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Abstract. The Angel-Devil game is played on an infinite chess board.
In each turn the Angel jumps from his current position to a square at
distance at most k. He tries to escape his opponent, the Devil, who blocks
one square in each move. It is an open question whether an Angel of
some power k can escape forever. We consider Kings, who are Angels
that can only walk, not jump. Introducing a general notion of speed
for such modified pieces, we obtain an improvement on the current best
Devil strategy. Our result, based on a recursive construction of dynamic
fractal barriers, allows the Devil to encircle Kings of any speed below 2.

1 Introduction

Two players, the Angel and the Devil, play a game on an infinite chess board
whose squares be indexed by pairs of integers. The Angel is an actual “person”
moving across the board like some chess piece, while his opponent does not live
on the board but only manipulates it. In each move, the Devil blocks an arbitrary
square of the board such that this location may no longer be stepped upon by the
Angel. The Angel in turn, flies in each move from his current position (z,y) € Z>
to some unblocked square at distance at most k for some fixed integer k, i.e., to
some position (z',y") # (z,y) with |2'—z|, |y’ —y| < k. Note that Devil moves are
not restricted to the Angel’s proximity or limited by any other distance bounds;
he can pick squares at completely arbitrary locations.

The Devil wins if he can stop the Angel, that is, if he manages to get him in
a position with all squares in the (2k + 1) x (2k + 1) area around him blocked.
The Angel wins if he succeeds to fly on forever. The open question is, whether
for some sufficiently large integer k£ the Angel with distance bound k, called the
k-Angel, can win this game.

First variants of this game were discussed by Martin Gardner [7], who names
D. Silverman and R. Epstein as original inventors. Though his article deals
mainly with finite configurations, i.e., the question whether a chess king (which
is simply a 1-Angel) can reach the boundary of a given rectangular board, he
also asks for a strategy against a chess knight on an infinite board. In its present
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form the Angel game first appeared in Berlekamp, Conway, and Guy’s classic [2]
(Chapter 19). Amongst detailed analyses of games with kings and other chess
pieces on finite boards against Devils with certain additional restrictions, the
authors coin the names “Angel” and “Devil” and give a thorough proof that the
chess king can be caught. Then Conway [4] focused entirely on the infinite Angel
game, trying to explain possible pitfalls with certain natural escape attempts
and pointing out the hardness of the problem. Besides all variants, the central
open question remains whether some Angel of sufficient power can escape forever.
In his overview article [5], Demaine cites it as a difficult unsolved problem of
combinatorial game theory.

In this work, we present an improvement on the current best known Devil
strategy. Therefore we introduce a reformulation of the original game, which
allows us to focus on speed as the important parameter. We define a k-King to be
a k-Angel who cannot fly but runs; that is, a k-King is allowed to make k ordinary
chess-king steps per turn, where each single step has to use an unblocked square.
We shall see that Kings and Angels are asymptotically equivalent (if some Angel
can escape then also some King can, and vice versa) and that the concept of
k-Kings naturally extends to fractional and even irrational speed (Definition 1).
Our main result is the following:

Theorem 1. The Devil can catch any a-King with a < 2.

Many proof details, which have to be omitted here due to space constrains,
can be found in the first author’s thesis [9].

2 Basic Facts and Previous Results

The only case for which the k-Angel problem is solved is k = 1, the ordinary
chess king. We like to sketch a winning strategy for the Devil, which resembles
the analysis in [2]. These key ideas form the starting point for our proof of
Theorem 1.

Assume the Devil wants to prevent the king from crossing a certain horizontal
line. With three squares above the king already blocked on that line, like in the
left of Figure 1, this is easily achieved. The Devil simply answers a king move
a to the right with an extension of that triple block by a play at u. A further
move to b is countered by v and likewise, a left movement to a' is blocked at
u'. Pushing along in this simple fashion ensures that the king cannot cross. It is
not difficult to get the three initial blocks placed on a blank line when a king is
just approaching. By inspection of cases, one can show that five approach moves
suffice for the Devil to create the basic triple.

The right of Figure 1 indicates how to turn the pushing argument into a Devil
win. With his first moves, the Devil blocks a finite number of squares in the four
corners of an imaginary box around the king, which is chosen large enough to
ensure that during this preparatory phase the king does not get too close to
the boundary. After that, the Devil plays the above wall-pushing strategy along
the dotted lines whenever the king approaches the border. The solid corners are



a'ab &

Fig. 1. Pushing the chess king along a line (left) and catching him in a box (right).

there to ensure that the Devil is never forced to play on two fronts at the same
time.

