of identical machines. We use Protocol I with smax = 1 and
α = 3. For uniform tasks and identical machines, a task assigned to i prefers machine j if and only
if W (Xt−1

i ) −W (Xt−1
j ) > 1. With µ2 being the second smallest eigenvalue of the Laplace matrix,

we show the following result.

Theorem 4.1. Let m > δn5 for some δ > 1. With α = 3, Protocol I reaches a 2/(1+δ)-approximate
Nash equilibrium in expected time

O((∆/µ2) · lnm) .

Theorem 4.2. With α = 3, Protocol I reaches a Nash equilibrium in expected time

O ((∆/µ2) · (lnm+ lnn) + (|E| ·∆)/µ2) .

4.1 Proof of Theorem 4.1

For a state x, we define fi,j(x) as in Section 3, i.e., as the expected load that is sent from i to j
in one round of Protocol I. The next lemma bounds the potential change for the edges with a load
difference of at most two.

Lemma 4.3. Let µ2 be the second smallest eigenvalue of the Laplace matrix and let α = 3. Assume
Ψ0(x) > 2|E|/µ2, then

E
[
∆Ψ0(Xt) |Xt−1 = x

]
>
(

1− µ2

36∆

)
·Ψ0(x) .

Proof. Consider Rosenthal’s potential function, which simplifies to Φ1(x) =
∑

i∈V W (xi)·(W (xi)+1)
since all si = 1. We obtain

Φ1(x) =
∑
i∈V

W (xi) · (W (xi) + 1) =
∑
i∈V

(W (xi))
2 +

∑
i∈V

W (xi)

= Φ0(x) +m

= Ψ0(x) +
m2

n
+m.

Hence, for any given state x functions Φ1(x), Φ0(x) and Ψ0(x) differ only by additive terms and
∆Φ1(Xt |Xt−1 = x) = ∆Ψ0(Xt |Xt−1 = x). Note that for uniform tasks and with α = 3 we have

fi,j(x) =

{
W (xi)−W (xj)

6·deg(i,j) if W (xi)−W (xj) > 1

0 otherwise.

We also have
Λ0
i,j(x) = 8 · deg(i, j) · fi,j(x) ,

and
Ẽ(x) := {(i, j) ∈ E : W (xi)−W (xj) > 1} ,
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where we omit the argument x whenever possible. Applying Lemma 3.6 we get

E
[
∆Ψ0(Xt) |Xt−1 = x

]
>

∑
(i,j)∈Ẽ

fi,j(x) ·
(
Λ0
i,j(x)− 2

)
=

∑
{i,j}∈Ẽ

W (xi)−W (xj)

6 · d(i, j)
·
(

8 · d(i, j) · W (xi)−W (xj)

6 · d(i, j)

)

−
∑
{i,j}∈Ẽ

W (xi)−W (xj)

3 · d(i, j)

=
∑
{i,j}∈Ẽ

2 (W (xi)−W (xj))
2

9 · d(i, j)
−

∑
{i,j}∈Ẽ

W (xi)−W (xj)

3 · d(i, j)

Now we apply x 6 x2/2 for x > 2 to obtain

E
[
∆Ψ0(Xt) |Xt−1 = x

]
>

∑
{i,j}∈Ẽ

2 (W (xi)−W (xj))
2

9 · d(i, j)
−

∑
{i,j}∈Ẽ

1
2 · (W (xi)−W (xj))

2

3 · d(i, j)

=
∑
{i,j}∈Ẽ

(W (xi)−W (xj))
2

18 · d(i, j)
.

We conclude from Lemma 4.3 that

E
[
∆Ψ0(Xt) |Xt−1 = x

]
>

∑
{i,j}∈Ẽ

(W (xi)−W (xj))
2

18 · d(i, j)
>

∑
{i,j}∈Ẽ

(W (xi)−W (xj))
2

18 ·∆
.

