
Ef�cient Multi-view Performance Capture of Fine-Scale Surface Detail

Nadia Robertini1,2, Edilson De Aguiar1,3, Thomas Helten1,4, Christian Theobalt1

1MPI Informatik, Germany 2Intel VCI, Germany 3CEUNES / UFES, Brazil 4Pixargus / GoalControl, Germany

f nroberti,edeaguia,thelten,theobaltg@mpi-inf.mpg.de

Abstract

We present a new effective way for performance capture
of deforming meshes with fine-scale time-varying surface
detail from multi-view video. Our method builds up on
coarse 4D surface reconstructions, as obtained with com-
monly used template-based methods. As they only capture
models of coarse-to-medium scale detail, fine scale defor-
mation detail is often done in a second pass by using stereo
constraints, features, or shading-based refinement. In this
paper, we propose a new effective and stable solution to this
second step. Our framework creates an implicit representa-
tion of the deformable mesh using a dense collection of 3D
Gaussian functions on the surface, and a set of 2D Gaus-
sians for the images. The fine scale deformation of all mesh
vertices that maximizes photo-consistency can be efficiently
found by densely optimizing a new model-to-image consis-
tency energy on all vertex positions. A principal advan-
tage is that our problem formulation yields a smooth closed
form energy with implicit occlusion handling and analytic
derivatives. Error-prone correspondence finding, or dis-
crete sampling of surface displacement values are also not
needed. We show several reconstructions of human subjects
wearing loose clothing, and we qualitatively and quantita-
tively show that we robustly capture more detail than related
methods.
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1. Introduction

Performance capture methods enable the reconstruction
of the motion, the dynamic surface geometry, and the ap-
pearance of real world scenes from multiple video record-
ings, for example, the deforming geometry of body and
apparel of an actor, or his facial expressions [5, 7, 2, 18].
Many methods to capture space-time coherent surfaces re-
construct a coarse-to-medium scale 4D model of the scene
in a �rst step, e.g. by deforming a mesh or a rigged tem-
plate such that it aligns with the images [5, 18]. Finer

Figure 1. Given as input a multi-view video sequence (left - par-
ticular input frame) and a coarse mesh animation (middle - input
mesh), our method is able to ef�ciently reconstruct �ne scale sur-
face details (right - re�ned mesh). Note the wrinkles and folds
reconstructed on the skirt.

scale shape detail is then added in a second re�nement step.
In this second step, some methods align the surface to a
combination of silhouette constraints and sparse image fea-
tures [7]. But such approaches merely recover medium
scale detail and may suffer from erroneous feature corre-
spondences between images and shape. Photo-consistency
constraints can also be used to compute smaller scale de-
formations via stereo-based re�nement [5, 14]. However,
existing approaches that follow that path often resort to dis-
crete sampling of local displacements, since phrasing dense
stereo based re�nement as a continuous optimization prob-
lem has been more challenging [9]. Some recent methods
resort to shading-based techniques to capture small-scale
displacements, such as shape-from-shading or photometric
stereo [22, 21, 18]. However, the methods either require
controlled and calibrated lighting, or complex inverse es-
timation of lighting and appearance when they are applied
under uncontrolled recording conditions.

In this paper, we contribute with a new effective solution
to the re�nement step using multi-view photo-consistency
constraints. As input, our method expects synchronized
and calibrated multiple video of a scene and a reconstructed
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coarse mesh animation, as it can be obtained with previous
methods from the literature. Background subtraction or im-
age silhouettes are not required for re�nement.

Our �rst contribution is a new shape representation that
models the mesh surface with a dense collection of 3D
Gaussian functions centered at each vertex and each hav-
ing an associated color. A similar decomposition into 2D
Gaussian functions is applied to each input video frame.

This scene representation enables our second contribu-
tion, namely the formulation of dense photo-consistency-
based surface re�nement as a global optimization problem
in the position of each vertex on the surface. Unlike previ-
ous performance capture methods, we are able to phrase the
model-to-image photo-consistency energy that guides the
deformation as a closed form expression, and we can com-
pute its analytic derivatives. Our problem formulation has
the additional advantage that it enables implicit handling
of occlusions, as well as spatial and temporal coherence
constraints, while preserving a smooth consistency energy
function. We can effectively minimize this function in terms
of dense local surface displacements with standard gradient-
based solvers. In addition to these advantages, unlike many
previous methods, our framework does not require a poten-
tially error-prone sparse set of feature correspondences or
discrete sampling and testing of surface displacements, and
thus provides a new way of continuous optimization of the
dense surface deformation.

We used our approach for reconstructing full-body per-
formances of human actors wearing loose clothing, and per-
forming different motions. Initial coarse reconstructions
of the scene were obtained with the approaches by Gallet
al. [7] and Starck and Hilton [14]. Our results (Fig.1 and
Sect.6) show that our approach is able to reconstruct more
of the �ne-scale detail that is present in the input video se-
quences, than the baseline methods, for instance the wrin-
kles in a skirt. We also demonstrate these improvements
quantitatively.

