
Generating Quiz Questions from Knowledge Graphs

Dominic Seyler Mohamed Yahya Klaus Berberich
Max Planck Institute for Informatics

Saarbrücken, Germany
{dseyler, myahya, kberberi}@mpi-inf.mpg.de

ABSTRACT
We propose an approach to generate natural language ques-
tions from knowledge graphs such as DBpedia and YAGO.
We stage this in the setting of a quiz game. Our approach,
though, is general enough to be applicable in other set-
tings. Given a topic of interest (e.g., Soccer) and a difficulty
(e.g., hard), our approach selects a query answer, generates
a SPARQL query having the answer as its sole result, before
verbalizing the question.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
Knowledge Graphs, Natural Language Questions

1. INTRODUCTION
Knowledge graphs such as DBpedia, Freebase, and YAGO

provide world knowledge as structured (RDF) data. Au-
tomatically answering natural language questions based on
these resources has attracted ample attention, both from
industry [1] and academia [7], in recent years.

In this work, we address the reverse problem of generat-
ing natural language questions from knowledge graphs. We
stage this in the setting of a quiz game. Our objective is
thus to come up with a natural language question belonging
to a specific topic (e.g., Entertainment) and having a spe-
cific difficulty (e.g., easy or hard). However, we foresee that
natural language question generation has more serious appli-
cations, for instance, in professional education settings such
as training employees based on structured data about prod-
ucts, customers, or the company itself. The approach that
we develop is general enough to be useful in such settings.

Challenges that we address along the way include esti-
mating question difficulty and coming up with a question
which has a unique answer in the knowledge graph. Our
approach uses a SPARQL query as an intermediate repre-
sentation, estimates question difficulty based on statistics
from the knowledge graph as well as Wikipedia, and finally
verbalizes the question using lexical resources.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742722.

2. RELATED WORK
We now put our work in context with existing research.

Some of the relevant aspects have been looked at by the NLP
community. Liu et al. [4] investigate how question difficulty
can be estimated in the context of community question an-
swering services. Sakaguchi et al. [6] focus on the problem
of removing words from text to generate fill-in-the-blanks
questions in language learning. Research in the DB and Se-
mantic Web communities has investigated how structured
queries formulated in SQL [3] or SPARQL [5] can be para-
phrased in natural language.

3. QUESTION GENERATION
We next describe how we generate a natural language

question given a topic of interest (e.g., Soccer) and a dif-
ficulty level. Our approach proceeds in three steps, moving
from the question answer to the natural language question
itself. First, a named entity t is selected as the answer of
the question. Second, as an intermediate representation, a
SPARQL query is generated, which has the target entity t

as its sole result and consists of triple patterns ?t p o and
s p ?t. Third, the intermediate SPARQL query is verbal-
ized, yielding a natural language question, which can then be
posed to the user. Before providing details on each of these
three steps, we describe how we estimate question difficulty.

3.1 Question Difficulty
We rely on statistics from the knowledge graph and Wiki-

pedia to estimate the difficulty of natural language ques-
tions. We identified the following three factors:

Popularity of the target entity p(t) measured as the frac-
tion of links in Wikipedia which point to the target entity’s
article. This captures the intuition that questions about
popular entities tend to be easier. Thus, a question about
Ronaldo is arguably easier than one about Stefan Kuntz.

Selectivity of triple patterns in the intermediate SPARQL
query. For a triple pattern s p o its selectivity s(s p o)
is measured as the reciprocal number of answer triples in
the knowledge graph. For instance, the triple pattern ?t

playsFor A.C._Milan is more selective than ?t bornIn Rio_

de_Janeiro. Here, the intuition is that more selective triple
patterns give more useful cues to the user.

Coherence of triples in the intermediate SPARQL query.
For a triple s p o its coherence c(s p o) is measured as the
Jaccard coefficient of the sets of Wikipedia articles point-
ing to the entities s and o, respectively. Intuitively, the
triple David_Beckham playsFor Real_Madrid is more co-

113



herent than David_Beckham bornIn London and thus pro-
vides a more useful cue.

Putting things together, we measure the difficulty of a
question for target entity t via triple patterns si pi oi as

p(t) +
1

n

n∑
i=1

s(si pi oi) +
1

n

n∑
i=1

c(si pi oi) .

3.2 Answer Selection
Given a topic of interest, as a first step, we need to select

a target entity t as the question’s answer. To this end, we
obtain the grouping of Wikipedia categories into high-level
topics (e.g., Arts and Sports) from the Wikipedia Portal.
For a given topic (e.g., Sports) we then identify all entities
within any of the relevant Wikipedia categories (e.g., Pre-
mier_League_Players) and select our target entity t such
that its popularity p(t) fits the given difficulty level.

