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1 Introduction

Almost everybody has a light in their house that can be switched on and off from
two or more different places. If your electrician set up the wiring properly, you are
able to toggle the light with every single switch, independent of the others’ current
configuration.

We may think of the switches as implementing a parity function. If we label the
two positions of a switch by 0 and 1, the light is on if the sum of switch positions is
even and off if this sum is odd (or vice versa). So in the common case of only two
switches, ‘light on’ is just the binary relation xor. (Not all real-life installations are
of this kind. We also find the binary and implemented in a few houses; which can
be very annoying—and even dangerous, at nights.)

We present a mathematical model for such electrical light switch circuits in
which a single switch consists of several elementary switching units. Then we ask
for an optimal setup for the general n-switch problem; optimal here means using
as few of these components as possible.

We employ elementary techniques from graph theory to obtain the surprising
result that, with respect to our formalism, the standard implementation of the
n-switch problem installed all over the world is optimal.

2 The standard setup

Before delving into mathematical formalism, let us get some feel for light switches.
For a start, operating one light from two switches is quite simple. The configuration
shown in Figure 1 does the job. The left switch toggles between the connections
(s,a) and (s,b), the right between (c,t) and (d,t).
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Figure 2: A four-way switch.

There are different names around for this circuit. In the United States most call
it a ‘three-way switched circuit’, and the dashed boxes are then respectively called
‘three-way switches’. The origin of the term ‘three-way’ is not quite clear. Some
attribute it to the number of wires that run between the power source and the load
(two from the power source to the light and one back), others suggest that ‘three’
count the number of devices from the power supply to the load (two switches, one
light).

An alternative name for the configuration in Figure 1 is ‘two-way circuit’, maybe
because there are exactly two wires running between the two switches. We prefer
the latter view and consequently call those dashed boxes two-way switches since
they connect one wire to one out of two wires on the other side.

When n > 2 inputs are to be wired, so-called four-way switches shown in
Figure 2 are used. Such a switch is made up of two two-way switches that either
connect the pairs (z,u) and (y,v), or the pairs (z,v) and (y,u). That are four
possible connections altogether, which somehow justifies the name. But historically,
there again seem to be different reasons for the term ‘four-way’.

If we now put n — 2 four-way switches in line between two terminal two-way
switches, as shown Figure 3, we get the desired switching property: any single
switch can toggle the light, independent of the position of the other components.
Figure 3 shows the standard setup for the n-switch problem. You will find it in
almost any house with electric power supply—provided they did not use relays
instead of ordinary switches.



Figure 3: The standard setup for more than two switches.

3 Modelling circuits

We want to investigate the efficiency of electrical light switch circuits with respect
to the number of elementary switching units needed. The wiring itself shall be
neglected. Assume that we have good connections to some major copper company
with an almost infinite supply of wire so that we may run hundreds of kilometres
of cable at no cost at all.

The cost of a switch. So what should be the price for a switch? Obviously, a
complex structure like a four-way switch should not count as a single unit and even
a two-way switch can be divided into more elementary components.

We let an interruptor be a device that can connect and disconnect a single pair
of wire ends. Hence, a two-way switch consists of two interruptors, a four-way
switch of four. And thus the naming conventions we picked for those switches turn
out very sound.

Circuits as graphs. We will model light-switching circuits in the language of
graph theory. The employed concepts are very basic and we briefly present required
notions, so that even the reader who encounters them for the first time should have
no great problems to follow our constructions. The only graph theoretic concept
that might deserve a more careful treatment is that of contraction, which plays an
important role in the central proof of this paper, so we will address it in greater
detail when needed. The following definitions can be found in any textbook on
graph theory, such as [1, 2, 3].

A graph G = (V, E) consists of a set V of vertices and a set FE of edges. An
edge e € F is an unordered pair {a, b} of vertices in V' and we say that e connects
the vertices a and b and that it is incident to either of them. A path in a graph G
is a sequence vy, v1, ..., v, of pairwise distinct vertices with {v;,v;11} € E for each
1< T,

Formally, our definition excludes multiple edges between pairs of vertices but
it will be convenient to agree that a ‘set’ of edges may contain a single vertex pair
several times so that we get parallel edges. This common technical sloppiness saves
us some tedious formalism and will lead to no problems. Further we also allow
loops, i.e., edges that connect a vertex to itself.

Our aim is to describe light-switching circuits as graphs. So let us begin with
the vertices. They embody the static parts of the circuit, that is, the wires, the
power supply, and the light. Since we are not interested in the routing of wires but
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Figure 4: Graph representations of (a) the two-way circuit and (b) the four-way
switch.

only in their function as contact points for interruptors, we may take the simplified
view that coherent wire segments are just points, so they become the vertices of our
graph. The direct connection between power source and light is irrelevant for our
switches and can thus be ignored. For the circuit in Figure 1 we get four vertices:
one for the left wire, one for the right wire, and two vertices between the switches.
The position of power source and light are encoded by labelling the respective wire
segments s (‘source’) and ¢ (‘target’).

