Angel, Devil, and King

Martin Kutz

Max-Planck Institut für Informatik, Saarbrücken, Germany

Attila Pór

CASE Western Reserve University, Cleveland, USA

_				

The Angel Problem

Definition [Berlekamp, Conway, Guy]

A k-Angel can "fly" in one move to any unblocked square at distance at most k.

The Angel Problem

Definition [Berlekamp, Conway, Guy]

A k-Angel can "fly" in one move to any unblocked square at distance at most k.

The Angel Problem

Definition [Berlekamp, Conway, Guy]

A k-Angel can "fly" in one move to any unblocked square at distance at most k.

Open Problem

Can some k-Angel of some finite power k escape his opponent, the Devil, forever.

Only Fools Rush in

Definition

A Fool is an Angel who commits himself to increasing his y-coordinate in every move.

Only Fools Rush in

Definition

A Fool is an Angel who commits himself to increasing his y-coordinate in every move.

Theorem [Conway]

The Devil catches any k-Fool of finite power k.

Only the destiny of the 1-Angel (= chess king) is known.

For all other k-Angels, $k \ge 2$, the outcome is open.

Only the destiny of the 1-Angel (= chess king) is known.

For all other k-Angels, $k \ge 2$, the outcome is open.

We don't even know whether the chess knight can be caught.

Only the destiny of the 1-Angel (= chess king) is known.

For all other k-Angels, $k \ge 2$, the outcome is open.

We don't even know whether the chess knight can be caught.

Observation: The 2-Angel is actually $4\times$ stronger than the 1-Angel.

(double speed and double-width obstacles)

Only the destiny of the 1-Angel (= chess king) is known.

For all other k-Angels, $k \ge 2$, the outcome is open.

We don't even know whether the chess knight can be caught.

Observation: The 2-Angel is actually $4\times$ stronger than the 1-Angel.

(double speed and double-width obstacles)

We modify the problem to have speed as the only parameter.

Angels With Broken Wings

Deprive Angels of their ability to fly across obstacles.

Definition

A k-King is a k-Angel who can only run, not fly. In each turn he makes k ordinary chess-king moves.

Angels With Broken Wings

Deprive Angels of their ability to fly across obstacles.

Definition

A k-King is a k-Angel who can only run, not fly. In each turn he makes k ordinary chess-king moves.

Proposition

If the k-Angel can escape forever then so can the 99k²-King.

Theorem The Devil can catch any α -King with $\alpha < 2$.

Theorem The Devil can catch any α -King with $\alpha < 2$.

For fractional and irrational speed $\alpha > 1$ define Angel/Devil turns be means of sturmian sequences:

Shoot a ray of slope α from the origin and mark crossings with the integer grid:

Theorem The Devil can catch any α -King with $\alpha < 2$.

For fractional and irrational speed $\alpha > 1$ define Angel/Devil turns be means of sturmian sequences:

Shoot a ray of slope α from the origin and mark crossings with the integer grid:

horizontal line \rightarrow King step vertical line \rightarrow Devil move

Theorem The Devil can catch any α -King with $\alpha < 2$.

For fractional and irrational speed $\alpha > 1$ define Angel/Devil turns be means of sturmian sequences:

Shoot a ray of slope α from the origin and mark crossings with the integer grid:

horizontal line → King step vertical line → Devil move

Theorem The Devil can catch any α -King with $\alpha < 2$.

For fractional and irrational speed $\alpha > 1$ define Angel/Devil turns be means of sturmian sequences:

Shoot a ray of slope α from the origin and mark crossings with the integer grid:

horizontal line → King step vertical line → Devil move

"Lemma." This distribution is "fair" and shifting of the grid/origin does not affect winning and losing.

For speed
$$\alpha = \frac{s}{t}$$
 we have exactly $\begin{array}{c} s \text{ King moves} \\ per \\ t \text{ Devil moves.} \end{array}$

For speed
$$\alpha = \frac{s}{t}$$
 we have exactly

$$\frac{s-t}{s} = 1 - \frac{t}{s}$$

For speed
$$\alpha = \frac{s}{t}$$
 we have exactly

$$\frac{s-t}{s} = 1 - \frac{t}{s} < \frac{1}{2} \qquad \left(\text{for } \frac{s}{t} < 2 \right)$$

For speed
$$\alpha = \frac{s}{t}$$
 we have exactly

s King moves per

t Devil moves.

$$\frac{s-t}{s} = 1 - \frac{t}{s} < \frac{1}{2} \qquad \left(\text{for } \frac{s}{t} < 2 \right)$$

$$\alpha = \frac{s}{t}$$

For speed $\alpha = \frac{s}{t}$ we have exactly

$$\frac{s-t}{s} = 1 - \frac{t}{s} < \frac{1}{2} \qquad \left(\text{for } \frac{s}{t} < 2 \right)$$

$$\alpha = \frac{s}{t}$$

For speed $\alpha = \frac{s}{t}$ we have exactly

$$\frac{s-t}{s} + \varepsilon = 1 - \frac{t}{s} + \varepsilon < \frac{1}{2} \qquad \left(\text{for } \frac{s}{t} < 2 \right)$$

For speed
$$\alpha = \frac{s}{t}$$
 we have exactly

$$\frac{s-t}{s} + \varepsilon = 1 - \frac{t}{s} + \varepsilon < \frac{1}{2} \qquad \left(\text{for } \frac{s}{t} < 2 \right)$$

Building a Box

Encircle the King with a box of fences before he can reach the boundary.

Building a Box

Encircle the King with a box of fences before he can reach the boundary.

This only works with fences of *very low* density.

Building a Box

Encircle the King with a box of fences before he can reach the boundary.

This only works with fences of *very low* density.

A first result:

For $\alpha < 9/8$ we get fences of density < 1/9, which the Devil builds

$$\frac{9}{9/8} = 8$$

times faster than the King runs.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough.

Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough. Need smaller densities.

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough.

Need smaller densities.

Solution: a fence of fences

The slots are wider than they are deep, so the total density lies below that of the small fences. (works only for density < 1/2)

Against King speed $2 - \varepsilon$, fence density $\frac{1}{2} - \varepsilon'$ is not enough.

Need smaller densities.

Solution: a fence of fences

The slots are wider than they are deep, so the total density lies below that of the small fences. (works only for density < 1/2)

Iteration yields thinner and thinner and thinner and thinner fences ...

! ! !					į
	<u> </u>			: :	1
	<u> </u>			<u>:</u> ;	i
	<u> </u>			! !	i
i i i	<u> </u>	<u> </u>		:	:

Conclusion

We introduced α -Kings (with any $\alpha \in \mathbb{R}^+$) to focus on speed as the essential parameter in the Angel Problem.

Theorem The Devil cathches any α -King with $\alpha < 2$.

Conclusion

We introduced α -Kings (with any $\alpha \in \mathbb{R}^+$) to focus on speed as the essential parameter in the Angel Problem.

Theorem The Devil cathches any α -King with $\alpha < 2$.

Question Can he also catch the 2-King?