
Time-aware Reasoning
in Uncertain Knowledge Bases

Yafang Wang, Mohamed Yahya, and Martin Theobald
{ywang,myahya,mtb}@mpi-inf.mpg.de

Max-Planck Institute for Informatics
Saarbruecken, Germany

Abstract. Time information is ubiquitous on the Web, and considering
temporal constraints among facts extracted from the Web is key for
high-precision query answering over time-variant factual data. In this
paper, we present a simple and efficient representation model for time-
dependent uncertainty in combination with first-order inference rules
and recursive queries over RDF-like knowledge bases. In the spirit of
data lineage, the intensional (i.e., rule-based) structure of query answers
is reflected by Boolean formulas that capture the logical dependencies of
each derived answer fact back to its extensional roots (i.e., base facts).
Our approach incorporates simple weight aggregations for begin, end and
during evidences for base facts, but also generalizes the common possible-
worlds semantics known from probabilistic databases to histogram-like
confidence distributions for derived facts. In particular, we show that
adding time to the latter probabilistic setting adds only a light overhead
in comparison to a time-unaware probabilistic setting.

1 Introduction
Recent progress in information extraction has led to major breakthroughs in
automatically building large ontological knowledge bases from high-quality Web
sources, such as online news sites, or encyclopedias like Wikipedia. Projects
such as DBpedia [1], KnowItAll [6] and its underlying extraction frameworks
TextRunner [23] and Kylin/KOG [22], ReadTheWeb [4], as well as our own
YAGO project [17], have successfully shown how to build structured knowledge
representations from unstructured or weakly structured Web collections with
high precision and recall. A major shortcoming that these knowledge bases still
face is the lack of time information in the both the representation model and
the types of queries they support. Thus, these information extraction techniques
generally work well if we consider the quality of each of the extracted facts
individually, but time constraints start playing a major role when the knowledge
base is queried, i.e., when we would like to reason about multiple facts with
respect to their temporal context. For example, a query looking for all teammates
of David Beckham during his time at Real Madrid would only be meaningful
if we have explicit information about when each of the team members of Real
Madrid played for the club.

While extraction tools like TARSQI [20] generally perform well in detecting
time adverbials in text, they also introduce a certain amount of errors. Even if

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

51

we would restrict ourselves to structured and mostly trustworthy sources such as
Wikipedia infoboxes, achieving 100% precision in temporal fact extraction will
likely remain an illusive goal. Key factors are the incorrect detection and resolu-
tion of temporal annotations caused by the high diversity of temporal expressions
used in free text, as well as plain inconsistencies among different sources. As an
illustration, one news article might report “The hype and speculation have esca-
lated ever since the January announcement that Beckham would join the Galaxy
from Spanish giants Real Madrid on a deal that will earn him a reported $250
million over five years.”, while another article mentions “Former England cap-
tain David Beckham left London Thursday to begin his new stint playing for the
Los Angeles Galaxy”1. From these headlines, we could extract the fact (David
Beckham joins Los Angeles Galaxy) with different time annotations. First, the
granularity of these time annotations is different (“January” is a month, while
“Thursday” is day), and second, the latter is only a relative time annotation
that needs to be resolved and matched with the publication date of the news
article. Furthermore, time information often is incomplete. In the first example,
there is no information about the year when Beckham announced to join Los
Angeles Galaxy, while in the second one, not even a month or week for when
Beckham left Galaxy is stated. Thus, failures in recognizing and resolving tem-
poral expressions are an important factor in introducing uncertainty and even
inconsistency to temporal knowledge bases.

Moreover, for reasoning and query answering, new temporal facts need to
be derived from existing temporal facts. Knowing, for example, the facts that
a player joined and left a club, we could derive a time interval for when this
player actually played for the club. Furthermore, teammates of the player and
their corresponding time intervals could be derived as well, which calls for a
principled approach to reasoning in temporal knowledge bases with uncertainty.
For this purpose, we started building Timely-YAGO (T-YAGO for short) [21],
which enriches our previously built knowledge base YAGO [17] by validity inter-
vals for facts. Similar to work done on temporal databases [12], validity intervals
provide simple, yet effective, support for query semantics built on interval inter-
sections and unions in T-YAGO. Simple interval operations are however only of
limited use for query processing (or reasoning) with uncertainty, i.e., with prob-
abilistic models or otherwise statistically quantified degrees of uncertainty. In
this paper, we adopt the common possible-worlds semantics known from proba-
bilistic databases and extend it towards histogram-like confidence distributions
that capture the validity of facts across time. Query processing is done via a
Datalog-like, rule-based inference engine, which employs the lineage of derived
facts for confidence computations to remain consistent with the possible-worlds
model.