The edges of the graph are the dynamic components of the circuit—the in-
terruptors. For our example circuit in Figure 1 this makes four edges altogether.
Figure 4(a) shows a picture of the resulting graph.

Of course this description is still incomplete, it contains no information about
the semantics of the interruptors. We have to specify which interruptor is operated
by which switch, and how. To this end we associate two edge sets £ and F' with
each switch. The edges in E are short when the switch is in position 0, those in F'
are short when it is in position 1. Figure 4(b) shows the graph representation of the
four-way switch from Figure 2; the edges in £ are drawn as continuous, those in F'
as dashed lines. Formally we have E = {{z,u},{y,v}} and F = {{z,v}, {y,u}}.

A single switch has only two different configurations. In a circuit we can ma-
nipulate several switches independently, so we need sets E and F' for each switch.
Here is the formal definition.

An n-input switching circuit is a tuple

C= (Vvas’taEla-"1EnaF15"'aFn)’

where V is a finite set of vertices, s,t are vertices of V, and E1,...,E,, Fy,..., F,
are sets of edges on V. We call

n
size(C) := Z |E;| + | F3
=1

the size of the switching circuit C.

Circuits in action. It remains to specify which input configurations turn the
light on and which turn it off. Consider therefore some binary input vector d =
(d1,dg,...,d,) € {0,1}". Each bit stands for the position of a switch, which in



turn ‘activates’ certain edges and ‘deactivates’ others. We define the d-graph of C

to be the graph
G(C,d) = (V, U Eul F)
d;=0 d;=1

that is, the graph with vertex set V' and with all those edges of C' that correspond
to active interruptors.

The light is on if and only if there is a connection between power source and
light, formally, if there is a path from s to ¢ in the d-graph. We define the induced
function Ac : {0,1}™ — {0,1} of the switching circuit C by

{1 if there is a path from s to t in G(C, d),

Ac(d) ==
c(d 0 if there is no path from s to ¢ in G(C, d).

Recall from the introduction that we are interested in precisely those circuits
that realize the parity function. So we call an n-switching circuit C' with

Ac(d) = idi (mod 2) for all d € {0,1}" (1)
=1

an n-parity circuit.

The alert reader might remark that the above definition depends on the choice
of the edge sets F; and F;. If we swap those two sets for an arbitrary index i,
equation (1) is no longer satisfied, although toggling any input still changes the state
of the light. But if we change the definition of parity circuits by adding 1 to either
side of equation (1), the modified circuit becomes a parity circuit again. So there
are actually two equitable notions of parity circuits. We chose ours just because it
has the nice property that the light is off if all inputs are 0, formally, Ac(0) = 0.
Fortunately, it will turn out that this choice only effects some intermediate results,
our important statements hold for both notions of parity circuits.

Minimal circuits. The aim of this article is to investigate how many interruptors
are needed to implement an n-parity circuit. Hence we define

p(n) := min {size(C) | C n-parity circuit}.

Obviously p(1) = 1. For n > 2 consider Figure 5, which shows the standard setup
translated into graph theory. A letter at an edge indicates to which set F; or F; it
belongs. From this scheme we get the upper bound

pn) <dn—4, n>2 2)
The rest of the paper is dedicated to showing equality in (2):
Theorem 1. The standard setup for n-parity circuits is optimal! We have

p(n):{l formn =1,

dn —4  forn > 2.

'Here 0 also denotes the zero vector.



Figure 5: The standard setup in graph notation.

4 Basic properties of parity circuits

Parity circuits inherit a simple but important property from the parity function on
bit vectors. Flipping an even number of bits in a vector does not, by definition,
change its parity. And flipping an even number of switches in a parity circuit does
not change its induced function. By flipping the i-th input of a switching circuit,
we mean reversing that switch, i.e., exchanging the edge sets E; and F;.

Lemma 1 (Exchange Lemma). For an n-parity circuit and two indices i,7j,
1 <1< j <mn, exchanging E; with F; and E; with F; yields a parity circuit again.

Proof. Let C denote the original circuit and C’ the modified one. Consider any
n-bit vector d' and let d denote the vector obtained from d' by flipping bits i and
j. We have G(C',d') = G(C,d) and hence Acr(d') = A¢(d). The bit vectors d' and
d have the same parity, so C' is a parity circuit because C is. O

We now turn to our actual task, to find a lower bound on the size of an n-parity
circuit. Looking at the definition of the size of a circuit, we ask the natural question
whether in a parity circuit any of the sets F; and F; can be empty. It turns out
that, except for the minimal 1-parity circuit on two vertices s,t with E; = () and
Fy = {{s,t}}, this cannot happen.

