
Pure Dominance Constraints

Manuel Bodirsky1 and Martin Kutz2

1 Humboldt Universität zu Berlin, Germany
bodirsky@informatik.hu-berlin.de
2 Freie Universität Berlin, Germany

kutz@math.fu-berlin.de

Abstract. We present an efficient algorithm that checks the satisfiabil-
ity of pure dominance constraints, which is a tree description language
contained in several constraint languages studied in computational lin-
guistics. Pure dominance constraints partially describe unlabeled rooted
trees. For arbitrary pairs of nodes they specify sets of admissible relative
positions in a tree. The task is to find a tree structure satisfying these
constraints.
Our algorithm constructs such a solution in time O(m2) where m is the
number of constraints. This solves an essential part of an open problem
posed by Cornell.

Keywords. Efficient algorithms, tree descriptions, constraint satisfac-
tion

1 Introduction

Tree description languages became an important tool in computational linguis-
tics over the last twenty years. Grammar formalisms have been proposed which
derive logical descriptions of trees representing the syntax of a string [18, 22, 8].
Acceptance of a string is then equivalent to the satisfiability of the corresponding
logical formula.

In computational semantics, the paradigm of underspecification aims at ma-
nipulating the partial description of tree-structured semantic representations of
a sentence rather than at manipulating the representations themselves [21, 9].
So the key issue in both, constraint based grammar and semantic formalisms,
is to collect partial descriptions of trees and to solve them, i.e., to find a tree
structure that satisfies all constraints.

Cornell [5] introduced a simple but powerful tree description language. It
contains literals for dominance, precedence and equality between nodes, and
disjunctive combinations of the these. He also gave a saturation algorithm based
on local propagations but the completeness proof for the algorithm turned out to
be wrong [6]. Recently Bodirsky, Duchier and Niehren [personal communication]
in fact found a counterexample to the completeness of this algorithm.

In this paper, we will always talk about finite rooted unlabeled trees without
any order on the children of a node. The constraint language that we are consid-
ering contains variables denoting the nodes in a tree together with dominance,

H. Alt and A. Ferreira (Eds.): STACS 2002, LNCS 2285, pp. 287–298, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

288 M. Bodirsky and M. Kutz

disjointness, and equality constraints between them. Moreover, we can combine
the above constraints disjunctively. For example, we can state that some node
x must either lie above some other node y or must be disjoint to it, i.e., lie in a
different branch of the tree. We call the resulting tree description language pure
dominance constraints.

In contrast to pure dominance constraints, the constraint language intro-
duced by Cornell is based on trees with an order on the children of the tree
nodes. His precedence constraints are stronger than our disjointness constraints.
They allow to state that some node x in the tree lies to the left of some other node
y. Interestingly, the counterexample to the completeness of Cornell’s algorithm
does not make use of this distinction. It can be formulated using disjointness
only instead of precedence.

Pure dominance constraints are a fragment of dominance constraints with
set operators [18, 3, 7] which have applications both in syntax and in seman-
tics of computational linguistics [22, 12, 9]. Those provide literals for labeling,
arity, parent-child relations, and dominance to partially describe finite labeled
trees. Checking satisfiability of dominance constraints is NP-complete [15]. For
the restrictive, though linguistically still relevant fragment of normal dominance
constraints, there is a polynomial time satisfiability algorithm [2, 14]. Domi-
nance constraints with set operators have been studied in [7] and are important
for formulating algorithms for extensions of dominance constraints with more
expressive constraints [10, 4]. Pure dominance constraints are a strict subset of
dominance constraints with set operators since they lack the possibility to specify
labeling and arity of nodes in the described tree.

Hilfinger, Lawler and Rote investigated a similar problem. They gave an effi-
cient algorithm that minimizes the depth of a given tree satisfying additional tree
constraints [13], which has applications in compiling block structured computer
languages.

If nodes in a tree are interpreted as intervals over the real line, pure domi-
nance constraints translate into a fragment of Allen’s interval algebra [1] where
the intervals are a laminar family, i.e., they are overlap-free. Dominance be-
tween nodes then corresponds to containment of intervals. Allen’s full interval
constraint logic has many applications in temporal reasoning but is NP-complete
in its unrestricted form. Nebel and Bürckert [20] presented an algorithm for the
largest tractable subclass “ORD-Horn” of Allen’s interval algebra, which decides
satisfiability in time O(n3) and constructs a solution in time O(n5), where n is
the number of intervals. Note that this algorithm cannot be used to solve pure
dominance constraints since the translation into interval constraints may have
non-laminar solutions, which do not retranslate into trees.