1.1 Example Setting

Consider the example knowledge base in Figure 1, which illustrates a number
of facts about football players, coaches, and their teams. Initially, we are facing
the situation where facts with temporal annotations have been extracted from
different documents, which might yield different observations for when Beckham
1 Citations taken from actual news articles

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

52

and Ronaldo have joined and left Real Madrid, respectively, each with a differ-
ent frequency. Then the question arises how these different temporal annotations
should be reconciled into a concise representation model. Suppose we are uncer-
tain about the exact time point when Beckham joined and left Real Madrid.
Then, what should be the time interval for when Beckham actually played for
Real Madrid? Further, we observe that both Beckham and Ronaldo played for
Real Madrid. Yet, what is their chance of being teammates, and when did they
overlap? And what cup did Ronaldo win when he played for Real Madrid; or
who is the coach of the England National Team, and when? Although there are
various systems that manage uncertain data, none of them could readily solve
the problems stated here. We aim to answer these questions in the following.

Fig. 1. Example for extracting facts with time annotations and a resulting temporal
knowledge base.

1.2 Contributions and Outline

We propose an approach for representing and reconciling facts with temporal
annotations for time-aware reasoning over uncertain and potentially inconsistent
temporal knowledge bases. We briefly summarize the main contributions of this
paper as follows:

– Closed and Complete Representation Model for Temporal Knowl-
edge Bases. We develop a histogram-based data model for representing
uncertainty about the validity of facts across time. In particular, we distin-
guish between event and state relations and show how to combine both into
a unified framework for query processing (Section 2).

– Temporal Fact Extraction with Histogram Aggregation. We show
how to reconcile multiple (potentially inconsistent) observations of facts with
temporal annotations into a concise histogram at extraction time (Section 3).

– Possible-Worlds based Reasoning over Temporal Knowledge Bases.
We employ data lineage in the form of Boolean formulas that capture the
logical dependencies between base and derived facts, in a recursive, Datalog-
like reasoning environment (Section 4).

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

53

– System and Experiments. We evaluate our system on a real-world tem-
poral knowledge (Timely YAGO) with more than 270,000 (aggregated) tem-
poral facts, using handcrafted rules for query processing and reasoning in
the football domain (Section 5).

2 Data and Representation Model
Knowledge Base. We define a knowledge base KB = 〈F , C〉 as a pair consisting

of base facts F and first-order inference rules C. In Semantic Web applications,
facts are often encoded in the Resource Description Framework (RDF) format,
while the Web Ontology Language (OWL)—or more commonly one of its decid-
able subsets OWL-DL or OWL-lite—is used to express further constraints over
the knowledge base. Just like RDF, our set of base facts F constitutes a directed,
labeled multi-graph, in which nodes are entities, and labeled edges represent re-
lationships between the entities. For example, an RDF graph can have an edge
between the entity Beckham and the entity Real Madrid. This edge would be
labeled with the relation name playsForTeam. More formally, an RDF graph is
defined as a set of entities Ent and a set of relations Rel, where every R ∈ Rel is
such that R ⊆ Ent×Ent, and a set of triplets (or facts) F ⊆ (Rel×Ent×Ent).
Unlike RDF, we also associate a time histogram Hf with each fact f ∈ F . The
time histogram Hf captures the (discrete) probability distribution of f being
valid at a particular time point t ∈ Hf .

Inference Rules. We focus on a decidable subset of first-order logic for
our inference rules C. More specifically, we focus on Datalog-like Horn clauses,
which can be employed for inferring new facts (i.e., reasoning) at query time.
For example, a rule like

playsForTeam(x, y)← joinsTeam(x, y) ∧ leavesTeam(x, y) (1)

can be used to infer that an entity x has played for a particular team y. In
the following, we will denote variables by lowercase identifiers and constants by
uppercase names (with all variables implicitly being universally quantified).

Time Points, Intervals, and Histograms. A time point t denotes a small-
est time unit of fixed granularity. We have a discrete series of ordered time points
0, . . . , N (with a special designator N which marks the end of the time range we
consider). These time points could represent any desired—but fixed—granularity
(e.g., years, days, or seconds, or even transaction-based counters).

A validity interval is represented as a left-closed, right-open or right-closed,
interval, which is bounded by two time points (e.g., [1990, 2010)), thus denoting
a discrete and finite set of time points. This way, we are able to support both
range-queries (i.e., “Is this fact valid in the range of [1999, 2006)?”) and snapshot
queries (i.e., “Is this fact valid at time point 2006?”). A snapshot query can then
simply be seen as a special-case range query by using an interval consisting of
just a single time point (e.g., [2006, 2006]). Every interval has a corresponding
confidence value associated with it, which denotes the probability of the fact
being valid for the given interval. Multiple, non-overlapping intervals can be
concatenated to form a time histogram. Intervals in a time histogram do not
necessarily have to be contiguous. A gap between two consecutive intervals is
equivalent to an interval with a confidence value of 0.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

54

Event and State Relations. In the following, we distinguish between event
and state relations. In an event relation, a fact is valid at exactly one time point.
By default, facts in an event relation are thus associated with a validity interval
consisting of only one time point. For capturing uncertainty, however, validity
intervals (and entire histograms) may cover more than one time point, as in the
following example:

winsCup(Beckham, ChampionsLeague)[1999, 2001) :0.8

For simplicity, we assume a uniform distribution for the probability of a fact
within the interval in this case. For example, for the interval [1999, 2001), which
covers 2 time points with a confidence of 0.8, each time point in the interval would
have a probability of 0.4. The confidences of all intervals (and implicitly also the
confidences of the corresponding time points) must form a proper probability
distribution, i.e., the sum of all intervals’ confidences may be at most 1.

