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Tic-Tac-Toe

Two players alternatingly claim squares,
trying to get three in a row.
(retaking forbidden)
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Tic-Tac-Toe

Two players alternatingly claim squares,
trying to get three in a row.
(retaking forbidden)

Such a positional game can be played on any
hypergraph H = (V, E). (E ⊆ 2

�

)

two variants:

strong positional game: both players trying to get an edge
(draw possible but 2nd player never wins, by “strategy stealing”)

weak positional game: 1st player (Maker) tries to get an edge
while 2nd player (Breaker) tries to prevent this
(no draw, by definition)
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Tic-Tac-Toe

strong-game 1st-player win ⇒ weak-game Maker win

strong-game draw ⇐ weak-game Breaker win

two variants:

strong positional game: both players trying to get an edge
(draw possible but 2nd player never wins, by “strategy stealing”)

weak positional game: 1st player (Maker) tries to get an edge
while 2nd player (Breaker) tries to prevent this
(no draw, by definition)
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Weak Games — Previous / Classical Results

local criterion [Hales & Jewett, ’63]
n-uniform hypergraph:
max deg ≤ n/2 ⇒ Breaker win

global criterion [Erdős & Selfridge, ’73]
n-uniform hypergraph H = (V, E):
|E| < 2

� �
�

⇒ Breaker win

Ramsey criterion [Beck]
χ(H) ≥ 3 (chromatic number) ⇒ Maker win
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Computational Complexity

Deciding who wins a weak game on a given hypergraph is
PSPACE-complete [Schaefer, ’78].
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maximum edge size

Strong games also PSPACE-complete [Reisch, ’80].
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PSPACE-complete [Schaefer, ’78]. (uses rank 11)

maximum edge size

Strong games also PSPACE-complete [Reisch, ’80].

Rank 2 is trivial:

Martin Kutz: Weak Positional Games – p. 4



max planck institut
informatik

Computational Complexity

Deciding who wins a weak game on a given hypergraph is
PSPACE-complete [Schaefer, ’78]. (uses rank 11)

maximum edge size

Strong games also PSPACE-complete [Reisch, ’80].

Rank 2 is trivial:

We set out to solve rank-3 hypergraphs . . .

(efficient classification and thus, optimal play)
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Main Result

Theorem. We can decide in polynomial time, who wins the weak
game on a given hypergraph of rank 3.
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Main Result

Theorem. We can decide in polynomial time, who wins the weak
game on a given almost-disjoint hypergraph of rank 3.

Def. A hypergraph is called almost-disjoint if any two edges share
at most one vertex.

This is not an unnatural property.
(satisfied, e.g., by arbitrary-dimensional Tic-Tac-Toe and often
considered in the context of hypergraph coloring.)

It does not define away the problem.
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Main Result

Theorem. We can decide in polynomial time, who wins the weak
game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

basic winning structures (paths and cycles)

decomposition lemmas

extensive case distinctions
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Main Result

Theorem. We can decide in polynomial time, who wins the weak
game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

basic winning structures (paths and cycles)

decomposition lemmas

extensive case distinctions

Def. Call a hypergraph a winner if Maker (playing first)
can win on it.
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Playing Along Paths
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Playing Along Paths

Lemma. Any connected almost-disjoint rank-3 hypergraph with at
least two 2-edges is a winner.
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Playing Along Paths

Lemma. Any connected almost-disjoint rank-3 hypergraph with at
least two 2-edges is a winner.

is a loser
(not almost-disjoint)
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Decompositions

Lemma. The disjoint union H = A ∪̇ B of two hypergraphs is a
winner iff one of A and B is a winner.
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Decompositions

Lemma. The disjoint union H = A ∪̇ B of two hypergraphs is a
winner iff one of A and B is a winner.