The Fool argument. The first general idea for an escape with a k-Angel might be
to run away in one direction. With sufficiently high power k, should not the Angel
be simply too fast for the Devil? The answer is no. Conway [4] defines a k-Fool to
be a k-Angel who commits himself to strictly increasing his y-coordinate in every
move. He shows that a Fool of any power k£ can be caught. The Fool counter
already indicates that devising an escape strategy for some Angel might be a
very difficult task. By a dove-tailing argument the result can even be turned into
the following surprising fact [4].

Theorem 2 (“Blass-Conway diverting strategy”). There is a strategy for
the Devil with the following property. For each point p of the plane and each
distance d, no matter how the Angel moves, there will be two times t; < ty such
that at time to the Angel will be d units nearer to p than at time t;.

Angels in higher dimensions. For three dimensions, the Angel problem is solved.
Independently, the first author [9] and Bollobéds and Leader [3] proved that in
73, and thus also in all higher dimensions, some Angel can escape.

Winning and losing infinite games. General infinite games may behave a little
peculiar in so far as a clear winner need not always exist. The axiom of choice
allows the construction of games in which neither player has a winning strat-
egy, even though the game does not allow for draws [8, Sec. 43]. However, it is
known [6,10] that for reasonably well-behaved games this cannot happen: they
are determined. For the Angel-Devil game it is not hard to show this property
directly by a compactness argument, so we know that either the Angel or the
Devil must have a winning strategy.

A further useful observation is that in a sense, the game is infinite only from
the point of the Angel. If the Devil wins, the game ends, by definition, after
finitely many moves. An application of Konig’s lemma shows that in this case
the Angel cannot delay his defeat arbitrarily.

Lemma 1. If the Devil has o winning strategy against some Angel, then there
exists a bound N such that the Devil can stop that Angel in at most N mowves.
Conversely, if the Angel can survive for any arbitrarily large, previously given
number of steps then he can escape forever.



3 The Need for Speed

There is pretty little known about even very weak Angels. Already the destiny of
the 2-Angel is not settled and even more, it is unknown whether a chess knight
can be caught. We do not have a solution for the 2-Angel, either, but we make a
first step in this direction by devising Devil strategies against opponents whose
power lies somewhere between that of a 1-Angel and a 2-Angel. The improvement
appears rather modest but the new concepts we need to introduce in order to
obtain them or even state them, reveal details of the game that seem to lie
hidden with Conway’s original Angel.

Let us take a closer look at what happens when we upgrade the original
chess king to a 2-Angel. This is already a large step; the improvement is actually
two-fold. Not only does the 2-Angel move at twice the speed, any barriers must
also be twice as thick to hold him back. In a sense, the 2-Angel can be said to
be 4 times stronger than the 1-Angel. We focus on the first aspect: speed. The
Angel’s ability to jump over obstacles shall be suppressed as an undesired side
effect. Define a k-King as a player who in each turn makes exactly k ordinary
chess-king moves, while the Devil still gets to place one block per turn. The point
is that every single chess-king move must be valid. The k-King cannot fly.

If we want to use Kings for the study of the Angel problem, they should, in
some qualitative sense at least, be equivalent to Angels. Obviously, a k-Angel is
stronger than a k-King: An escape strategy for a King can be used for an Angel
of the same power as well. The converse is, of course, not true—mnot for trivial
reasons at least—but we can show that if you can catch Kings of arbitrary power
k then you can also catch any Angel. Of course, the reduction from Angels to
Kings requires an increase in speed.

Proposition 1. If the k-Angel can escape then so can the 99k%-King.