For a state relation, a fact is valid at every time point of an interval. Hence,
all time points in the interval are (implicitly) associated with the probability of
the interval, as in the following example:

playsForTeam(Beckham, United)[1992, 2003) :0.3; [2003, 2007) :0.4

Here, for the interval [1992, 2003), which covers 12 time points with a confidence
of 0.3, the fact is valid at each time point with probability of 0.3; and for the
interval [2003, 2007), the fact is valid at each time point with probability of 0.4.
For facts in a state relation, the confidences of all intervals must form a proper
probability distribution.

For both event and state relations, the sum p of confidences for the intervals
in a histogram may be less than 1. In general, a fact is invalid for all time points
outside the range of time points captured by the histogram with probability
1 − p. Moreover, different operations for slicing and coalescing intervals apply,
depending on whether a fact belongs to either an event or a state relation.

Slicing and Coalescing. In analogy to temporal databases [12], different
operations for reorganizing time intervals (and thus histograms) apply. For an
event relation, we can slice an interval into any set of disjoint and contiguous
subintervals by applying our uniformity assumption of confidences. Further, we
can coalesce any two contiguous intervals into a single interval, only if the in-
dividual time points in both intervals have the same probability. In this case,
the confidence of the coalesced interval is the sum of the confidences of the two
input intervals. For a state relation, however, slicing intervals into subintervals
is generally not allowed. Further, we can coalesce any two contiguous subinter-
vals into a single interval, only if they have the same confidence. In this case,
the confidence of the coalesced interval in a state relation is the same as the
confidence of the two input intervals.

Closed and Complete Representation Model. We remark that this
model is a generalization of the possible-worlds data model used in various prob-
abilistic database approaches (see, e.g., [2,5,11]), which now lets us express un-
certainty about a fact’s validity across time. In particular, this model allows for
arbitrary Boolean combinations of both state and event facts for query process-
ing, such that the distribution of confidences of any derived fact is guaranteed

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

55

to form a proper probability distribution again (closedness). Moreover, any dis-
crete and finite distribution of confidences can be captured by this model, also
for both base facts and derived facts (completeness). A detailed definition of
these operations for query processing is provided in Section 4.

3 Temporal Fact Extraction and Histogram Aggregation
In our temporal model for extraction, each fact is associated with its possible
earliest and latest time information. For example, from the sentence “Beckham
signed up for Real Madrid in 2003.”, we infer that Beckham joined Real in the
year 2003. Using days as our primary granularity for reasoning, we determine
the possible earliest (begin) time point of starting his contract to be 2003-1-1
and the latest (end) time point as 2003-12-31 (using date-formatted time points
for better readability). The begin and end time points then constitute an initial
time interval [2003-1-1, 2003-12-31] for this occurrence (evidence) of the fact
joins(Beckham, Real) in the document. But then the question arises, how we
should reconcile multiple of these (potentially inconsistent) occurrences, which
we are likely to observe in different documents during the extraction phase, and
how to represent these in a concise histogram for query processing.

Fact Time Expression Begin Time End Time Frequency Event Type
joins “July, 2003” 2003-7-1 2003-7-31 2 begin

(Beckham, Real) “Summer, 2003” 2003-6-1 2003-9-30 3
leaves “June, 2007” 2007-6-1 2007-6-30 1 end

(Beckham, Real) “Early June, 2007” 2007-6-1 2007-6-10 2
hasContract “Season 2003 2003-7-1 2007-6-30 2 during

(Beckham, Real) to 2007”
Table 1. Examples of time expressions and their corresponding intervals.

The extraction stage produces facts which may be valid at both a single time
point (e.g., a day or a year) and entire intervals (e.g., multiple days or years).
Staying in our football example, we aim to aggregate multiple occurrences of such
events into a single state fact playsForTeam(Beckham, Real)[2003-1-1, 2007-12-
31]. This state fact for playsForTeam can be inferred, for example, from two
event facts joins(Beckham, Real)[2003-1-1, 2003-12-31] and leaves(Beckham,
Real)[2007-1-1, 2007-12-31). Besides events that indicate the begin and end of
an interval, we can also directly extract events that happened during the period
when Beckham played for Real, such as hasContract(Beckham, Real)[2003-7-1,
2007-6-30]. Table 1 depicts a few examples of time expressions along with their
corresponding intervals and possible observation frequencies as they occur at
extraction time.

From these facts, we aim to derive the histogram for playsForTeam(Beckham,
Real). Notice, that even in case a player might have played for a team multiple
times (which occurs frequently), our approach allows for aggregating multiple
overlapping occurrences of begin, end and during events into a single histogram.