Lemma 2. For any n-parity circuit, n > 2, none of the edge sets Fn,...,E,,
Fy, ..., F, is empty.

Proof. Assume for contradiction that F; = () for some index j. Let I; denote the
n-bit vector containing a 1 in position j and zeros elsewhere. Then Ac(I;) =1
by parity. Hence the graph G(C,I;) contains an s-t-path. But since Fj is empty,
the graph G(C,0) also contains this path. Thus we arrive at the contradiction
Ac(0) = 1.

The case E; = () reduces to the above case by application of the exchange
lemma. Note that we need n > 2 here. O

From Lemma 2 we can already deduce p(2) = 4 since Figure 1 shows a parity
circuit of size 4.
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Figure 6: A 3-parity circuit of size 9.

5 The lower bound

We learnt that except for the trivial case n = 1, a parity circuit has no empty edge
sets. Let us follow this thread of thought and investigate whether we can improve
upon this bound.

The basic idea. Let us find out whether any of the sets E; or F; in a parity
circuit can be singleton. That is, can there be an edge set containing only one
edge?

Of course, the standard setup shows there can; it has |Ei| = |Fi| = |E,| =
|F,| = 1. But maybe this is just best possible. Perhaps we can show that in any n-
parity circuit, n > 3, all but two inputs have edge sets of size at least two. Together
with Lemma 2 this would directly imply optimality of the standard setup.

Unfortunately we cannot. Figure 6 shows a 3-parity circuit with all |F;| = 1.
But this example does not ultimately thwart our ambitions. It turns out that the
case n = 3 is somewhat degenerate. In fact, restricting ourselves to n > 4, we can
show the following:

Proposition 1. In any n-parity circuit, n > 4, there are at most two indices © with

Although Proposition 1 excludes the case n = 3, our proof essentially relies on
a fact about 3-parity circuits. So let us consider those first.

A closer look at 3-parity circuits. We consider again the circuit from Figure 6.
The singleton sets are all F-sets, that means, they all correspond to a switch in
1-position. Is there a similar circuit with all F-sets of size one? The answer is ‘no’.

Lemma 3. There is no 3-parity-circuit with |E1| = |Ey| = |E3| = 1.

Proof. We assume for contradiction that there exists a 3-parity circuit C' with
E1 = {61}, E2 = {62}, and E3 = {63}.

If two of these edges were identical, say e; = ey, then the graph G(C, (0,0,1)) =
(V, E1 U E> U F3) would be a subgraph of G(C, (0,1,1)) = (V, E; U F, U F3). Then
from A¢((0,0,1)) =1 we deduce the contradiction A¢((0,1,1)) = 1. Thus, e1, €2,
and ez must be pairwise different.



We now consider an s-t-path p in the graph G(C, (0,0,1)). Obviously p must
contain e; and es since otherwise )\c((l,O, 1)) =1or )\c(((),l, 1)) = 1. We may
assume without loss of generality that p is of the form

sF3e1FyeaFst (3)

where F* stands for an arbitrary number of edges from the set F'.
Analogously, the graph G(C, (0,1, 0)) contains an s-t-path g of the form

sFyei FyesFyt (4)

or
sFye3F5e Fit. (5)

Combining (3) and (5) yields an s-t-path in (V, E; U F; U F3), a contradiction to
Ac((0,1,1)) = 0. Therefore ¢ must be of the form (4).
Finally there is also an s-t-path in G (C, (1,0, 0)), which looks like

sFleaFlesFi't (6)

or
sFlesFeaFi't. (7)

Now an argument analogous to that for (3) and (5) shows that (6) conflicts with
(3) and (7) with (5). A contradiction. O

Comparison of Figure 6 and Lemma 3 points out again the discussed asymmetry
between FE-sets and F-sets. Had we chosen the alternative notion of parity in the
defining relation (1), the roles of E-sets and F-sets in Lemma 3 and the Figure
would of course be interchanged. However, though the proof of Proposition 1 will
be based on Lemma 3, the proposition itself is obviously independent of the precise
notion of parity because the statement is symmetric in the F; and E;.

Hardwired switches. The crucial idea for the proof of Proposition 1 is to fix
several inputs of an n-switching circuit to 0-position so that they cannot be turned
on again. The resulting circuit can then be considered as one with fewer inputs.
Fixing all but three inputs allows application of Lemma, 3, from which we will gain
sufficient information about the original n-circuit.

This procedure demands that we define precisely how to fiz an input of a switch-
ing circuit. We have to turn all active interruptors of that input into invariable
wire. But then the two adjacent wire segments—which are simply vertices in our
model—have to be merged. Phrased in terms of graph theory, we have to contract
edges.