Proof (sketch). We derive an escape strategy for the 99%k%-King from an escape
strategy for the k-Angel. While the King plays against the “real” Devil, we set up
an additional, imaginary board with an imaginary k-Angel, where we simulate
the action on the King’s board through appropriate transformations. The King’s
board is partitioned into a regular grid of sidelength-18%2 boxes. Likewise, the
Angel’s board is segmented into blocks of sidelength k. The boxes of the two
worlds are in one-to-one correspondence with each other, in the obvious fashion:
the starting points lie in corresponding boxes and further, all adjacencies are
preserved. These partitions and the correspondences are fixed once and for all.
We play as follows. When the Devil blocks some square in the King’s world,
we cross out an arbitrary empty square from the corresponding box in the Angel’s
world or from one of the eight adjacent boxes there. When it is the King’s
turn, we use our escape strategy for the Angel to get a move in the imaginary
world. This move is then translated into the King’s plane by a movement of
the King into the corresponding box there. If, for example, the Angel jumps
from his current box into the next box to the north, then the King runs into the
northern box in his world, too. The precise position within that box is completely
independent of the Angel’s position in his box, however. It depends on technical



details which we must skip here for brevity. They have to guarantee that the
King only stops at locations from where the four lines into the four axis parallel
directions within the current box are completely free. This invariant then ensures
a free passage for the King into the next target box, which takes no more than
99k2 steps. O

We emphasize again that the quantitative proportion of the above reduction
is not our main concern. The purpose of Proposition 1 is to establish the quali-
tative equivalence between Angels and Kings, as a legitimation to use Kings as
a tool to attack the Angel problem.

4 Real Kings

For Theorem 1 to make sense at all, we need to define what Kings of fractional
speed shall be. So what is a 3/2-King? On average he should get to make three
King steps for 2 Devil steps, which we could realize by a move sequence like
KKKDDKKKDD..., which shall mean that the King makes 3 steps, then
the Devil blocks 2 squares, and so on. However, such a concept would depend
on the actual representation of a rational number. The 6/4-King would get a
different sequence. We could get around this by demanding reduced fractions but
then a 1001/8-King would behave completely different from a 1000/8-King, who
should simply be the 125-King. What is worse, the grouping of Devil moves could
be lethal for the King. For example, the eight consecutive Devil moves in the
sequence K001 D8K1001D8 could be used to encircle the King completely,
even though his average speed would be greater than 125.

What we want are move sequences that approximate a given speed a € Rt
as fair as possible, avoiding unnecessarily large chunks of moves for either side.
The sequence (uy,)nen defined by

«o
a+1

up = |(n+ v+ ¢| — |ny+¢| €{0,1} withy= €(0,1) (1)
and some constant offset ¢ € R shows this behavior—if we interpret 1’s in the
sequence as King and 0’s as Devil moves. The basic behavior of such sturmian
sequences is easy to understand (see [1] for a broad treatment and for historic
references). Expression (1) simply compares consecutive elements of the arith-
metic progression (ny + ¢). Whenever there lies an integer between the nth and
the (n + 1)st element of (ny + ¢) we have u, = 1, otherwise, when the two
elements fall in a common integer gap, (1) evaluates to u, = 0. We conclude
that the frequency of 1’s in (u,,) is 7y; hence the frequency of 0’s is 1 —+ and we
get (cf. [1])

lim |{z:§n:ui=1}| =T —q

nooo [{i <n:u; =0} 1—4

Definition 1. For a € Rt we define the a-King to be a King whose move
sequence is given by (1) with ¢ = 0. This means that in the nth time step the
King moves by one square if up, = 1 and the Devil gets to block a new square if
un = 0.



The choice of the offset ¢ looks arbitrary. For a natural definition it is desir-
able that the chances of the a-King in the game do not depend on this parameter.
And in fact, this can be shown.

Lemma 2. Any two Kings with move sequences generated by (1) with the same
speed parameter o but different ¢’s either can both escape or can both be caught.

For integral «, the above definition of an a-King obviously coincides with
the previous definition of a k-King. For a = k € Nt the defining sequence (1)
produces exactly k¥ many 1’s between any two consecutive 0’s, just as expected.
It is also clear that our notion of an a-King fulfills our wish for fairness. Large
chunks of Devil moves cannot occur. One easily checks that for a > 1 the Devil
never gets to block two squares at a time. On the other hand, we can guarantee
that not only in the long run but also locally, the Devil always gets his share of
moves.

Definition 2. A 0/1-sequence is (s,t)-bounded, s,t € N, if every contiguous
subword that contains strictly more than s occurrences of 1’s contains ot least t
occurrences of 0’s. We call a King with a given move sequence (s,t)-bounded if
that sequence is (s,t)-bounded.

Lemma 3. An a-King, a € R, is (s,t)-bounded for every pair s,t € N with
a < s/t.