In this paper, we will present an efficient and complete algorithm that tests
satisfiability of pure dominance constraints by directly constructing a solution
to the problem instance. It runs in time O(m2), where m is the number of
constraints in the input. This is considerably faster than the known algorithms
for the related problems on interval constraints. The performance is achieved by

Pure Dominance Constraints 289

Fig. 1. A visualization of the unsatisfiable pure dominance constraint { x{�}v, u{<, =}
x, v {<, =} y, u {�} y }.

a recursive greedy strategy that works directly on the constraint graph avoiding
the consistent path technique and saturation algorithms of, for example, [17].

2 Pure Dominance Constraints

Pure dominance constraints are tree specifications. So let us first fix some con-
ventions for trees. We will always consider finite rooted directed trees, the arcs
pointing upward towards the root. Normally the nodes of a tree will be denoted
by a, b, c, We write a≤ b and say that b dominates a if there is a path from
a to b. We write a < b for a ≤ b and a �= b. The expression a ∼ b denotes
comparability of a and b, that is, a ≤ b or a ≥ b. Two incomparable nodes a �∼ b

are called disjoint. Note that for every pair a, b of nodes in a tree, exactly one of
the following cases holds:

a < b, a > b, a� b, a= b.

Pure dominance constraints allow to partially describe the structure of a tree
by use of arbitrary disjunctions of these four cases.

Definition 1. Let V be a set of variable symbols ranged over by {x, y, z, . . . },
and R := {<,>, �,=} a set of binary relation symbols. Then a pure dominance
constraint (PDC) is a set Φ of literals of the form x Ω y where Ω ⊆ R and
x, y ∈ V . We write VΦ for the variable symbols occurring in Φ.

A Solution (T, α) of a PDC Φ is a tree T together with a surjective mapping
α : VΦ → T from the used variables onto the nodes of this tree satisfying all
literals in Φ. A literal x Ω y is satisfied by a solution (T, α) if α(x) ρ α(y) holds
in the tree T for some relation ρ ∈ Ω.

We will omit the subscript of VΦ whenever the reference to a specific pure dom-
inance constraint Φ is clear. For readability we will often write x for α(x).

If a PDC has a solution we call it satisfyable. Note that we are not only
interested in the constraint satisfaction problem for PDCs, that is, the question
whether a given PDC is satisfiable.1 We also want to solve a given constraint Φ
efficiently, i.e., compute a solution (T, α).
1 Note that the constraint satisfaction problem considered here does not fall into the

class of classical constraint satisfaction problems since we do not map the variables
into a finite template. Hence the classification of tractable constraint satisfaction
problems of, e.g., [11] does not apply to our problem.

290 M. Bodirsky and M. Kutz

Figure 1 shows an unsatisfiable constraint. It has no solution since there is
no candidate for a root and the mapping α from variables into the tree must be
surjective.

The requirement that α be onto is natural since we are looking for a tree
structure on VΦ and not just any homomorphism into a tree. Nevertheless, drop-
ping this restriction only changes the problem marginally. If (T, α) is a solution
with nonsurjective α, we can remove every nonroot node in T that does not have
a preimage, making all children of α children of α’s parent. It remains the prob-
lem to map some x ∈ VΦ to the root of T . As shown in Figure 1 this may not be
possible although a nonsurjective solution might exist. But the general case can
easily be transformed into the surjective case: Given a PDC Φ, we introduce a
new variable x0 and constraints x0 {>}x for each x ∈ VΦ. This forces x0 to map
to the root of T and therefore, finding an arbitrary solution for Φ is equivalent
to finding a surjective one for the extended constraint.

3 Restricted Constraints

As a first step towards solving pure dominance constraints, we show that each
PDC can be expressed with the following three types of literals only:

x {<,=} y, x {�,=} y, x {<,>,�} y. (1)

The singletons {>}, {<}, {�} and {=} can be written as intersections of these;
and {>,=} is simply the first literal of (1) flipped.