On the other hand, a classic result from standard (continuous) diffusion [7, Theorem 4] (see also
[22, Proof of Theorem 1]) shows that

∑
{i,j}∈E

(W (xi)−W (xj))
2

18∆
>

µ2

18 ·∆
·Ψ0(x) ,

where we recall that µ2 is the second smallest eigenvalue of the Laplace matrix. By noting that
(W (xi)−W (xj))

2 6 1 for all e ∈ E \ Ẽ, we derive

∑
{i,j}∈Ẽ

(W (xi)−W (xj))
2

18 ·∆
>

µ2

18 ·∆
·Ψ0(x)− |E|

18 ·∆
.

Hence if µ2 ·Ψ0(x) > 2|E|, we get

E
[
∆Ψ0(Xt) |Xt−1 = x

]
>

µ2

36 ·∆
·Ψ0(x) .

This implies that as long as Ψ0(x) > 2|E|/µ2,

E
[
Ψ0(Xt) |Xt−1 = x

]
6 Ψ0(x)−E

[
∆Ψ0(Xt) |Xt−1 = x

]
=
(

1− µ2

36∆

)
·Ψ0(x) .

This completes the proof.



4 UNIFORM TASKS AND IDENTICAL MACHINES 22

As in Lemma 3.10, we prove that:

Lemma 4.4. Let γ := 36∆
µ2

and τ := γ · (2 lnn+ln(Φ0(X0))). Then with probability at least 1−n−1,
there exists a round t ∈ [1, τ ] such that

Φ0(Xt) < 2|E|/µ2.

Proof. The proof is the same as Lemma 3.10, except that the conditions on L∆(Xt) are replaced by
the conditions on Ψ0(Xt).

Now we are ready to show Theorem 4.1.

Proof of Theorem 4.1. First we show that for m > δn5, any state x with Ψ0(x) 6 2|E|/µ2 6 n5 is a
2/(1 + δ)-apx. NE. Note that 2|E|/µ2 6 4|E|2 diam(G) 6 n5, using the fact that for any graph G,
µ2 > 1

diam(G)·2|E| ([11, Lemma 1.9]).

For the approximation ratio we note that, given Ψ0(x) 6 n5, the maximum load must satisfy

Wmax(x) = max
i∈V

W (xi) 6 m/n+ n3.

The minimum load must satisfy

Wmin(x) = min
i∈V

W (xi) > m/n− n3.

Recall that in an ε-apx. NE, for all neighboring vertices i, j the following inequality must hold

(1− ε)W (xi) 6W (xj) + 1.

Thus, as we have W (xi) 6 m/n + n3 and W (xj) > max{0,m/n − n3} + 1 for all edges (i, j) ∈ E
along which players want to move, it suffices for ε to satisfy (1 − ε)(m/n + n3) 6 m/n − n3. By
solving this for ε and using m > δn5, we get ε 6 1− (δ − 1)/(δ + 1) = 2/(δ + 1) as desired.

Using Lemma 4.4 along with the fact that Ψ0(X0) 6 m2, it follows that with probability at least
1−n−1 that there is a step t ∈ [1, τ ] with Ψ0(Xt) 6 2|E|/µ2 6 n5 and τ ∈ O((∆/µ2) · (lnn+ lnm))
as in Lemma 4.4. Since this holds for an arbitray initial state at step 0 with m tasks, it follows that
the expected time to reach such a state is at most O((∆/µ2) · (lnn + lnm)). With m ∈ Ω(n), the
theorem follows.

4.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is very similar to the proof of Theorem 3.2. Using Lemma 4.4, we can
bound the number of steps to reach a state τ with Φ0(Xτ ) < n5. Therefore, it remains to consider
the number of additional steps to reach a NE from such a state.

Lemma 4.5. Assume that at step t the system is not in a Nash equilibrium. Then we have

E[Ψ0(Xt+1) |Xt = x] = Ψ0(x)− 1

18∆
.

