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In a weak positional game, two players, Maker and Breakegradtely claim vertices of a hypergraph until either
Maker wins by getting a complete edge or all vertices arertaiithout this happening, a Breaker win. For the
class of almost-disjoint hypergraphs of rank three (edgés wp to three vertices only and edge-intersections on at
most one vertex) we show how to find optimal strategies inmpmfyial time. Our result is based on a new type of
decomposition theorem which might lead to a better undedstg of weak positional games in general.

1 Introduction

Let H = (V, E) be a hypergraph, that i¥] = V(H) is a finite set (theverticeg andE = E(H) is a

set of subsets di (theedge}. Two players, calledMaker andBreaker play the following game ot .
Maker begins by picking some vertex &, then Breaker chooses some different vertex. They alternat
in this fashion until all vertices off are taken, retaking of vertices being forbidden. Maker vifirfree
manages to claim all vertices of some edge F, otherwise Breaker wins. Note the obvious unfairness,
or rather asymmetry in the game. Breaker does not win byrmge#ticomplete edge as Maker does. His
moves are only meant to block vertices and make the incickyguseless for Maker. Also observe that
by definition, there cannot be a draw.

Such a game is calledweak positional gamen the hypergrapli/. The term “positional game” goes
back to Hales and Jewett [7] where a first variant of such gamassstudied. The attribute “weak” has
been coined later to distinguish them from the so-calletbfgl” games in whictboth players try to
complete an edge and which end in a draw if neither succeeds.

The relevant question about a game on a fixed hypergraph @uwste, who can win. That is, does
Maker or Breaker have a strategy that always wins. A hypetgfais awinnerif Maker, playing first,
has a winning strategy oH; otherwise, when Breaker has a winning strategy, we calldsar.

We investigate the computational problem to decide whedlgiven hypergraph is a winner or a loser.
As with any combinatorial game, an efficient decision praredor this question would entail an effi-
ciently computable winning strategy for any winner by a dtand reduction. However, a polynomial-time
algorithm for arbitrary hypergraphs should not be hoped 8uohaefer [10] showed that this problem is
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PSPACEcomplete, which is “the right” class for a two-person gaara] recently Byskov [5] gave a new,
very short proof for this result. We focus on hypergraphweitiges of bounded size. Thenk of a
hypergraph is the size of a largest edge. A hypergraph isdZaluniformif all its edges are of sizg.

Hypergraphs of rank 2 are not very interesting from the pofptositional games. Maker wins iff there
are two adjacent 2-edges or the graph contains a singlefpa edn the other hand, Schaefer's proof
requires no edges with more than 11 vertices, so that thaidagiroblem is alreadpSPACEcomplete
for hypergraphs of rank 11. In this interval, between 2 andtthé smallest interesting rank is 3. We
set out to distinguish rank-3 winners from rank-3 losersciffitly, i.e., in polynomial time. We almost
succeed. There is a problem with too-much-overlappingedéfe solve the task for rank-3 hypergraphs
that are als@lmost-disjoint no two edges intersect in more than one vertex.

Theorem 1 The question whether a given almost-disjoint hypergraphiok 3 is a winner or a loser can
be decided in polynomial time.

Theorem 1 is not so much about efficient algorithms. Our ainatiser to understand the underlying
principles which let you win or lose on a hypergraph. Solvihg rank-3 case is the first non-trivial
step in this direction. We claim that the restriction to asdisjoint hypergraphs does not define away
the problem. The proof of Theorem 1 employs a new decompaoditieorem for hypergraph games and
eventually rests on a complete classification into winnedslasers, which entails several non-trivial steps
that give new insight into the mechanics of the game.

Eventually, in Section 3, we introduce a new notion of hypaph decompositions that allows to com-
pare the values that individual parts of a hypergraph domtgito a game that is played on it.

Previous results. The main branch of research about positional games aime atetfelopment of cri-
teria for the existence of winning strategies, often in t®whthe number of edges and vertices, like an
early result by Erdds and Selfridge [6], stating that if thember of edges in an-uniform hypergraph
H = (V, E) is bounded byE| < 2”1 then Breaker can win, i.eH is a loser. Beck [1, 2] has developed
a variety of strong conditions of this kind. We refer to hisemsive overview [4].

