Lower Bounds for the Runtime of a Global Multi-Objective Evolutionary Algorithm

Benjamin Doerr Bojana Kodrič Marco Voigt

Max Planck Institute for Informatics Saarbrücken, Germany

Saarland University Saarbrücken, Germany

June 21, 2013
Introduction

Runtimes of multi-objective EAs are less understood:
Lower bounds are rare!

These appear to be hard to prove "where the population of the multiobjective EA spreads out before the Pareto set is reached."

[Laumanns et al., Evolutionary Computation 2004]

Our contribution:
a lower bound for the

Global Simple Evolutionary Multi-Objective Optimizer

[Giel CEC 2003]
on the

LEADINGONESTRAILINGZEROS test function
for small mutation rates.
The two-objective test function **LEADINGONESTRAILINGZEROS (LOTZ)**

[Laumanns et al., PPSN 2002]

Individuals are bit strings of length \(n \).

The fitness of individual \(x = 11110100101100 \) is the pair \((\text{LO}(x), \text{TZ}(x)) = (4, 2)\).

Weak domination:

\(y \preceq x \) iff \(\text{LO}(y) \leq \text{LO}(x) \) and \(\text{TZ}(y) \leq \text{TZ}(x) \).

Domination:

\(y \prec x \) iff at least one of the above inequalities is strict.

\(x \) and \(y \) are *incomparable* iff neither of them weakly dominates the other.
The search space of LOTZ

A *population* is a nonempty set of pairwise incomparable individuals.
The search space of LOTZ

A population is a nonempty set of pairwise incomparable individuals.

Pareto optimality:

Individual x is Pareto-optimal iff there is no y s.t. $x \prec y$.

Goal: find the Pareto front

$$
\mathcal{F} := \left\{ (\text{LO}(x), \text{TZ}(x)) \mid x \text{ is Pareto-optimal} \right\}.
$$

$$
\text{LO}(x) + \text{TZ}(x) = n
$$
The **Global Simple Evolutionary Multi-Objective Optimizer (GSEMO)** [Giel, CEC 2003]

Initialization: Choose x^* uniformly at random.
Initial population $P := \{x^*\}$.

Loop:
- Pick an x from the current P uniformly at random.
- Flip each of x’s bits independently with probability p to obtain the offspring x'.
- If x' is weakly dominated by any $y \in P$, discard x'.
- Otherwise, add x' to P and remove all individuals dominated by x'.
Our main result

Theorem:

GSEMO on LOTZ needs at least $\Omega(n^2/p)$ iterations to discover the complete Pareto front

- with high probability $1 - o(1)$,
- for any mutation probability $p < n^{-7/4}$.

Our lower bound matches Giel’s (CEC 2003) upper bound.
Ideas: two generations of individuals

We classify all individuals that appear during a GSEMO run on LOTZ as follows.

First Generation G_1:
all individuals that are neither Pareto-optimal nor descendants of Pareto-optimal individuals.

Second Generation G_2:
all Pareto-optimal individuals and descendants of second-generation individuals.
Ideas: the confinement of the first generation

Artificial fitness measure \(q(x) := |x|_1 \).

Rough intuitive justification:
We would expect \(x = 11110100 | 101100 \)
to step-by-step mutate towards \(11111111 | 000000 \).

Lemma:
With prob. \(1 - o(1) \)
all \(x \in G_1 \) are
confined to a small area
with respect to \(q(\cdot) \).
Ideas: the development of the second generation

Suppose we have touched the Pareto front.

The *population head* x^L is the Pareto-optimal individual with maximal L_0 value in P.

Lemma:
The prob. that a jump over x^L occurs is negligibly small: $O(1/\sqrt{n})$.

![Diagram showing the population head x^L, a point y', and a point y with annotations for the calculation involving L_0, n, and \sqrt{n}.](image-url)
Ideas: the development of the second generation

Suppose x^L has left the confinement area of the first generation. An outlier is an individual with higher LO value than x^L.

Lemma:
With probability $1 - o(1)$ there is always at most one second-generation outlier x^{out}.
Ideas: the development of the second generation

Discovering the Pareto front requires increasing LO_{max} to n.

Recap: beyond the confinement area only x^L and possibly a single outlier x^{out} contribute to an increase in LO_{max}.

We can show:

Increasing LO_{max} by $\Theta(n)$ increases the population size by $\Theta(n)$.

Reason:

On our way up we collect Pareto optima. These stay permanently in P.

June 21, 2013
Ideas: the development of the second generation

Given
- a population of guaranteed size $\Theta(n)$, and
- still $\Theta(n)$ to go before $LO_{\text{max}} = n$,

the lower bound is easily derived:

We $\Omega(n)$ times have to
(i) select x^L or x^{out} for mutation (prob. $\leq 2/|P|$), and
(ii) flip the leftmost zero bit (prob. p).

The expected $\Omega(n) \cdot \frac{1}{2}|P| \cdot p^{-1} = \Omega(n^2/p)$ iterations are even necessary with probability $1 - o(1)$.

June 21, 2013 12/14
Experimental results (avg. #iterations, $n = 5, 10, \ldots, 200$)

\[p = n^{-1.75} \quad + \]
\[p = n^{-1} \quad \times \]

\[\approx 0.4n^{3.746} \quad \text{for} \quad p = n^{-7/4} \quad \text{and} \quad \approx 0.6n^{3.024} \quad \text{for} \quad p = n^{-1}. \]
Conclusion and future work

- GSEMO on LOTZ needs $\Theta(n^2/p)$ iterations for small p.
 ⇒ Our lower bound matches Giel’s (CEC 2003) upper bound.

- Our confinement proof for G_1 is technically demanding.
 ⇒ Dependencies!

- The applied techniques might be useful for other lower bound proofs as well.

- Extending our result to the standard case $p = 1/n$ is a natural next step.

Thank you!

June 21, 2013
Conclusion and future work

- GSEMO on LOTZ needs $\Theta(n^2/p)$ iterations for small p.
 \rightsquigarrow Our lower bound matches Giel’s (CEC 2003) upper bound.

- Our confinement proof for G_1 is technically demanding.
 \rightsquigarrow Dependencies!

- The applied techniques might be useful for other lower bound proofs as well.

- Extending our result to the standard case $p = 1/n$ is a natural next step.

Thank you!