Optimal assignment of periods and deadlines to EDF-scheduled tasks

Enrico Bini

Scuola Superiore Sant’Anna — Pisa, Italy
Lund University — Lund, Sweden

February 28th, 2012
The task model

- A set \(\{\tau_1, \ldots, \tau_n\} \) of \(n \) periodic arbitrary deadline tasks. Each task \(\tau_i \) has:
 - execution \(C_i \);
 - period \(T_i \);
 - relative (to the job release) deadline \(D_i \) (in this talk it is assumed \(D_i \leq T_i \), in the paper \(D_i \) arbitrary).

- Each task releases an infinite sequence of job, one every period. \(j \)-th job of \(\tau_i \):
 - is released at \(r_{ij} = (j - 1)T_i \)
 - has absolute deadline \(d_{ij} = r_{ij} + D_i \)
 - must complete not later than \(d_{ij} \)
Earliest Deadline First (EDF)

- Jobs are scheduled preemptively according to their absolute deadline

\[
\begin{array}{ccc}
C_i & T_i & D_i \\
1 & 5 & 5 \\
1 & 4 & 5 \\
3 & 7 & 7 \\
\end{array}
\]
Earliest Deadline First (EDF)

- Jobs are scheduled preemptively according to their absolute deadline

<table>
<thead>
<tr>
<th>C_i</th>
<th>T_i</th>
<th>D_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Theorem (Baruah ’90)

The task set is schedulable by EDF if and only if:

$$\forall t \in \{d_{ij}\}, \quad \sum_{i=1}^{n} k_i C_i \leq t$$

with

$$k_i = \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor$$
An equivalent formulation 1

The EDF necessary and sufficient condition is

\[\forall t \in \{d_{ij}\}, \quad \sum_{i=1}^{n} k_i C_i \leq t \quad \text{with} \quad k_i = \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor \]

What is the interpretation of the vector \((k_1, k_2, \ldots, k_n) \in \mathbb{N}^n\)?
An equivalent formulation 1

The EDF necessary and sufficient condition is

\[\forall t \in \{d_{ij}\}, \sum_{i=1}^{n} k_i C_i \leq t \quad \text{with} \quad k_i = \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor \]

What is the interpretation of the vector \((k_1, k_2, \ldots, k_n) \in \mathbb{N}^n\)?

- \(k_i\) is the number of \(\tau_i\) jobs within the interval \([0, t]\)
- \(k_1 C_1 + k_2 + C_2 + \ldots + k_n C_n\) is the demand bound function
An equivalent formulation 1

The EDF necessary and sufficient condition is

\[\forall t \in \{d_{ij}\}, \sum_{i=1}^{n} k_i C_i \leq t \quad \text{with} \quad k_i = \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor \]

What is the interpretation of the vector \((k_1, k_2, \ldots, k_n) \in \mathbb{N}^n\)?

- \(k_i\) is the number of \(\tau_i\) jobs within the interval \([0, t]\)
- \(k_1 C_1 + k_2 + C_2 + \ldots + k_n C_n\) is the demand bound function

Given a vector \((k_1, k_2, \ldots, k_n) \in \mathbb{N}^n\), what is the interval that must contain \(\sum_{i=1}^{n} k_i C_i\) to guarantee feasibility?
An equivalent formulation 1

The EDF necessary and sufficient condition is

\[\forall t \in \{d_{ij}\}, \sum_{i=1}^{n} k_i C_i \leq t \quad \text{with} \quad k_i = \left\lceil \frac{t + T_i - D_i}{T_i} \right\rceil \]

What is the interpretation of the vector \((k_1, k_2, \ldots, k_n) \in \mathbb{N}^n\)?

- \(k_i\) is the number of \(\tau_i\) jobs within the interval \([0, t]\)
- \(k_1 C_1 + k_2 + C_2 + \ldots + k_n C_n\) is the demand bound function

Given a vector \((k_1, k_2, \ldots, k_n) \in \mathbb{N}^n\), what is the interval that must contain \(\sum_{i=1}^{n} k_i C_i\) to guarantee feasibility?

- it is

\[[0, \max_i \{d_{ik_i}\}] = [0, \max_i \{(k_i - 1)T_i + D_i\}] \]
An equivalent formulation 2

With a leap of faith, we have

Theorem

The task set is schedulable by EDF if and only if:

\[\forall k \in \mathbb{N}^n \setminus \{0\}, \quad \sum_{j=1}^{n} k_j C_j \leq \max_i \{d_{ik_i}\} = \max_i \{(k_i - 1)T_i + D_i\} \]
An equivalent formulation 2

With a leap of faith, we have

Theorem

The task set is schedulable by EDF if and only if:

\[
\forall \mathbf{k} \in \mathbb{N}^n \setminus \{0\}, \quad \sum_{j=1}^{n} k_j C_j \leq \max_i \{d_{ik_i}\} = \max_i \{(k_i-1)T_i + D_i\}
\]

or, equivalently,

\[
\forall \mathbf{k} \in \mathbb{N}^n \setminus \{0\}, \quad \exists i = 1, \ldots, n \quad (T_i - C_i)k_i - \sum_{j \neq i} C_j k_j \geq T_i - D_i
\]
An equivalent formulation 2

With a leap of faith, we have

Theorem

The task set is schedulable by EDF if and only if:

\[
\forall k \in \mathbb{N}^n \setminus \{\mathbf{0}\}, \quad \sum_{j=1}^{n} k_j C_j \leq \max_i \{d_{ik_i}\} = \max_i \{(k_i - 1)T_i + D_i\}
\]

or, equivalently,

\[
\forall k \in \mathbb{N}^n \setminus \{\mathbf{0}\}, \quad \exists i = 1, \ldots, n \quad (T_i - C_i)k_i - \sum_{j \neq i} C_j k_j \geq T_i - D_i
\]

or, equivalently,

\[
\mathbb{N}^n \setminus \{\mathbf{0}\} \subseteq \bigcup_{i=1}^{n} \{k : (T_i - C_i)k_i - \sum_{j \neq i} C_j k_j \geq T_i - D_i\}
\]
Space of C_i

Given the periods T_i and the deadlines D_i, what is the space of feasible computation times?
Given the periods T_i and the deadlines D_i, what is the space of feasible computation times? If $T_1 = 4$, $D_1 = 5$, $T_2 = 6$, $D_2 = 4$, we have
Given the periods T_i and the deadlines D_i, what is the space of feasible computation times?

If $T_1 = 4$, $D_1 = 5$, $T_2 = 6$, $D_2 = 4$, we have

$$\text{Speedup } \frac{5}{4} = 1.25 \text{ for these values of period deadline.}$$
Space of D_i

Given the periods T_i and the execution times C_i, what is the space of feasible deadlines?
Space of D_i

Given the periods T_i and the execution times C_i, what is the space of feasible deadlines?

If $T_1 = 4$, $C_1 = 2$, $T_2 = 7$, $C_2 = 3.5$ (notice that $\frac{C_1}{T_1} + \frac{C_2}{T_2} = 1$), we have