Merging Observations. Before presenting the forward and backward ag-
gregation of event frequencies into a histogram, we first introduce the basic
algorithm for reorganizing the bins of an output histogram, given two or more
input histograms, as depicted in Algorithm 1. That is, at each time point where

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

56

the confidence of an input histogram changes (i.e., at every interval boundary of
an input interval), the confidence in the output histogram may change as well,
and a new bin in the output histogram is created. Initially, the input histograms
correspond to the basic intervals we extracted for the begin, end and during
events (see Table 1).

This (binary) reorganization operation of bins is associative and commuta-
tive, hence multiple input histograms can be reorganized into a single output
histogram in arbitrary order. Runtime and the number of bins in the output
histogram are linear in the number of bins in the input histograms. Notice that
the smallest-possible width of a histogram bin is a single time point.

Algorithm 1 Reorganizing histograms.
Require: Two input histograms H1, H2

Let T be the disjoint union of begin and end time points from intervals in H1 and H2,
respectively (in ascending order)

Let H3 be an empty output histogram
Set tb := -1
For all te ∈ T do
If tb > −1
Insert a new interval [tb, te) into H3

Set tb := te

Return: H3

Forward and Backward Aggregation of Frequencies. As we have fin-
ished the histogram reorganization from the basic begin, end and during events,
we continue to aggregate and normalize the frequencies for our fact in the target
relation playsForTeam. Intuitively, the confidence of the playsForTeam should
increase while we aggregate frequencies of intervals that indicate a begin event;
it should increase at the begin of a during interval but decrease at the end of a
during interval; and it should decrease for intervals relating to end events. The
amount of occurrences for begin and end events may however be imbalanced,
such that we also need to normalize the frequencies of each of these two types
individually, before combining them into a single histogram. To obtain an in-
creasing confidence from begin events, we cumulate frequencies of each bin from
the first bin to the last bin (forward aggregation). In contrast, to obtain a de-
creasing confidence from end events, we cumulate frequencies of each bin from
the last bin to the first one (backward aggregation).

As shown in Figure 2, we first define the reorganized histograms H1 and H2

by aggregating the frequencies of all begin and end events of Table 1 according
to their type. Forward aggregation then iterates over all bins of H1 by cumulat-
ing the bins’ weights as H1[i] =

∑
0≤j≤i H1[j], starting with the first bin H1[0].

On the contrary, the backward aggregation iterates over all bins of H2 by cu-
mulating the bins’ weights as H2[i] =

∑
e≥j≥i H2[j], starting from the last bin

H2[e]. In the next step, both H1 and H2 are normalized to the weight of H3,
i.e., the aggregated histogram of all during events, before all three histograms
are again aggregated and normalized to form the final confidence distribution
of the playsForTeam fact (step 3 in Figure 2). In case no during event could
be extracted from the sources, an artificial during interval with the earliest and
latest time points of begin and end events with weight 1 can be created as H3,

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

57

Fig. 2. Reorganizing and merging histograms based on the input facts from Table 1.

in order to normalize H1 and H2. These various levels of aggregation are sum-
marized in Algorithm 2. Figure 2 provides an illustration of these three iterative
reorganization and aggregation steps based on the facts in Table 1.

We remark that this aggregation of observation frequencies is just one pos-
sible way of deriving an initial histogram at extraction time. In the following,
we call facts like playsForTeam(Beckham, Real), which are obtained from such a
forward/backward aggregation step, the base facts. Confidences in a probabilis-
tic sense are traced back to only those base facts at reasoning time. Further, we
assume these base facts to be independent.

Algorithm 2 Merging histograms.
Require: Forward-cumulated begin histogramH1, backward-cumulated end histogram

H2, and aggregated during histogram H3

Let H4 be an empty output histogram
Reorganize H1, H2, H3, and H4 using Algorithm 1
Normalize H1 and H2 such that

∑
i H1[i] =

∑
i H3[i] and

∑
i H2[i] =

∑
i H3[i]

For all i ∈ H4 do
Set H4[i] := H1[i] + H2[i] + H3[i]

Normalize H4 such that
∑

i H4[i] = 1
Return: H4

4 Rule-based Reasoning, Lineage, and Possible Worlds
Our approach for reasoning in semantic knowledge bases is based on Datalog-like
inference rules (Horn clauses), which can be employed to either enforce integrity
constraints (Horn clauses with only negated literals) or provide means for actual
inference and query answering (Horn clauses with exactly one positive literal).
Recall that Horn clauses with exactly one positive literal can equivalently be
rewritten as implications, where the positive literal becomes the head of the rule
and the body is a conjunction of the remaining literals. Our key observation is
that the logical dependencies of query answers (i.e., the possible worlds the entire
knowledge base can take) are determined only by the way rules were processed in
order to ground the query atoms (potentially recursively) down to the base facts.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

58

In this paper, we focus on the case of Horn clauses with exactly one positive head
literal, because it results in Boolean formulas with positive (i.e., conjunctive or
disjunctive) lineage only.

Temporal Predicates. For reasoning about time intervals, we employ ad-
ditional temporal predicates such as overlaps, before, after, etc. (see, e.g., Allen
et al. [7] for an overview of temporal relations among intervals). These temporal
predicates allow us to constrain the temporal relationships of time-annotated
facts in the rules. Within the formulation of a rule, we also extend the given
(binary) predicates by a third time variable t which is used as reference when
reasoning with the temporal predicates (see Rules (2) and (3)). While this exten-
sion clearly remains in first-order logic, it—strictly speaking—no longer conforms
with the core RDF data model.