If we show how to express the literals

x {<,>,=} y and x {<,�,=} y (2)

with those in (1) we are finished, since {<,�}, {>,�} and {<,>} are rep-
resentable as intersections of literals from (1) and (2). The two extremal sets
{<,>,�,=} and ∅ are not needed since the former imposes no restrictions on
the tree and the latter is, by definition, unsatisfyable. We can construct the
literals in (2) from those in (1) by means of auxiliary variables:

For each literal φ = x {<,>,=} y, we introduce a new variable z and replace
φ by the two literals z {<,=} x and z {<,=} y. By tree shape, these two imply
x ∼ y, just as φ does.

For each literal φ = x {<,�,=} y, we introduce a new variable z and replace
φ by the two literals x {<,=} z and z {�,=} y. Now either z = y, which implies
x ≤ y, or z �∼ y, and therefore x �∼ y by tree shape. Since the transformed
constraint implies the original one, a solution (T, α) for the former is also a
solution for the latter if we restrict α to the original variables.

The above modifications also maintain solvability. Let (T, α) be a solution for
the original constraint Φ containing x {<,>,=} y. Then we have x ∼ y. Assume
wlog. that x ≤ y. Letting z := x then satisfies the new constraints x {>,=} z
and z {<,=} y. If Φ contained a literal x {<,�,=} y, we can extend the solution
(T, α) by z := y if x < y, and z := x otherwise. In both cases x {<,=} z and
z {�,=} y are satisfied in the modified constraint.

Pure Dominance Constraints 291

Thus we can express any PDC with the three basic literals from (1). We give
them special names: The literal x{�,=}y is called parallelity literal—in analogy
to a pair of parallel lines in the plane which are either disjoint or coincide. The
literal x {<,>,�} y is called a distinctness and x {<,=} y a dominance literal.
Our algorithm works on PDCs containing these three kinds of literals only. Note
that the above transformations may introduce a new node for each constraint
in Φ. Hence, when dealing with running times, we will have to state whether we
consider the general problem or the reduced one.

4 Preparations

We assume that our PDC has already been transformed so that it only contains
dominance, parallelity and distinctness literals. We define the dominance graph
G = (V,E) of a PDC Φ on the variables V := VΦ by letting (x, y) ∈ E iff
x {<,=} y is in the PDC. Parallelity and distinctness literals are represented by
two symmetric irreflexive binary relations P and D, respectively. We let x P y iff
x{�,=}y and x D y iff x{<,>,�}y. Because our algorithm and its correctness
proofs are given in terms of graph theory, we will normally call elements x ∈ V

nodes. This should cause no confusion; it will always be clear whether we talk
about nodes of V or T .

It turns out useful to define the relation ≤ on the set V , letting x ≤ y if and
only if there is a directed path from x to y in the graph G. Obviously ≤ is a quasi
order (that is, it is transitive, reflexive, but not necessarily antisymmetric) and
we may use the symbols ≥, <,> as usual. As with trees, we use the expression
x ∼ y, which is a short for x ≤ y or x ≥ y. Observe that a binary relation ≤ is
now defined on the tree T and on the variable set V . Again, the reference will
always be clear.

The problem can now be restated as follows: Given an instance (V,E, P,D)
of a pure dominance constraint, find a tree T and a surjection α : V → T so
that the following conditions are satisfied:

x ≤ y ⇒ x ≤ y dominance

x P y ⇒ x �∼ y or x = y parallelity

x D y ⇒ x �= y distinctness

The critical parts of the problem are pairs of parallel elements that may not
become equivalent in the solution. If D is empty, we can simply map all nodes
to the root. And it is also easy to see how to construct a solution if P is empty.
So let us consider pairs of nodes that are mapped to incomparable nodes in the
tree.

Lemma 1. Let (T, α) be a solution to the instance (V,E, P,D). Consider any
sequence (a0, a1, a2, . . . , ar) in V with ai−1 ∼ ai for 1 ≤ i ≤ r and with a0 �∼ ar.
Then there exists an index j ∈ {1, . . . , r − 1} with aj > a0 and aj > ar.

292 M. Bodirsky and M. Kutz

Proof. By induction on the length r. For r = 1 there is nothing to show since
the combination a0 ∼ a1, a0 P a1, and a0 D a1 has no solution. If r = 2,
uncomparability of a0 and a2 directly implies a1 > a0, a2.

