Weak Positional Games on Hypergraphs of Rank Three

Martin Kutz

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Two players alternatingly claim squares, trying to get three in a row. (retaking forbidden)

Two players alternatingly claim squares, trying to get three in a row. (retaking forbidden)

Such a *positional game* can be played on any hypergraph H = (V, E). $(E \subseteq 2^V)$

Two players alternatingly claim squares, trying to get three in a row. (retaking forbidden)

Such a *positional game* can be played on any hypergraph H = (V, E). $(E \subseteq 2^V)$

two variants:

- strong positional game: both players trying to get an edge (draw possible but 2nd player never wins, by "strategy stealing")
- weak positional game: 1st player (*Maker*) tries to get an edge while 2nd player (*Breaker*) tries to prevent this (no draw, by definition)

strong-game 1st-player win ⇒ weak-game Maker win strong-game draw ← weak-game Breaker win

two variants:

- strong positional game: both players trying to get an edge (draw possible but 2nd player never wins, by "strategy stealing")
- weak positional game: 1st player (*Maker*) tries to get an edge while 2nd player (*Breaker*) tries to prevent this (no draw, by definition)

Weak Games — Previous / Classical Results

- local criterion [Hales & Jewett, '63]
 n-uniform hypergraph:
 max deg ≤ n/2 ⇒ Breaker win
- global criterion [Erdős & Selfridge, '73] n-uniform hypergraph H = (V, E): $|E| < 2^{n-1} \Rightarrow Breaker win$
- Ramsey criterion [Beck] $\chi(H) \ge 3$ (chromatic number) \Rightarrow Maker win

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78].

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78].

Strong games also PSPACE-complete [Reisch, '80].

```
Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78]. (uses rank 11)

maximum edge size
```

Strong games also PSPACE-complete [Reisch, '80].

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78]. (uses rank 11)

maximum edge size

Strong games also PSPACE-complete [Reisch, '80].

Rank 2 is trivial:

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78]. (uses rank 11)

maximum edge size

Strong games also PSPACE-complete [Reisch, '80].

Rank 2 is trivial:

We set out to solve rank-3 hypergraphs ...

(efficient classification and thus, optimal play)

Theorem. We can decide in polynomial time, who wins the weak game on a given hypergraph of rank 3.

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Def. A hypergraph is called almost-disjoint if any two edges share at most one vertex.

This is not an unnatural property.

(satisfied, e.g., by arbitrary-dimensional Tic-Tac-Toe and often considered in the context of hypergraph coloring.)

It does not define away the problem.

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- extensive case distinctions

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- extensive case distinctions

Def. Call a hypergraph a winner if Maker (playing first) can win on it.

Lemma. Any connected almost-disjoint rank-3 hypergraph with at least two 2-edges is a winner.

Lemma. Any connected almost-disjoint rank-3 hypergraph with at least two 2-edges is a winner.

is a loser (not almost-disjoint)

Lemma. The disjoint union $H = A \cup B$ of two hypergraphs is a winner iff one of A and B is a winner.

Lemma. The disjoint union $H = A \cup B$ of two hypergraphs is a winner iff one of A and B is a winner.

We can extend this result to "almost-disjoint" unions:

Def. A vertex p is an articulation of a hypergraph H if $H = A \cup B$ with $V(A) \cap V(B) = \{p\}$ for non-trivial hypergraphs A and B.

Lemma. The disjoint union $H = A \cup B$ of two hypergraphs is a winner iff one of A and B is a winner.

We can extend this result to "almost-disjoint" unions:

Def. A vertex p is an articulation of a hypergraph H if $H = A \cup B$ with $V(A) \cap V(B) = \{p\}$ for non-trivial hypergraphs A and B.

Articulation Lemma. Let $H = A \cup B$ with $V(A) \cap V(B) = \{p\}$. Then H is a winner iff one of the following holds:

- A is a winner on its own
- B is a winner on its own

Articulation Lemma. Let $H = A \cup B$ with $V(A) \cap V(B) = \{p\}$. Then H is a winner iff one of the following holds:

- A is a winner on its own
- B is a winner on its own
- A with p already played and B with p already played are both winners

Articulation Lemma. Let $H = A \cup B$ with $V(A) \cap V(B) = \{p\}$. Then H is a winner iff one of the following holds:

- A is a winner on its own
- B is a winner on its own
- A with p already played and B with p already played are both winners

Corollary. If Maker can win neither on A nor on B alone then playing at the articulation p is definitely an optimal move.

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas

extensive case distinctions

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
 - exactly one 2-edge per component
 - articulation-free components ⇒ no "dangling paths"
- extensive case distinctions

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
 - exactly one 2-edge per component
 - articulation-free components ⇒ no "dangling paths"
- extensive case distinctions
 - threats along paths and cycles lead to three essentially different winning blocks for Maker

The Articulation Lemma says:

There are only three different types of "1-point halves."

The Articulation Lemma says:

There are only three different types of "1-point halves."

The Articulation Lemma says:

There are only three different types of "1-point halves."

behaves exactly as one of these three:

The Articulation Lemma says:

There are only three different types of "1-point halves."

behaves exactly as one of these three:

winner

The Articulation Lemma says:

There are only three different types of "1-point halves."

behaves exactly as one of these three:

absolute loser

winner

The Articulation Lemma says:

There are only three different types of "1-point halves."

behaves exactly as one of these three:

absolute loser

semi-winner

winner

A k-pointed hypergraph contains k marked contact points.

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_k X$ of two such hypergraphs by gluing at the points.

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_k X$ of two such hypergraphs by gluing at the points.

Let $A \leq B$ for k-ptd h'graphs if for all k-ptd h'graphs X:

 $A \sqcup_k X$ is a winner $\Rightarrow B \sqcup_k X$ is a winner

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_k X$ of two such hypergraphs by gluing at the points.

Let $A \leq B$ for k-ptd h'graphs if for all k-ptd h'graphs X:

 $A \sqcup_k X$ is a winner $\Rightarrow B \sqcup_k X$ is a winner

What is the structure of the resulting poset \mathcal{H}_k ? (after identification of equivalent ptd h'graphs)

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_k X$ of two such hypergraphs by gluing at the points.

Let $A \leq B$ for k-ptd h'graphs if for all k-ptd h'graphs X:

 $A \sqcup_k X$ is a winner $\Rightarrow B \sqcup_k X$ is a winner

What is the structure of the resulting poset \mathcal{H}_k ? (after identification of equivalent ptd h'graphs)

 \mathcal{H}_1 is a chain of three elements (Articulation Lemma)

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_k X$ of two such hypergraphs by gluing at the points.

Let $A \leq B$ for k-ptd h'graphs if for all k-ptd h'graphs X:

 $A \sqcup_k X$ is a winner $\Rightarrow B \sqcup_k X$ is a winner

What is the structure of the resulting poset \mathcal{H}_k ? (after identification of equivalent ptd h'graphs)

Conjecture. All \mathcal{H}_k are finite.