Queries. Queries in Datalog can be expressed as Boolean combinations of
literals (again, we do not allow negation). Hence, teammates(Beckham, x) would
retrieve all teammates of Beckham, while teammates(x, y) would denote all pairs
of teammates that could be inferred from the knowledge base. Literals in queries
are grounded against the knowledge base. Semantically, a disjunction of two
literals relates to a disjoint union of two sets of facts (obtained from grounding
each literal), while a conjunction relates to a set intersection. Set operations in
these reasoning settings are always duplicate eliminating.

Conjunctive vs. Disjunctive Lineage. When processing a query, predi-
cates in the body of an inference rule are combined conjunctively, while multiple
rules with the same head predicate create a disjunctive derivation of the query
answer. In analogy to probabilistic databases, processing the body of a rule thus
conforms to a join operation with conjunctive lineage, whereas grounding the
same derived fact from multiple rules conforms to a duplicate-elimination step
with disjunctive lineage [2,16]. We thus adopt a similar notion of data lineage as
in [2] to compute the individual confidences of bins in the time histogram of a
derived fact. In a Datalog-like setting, however, rules are potentially recursive,
such that the derivation of answers typically is less uniform than for a regular
SQL query or materialized view. Lineage however remains acyclic also in our
setting, because all rules are grounded against base facts to find valid answers.

ID Fact Histogram Relation Type
F1 playsForTeam(Beckham, Real) [2003,2008):0.8 state
F2 playsForTeam(Ronaldo, Real) [2002,2008):0.7 state
F3 winsCupForTeam(Ronaldo,Real) [2003,2004):0.6 event

Table 2. Base facts with time histograms (intervals).

teammates(x, y)← playsForTeam(x, z, t1) ∧ playsForTeam(y, z, t2)
∧ notEquals(x, y) ∧ overlaps(t1, t2) (2)

teammates(x, y)← playsForTeam(x, z, t1) ∧ winsCupForTeam(y, z, t2)
∧ notEquals(x, y) ∧ overlaps(t1, t2) (3)

As an example, consider we want to retrieve the probability of Beckham and
Ronaldo being teammates for Rules (2) and (3) and the base facts depicted in
Table 2. We will next discuss how confidence computation works in this setting.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

59

Confidence Computation. While grounding queries via rules yields ex-
actly one Boolean lineage formula for a derived fact, the input confidences of
base facts may vary across time. Hence our algorithm needs to ensure that the
correct confidences are chosen as input when calculating the confidence of a
result histogram. This is achieved via reorganizing the bins of the output his-
togram using Algorithm 1 and slicing and coalescing the input intervals of base
facts belonging to an event relation accordingly. Notice that intervals from base
facts belonging to a state relation do not have to be sliced, since a fact is de-
fined to be valid at each time point of an interval with the same probability (see
Section 2).

Thus, grounding the query teammates(Beckham,x) over the above Rules (2)
and (3) and base facts depicted in Table 2 results in the (single) grounded query
answer teammates(Beckham, Ronaldo) with lineage (F1 ∧ F2)∨ (F1 ∧ F3). How-
ever, by simply multiplying the probability of each literal in the lineage of team-
mates(Beckham, Ronaldo), we would get 0.8 × 0.7 × 0.8 × 0.6 = 0.2688. This
is not correct, since the probability of playsForTeam(Beckham, Real) is con-
sidered twice. Assuming independence among base facts, we can calculate the
correct probability of teammates(Beckham, Ronaldo) for the interval [2003, 2004)
as 0.8× 0.7× 0.6 + 0.8× 0.7× (1− 0.6) + 0.8× (1− 0.7)× 0.6 = 0.704 (as can be
verified by a truth table). For simplicity, we show the confidence computation
only for a single interval. In general, one such computation can be triggered for
each bin of a time histogram, again using Algorithm 1 for reorganizing the his-
togram, but with a possible-worlds-based confidence computation instead of the
simple aggregation of Algorithm 2.

Our approach for confidence computations with time histograms can thus be
summarized into the following two steps:

1) reorganizing bins of the output histogram using Algorithm 1, and
2) computing the confidence for a fact’s validity at each bin of its histogram.

While step 1) is linear in the number of input bins, each confidence computation
per output bin is #P-complete for general Boolean formulas [15]. We thus employ
the Luby-Karp family of sampling algorithms for approximating the confidence
computation. Different versions for Luby-Karp sampling [13] are available, de-
pending on whether the formula is in CNF, DNF, or of generic Boolean shape,
each with different approximation guarantees. Thus, as a simple optimization,
our implementation is able to check for the structure of the formulas at query
time, and it can select the most appropriate variant of Luby-Karp, or even an
exact confidence computation if this is still feasible.

In our current implementation, lineage is transient, i.e., we keep lineage in-
formation only in memory at query processing time. For future work, we aim to
investigate also making lineage persistent, thus being able to “learn” new facts
from existing facts in the knowledge base and storing these derived facts along
with their derivation in the knowledge base for further processing and faster
subsequent inference.