So let r > 2. If ai−1 ∼ ai+1 for some 0 < i < r, we may remove ai from
the sequence and our claim follows by induction. Otherwise, the relations in the
sequence alternate and hence there exists an i ∈ {1, . . . , r−1} with ai < ai−1 and
ai < ai+1. By tree shape, ai−1 and ai+1 have to be comparable. Assume wlog.
ai−1 ≤ ai+1. If we let E′ := E ∪ {(ai−1, ai+1)} then (T, α) is also a solution to
the instance (V,E′, P,D). Now (a0, . . . , ai−1, ai+1, . . . , ar) is a sequence of length
r− 1 with any two neighboring elements related in (V,E′) and again the lemma
follows by induction. ��

As an example, let us consider the constraint graph in Figure 2. In any
solution, we must have x1 �∼ x3. Thus by Lemma 1, we get x2 > x1, x3. Now
x2 �∼ x4 would contradict Lemma 1; hence x2 = x4 by parallelity. The positions
of u, v, and w are not of interest.

x1 x2 x3 x4

u v w

x2 = x4

x1 = u x3 = v = w

P, D P

Fig. 2. A constraint graph and a solution

5 The Algorithm

Our algorithm is based on the recursive function treeify. Given a set W ⊆ V of
nodes, treeify creates a new tree T and defines the mapping α on W , yielding
α(W) = T . Finally the tree T is returned. More specifically, treeify first creates
an empty tree T containing only a root r and maps a certain subset S ⊆ W to r.
Afterwards it calls itself recursively on subsets Wi ⊆ W \ S. The trees returned
by these recursive calls are then linked to the root r.

Before we come to the crucial part of this function, namely the choice of
the sets S and Wi, let us recollect some basic notions from graph theory: An
undirected path in a directed graph may use arcs in any direction, ignoring
their orientation. A strongly (weakly) connected component of G is a maximally
induced subgraph U of G with a directed (an undirected) path from a to b for
any two nodes a, b ∈ U . We introduce the expression (V,E)|W := (W,E ∩W 2)
for the subgraph of (V,E) induced by a node set W ⊆ V .

So let us find out how to choose the set S. By construction we get x > y

for all x ∈ S and y ∈ W \ S. Thus dominance demands that S be closed under

Pure Dominance Constraints 293

treeify(W):

compute the strongly connected components of the graph (V, E ∪ P)|W ;
if no free component exists then exit “problem has no solution”
else pick a free component S;
create new tree T with root r;
for each x ∈ S do α[x] := r od;
compute the weakly connected components W1, . . . , Wk of the graph (V, E)|W\S ;
for i = 1 to k do

Ti := treeify(Wi);
link Ti directly under r;

od;
return T ;

Fig. 3. The function treeify

directed reachability in (V,E), i.e., no E-edges may leave S. Suppose now that
a pair of parallel elements a P b gets split by S, say a ∈ S but b �∈ S. This
implies a > b, in contradiction to parallelity. Hence either a, b ∈ S or a, b �∈ S

for a P b. And finally, S may obviously not contain a pair of distinct elements
u D v. These observations lead to the following definition.

Definition 2. A strongly connected component C of the graph (V,E ∪ P)|W ,
W ⊆ V , is called a terminal component (of W) if its outdegree in (V,E ∪ P)|W
is zero. That is, (E ∪ P) ∩ (C × (W \ C)) = ∅. We call a terminal component
C ⊆ W free if x �D y for all x, y ∈ C.

Note that the graph (V,E ∪ P)|W contains—in addition to the arcs from E—a
bidirectional edge between each pair x P y of parallel nodes in W .

For the set S, the function treeify picks an arbitrary free component of
W . We will show later that, given the whole problem has a solution, such a
free component always exists. It remains to choose the partition W1, . . . ,Wk

of W \ S. By construction, elements in different sets Wi of this partition will
become incomparable in the tree. So we may simply choose the Wi to be the
weakly connected components of the graph (V,E)|W\S . This way parallelity and
distinctness constraints between different components are automaticly resolved.
The proofs will be given below.

Figure 3 gives a detailed description of the function treeify. The whole
algorithm for an input (V,E, P,D) just consists of the function call treeify(V).
Note that although the tree structure T is created recursively, the mapping α
is not passed at function calls but is accessed globally. We assume that at the
beginning we have α(x) = undef for all x ∈ V .

5.1 Correctness Proof

Soundness. We first show that the algorithm only returns correct solutions,
i.e., it satisfies the conditions dominance, parallelity and distinctness of Section 4.

294 M. Bodirsky and M. Kutz

To verify dominance, we need to show that reachability in the induced graphs
(V,E)|W is equivalent to reachability in the input graph (V,E), which defines
the relation ≤ on V .