Proof. If in a step t we are not in a NE, there is an edge {i, j} ∈ E with |W (Xt
i ) −W (Xt

j)| > 1.
Then Equation 4.2 of Lemma 4.3 yields

E[Ψ0(Xt+1) |Xt = x] 6 Ψ0(x)− 1

18∆
.
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for each task ` in parallel do
Let i = i(`) the current machine of task ` and w` the weight of task `
Choose neighbor machine j u.a.r.
if W (Xt−1

i )−W (Xt−1
j ) > w` then

Move task ` from machine i to j with probability

deg(i)

deg(i, j)
·
W (Xt−1

i )−W (Xt−1
j )

2α ·W t−1
i

end if
end for

Figure 2: Protocol II for weighted tasks and uniform speeds.

Lemma 4.6. Assume that at step τ we have Φ0(Xτ ) 6 2|E|/µ2. Let T be the additional number of
steps until Xτ+T is a Nash equilibrium. Then

E [T ] 6 36|E|/µ2 ·∆ .

Similarly to Theorem 3.2, we are now able to prove Theorem 4.2 by combining Lemma 4.4
(to reach a state τ with Φ0(Xτ ) 6 n5) and Lemma 4.6 (to reach from there a NE). By Markov’s
inequality and the union bound, with probability at least 1/2, the number of total steps needed for
this is at most

36

µ2
· (2 lnn+ ln(Φ0(X0))) + 54

|E| ·∆
µ2

.

Since for any state x, Φ0(x) 6 m2, it follows that the total number of expected steps for Protocol I
to reach a NE is at most

O
(

1

µ2
· (lnn+ lnm) +

|E| ·∆
µ2

)
.

5 Weighted Tasks and Identical Machines

In this section we assume that every task ` ∈ [m] has an integral weight w` > 1.

5.1 Protocol and Results

We denote the maximal and minimal weight of any task by wmax and wmin, respectively. A task `
with weight w` ∈ N that is located at machine i in state x prefers machine j over i if and only if
W (xi) > W (xj) +w`, which is equivalent to W (xi)−W (xj) > wx. Our protocol for weighted tasks
is given in Figure 2.

Theorem 5.1. With α = 4wmax, Protocol II reaches a Nash equilibrium in expected time O(∆ ·W 3 ·
wmax).
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5.2 Proof of Theorem 5.1

Let x be an arbitrary state. We define for every task ` an indicator variable H`
i,j(x) ∈ {0, 1} (H

for happy) which is one if task ` prefers machine j over its current location i, and zero otherwise.
Hi,j(x) is defined as the fraction of the total weight of jobs on machine i that prefer machine j over
i, i.e.,

Hi,j(x) :=
∑

`∈xi : H`
i,j(x)=1

w`
W (xi)

.

Note that for uniform weights, Hi,j(x) ∈ {0, 1}, i.e., either all tasks or no task on i prefer j over
i. For non-uniform weights however, Hi,j(x) may potentially be as small as wmin/W (apart from
being 0). For any j ∈ N(i) at least one of the variables Hi,j(x) or Hj,i(x) must be zero. With these
definitions we get

E
[
W (Xt

i ) |Xt−1 = x
]

= W (xi)−
∑

j∈N(i):W (xi)>W (xj)

∑
`∈xi : H`

i,j(x)=1

w` ·Pr [r moves to j]

+
∑

j∈N(i):W (xi)<W (Xi)

∑
`∈xj : H`

j,i(x)=1

w` ·Pr [` moves to i]

= W (xi)−
∑

j∈N(i):W (xi)>W (xj)

Hi,j(x) · W (xi)−W (xj)

2α · d(i, j)

+
∑

j∈N(i):W (xi)<W (xj)

Hj,i(x) · W (xj)−W (xi)

2α · d(i, j)
.

Again, we denote by Ẽ(x) the set of edges (i, j) with Hi,j(x) > 0 (and omit x whenever possible).
Then

E
[
Wi(X

t) |Xt−1 = x
]

= W (xi)−
∑

j:(i,j)∈Ẽ

Hi,j(x) · W (xi)−W (xj)

2α · d(i, j)
+

∑
j:(j,i)∈Ẽ

Hj,i(x) · W (xj)−W (xi)

2α · d(i, j)
.