Other works investigate hypergraphs that are implicitlfirded by certain regular structures. For ex-
ample, in [8] and [3] the two players pick edges from a congtgiph and try to obtain a subgraph of
a certain prescribed type. A famous class of hypergraphgereralized Tic-Tac-Toe boards, where the
vertex set is the? grid cube{1, ..., n}? embedded in-space with exactly all collinear-sets as edges.
These games have already been studied in Hales and Jewigitebpaper [7].

Our approach to positional games very much differs from robste above in that it aims at optimal
play for all members form a limited class of hypergraphs. While densiyments provide winning or
losing criteria for much larger classes of hypergraphs thanone we attack, they cannot give definite
answers how to play on any arbitrary given instance. Usuh#ygap between the best winning criterion
and the best losing criterion is rather large, leaving thk bfidifficult instances unresolved.

2 Decomposition and Classification

The basic tools for Maker strategies on rank-3 hypergraphpaths and cycles. A path is just a sequence
of edges such that two consecutive edges share a vertextzargpairs of edges are disjoint. The left path
in Figure 1 is a winner because a Maker play:aforces Breaker to take,, after which Makerx, calls

for Breakerys, and so on, until Maker gets to play bath andx. The path propagates the Maker threat
in the left 2-edge to the right. In contrast, the path on tgétrdoes not have this property. The double
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connectionzy, y4 there effectively separates the two 2-edges. This is theorefor restricting ourselves
to almost-disjointness.
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Fig. 1: A winning path (left) and a losing path (right).

It is not difficult to show that a connected almost-disjomtk-3 hypergraph with at least two 2-edges is
a winner. However, even for almost-disjoint hypergraphsner detection is not trivial. In the absence of
2-edges, or even with just one 2-edge present, our claggifica&quires the discussion of several cases.
There is some evidence that it should be possible to overatmmst-disjointness in a preprocessing step
without modification of the present result but until now ottempts have not been successful.

Decomposing hypergraphs. Before analyzing a hypergraph in detail, we try to decompbs#o as
small parts as possible. As one might expect, the componéatisconnected hypergraph do notinteract
in a game.

Lemma 1 The disjoint unionf = A U B of two hypergraphst and B is a winner iff at least one oft
and B is a winner.

Lemma 1 is not very deep but it is the first step towards a sepresult that serves as the vital tool for
our analysis. A vertey of a connected hypergraght is anarticulation vertexif H can be written as a
unionH = AU B of two nontrivial hypergraphd andB with V(A)NV (B) = {p}. (The left hypergraph
in Figure 2 has exactly one articulation vertex, the squaee d@he central vertex in the hypergraph on
the right isnotan articulation.) We shall see that also in the case of datiicuns, we can describe how the

value of the uniorf is related to that oA andB.

Fig. 2: A hypergraph with an articulation vertex (left) and one with (right).

To this end, we introduce the terfil+*! for a hypergraph in which Maker has already played ahd
HU=¥! for one in which Breaker has taken Formally, we can define these expressions as purely graph-
theoretic concepts, without any reference to games: SilBreaker play ay ruins Maker’s prospects in
all edges that contaig, we letH!~¥! denote the hypergraphi with all edges: > y deleted; and because
a Maker play at: brings Maker closer to winning in each edge that containse let H!**! denote the
hypergraphd with x deleted from the vertex set and from all edges that containbdthis interpretation,
Maker wins as soon as he produces an empty edge.
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Lemma 2 (Articulation Lemma) LetH = AU B be the union of two hypergrapland B which have
exactly one poinp in common, i.e.V (4) N V(B) = {p}. ThenH is a winner if and only if one of the
following holds:

- Alisawinner,
- Bisawinner,
- Al+?] and B*7! are both winners.