3.3 Query Generation
Having selected the target entity t, we next generate our

intermediate SPARQL query. First, as building blocks, we
retrieve all triples from the knowledge graph with the target
entity as subject or object by issuing the queries t ?p ?o

and ?s ?p t. Some of these triples need to be filtered out,
because they would spoil the query answer immediately. As
a concrete example, consider the triple David_Beckham mar-

riedTo Victoria_Beckham when asking for David_Beckham.
Therefore, we filter out all triples which have non-stopword
tokens in common with the target entity. As a sanity check,
we turn the resulting set of triples into a SPARQL query
by making t a variable ?t – if this query returns more than
one result, there is no hope of generating a question for this
target entity and we have to start afresh. Otherwise, we
next need to select a subset of the triples, so that the cor-
responding SPARQL query has t as its sole result. This is
implemented using random search informed by our notion
of query difficulty. More precisely, we randomly select a
triple to be added/removed from the subset, taking into ac-
count its selectivity and coherence relative to the difficulty
of the current query. Moreover, the search is constrained
so that always at least one type triple (e.g., David_Beckham
type Premier_League_Players) is selected. When we see
a query which meets the desired difficulty level, we issue it
and check whether it yields t as its sole result.

3.4 Question Verbalization
As a final step we need to verbalize the intermediate SPAR-

QL query to turn it into a natural language question. By
construction, as said above, our intermediate SPARQL query
contains at least one type triple. We verbalize it following
the simple pattern

This type1, . . . , and typem p1 o1, . . . , and pn on .

Here, typei are obtained as the objects of the type triples
and pi oi are the predicates and object entities of the re-
maining triples. For verbalization, types names are turned
into sigular and have their underscores removed. For ob-
ject entities we use their canonical surface form as captured
in the knowledge graph (e.g., David Beckham). To verbalize
predicates, we manually constructed a dictionary containing
two paraphrases for each predicate, one for the case when
the target entity is the subject and another for when it is
the object. Thus, the playsFor predicate can be verbalized

as plays for or has player depending on whether our target
entity is David_Beckham or Real_Madrid, respectively.

4. ANECDOTAL EXAMPLES
We now provide anecdotal example questions generated by

our approach on the YAGO [2] knowledge graph. We con-
sider the topics Soccer and Entertainment and fix the target
entity as Ronaldo and Elvis_Presley, respectively. These
are among the most popular entities within our topics. We
generate an easy and a hard question for each entity.

Ronaldo type Brazilian_footballers .
Ronaldo type 2002_FIFA_World_Cup_players .
Ronaldo playsFor FC_Barcelona .
Ronaldo bornIn Rio_de_Janeiro .

This Brazilian footballer and 2002 FIFA World Cup player

plays for FC Barcelona and was born in Rio de Janeiro. (Easy)

Ronaldo type Naturalised_citizens_of_Spain .
Ronaldo type Olympic_bronze_medalists_for_Brazil .
Ronaldo playsFor S~ao_Cristóv~ao_de_Futebol_e_Regatas .
Ronaldo hasWonPrize Laureus_World_Sports_Awards .

This Olympic bronze medalist for Brazil and naturalised citizen

of Spain plays for São Cristóvão de Futebol e Regatas and has

won the Laureus World Sports Awards. (Hard)

Elvis_Presley type American_rock_singers .
Elvis_Presley diedIn Memphis,_Tennessee .
Elvis_Presley created Jailhouse_Rock .
Elvis_Presley created Heartbreak_Hotel .

This american rock singer died in Memphis, Tennessee and

created Jailhouse Rock and Heartbreak Hotel. (Easy)

Elvis_Presley type entertainer .
Elvis_Presley type musician .
Elvis_Presley created It’s_Easy_for_you .
Elvis_Presley created I_Got_Lucky .

This entertainer and musician created It’s Easy for You and I

Got Lucky. (Hard)

As can be seen from the examples, our approach reli-
ably generates easy and hard questions. For instance, for
Ronaldo, it selects the better known soccer club FC_Barcelona

for the easy question – the corresponding triple has high se-
lectivity and coherence. Likewise, for Elvis_Presley, the
hard question includes less well-known songs.

5. SUMMARY & OUTLOOK
We put forward an initial approach to generate natural

language questions from knowledge graphs. The approach
is implemented in an end-to-end system available at:

https://gate.d5.mpi-inf.mpg.de/q2g/

6. REFERENCES
[1] D. A. Ferrucci. Introduction to ”This is Watson”. IBM

Journal of Research and Development, 2012.

[2] J. Hoffart et al.: YAGO2: A spatially and temporally
enhanced knowledge base from wikipedia. AI, 2013.

[3] G. Koutrika et al. Explaining structured queries in natural
language. ICDE 2010

[4] J. Liu et al. Question difficulty estimation in community
question answering services. EMNLP 2013

[5] A. N. Ngomo et al. Sorry, i don’t speak SPARQL: translating
SPARQL queries into natural language. WWW 2013

[6] K. Sakaguchi et al. Discriminative approach to fill-in-
the-blank quiz generation for language learners. ACL 2013

[7] M. Yahya et al. Robust Question Answering over the Web of
Linked Data. CIKM 2013

114