The “strictly” in the definition appears for a technical reason. Namely, start-
ing from any 1 in the sequence, we count 0’s until we reach the (s + 1)st 1. By
then we have passed at least ¢ many 0’s. When we read on until the (2s +1)st 1
shows up, we are sure to have counted at least 2¢ many 0’s. And so on. Before
the (rs + 1)st 1 appears, we are guaranteed to read at least r¢ many 0’s.

5 Low-Density Barriers

Let us have a closer look at the Devil strategy against the 1-King from the
beginning. It seems we wasted some potential there. After the preparation of
the corners, the Devil simply sits and waits for the King to arrive at one of the
four sides. We can exploit this potential advantage.

The basic idea for the King counter was our dynamic-wall argument, where
we had the King pushing along a line without ever letting him break through.
Against a 2-King the Devil would need some blocks already in place in order to
carry out the same principle. With every second square blocked in advance, the
King cannot break through. Starting from the initial position in Figure 2 with
only two additional squares blocked, the Devil can push along with the 2-King
by answering the double move a1, a2 at u, then by, by at v, and so on.

How long would it take the Devil to prepare such a density-1/2 wall against
the 2-King? Since he needs to block 1 square out of 2, he can set up such a wall
at an absolute speed of 2, which is exactly the speed of the 2-King. In other
words, the Devil can build such fences against the 2-King at the same speed
the 2-King runs. However, for Theorem 1 this will not be enough, yet; we need
barriers of lower, fractional densities.
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Fig. 2. A wall against the 2-King.

Definition 3. An infinite (s, t)-fence is an infinite horizontal or vertical strip in
the plane with some squares blocked such that when an (s,t)-bounded King enters
the strip from one side, the Devil can play in a way that prevents the King from
leaving it on the other side. Formally, such o fence is a map F: Z x [1..w] —
{0,1}, where F~1(1) is the set of blocked squares. The integer w is called the
width of F'.

We call such a fence periodic if there exists some integer \ such that F(x,y) =
F(zx+ M\ y) for all © € Z. Call the minimum such X the period of F. In this case
we also define the density of the fence, as the ratio

%H(W) [ 1<z <M\1<y<w,F(zy) =1}].

Note that density is measured with respect to length, not area. Width is not
the crucial quantity, it appears for merely technical reasons.

Lemma 4. Against an (s,t)-bounded King, 1 < s/t < 2, there ezists a periodic
infinite fence of density 1 — t/s and width 10s + 1.

Proof (sketch). We follow the idea of Figure 2 for the 2-King. Define F': Z x
[1..10s + 1] — {0,1} by letting F' be everywhere zero except at those points
(z,y) with 0 < zmod s < s —t and y = 55 + 1. In other words, we group the
central horizontal line y = 5s+1 into segments of s squares and place s —t blocks
in each segment, as shown in Figure 3. The density of this pattern is obviously
the claimed (s —t)/s. We omit the precise mechanism of the fence due to space
constraints. The width of 10s+1 is required to grant the Devil some preparatory

moves when the King enters the strip. O
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Fig. 3. An infinite (s, t)-fence.

It is important to note that our fences are dynamic, in the sense that the
Devil has to play in them while the King tries to break through. So the Devil



will not have time to play somewhere else while he defends such a barrier. On
the other hand, the density describes the construction cost which has to be
spent before the King reaches the fence. So what the Devil wants are fences of
low density. Of course, he cannot build infinite structures in finite time. Infinite
fences serve as a mere theoretical concept, which is easier to handle than finite
fences, whose existence can be easily derived from the infinite ones.

Definition 4. A finite (s, t)-fence is a rectangular box of size £ x w in the plane
with some squares blocked, such that when an (s,t)-bounded King enters through
one of the length-£ sides he can only leave through that side again, and such that
all squares along the two length-w sides are blocked. Formally, such a fence is a
map F: [1..4] x[1..w] = {0,1}, where F~1(1) is the set of blocked squares. The
integers £ and w are called the length and width of F', respectively. The density
of the fence is the ratio

%H(”C’y) [ 1<z <61 <y <w, Fz,y) =1}

The following transformation of an infinite fence into a finite fence is not very
difficult.

Lemma 5. If there exists a periodic infinite (s,t)-fence of density o then there
exist finite (s,t)-fences of the same width w and of density no more than o+2w /¢
for any length £ > 1.