Contracting an edge e = {a,b} of a graph means to merge the two vertices a
and b into a single vertex and to remove the edge e. All edges that were incident
to either a or b become incident to the new vertex (see [3, §12]). One can visualise
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Figure 7: Hardwiring inputs.

contraction as a continuous process in which we shrink the edge {a,b} more and
more until both vertices amalgamate to a new vertex. Note that such contractions
may create parallel edges and loops, which was our main reason to introduce these
notions.

It is an easy exercise to show that a sequence of contraction steps on a graph
is independent of the order of those operations. So we may legitimately speak of
contracting whole sets of edges, not worrying about the precise order in which the
individual steps are performed.

It should be clear now how to fix inputs of a switching circuit C. We hardwire
the jth input of an n-switching circuit to 0 by contracting all edges in the set
E;. More precisely, we contract all E;-edges in the graph (V,U;, E; U U, F3),
always remembering for each edge to which set F; or F; it belongs. Afterwards we
simply forget about the edge sets F; and F; (the former of which is now empty).
This leaves us with a modified (n — 1)-circuit which we denote by C;. We restrict
our attention to switches fixed in 0-position because we shall only need this case,
hardwiring to 1 works just the same.

In analogy to single contractions, hardwiring several inputs is independent of the
order of the inputs, so we may write C; when we hardwire a wholeset I C {1,...,n}
of inputs. Figure 7 shows two successive hardwiring steps performed on the circuit
T from Figure 6.

The fact that all hardwired inputs of a circuit C; behave like switches in 0-
position can be expressed through the obvious equation

>\c{k+1,k+2,"_,n}((dl,dz,...,dk)) = Mo ((d1,dz, ..., dx,0,...,0)). (8)

The concept of hardwiring switches allows us to prove Proposition 1 in a very
elegant and succinct way.

Proof of Proposition 1. Assume for contradiction that there is a circuit with three
indices i that satisfy |E;| = 1 or |F;| = 1. Without loss of generality we may assume
that they are the first three.

For each index ¢ < 3 with |F;| = 1, we apply the exchange lemma to the pair
(i,4). Then we have |E;| = |Ey| = |Es| = 1. Call the resulting circuit C. Now
consider the switching circuit Cyy5, ..} obtained from C' by fixing all but the first
three inputs to 0. By (8) this is a parity circuit because C is. A contradiction to
Lemma 3. U



Conclusion. With Proposition 1 for the case n > 4, Lemma 3 for n = 3, and the
fact that n-parity circuits have no empty edge sets for n > 2, we can now prove the
standard setup optimal. Let us put things together.

Proof of Theorem 1. The case n = 1 was clear and p(2) = 4 followed from Lemma 2.
Proposition 1 together with Lemma 2 shows p(n) > 4n — 4 for n > 4. So it only
remains to show p(3) > 8. But this is quite simple now.

Assume for contradiction that there is a 3-parity circuit C of size less than 8.
By Lemma 2 there is at most one E; or one F; with two elements, all other edge
sets being singletons. The latter case is in direct contradiction to Lemma 3; and
with one application of the exchange lemma the former also is. O

6 Possible Extensions

Since our actual task has been solved, one might think about possible variations of
parity circuits.

An immediate idea is to replace s-t-reachability in the definition of the induced
function A¢ by some other graph property. For example, our light might depend
on the existence of a Hamilton cycle in the d-graph. A cycle in a graph G = (V, E)
is a closed path in G, i.e., a sequence vy, v1,..., v, of vertices with {v;,viy1} € E
for 0 < i < r, and vy through v,_; all distinct from each other, but v, = vy. A
Hamilton cycle in G is a cycle that contains all vertices of G.

So we consider the function

NIAM( ) _ 1 if G(C,d) contains a Hamilton cycle,
¢ 0 if G(C,d) contains no Hamilton cycle

and try to construct n-switching circuits of small size that induce the parity function
under these changed conditions. (Here the vertices s and ¢ have no meaning.)

We have to admit that the practical relevance of such circuits is rather ques-
tionable. Finding a Hamilton cycle in a graph is a hard problem. An elementary
physical device that turns a light on if some graph contains a Hamilton cycle and
turns it off if not, would represent a devastating scientific breakthrough. Hence
today, Hamilton-cycle-sensitive lights are mere science fiction. Albeit, reality is no
impediment for mathematical curiosity. So what can be said about the effect of
alternative graph properties on parity circuits?

It is not clear whether such switching circuits exist at all. But, at least for
our example they do. Together with Emo Welzl, we found n-parity circuits of size
4n for the Hamilton-cycle setting, making use of four-way switches again. And
once having seen such a construction, one easily derives similar circuits for other
properties like planarity or bipartiteness.

It remains an open question whether for each nontrivial graph property P and
each n > 1, there exists an n-switching circuit C' whose induced function )\g is the
parity function. If the answer is ‘no’, it might be worth seeking for a classification
of those properties that have such circuits and of those who have not.
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