Lemma 2. Let W ⊆ V be a node set that occurs as an argument to the function
treeify throughout the execution of the algorithm. For any pair x, y ∈ W , each
directed path p in (V,E) from x to y is also a path in (V,E)|W .

Proof. By induction over the recursion. For the initial case W = V there is
nothing to do. So assume that the statement is true for some call treeify(W),
and that we have just chosen a free component S. We show that it remains
true for all recursive calls of treeify on weakly connected components W ′ of
(V,E)|W\S . Let x, y be nodes in W ′. No path p from x to y contains a node
from S since S is terminal. Hence, p lies completely in W ′ because W ′ contains
all nodes z ∈ W \ S that are reachable from x. ��

Now dominance follows easily by induction. Consider a call treeify(W) and
a pair x, y ∈ W with x ≤ y. If x ∈ S, we also have y ∈ S and thus x = y. If
x �∈ S and y ∈ S, we get y = r while x is passed on through a recursive call and
hence x will lie in a subtree below r. Otherwise, x and y both fall into the same
weakly connected component Wi and we may conclude dominance by induction.

To verify parallelity, we again consider an arbitrary call treeify(W). Let x, y
be nodes in W . If x, y ∈ S we have x = y. Otherwise, none of x and y lies in S
since these nodes are strongly connected in (V,E ∪ P)|W . If they lie in different
weakly connected components of (V,E)|W\S , their images x and y will fall into
different subtrees of r. Hence x �∼ y. If they lie in the same component, our
statement again follows by induction.

Condition distinctness is satisfied since any two nodes x, y with x = y lie in
the same free component S of some instance of treeify. But since S is free such
pairs satisfy x �D y.

The constructed mapping α : V → T is obviously a surjection.

Completeness. So we know that the algorithm only returns correct solutions. We
now show that it also always finds one if the PDC has a solution. To this end,
we assume that the input (V,E, P,D) has a solution (T, α). Then we consider an
arbitrary instance of treeify(W) that is executed by the algorithm and prove
that the set W must contain a free component.

The basic idea for the proof is to construct iteratively a sequence
x0, x1, x2, . . . in W with x0 ≤ x1 ≤ Some of these inequalities will be
strict. For the others with xi = xi+1 we will guaranty the existence of a path
from xi to xi−1 in (V,E ∪ P)|W . From these paths we will be able to conclude
that our sequence eventually enters a free component. For preparation we prove
the following extension of Lemma 1.

Lemma 3. Let (T, α) be a solution to the input (V,E, P,D) and let W be the
argument of a call to treeify. Then for any pair u, v ∈ W with u �∼ v, there
exists a node y ∈ W with y > u, v.

Pure Dominance Constraints 295

Proof. We distinguish two cases. If W = V , α maps neither u nor v to the root
r of the tree T since otherwise u ∼ v. Hence any y ∈ α−1(r) has the desired
property.

If W �= V , the graph (V,E)|W is weakly connected. So there is an undirected
path q in this graph connecting u and v. By Lemma 1 there exists a node y ∈ W

with y > u and y > v. ��

The next lemma is the basis for our construction of the sequence
x0, x1, x2,

Lemma 4. Let (T, α) be a solution to the input (V,E, P,D) and let W be the
argument of a call to treeify. Let C be a strongly connected component of
(V,E ∪ P)|W that is not free and let x ∈ C. Then there either exists

1. a node y ∈ W with y > x or
2. a node w ∈ W \ C satisfying w ≥ x, together with a directed path q in

(V,E ∪ P)|W from x to w.

Proof. If C is terminal, there exist two nodes a, b ∈ C with a D b since C is
not free. Choose two directed paths p1 = (x = u1, . . . , uk = a) and p2 = (a =
uk, . . . , ul = b) in (V,E ∪ P)|C . By distinctness, we have uk �= ul. Hence there
must be an index j < l with x = uj �= uj+1.

Since (uj , uj+1) ∈ E ∪ P , we have uj ≤ uj+1 or uj P uj+1. In the former
case let y := uj+1; then y > uj = x. In the latter case we get uj �∼ uj+1 and
Lemma 3 yields the desired y ∈ W .

If C is not terminal there exist two nodes z ∈ C and w ∈ W \ C with
(z, w) ∈ E ∪ P . Since (z, w) ∈ P would imply w ∈ C, we even have z ≤ w. Let
p = (x = u0, . . . , uk = z) be a directed path in (V,E ∪ P)|C . Consider the index
set I = {i | 0 ≤ i < k, ui �≤ ui+1}.