So the expected flow from i to j, {i, j} ∈ E, in a single round of the protocol starting from state x
is

fi,j(x) := Hi,j(x) · W (xi)−W (xj)

2α · d(i, j)
.

Note that at least one of the flows, fi,j(x) or fj,i(x) has to be zero. Further, observe that (i, j) ∈ Ẽ(x)
if and only if fi,j(x) > 0.

Let us first consider the potential change ∆̃Φ(Xt |Xt−1 = x) (recall, this is the change under
the assumption that the flow on every edge is exactly its expected value).

∆̃Φ0(Xt |Xt−1 = x) :=
∑
i∈V

(W (xi))
2 −

∑
i∈V

(E
[
W (Xt

i )
]
)2.

The following lemma generalizes [7, Lemma 2] to the setting with weights. The statement and the
proof is similar to Lemma 3.4.

Lemma 5.2. For any step t ∈ N and any state x it holds that

∆̃Φ0(Xt |Xt−1 = x) >
∑

(i,j)∈Ẽ

fi,j(x) ·
((

αd(i, j)

Hi,j(x)
− d(i, j)

)
· 4 · fi,j(x)

)
.
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Proof. We follow the same proof as for Lemma 3.4. Recall that in the proof of Lemma 3.4, we did
not use the particular definition of fi,j(x). Hence we can use the same notations and definitions as
in the proof of Lemma 3.4 to obtain a simplified version of equation (3.1) for weighted tasks but
with uniform speeds, i.e.,

∆̃Φ0(X(t,k)) > fi,j(x) · (2 · (W (xi)−W (xj))− 2 · (2d(i, j)− 1) fi,j(x)) ,

where ek = (i, j) represents the k-th activation of an edge in Ẽ(x). Plugging in the definition of
fi,j(x), we get

∆̃Φ0(X(t,k)) > fi,j(x) ·
(

4α · d(i, j)

Hi,j(x)
· fi,j(x)− 2 · (2d(i, j)− 1) · fi,j(x)

)
> fi,j(x) ·

((
α · d(i, j)

Hi,j(x)
− d(i, j)

)
· 4 · fi,j(x)

)
.

Summing over all (i, j) ∈ Ẽ yields the result.

Now we bound the sum of the variances of the random variables W (Xt
i ) conditioned on Xt−1 = x

for any x. We define wi,j(x) as the maximum weight of a task that prefers (in state x) either j over
i or i over j. We define wi,j(x) = 0 if there is no such task.

Lemma 5.3. For any step t ∈ N and state x it holds that,∑
i∈V

Var
[
W (Xt

i |Xt−1 = x)
]

=
∑

(i,j)∈Ẽ

wi,j(x) ·Hi,j(x) · W (xi)−W (xj)

α · d(i, j)

Proof. We have ∑
i∈V

Var
[
W (Xt) |Xt−1 = x

]
=
∑
i∈V

Var
[
Cti −Ati

]
,

where the random variable Cti counts the number of tasks that come to link i from another link in
step t, and the variable Ati counts the number of tasks that abandon link i in step t. Again we have

Var
[
Cti −Ati

]
= Var

[
Cti
]

+ Var
[
Ati
]
.

Observe that

Cti =
∑
j∈N(i)

∑
`∈xj : H`

j,i(x)=1

w` · Y t
`,j ,

where Y t
`,j is the Bernoulli random variable indicating whether task ` jumps to j at step t. Note

that

Y t
`,j ∼ Ber

(
1

α · d(i, j)
· W (xj)−W (xi)

2 ·W (xj)

)
.

Similarly,

Ati =
∑
`∈xi

w` · Zt`,i,
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where Zt`,i is the Bernoulli random variable indicating whether a task ` located at i before step t
moves to another vertex. Again, we have

Zt`,i ∼ Ber

 1

α · d(i, j)
·

∑
j∈N(i):H`

i,j(x)=1

W (xi)−W (xj)

2 ·W (xi)

 .