5 System Setup and Experiments
Our system is implemented as an extension of URDF [18], which is a framework
for efficient reasoning over uncertain RDF knowledge bases developed at the Max

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

60

Planck Institute for Informatics. URDF employs SLD resolution for grounding
first-order formulas (Horn clauses) against an underlying knowledge base. Unlike
most Datalog engines, URDF follows a top-down grounding approach, i.e., for
an incoming query, it aims to resolve answers by processing rules recursively
from the head predicate down to the body predicates, which are conjunctions of
predicates found either in the knowledge base or which can in turn be processed
via the head predicate of a rule. URDF is implemented in Java 1.6 with about
4,000 lines of code. All experiments were run on an Intel Xeon 2.40GHz server
(in single-threaded mode) with 48GB RAM. We use Oracle 10g as backend for
storing the T-YAGO knowledge base, which was installed on a second AMD
Opteron 2.6 GHz server with 32GB RAM.

As competitors we employ the original URDF framework (without the tem-
poral extension) and the IRIS [3] reasoner, a default reasoning engine used in
many Semantic Web applications. In terms of reasoning, IRIS [3] is an open-
source Datalog engine supporting built-in predicates. It is designed to be highly
configurable, allowing for different Datalog evaluation strategies and the defini-
tion of custom data types and predicates.

5.1 Timely YAGO Knowledge Base

Our experiments are based on the semantic graph of T-YAGO [21]. For T-YAGO,
we extracted more than 270K temporal facts from Wikipedia and freetext, with
16 distinct relationship types. Currently it covers the football domain, includ-
ing relationships such as playsForSeniorClub, participatedIn and winsCup, but
also raw facts for the begin, end, and during events of these relations, such as
joinsSeniorClub or leavesSeniorClub. These raw facts can be integrated with the
existing facts of the corresponding relations (e.g., playsForSeniorClub), in order
to reconcile time histograms using the aggregation rules depicted in Table 4.

The facts and time histograms are stored in two separate tables. The facts
table contains three columns for RDF triplets (i.e., first argument, second ar-
gument, and relation name) and a column for the fact id. The time table is
composed of two columns (i.e., start time point and end time point) correspond-
ing to the begin and end time point of an interval, a foreign key connecting to
the fact’s id, and a column for the fact’s confidence at the interval.

5.2 Rules and Queries

Table 4 depicts 4 aggregation rules for reasoning about the time interval of
a player’s or coach’s career period, as well as 9 partly recursive, hand-crafted
inference rules for reasoning about people’s activities and relationships in the
football domain. As URDF (without time) and IRIS do not support time-aware
reasoning, we remove all temporal predicates in the inference rules, such as
overlaps or after, when comparing their runtimes and results. Table 4 illustrates
8 queries including single-fact queries, chains, stars and cliques of interconnected
facts used as our baseline for experiments.

5.3 Experimental Results

Our experiments focus on investigating the overhead of time-aware query pro-
cessing, compared to a time-oblivious setting. We compare the running times and

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

61

result precision of URDF (with time) to IRIS and URDF (without time). The
running time of URDF (with time) includes grounding time (using SLD resolu-
tion) and histogram creation (i.e., possible-worlds-based histogram calculation
time).

Baseline Runs Without Time. Since IRIS and URDF (without time)
do not support time-aware reasoning, we compare grounding time and result
precision of IRIS to URDF (without time) in the first experiment. The grounding
time in URDF (without time) denotes the time to ground the query atoms,
using the inference rules and queries depicted in Table 4. The measured time in
IRIS is the time required to ground the query using magic sets rewriting, which
includes both the rule rewriting step followed by a bottom-up query evaluation
over the rewritten rules. We can see that URDF already outperforms IRIS for
the grounding time (both without using time-specific predicates).

Overhead of Confidence Computations with Histograms. In the sec-
ond experiment, we compare the grounding time and result precision of URDF
(without time) to URDF (with time). Besides the grounding time consumed
by URDF (without time), URDF (with time) also includes the possible-worlds-
based histogram computation time. A comparable confidence computation for
facts with just a single confidence value but without a time histogram is also
shown on the left-hand side for URDF (without time).

Interestingly, Table 3 shows that URDF (with time) even partly achieves
better runtimes than URDF (without time) for complex queries, because URDF
(with time) does not ground any answers that do not satisfy the temporal pred-
icates. This is also the main reason for the lower precision of URDF (without
time) compared to URDF (with time). The grounding time of URDF (with time)
is better than URDF (without time) for Queries 4, 5, 7 and 8, even when taking
also the time for building the final histogram into account. However, the time
for building the histogram for Query 6 is much worse than the others, yielding
14 results with 6,552 literals in 504 disjunctions in their lineage. Also, only for
Query 6 we needed to employ Luby-Karp-based sampling (using ε = 0.05 and
δ = 0.05), while all the other confidences could be computed exactly.