If I �= ∅, let j := min I. We have uj �≤ uj+1 by dominance and thus uj P uj+1

by the definition of p. Therefore x ≤ uj �≤ uj+1; and by parallelity even uj �∼ uj+1.
Now Lemma 3 again yields the sought-after y ∈ W .

If I = ∅, we have x ≤ z ≤ w and the path q = (u0, . . . , uk, w) connects x and
w in (V,E ∪ P)|W . ��

Theorem 1. If the instance (V,E, P,D) has a solution then for each function
call treeify(W) throughout the execution of the algorithm, the respective graph
(V,E ∪ P)|W contains a free component.

Proof. We pick an arbitrary node x0 ∈ W . If it lies in a free component we are
finished. If not, we apply Lemma 4 to x0 yielding some x1 ∈ W with x1 > x0
or only x1 ≥ x0. But in the latter case, x1 is reachable from x0 via a directed
path in (V,E ∪ P)|W . We may repeat this step as long as no free component is
found. This yields a sequence x0, x1, x2, . . . in W .

We claim that this sequence is finite, i.e., some xi will eventually lie in a free
component. Assume for contradiction that it is infinite. Then we have xk = xl for
some pair of indices k < l. Since xi+1 > xi for any index i ∈ {k, . . . , l−1} would

296 M. Bodirsky and M. Kutz

imply the contradiction xk < xk, all pairs xi, xi+1, k ≤ i < l of neighbouring
nodes are connected by a directed path. But then xk, xk+1, . . . , xl−1 all lie in
the same strongly connected component of (V,E ∪ P)W , in contradiction to
Lemma 4. ��

5.2 Running Time

We measure the running time of our algorithm in terms of the number of nodes
n := #V and constraints m := #E + #P + #D. For our estimates, we assume
m ≥ n − 1. Otherwise, the graph (V,E ∪ P ∪ D) is not connected and we can
simply treat its weakly connected components independently and then link the
resulting trees in any arbitrary order.

Theorem 2. The algorithm runs in time O(nm).

Proof. Computing the strongly connected components of (V,E ∪ P)|W takes
O(m) steps [16, Sec. 3]. Checking each components outdegree and internal dis-
tinctness constraints also takes O(m) steps. Creating the tree and linking the
subtrees can be done in O(n) steps. Hence, each instance of treeify performs
O(m) operations, not counting the time needed for the recursive calls.

Since in each instance of treeify at least one node is mapped to the tree,
there happen no more than n calls to treeify throughout the whole execution
of the algorithm. ��

Observe that this result applies to the reduced constraint set only. Since the
reduction of pure dominance constraints to their restricted form might introduce
a new vertex for each constraint, constructing a solution for a general pure
dominance constraint might take time quadratic in the number of constraints.

Note that we cannot improve upon this bound of Theorem 2 by arguing that
the sets W ⊆ V in calls to treeify become smaller and smaller throughout
the recursion. As a counterexample, consider a dominance graph that consists
of a single directed path with all neighbouring nodes distinct. Then in each
instance treeify(W), the free component S contains only a single element and
the remaining graph (V,E)|W\S remains weakly connected. On this input, our
algorithm actually performs Ω(nm) steps.

Possible improvements. We want to hint at a part in our algorithm that appears
inefficient and which might be subject to future improvements. The strongly
connected components of subgraphs of (V,E ∪ P) and the weakly connected
components of subgraphs of (V,E) are computed over and over again. The al-
gorithm does not reuse any connectivity information.

Mapping the component S to the tree in any instance of treeify only re-
moves nodes from the respective graph, and splitting the remaining setW \S into
its weakly connected components only deletes edges. Thus we never introduce
nodes or edges. Therefore, it might be possible to reuse information by means
of the decremental dynamic connectivity techniques presented in [23]. But those
results only apply to undirected graphs and it is not clear how to extend them to

Pure Dominance Constraints 297

strongly connected components. And even if we could speed up the connectivity
computations, we would still have to find the free components.

6 Conclusion

We introduced the tree description language pure dominance constraints which
forms a natural fragment of constraint languages used in computational linguis-
tics. It is expressive enough to contain a counterexample to the completeness of
Cornell’s algorithm.

We presented an algorithm that constructs a solution of pure dominance
constraints in quadratic time. It is mainly based on weak and strong graph con-
nectivity. We think that the running time can still be improved using decremental
dynamic connectivity techniques.