By independence,

Var
[
Cti
]

=
∑
j∈N(i)

∑
`∈xj : H`

j,i(x)=1

w2
` ·Var

[
Ber

(
1

α · d(i, j)
· W (xj)−W (xi)

2 ·W (xj)

)]

6
∑
j∈N(i)

wi,j(x) ·
∑

`∈xj : H`
j,i(x)=1

w` ·
1

α · d(i, j)
· W (xj)−W (xi)

2 ·W (xj)
,

Similarly,

Var
[
Ati
]

=
∑
`∈xi

w2
` ·Var

Ber
 1

α · (.i, j)
·

∑
j∈N(i):H`

i,j(x)=1

W (xi)−W (xj)

2 ·W (xi)




6
∑
`∈xi

∑
j∈N(i):H`

i,j(x)=1

w2
` ·

1

α · d(i, j)
· W (xi)−W (xj)

2 ·W (xi)

=
∑
j∈N(i)

∑
`∈xi:H`

i,j(x)=1

w2
` ·

1

α · d(i, j)
· W (xi)−W (xj)

2 ·W (xi)

6
∑
j∈N(i)

wi,j(x) ·
∑

`∈xi:H`
i,j(x)=1

w` ·
1

α · d(i, j)
· W (xi)−W (xj)

2 ·W (xi)
.

This gives∑
i∈V

Var
[
W (Xt |Xt−1 = x)

]
=

∑
(i,j)∈Ẽ

wi,j(x) · 2 ·
∑

`∈xi : H`
i,j(x)=1

w` ·
1

α · d(i, j)
· W (xi)−W (xj)

2 ·W (xi)

=
∑

(i,j)∈Ẽ

wi,j(x)
∑

`∈xi : H`
i,j(x)=1

w` ·
1

α · d(i, j)
· W (xi)−W (xj)

W (xi)

=
∑

(i,j)∈Ẽ

wi,j(x) ·Hi,j(x) · 1

α · d(i, j)
· (W (xi)−W (xj)) .

The following lemma is similar to Lemma 3.6 (where we have different speeds but uniform
weights).

Lemma 5.4. For any step t and any state x it holds that

E
[
∆Φ0(Xt) |Xt−1 = x

]
>

∑
(i,j)∈Ẽ

(
1− (wi,j(x) + 1) ·Hi,j(x)

α

)
·Hi,j(x) · W (xi)−W (xj)

α · d(i, j)
.
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Proof. From the definition of Φ0 we get

E
[
Φ0(Xt) |Xt−1 = x

]
=
∑
i∈V

E
[
(W (Xt

i ))
2 |Xt−1 = x

]
=
∑
i∈V

Var
[
W (Xt

i ) |Xt−1 = x
]

+
(
E
[
W (Xt

i ) |Xt−1 = x
])2

.

Therefore,

E
[
∆Φ0(Xt) |Xt−1 = x

]
=
∑
i∈V

(W (xi))
2 −

∑
i∈V

(
E
[
W (Xt

i ) |Xt−1 = x
])2 −∑

i∈V
Var

[
W (Xt

i ) |Xt−1 = x
]
.

We first lower bound the first two sums. Using Lemma 5.2 we get∑
i∈V

(W (xi))
2 −

∑
i∈V

(
E
[
W (Xt

i ) |Xt−1 = x
])2

>
∑

(i,j)∈Ẽ

fi,j(x) ·
((

α · d(i, j)

Hi,j(x)
− d(i, j)

)
· 4 · fi,j(x)

)

=
∑

(i,j)∈Ẽ

Hi,j(x) · W (xi)−W (xj)

2α · d(i, j)
·
((

α · d(i, j)

Hi,j(x)
− d(i, j)

)
· 4 · fi,j(x)

)

=
∑

(i,j)∈Ẽ

Hi,j(x) · W (xi)−W (xj)

α
·
((

α

Hi,j(x)
− 1

)
· 2 · fi,j(x)

)
Now we define

A(x) :=

(
α

Hi,j(x)
− 1

)
· 2 · fi,j(x) · d(i, j) .