Getting connected components with a 2-edge.For the analysis of a given almost-disjoint rank-3 hy-
pergraphi, we first try to obtain at least one 2-edge. Using Lemma 1, wesbaw that ifH is a winner,
there exists a Maker move after which every Breaker ansvagekeat least one winning component with a
2-edge. This reduces the general problem to (a quadratibeuof) connected hypergraphs with a 2-edge
(each). We then cut each such compor@mnepeatedly at articulation points until they are “2-cortedt

in the sense that they don’t have any more articulations.

The Articulation Lemma is the essential tool for these sasie decompositions. It guarantees that
cutting C' at an articulation creates a 2-edge in each resulting supeoent; and in turn, this can be
used to control a potential combinatorial explosion of flWesgame values on the subcomponents due
to the trichotomy in the Articulation Lemma. Altogether, wal be left with a polynomial number of
articulation-free hypergraphs with a 2-edge each and iaresto check for each one of them indepen-
dently whether it is a winner or not.

Classification by case distinction. The classification of articulation-free almost-disjoiabk-3 hyper-
graphs with a 2-edge makes up the bulk of the proof of Theoréarating removed all articulations turns
out crucial there because it grants Maker enough threatg @aths such that we can get control over suf-
ficient winning conditions. In the full version [9] of this afvact, the analysis covers over 20 pages of case
distinctions. However, the majority of potential configtimas lead to contradictions so that eventually,
the classification boils down to three topologically diéfet types of winning blocks. Yet, some technical
details make the final classification result too complex tstaéed here.

3 Comparing Hypergraphs

Eventually, we want to take the Articulation Lemma a bit fugt, aiming at decomposition theorems for
weak positional games on general hypergraphs.

Definition 1 A k-pointed hypergrapts a tuple(H, p1, . .., px) consisting of a hypergrapH = (V, E)
and a list of pairwise distinct vertices, ..., p; € V calledpoints Thek-point union(A4, p1,...,px) U
(B, q1,---,q) of twok-pointed hypergraphs is the-pointed hypergraph

(AUB)/{pi=aq:1<i<k}{p.a},- -, {pr-ax}),

meaning that we take the disjoint union.4fand B and then merge each individual point pdip;, ¢; }
into a single new point.

In this terminology, the Articulation Lemma is actually at&ment about 1-pointed hypergraphs. Its
trichotomy expresses that with respect to 1-point uniohere are essentially three different kinds of
hypergraphs: winners, absolute losers, and semi-winmdrish yield a win if two of them are plugged
together.



Weak Positional Games on Hypergraphs 5

To make this precise, we introduce a partial quasi-ordeherctass of alk-pointed hypergraphs by
letting A < B for two such hypergraphd, B iff “ A U X is a winner” implies ‘B LI X is a winner”
for all k-pointed hypergraphX. Define;, to be the partially ordered set that results from identifyin
equivalent (related by and >) pointed hypergraphs. This notion of equivalence capteresxtly all
information about a pointed hypergraph relevant for itsactmpn winning and losing when plugged into
some other pointed hypergraph. In the unidml X we may replaced by any equivalenf3 without
changing Maker’s prospects of winning—independent of dugrjer.X'!

Some basic observations about these game orders are ndfftogitdo prove. EachH; contains a
unique maximal and a unique minimal element. The formeristsef exactly all winners (hypergraphs
that are winners on their own) and the latter, the class afdhlte losers,” consists of pointed hypergraphs
that do not contribute anything, like the empty graph, faraple.

We also have some lower bounds on the siz&{pf For eacht > 0, the partial ordef{; contains
a chain of lengtht + 2 and an antichain of IengtbLk’jQJ). Beyond this we do not know much about
the structure of{x. Except forH;, which by the Articulation Lemma must be a chain of exactieth
classes. The main open questionAse all Hy, finite?

A positive answer would have a remarkable implication ondbmplexity of weak positional games
on certain hypergraphs. If a hypergraph allows a succedsigemposition into components of bounded
size, we could find an optimal strategy by a simple divide-aodquer approach. For a problem that is
PSPACEcomplete in general, this would be a quite remarkable tesul
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