A main contribution of this paper is the method of using greedy algorithms
and graph theoretic concepts for constraint satisfaction problems instead of the
consistent path method and saturation algorithms. We may ask if it is possible
to avoid the consistent path method for Nebel and Bürckert’s maximal tractable
subclass of Allen’s interval algebra, too. A faster algorithm for this subclass
would be of practical importance since it could be used to bound the branching
in backtracking algorithms for the important full interval algebra [19, 24]. A
first step in this direction would be the extension of our algorithm such that it
can also deal with precedence constraints as defined in the original language by
Cornell.

Acknowledgements. We want to thank Denys Duchier and Joachim Niehren
for pointing us to the constraint problem, and an anonymous referee for his
usefull remarks.

References

1. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, 1983.

2. E. Althaus, D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel. An
efficient algorithm for the configuration problem of dominance graphs. In Proceed-
ings of the 12th ACM-SIAM Symposium on Discrete Algorithms, pages 815–824,
Washington, DC, Jan. 2001.

3. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the
theory of finite trees. Journal of Logic, Language, and Information, 4:5–39, 1995.

4. M. Bodirsky, K. Erk, A. Koller, and J. Niehren. Beta Reduction Constraints.
In Proceedings of the 12th International Conference on Rewriting Techniques and
Applications, Utrecht, 2001.

5. T. Cornell. On determining the consistency of partial descriptions of trees. In 32nd
Annual Meeting of the Association for Computational Linguistics, pages 163–170,
1994.

6. T. Cornell. On determining the consistency of partial descriptions of trees.
http://tcl.sfs.nphil.uni-tuebingen.de/˜cornell/mss.html, 1996.

298 M. Bodirsky and M. Kutz

7. D. Duchier and J. Niehren. Dominance constraints with set operators. In First
International Conference on Computational Logic (CL2000), LNCS, July 2000.

8. D. Duchier and S. Thater. Parsing with tree descriptions: a constraint-based ap-
proach. In Sixth International Workshop on Natural Language Understanding and
Logic Programming (NLULP’99), pages 17–32, Las Cruces, New Mexico, Dec. 1999.

9. M. Egg, A. Koller, and J. Niehren. The Constraint Language for Lambda Struc-
tures. Journal of Logic, Language, and Information, 2001. To appear.

10. K. Erk, A. Koller, and J. Niehren. Processing underspecified semantic representa-
tions in the constraint language for lambda structures. Journal of Language and
Computation, 2001. To appear.

11. T. Feder and M. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through datalog and group theory. SIAM J.
Comput., (28):57–104, 1999.

12. C. Gardent and B. Webber. Describing discourse semantics. In Proceedings of the
4th TAG+ Workshop, Philadelphia, 1998. University of Pennsylvania.

13. P. Hilfinger, E. L. Lawler, and G. Rote. Flattening a rooted tree. Applied Geometry
and Discrete Mathematics, 4:335–340, 1991.

14. A. Koller, K. Mehlhorn, and J. Niehren. A polynomial-time fragment of domi-
nance constraints. In Proceedings of the 38th Annual Meeting of the Association
of Computational Linguistics, Hong Kong, Oct. 2000.

15. A. Koller, J. Niehren, and R. Treinen. Dominance constraints: Algorithms and
complexity. In Third International Conference on Logical Aspects of Computational
Linguistics (LACL ’98), Grenoble, France, Dec. 1998.

16. T. Lengauer. Combinatorial algorithms for integrated circuit layout. Wiley – Teub-
ner, 1990.

17. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

18. M. P. Marcus, D. Hindle, and M. M. Fleck. D-theory: Talking about talking about
trees. In Proceedings of the 21st ACL, pages 129–136, 1983.

19. B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-Horn class. 1(3):175–190, 1997.

20. B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66,
1995.

21. M. Pinkal. Radical Underspecification. In Proc. 10th Amsterdam Colloquium, 1996.
22. J. Rogers and V. Shanker. Reasoning with descriptions of trees. In Proceedings of

the 30th Meeting of the Association for Computational Linguistics, 1992.
23. M. Thorup. Decremental dynamic connectivity. J. Algorithms, 33(2):229–243, Nov.

1999.
24. P. van Beek. Exact and approximate reasoning about temporal relations. Compu-

tational Intelligence, 6:132–144, 1990.