Then by the above and using Lemma 5.3 to bound the sum of variances, we arrive at

E
[
∆Φ0(Xt) |Xt−1 = x

]
>

∑
(i,j)∈Ẽ

Hi,j(x) · W (xi)−W (xj)

α
·
(

α

Hi,j(x)
− 1

)
· 2 · fi,j(x)

−
∑

(i,j)∈Ẽ

wi,j(x) ·Hi,j(x) · W (xi)−W (xj)

α · d(i, j)

=
∑

(i,j)∈Ẽ

(A(x)− wi,j(x)) ·Hi,j(x) · W (xi)−W (xj)

α · d(i, j)
.

We lower bound A(x) as follows:

A(x) =

(
α

Hi,j(x)
− 1

)
· 2 · fi,j(x) · d(i, j)

=

(
α

Hi,j(x)
− 1

)
· 2 ·Hi,j(x) · W (xi)−W (xj)

2α

>

(
1

Hi,j(x)
− 1

α

)
·Hi,j(x) · (wi,j(x) + 1)

=

(
1− Hi,j(x)

α

)
· (wi,j(x) + 1)

= wi,j(x) + 1− (wi,j(x) + 1) ·Hi,j(x)

α
.
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Hence

E
[
∆Φ0(Xt) |Xt−1 = x

]
>

∑
{i,j}∈Ẽ

(
1− (wi,j(x) + 1) ·Hi,j(x)

α

)
·Hi,j(x) · W (xi)−W (xj)

α · d(i, j)
.

With this lemma at hand, it is easy to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. Assume there are tasks on machine i that prefer machine j over i. Then,
since Hi,j(x) 6 1, wi,j(x) 6 wmax and α > 4wmax, we have

(wi,j(x) + 1) ·Hi,j(x)

α
6
wmax + 1

4wmax
6

1

2
.

We also have Hi,j(x) > wmin/W if Hi,j(x) > 0. Hence as long as we have not reached a NE,
Lemma 5.4 implies that

E
[
∆Φ0(Xt) |Xt−1 = x

]
>

1

2
· wmin

W
· wmin

4wmax ·∆
=

1

8
· (wmin)2

∆ ·W · wmax
.

Next observe that for any state x, we have Φ0(x) 6W 2, where W is the sum of the weights of all
tasks. Hence as in the proof of Theorem 3.2, we obtain the following upper bound on the expected
time to reach a NE:

W 2 · 8 · ∆ ·W · wmax

(wmin)2
6 8 ·∆ ·W 3 · wmax,

where the last inequality holds, since wmin > 1. This completes the proof of Theorem 5.1.

6 Conclusions

In this paper we initiate the study of concurrent protocols for selfish load balancing on general
networks. Our protocols rely only on local information and computation and yield rapid conver-
gence times to approximate and exact NE for systems with many agents. We show a number of
generalisations e.g., to networks with uniformly related machines of different speeds or agents with
weights.

There are many open problems that arise from our work, such as finding improved convergence
times or general lower bounds for concurrent protocols. On a more technical side, the generalization
of our techniques is an interesting open problem, e.g., to more general potential functions that work
for networks with both speeds and weights [14]. Another interesting problem is whether approaches
that do not use potential functions (e.g., [4]) can be applied here.
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[19] Simon Fischer and Berthold Vöcking. Adaptive routing with stale information. Theoret. Com-
put. Sci., 410(36):3357–3371, 2008.



REFERENCES 30

[20] Dimitris Fotakis, Alexis Kaporis, and Paul Spirakis. Atomic congestion games: Fast, myopic
and concurrent. Theory Comput. Syst., 47(1):38–49, 2010.

[21] Tobias Friedrich and Thomas Sauerwald. Near-perfect load balancing by randomized rounding.
In Proc. 41st Symp. Theory of Computing (STOC), pages 121–130, 2009.

[22] Bhaskar Ghosh and S. Muthukrishnan. Dynamic Load Balancing by Random Matchings. J.
Comput. Syst. Sci., 53(3):357–370, 1996.

[23] Robert Kleinberg, Georgios Piliouras, and Éva Tardos. Multiplicative updates outperform
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