Without time information With time histograms T-URDF/URDF
IRIS URDF PWs-conf # T-URDF PWs-conf #
ms ms ms results ms ms results precision

Q1 6893 35 2 8 45 <1 8 8/8
Q2 821 11 <1 5 12 <1 5 8/8
Q3 7127 1905 1191 766 2113 1 184 184/766
Q4 6686 699 188 239 308 5 58 58/239
Q5 7628 3099 314 190 1423 51 114 114/190
Q6 4317 693 20345 14 1054 87600 14 8/8
Q7 6909 6712 574 183 3277 5 17 17/183
Q8 7125 6396 190 133 4441 1 25 25/133∑
47506 19550 <22805 1538 12673 <87665 425 avg=0.545

Table 3. Experimental results.

6 Related Work
Temporal reasoning has a fairly long history through works in logics and AI, most
notably in the seminal work by Allen et al. [7]. To the best of our knowledge, our

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

62

approach is the first to integrate reasoning, temporal probabilistic RDF data,
and lineage. Recently, there has been an effort to expand information extraction
along the temporal dimension, coined T-YAGO [21]. T-YAGO extends the rule-
based approach used for extracting YAGO [17] to temporal facts from infoboxes
and category information in Wikipedia, resulting in fairly large collections of
facts with temporal annotations presented using the RDF data model. In [14],
a pre-trained probabilistic model is used to extract temporal information from
natural language sentences and annotate facts with time intervals. However, this
approach does not support reasoning about relations or query answering. Work
on temporal databases dates back to the early 1980’s [12]. Different semantics
for associating time with facts have been defined. In the context of this paper,
we use the valid-time semantics, where the time recorded for facts in a database
captures the reality of the world being modeled by the database. Extensions for
traditional data models have been explored to accommodate temporal data in
an efficient manner, both in terms of space and query processing. There has also
been an extensive effort to develop query languages for querying temporal data.
Most of these efforts were attempts to modify SQL to reduce the complexity
of temporal queries. There is a wealth of research on probabilistic databases
and the management of uncertain data. [11] is a state-of-the-art probabilistic
database management system achieving scalability. [2,16] present a framework
for dealing with uncertain data and data lineage. This approach allows for the
decoupling of data and confidence computations when processing queries over
uncertain data [16], allowing for a wider range of query plans to be used while
still maintaining the correctness of confidence computations. For dealing with
probabilistic reasoning in the context of information retrieval, [8] presents a
probabilistic version of Datalog, which is one of the first works to introduce a
notion of intensional query semantics. [9,10,19] present a probabilistic extension
to RDF and how SPARQL queries over such an extension can be supported.
However, no notion of temporal reasoning has been considered in these contexts.

7 Conclusions
We believe that adding time to a knowledge base is a crucial component for
high-precision query answering. Time-aware information extraction increases the
demand for coping with imprecise or otherwise uncertain data and is an excellent
showcase for uncertain data management. Moreover, in our approach, we show
that adding time histograms involves only a light overhead over a comparable
probabilistic setting that does not consider time. Time-aware reasoning may even
spare unnecessary computations for false-positive answers at an early stage and
thus reduce the overall runtime for query answering. Currently, the way we ag-
gregate occurrence frequencies into our initial time histograms for the base facts
still is fairly abrasive from a probabilistic point of view. Our long-term goal thus
is to find appropriate generative models which allow for incorporating the actual
occurrences of facts in the documents into the probabilistic interpretation. The
temporal extension however is already fully integrated into our URDF reasoning
framework, which provides a unified and versatile reasoning platform, including,
for example, also spatial reasoning extensions.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

63

APPENDIX: Rules and Queries
Aggregation Rules
A1 : joinsY outhClub(a, b) ∧ duringY outhClub(a, b) ∧ leavesY outhClub(a, b)

→ playsForY outhClub(a, b)

A2 : joinsSeniorClub(a, b) ∧ duringSeniorClub(a, b) ∧ leavesSeniorClub(a, b)
→ playsForSeniorClub(a, b)

A3 : joinsNationalTeam(a, b) ∧ duringNationalTeam(a, b) ∧ leavesNationalTeam(a, b)
→ playsForNationalTeam(a, b)

A4 : beginManagesTeam(a, b) ∧ duringManagesTeam(a, b) ∧ endManagesTeam(a, b)
→ managesTeam(a, b)

Inference Rules
Players playing for teams are summarized into playsForTeam.

