How much dynamic behaviour is needed for optimality?

Rob Davis
Single processor

- Liu & Layland task model
- Utilisation bound for FP-P

\[U \equiv \sum_{i=1}^{N} \frac{C_i}{T_i} \leq N(2^{1/N} - 1) \quad U \leq 0.69 \text{ as } N \to \infty \]

- EDF-P

\[\sum_{i=1}^{N} \frac{C_i}{T_i} \leq 1 \]
Fixed priority with deferred pre-emption

- With FP-DS, each task τ_i has a final non-pre-emptive region of length q_i
 - Larger q_i improves schedulability of τ_i but increases blocking on higher priority tasks

- FP-DS dominates both FP-P and FP-NP

- $q_i = 0$ (FP-P)
 - $q_i = C_i$ (FP-NP)
Optimality for FP-DS

Algorithm A is optimal for FP-DS if for any taskset where there exists a priority ordering and set of q_i that are schedulable, algorithm A also provides a priority ordering and set of q_i that is schedulable.
for each priority level \(k \), lowest first
{
 for each unassigned task \(\tau \)
 {
 binary search for the smallest value of \(q \) for which task \(\tau \) is schedulable at priority \(k \)
 }
 if no tasks are schedulable at priority \(k \)
 return unschedulable
 else
 {
 assign the schedulable task that tolerates the min \(q \) at priority \(k \) to priority \(k \) and use this min \(q \) value for its final non-preemptive region length
 }
}
return schedulable
FP-DS Optimal algorithm

- Optimal algorithm
 - Greedy: \(n(n+1)/2 \) binary searches and therefore tractable
 - Minimises blocking at every priority level

- Utilisation bound
 - Remains same as FP-P \(U \leq 0.69 \) as \(N \to \infty \)
Dual Priority scheduling

- After time $x_i \leq D_i$ task τ_i changes priority to a new level (higher or same).

- Open question: How to determine the dual priorities of each task and the x_i values such that the system is schedulable?

- What is the utilisation bound?
 - Conjecture: It is 100% same as EDF
Current state

- For \(N=2 \) a proof has been obtained (so \(U=1 \) rather than \(U=0.83 \) for standard FP-P)
- No counter example found with extensive searches for \(N=3 \)
- Initial priorities are probably Rate Monotonic, possibly final ones too, and all higher than initial priorities
Multiprocessor

- L&L tasks on m identical processors
- DP-Wrap approach: each task makes proportionate progress between any two adjacent deadlines

![Diagram showing progress on processors P1, P2, and P3]
Multiprocessor

- N-1 pre-emptions per job

- Question: What is the minimum number of pre-emptions per job necessary for optimality (U = 100%)? Algorithm to do this?

- For fixed job priority (single pre-emption per job) bound is 50% ((m+1)/2) – achieved by EDF-US and EDF(k).
Minimally dynamic algorithms

- Minimally dynamic – one change in priority per job => 2 pre-emption
 - EDZL, FPZL

- Utilisation bound for EDZL
 \[U_{EDZL} \leq m(1 - 1/e) \approx 0.63m \]

- Utilisation bound for FPZL
 - Not known

- Can we do better with just one change in priority per job?