We can extend this result to “almost-disjoint” unions:

Def. A vertex p is an articulation of a hypergraph H if H = A ∪ B

with V(A) ∩ V(B) = {p} for non-trivial hypergraphs A and B.

p
A B
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Decompositions

Articulation Lemma. Let H = A ∪ B with V(A) ∩ V(B) = {p}. Then
H is a winner iff one of the following holds:

A is a winner on its own

B is a winner on its own
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H is a winner iff one of the following holds:

A is a winner on its own
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Decompositions

Articulation Lemma. Let H = A ∪ B with V(A) ∩ V(B) = {p}. Then
H is a winner iff one of the following holds:

A is a winner on its own

B is a winner on its own

A with p already played and B with p already played
are both winners

Corollary. If Maker can win neither on A nor on B alone then
playing at the articulation p is definitely an optimal move.
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Main Result

Theorem. We can decide in polynomial time, who wins the weak
game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

basic winning structures (paths and cycles)

decomposition lemmas

extensive case distinctions
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Theorem. We can decide in polynomial time, who wins the weak
game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

basic winning structures (paths and cycles)

decomposition lemmas
exactly one 2-edge per component
articulation-free components ⇒ no “dangling paths”

extensive case distinctions
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Main Result

Theorem. We can decide in polynomial time, who wins the weak
game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

basic winning structures (paths and cycles)

decomposition lemmas
exactly one 2-edge per component
articulation-free components ⇒ no “dangling paths”

extensive case distinctions
threats along paths and cycles lead to
three essentially different winning blocks for Maker
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Towards a General Decomposition Theorem

The Articulation Lemma says:

There are only three different types of “1-point halves.”
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The Articulation Lemma says:

There are only three different types of “1-point halves.”
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The Articulation Lemma says:

There are only three different types of “1-point halves.”

Any
p

behaves exactly as one of these three:
ppp
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The Articulation Lemma says:

There are only three different types of “1-point halves.”

Any
p

behaves exactly as one of these three:
ppp

winner
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Towards a General Decomposition Theorem

The Articulation Lemma says:

There are only three different types of “1-point halves.”

Any
p

behaves exactly as one of these three:
p

absolute loser

pp

winner
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Towards a General Decomposition Theorem

The Articulation Lemma says:

There are only three different types of “1-point halves.”

Any
p

behaves exactly as one of these three:
p

absolute loser

p

semi-winner

p

winner
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A Poset of “Halfgames”

A k-pointed hypergraph
p �

p �

p �

p �

...

contains k marked
contact points.
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A k-pointed hypergraph
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contains k marked
contact points.

Form the k-pointed union A t � X

of two such hypergraphs
by gluing at the points.
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A k-pointed hypergraph
p �

p �
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...

contains k marked
contact points.

Form the k-pointed union A t � X

of two such hypergraphs
by gluing at the points.

Let A ≤ B for k-ptd h’graphs if for all k-ptd h’graphs X:

A t � X is a winner ⇒ B t � X is a winner
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A Poset of “Halfgames”

A k-pointed hypergraph
p �

p �

p �

p �

...

contains k marked
contact points.

Form the k-pointed union A t � X

of two such hypergraphs
by gluing at the points.

Let A ≤ B for k-ptd h’graphs if for all k-ptd h’graphs X:

A t � X is a winner ⇒ B t � X is a winner

What is the structure of the resulting poset H �?
(after identification of equivalent ptd h’graphs)
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A Poset of “Halfgames”

A k-pointed hypergraph
p �

p �

p �

p �

...

contains k marked
contact points.

Form the k-pointed union A t � X

of two such hypergraphs
by gluing at the points.

Let A ≤ B for k-ptd h’graphs if for all k-ptd h’graphs X:

A t � X is a winner ⇒ B t � X is a winner

What is the structure of the resulting poset H �?
(after identification of equivalent ptd h’graphs)

H � is a chain of three elements (Articulation Lemma)
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A Poset of “Halfgames”

A k-pointed hypergraph
p �

p �

p �

p �

...

contains k marked
contact points.

Form the k-pointed union A t � X

of two such hypergraphs
by gluing at the points.

Let A ≤ B for k-ptd h’graphs if for all k-ptd h’graphs X:

A t � X is a winner ⇒ B t � X is a winner

What is the structure of the resulting poset H �?
(after identification of equivalent ptd h’graphs)

Conjecture. All H � are finite.
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