The 2w/¢ term comes from the solid walls to the sides, which are of mere
technical relevance. It can always be made arbitrarily small by working with
sufficiently long fences, only.

6 A Fractal Fence

Lemma 4 provides us with an infinite fence of density 1 — /s, which is strictly
smaller than 1/2 for any a-King with o < 2. However, this does not yet suffice to
catch any such King, yet. The trick is to assemble many such fences into a huge
new fence of slightly smaller density. Iterating this process we will eventually
produce fences of arbitrarily small density, which will be very cheap for the
Devil to build. The key tool is the following lemma.

Lemma 6. If there exist finite (s,t)-fences, s/t < 2, of any length above some
value Ly, all of the same width w and with density bounded by a common o < 1/2,
then there also exists a periodic infinite (s,t)-fence with density below (s/t)o>

Proof (sketch). The basic idea is to assemble infinitely many identical vertical
finite density-o fences to a wide horizontal fence L. (Requiring only fences longer
than a lower bound £y is a technical necessity. Because of the solid side walls
of size 2w, very short fences can never have low densities.) As the length £ of
those finite fences we simply pick any multiple of s larger than ¢y and w, and
the gaps between the fences be m := |tf/so| > £ squares wide. The width of



the big infinite fence L be 7¢. The left of Figure 4 shows how the vertical fences
are placed in the central /-strip of L. Dashed lines depict the open borders, solid
lines the solid side walls. The gray areas are the regions that require permanent
Devil play as soon as the King enters if a break though to the other side shall
be avoided.

Fig. 4. Assembling many finite vertical fences into one big infinite horizontal fence
(left) and blocking a slot (right).

The density of L is easily computed to lie below the required (s/t)o?. Showing
that L is indeed an (s,t)-fence is the difficult part. We sketch the key ideas.
Assume that the King enters L from the south, so we have to keep him from
reaching the upper border. The plan is to build a horizontal fence of length m
between the upper ends of two vertical fences whenever the King runs north
between them, as indicated in the right of Figure 4. The shaded area there,
between two vertical fences and below the (potential) horizontal fence, we call a
slot. We say that the King is in standard position if he is located within a slot
whose upper border is already closed or if he sits between two such blocked slots,
perhaps within the vertical fence between them.

It is not difficult for the Devil to reach an initial standard position. The first
3¢ King steps give him enough time to close two or three adjacent slots above the
approaching King. The harder part is to keep forcing the King from standard
position to standard position as long as he remains in L.

So assume that the King is in standard position. When he enters one of the
three surrounding fences, the Devil follows the strategy of that respective fence
to make sure that the King does not break through. (Since those fences do not
overlap, the Devil is never forced to play in two fences simultaneously.) Hence,
the King cannot leave the current slot above line 3¢ without rebouncing from
the fences. If the King leaves the slot that way below, to the left, say, the Devil
starts constructing the horizontal fence across the slot to the left. This takes
no more than mo = |t¢/so|o < tf/s Devil moves. During this time the Devil
completely ignores the King’s play. In particular, he does not respond to the
possible King’s crossing of any fences, thus rendering them ineffective. The clue
is that this period of inactive fences is too short for the King to reach any upper
fence or the fence to the right of the old slot, and crossing the vertical fence to
the left is useless because soon the Devil has the horizontal fence in place there,
too. So after the construction, the King will be in standard position again. O



The proof of Theorem 1 is now straight-forward. Pick positive integers s
and t with a < s/t < 2, so that the a-King is (s,t)-bounded by Lemma 3. Then
Lemma 4 provides us with an infinite periodic (s,t)-fence of density o < 1/2
and repeated application of Lemmas 5 and 6 yields fences of smaller and smaller
densities, which converge to zero. In a game against the a-King, the Devil can
now arrange four such finite (s, t)-fences of very small density along the four sides
of a huge square around the King, who will not be able to reach the boundary
of that square before the fences are ready and thus will never be able to leave
that prison.

7 Outlook

The immediate open question is, of course, whether the 2-King can be caught—
perhaps with the techniques from this paper. This appears probable but observe
that we do not have a simple compactness argument by which we could conclude
such a statement directly from Theorem 1.

More generally, we hope that a-Kings allow for further small improvements
that might bring us gradually closer to new Angel results. On the other hand,
it is not unlikely that—in case some Angel is able to escape at all—King speed
2 is already the threshold between winning and losing.
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