C1 : playsForY outhClub(a, b) → playsForTeam(a, b)
playsForSeniorClub(a, b) → playsForTeam(a, b)
playsForNationalTeam(a, b) → playsForTeam(a, b)

If two players play for the same team at the same time, they are teammates.
C2 : playsForTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ overlaps(t1, t2) ∧ notEquals(a, c)

→ teammates(a, c)

If one player plays for the same team after another player, then the former is a successor of the latter.
C3 : playsForTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ after(t1, t2) ∧ notEquals(a, c)

→ successor(a, c)

If one player plays for the same team before another player, then the former is an ancestor of the latter.
C4 : playsForTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ before(t1, t2) ∧ notEquals(a, c)

→ ancestor(a, c)

Players who have played for more than 1460 days (more than 4 years) for a team.
C5 : playsForTeam(a, b, t1) ∧ durationMoreThan(t1, 1460)

→ playedMoreThan4Y earsForTeam(a, b)

If a coach manages the team when a player is playing for the team, the coach trained this player.
C6 : managesTeam(a, b, t1) ∧ playsForTeam(c, b, t2) ∧ overlaps(t1, t2)

→ isCoachOf(a, c)

If a coach manages a team, and this is a national team, then he is a coach of a national team.
C7 : managesTeam(a, b, t1) ∧ playsForNationalTeam(c, b, t2) ∧ overlaps(t1, t2)

→ isCoachOfNationalTeam(a, b)

Queries
Single-fact queries:
For which teams (and when) did David Beckham play?

Q1 : playsForTeam(DavidBeckham, x)

Which teams (and when) has Alex Ferguson managed?
Q2 : managesTeam(AlexFerguson, x)

Who are the ancestors of David Beckham?
Q3 : ancestor(x, DavidBeckham)

Chain queries:
Who are the coaches of David Beckham, and which teams did they previously play for?

Q4 : isCoachOf(x, DavidBeckham) ∧ playsForTeam(x, y)

Who are teammates of David Beckham, who participated in the same activity as Zinedine Zidane?
Q5 : teammates(DavidBeckham, y) ∧ participatedIn(y, z) ∧ participatedIn(ZinedineZidane, z)

Star queries:
Who are the coaches of the England National Football Team, what cups did they win,
and which activities did they join?

Q6 : isCoachOfNationalTeam(x, EnglandNationalFootballTeam) ∧ winsCup(x, y)
∧participatedIn(x, z)

Who played for Manchester United for more than 4 years and was a teammate of David Beckham?
Q7 : playedMoreThan4Y earsForTeam(x, ManchesterUnited) ∧ teammates(x, DavidBeckham)

Clique query:
Who are the successors of David Beckham who won the same cup as Beckham?

Q8 : successor(x, DavidBeckham) ∧ winsCup(x, z) ∧ winsCup(DavidBeckham, z)

Table 4: Aggregation rules, inference rules, and queries used for the experiments.

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

64

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: ISWC (2007)

2. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Theobald, M., Widom, J.: Databases
with uncertainty and lineage. VLDB J. 17(2) (2008)

3. Bishop, B., Fischer, F.: IRIS- Integrated rule inference system (2008)
4. Carlson, A., Betteridge, J., Wang, R.C., Jr., E.R.H., Mitchell, T.M.: Coupled semi-
supervised learning for information extraction. In: WSDM (2010)

5. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4) (2007)

6. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web-scale information extraction in KnowItAll. In:
WWW (2004)

7. Fisher, M., Gabbay, D.M., (Eds.), L.V.: Handbook of temporal reasoning in arti-
ficial intelligence. Elsevier (2005)

8. Fuhr, N.: Probabilistic datalog - a logic for powerful retrieval methods. In: SIGIR
(1995)

9. Fukushige, Y.: Representing probabilistic relations in RDF. In: ISWC-URSW
(2005)

10. Huang, H., Liu, C.: Query evaluation on probabilistic RDF databases. In: WISE
(2009)

11. Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: a probabilistic database
management system. In: SIGMOD Conference (2009)

12. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. on Knowl.
and Data Eng. 11(1) (1999)

13. Karp, R.M., Luby, M.: Monte-carlo algorithms for enumeration and reliability prob-
lems. In: FOCS. pp. 56–64 (1983)

14. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI’10. AAAI Press
(2010)

15. Re, C., Dalvi, N.N., Suciu, D.: Efficient top-k query evaluation on probabilistic
data. In: ICDE (2007)

16. Sarma, A.D., Theobald, M., Widom, J.: Exploiting lineage for confidence compu-
tation in uncertain and probabilistic databases. In: ICDE (2008)

17. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago
18. Theobald, M., Sozio, M., Suchanek, F., Nakashole, N.: URDF: Efficient reasoning

in uncertain RDF knowledge bases with soft and hard rules. Tech. Rep. MPI-I-
2010-5-002, Max Planck Institute Informatics (MPI-INF) (2010)

19. Udrea, O., Subrahmanian, V.S., Majkic, Z.: Probabilistic RDF. In: IRI (2006)
20. Verhagen, M., Mani, I., Sauri, R., Knippen, R., Jang, S.B., Littman, J., Rumshisky,

A., Phillips, J., Pustejovsky, J.: Automating temporal annotation with TARSQI.
In: ACL (2005)

21. Wang, Y., Zhu, M., Qu, L., Spaniol, M., Weikum, G.: Timely YAGO: harvesting,
querying, and visualizing temporal knowledge from wikipedia. In: EDBT (2010)

22. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
WWW (2008)

23. Yates, A., Banko, M., Broadhead, M., Cafarella, M.J., Etzioni, O., Soderland, S.:
TextRunner: Open information extraction on the web. In: HLT-NAACL (2007)

Fourth International VLDB Workshop on Management of Uncertain Data, Singapore, 2010

65