2. Related Work

Marker-less performance capture methods are able to
reconstruct dense dynamic surface geometry of moving
subjects from multi-view video, for instance of people in
loose clothing, possibly along with pose parameters of an
underlying kinematic skeleton [16]. Most of them use
data from dense multi-camera systems and recorded un-
der controlled studio environments. Some methods em-
ploy variants of shape-from-silhouette or active or passive
stereo [23, 11, 14, 20, 17], which usually results in tempo-
rally incoherent reconstructions. Space-time coherency is
easier to achieve with model-based approaches that deform
a static shape template (obtained by a laser scan or image-
based reconstruction) such that it matches the subject,e.g.
a person [4, 5, 18, 1, 7] or a person's apparel [2]. Some

of them jointly track a skeleton and the non-rigidly deform-
ing surface [18, 1, 6]; also multi-person reconstruction has
been demonstrated [10]. Other approaches use a generally
deformable template without embedded skeleton to capture
4D models,e.g. an elastically deformable surface or vol-
ume [5, 13], or a patch-based surface representation [3].
Most of the approaches mentioned so far either only recon-
struct coarse dynamic surface models that lack �ne scale
detail, or coarse reconstruction is a �rst stage. Fine scale
detail is then added to the coarse result in a second re�ne-
ment step.

Some methods use a combination of silhouette con-
straints and sparse feature correspondences to estimate, at
best, a medium scale non-rigid 4D surface detail [7]. Other
approaches use stereo-based photo-consistency constraints
in addition to silhouettes to achieve denser estimates of
�ner scale deformations [14, 5]. It is an involved problem
to phrase dense stereo-based surface re�nement as a con-
tinuous optimization problem, as it is done in variational
approaches [9]. Thus, stereo-based re�nement in perfor-
mance capture often resorts to discrete surface displacement
sampling which are less ef�cient, and with which globally
smooth and coherent solutions are harder to achieve.

In this paper, we propose a new formulation of stereo-
based surface re�nement as a continuous optimization prob-
lem, which is based on a new surface representation with
Gaussian functions. In addition, our re�nement method
also succeeds if silhouettes are not available, making the
approach more generally applicable.

An alternative way to recover �ne-scale deforming sur-
face detail is to use shading-based methods,e.g. shape-
from-shading or photometric stereo [21]. Many of these ap-
proaches require controlled and calibrated lighting [8, 19],
which reduces their applicability. More recently, shading-
based re�nement of dynamic scenes captured under more
general lighting was shown [22], but these approaches are
computationally challenging as they require to solve an in-
verse rendering problem to obtain estimates of illumination,
appearance and shape at the same time.

The method we propose has some similarity to the work
of Sandet al. [12] who capture skin deformation as a dis-
placement �eld on a template mesh; however, they require
marker-based skeleton capture, and only �t the surface to
match the silhouettes in multi-view video. Our problem for-
mulation is inspired by the work of Stollet al. [15] who used
a collection of Gaussian functions in 3D and 2D for marker-
less skeletal pose estimation. Estimation of surface detail
was not the goal of that work. Our paper extends their basic
concept to the different problem of dense stereo-based sur-
face estimation using continuous optimization of a smooth
energy that can be formulated in closed form, and that has
analytic derivatives.



Figure 2. Overview of our framework. Our approach re�nes the input coarse mesh animation by maximizing the color consistency between
the collection of 3D surface Gaussians, associated to the input vertices, and the set of 2D image Gaussians, assigned to image patches.

3. Overview

An overview of our approach is shown in Fig.2. The in-
put to our algorithm is a calibrated and synchronized multi-
view video sequence showing images of the human sub-
ject. In addition, we assume as input a spatio-temporally co-
herent coarse animated mesh sequence, reconstructed from
multi-view video related approaches [7, 14].

Our method re�nes the initial coarse animation such that
the �ne dynamic surface details are incorporated to the
meshes. First, we create an implicit representation of the in-
put mesh using a dense collection of 3D Gaussian functions
on the surface with associated colors. The input images are
also represented as a set of 2D Gaussian associated to image
patches in each camera view. Thereafter, continuous opti-
mization is performed to maximize the color consistency
between the collection of 3D surface Gaussians and the set
of 2D image Gaussians. The optimization displaces the 3D
Gaussians along the associated vertex normal of the coarse
mesh which yields the necessary vertex displacement.

Our optimization scheme has a smooth energy function,
that, thanks to our Gaussians-based model, can be expressed
in closed form. It further allows us to analytically com-
pute derivatives, enabling the possibility of using ef�cient
gradient-based solvers.

4. Implicit Model

Our framework converts the input coarse animation and
input multi-view images into implicit representations us-
ing a collection of Gaussians: 3D surface Gaussians on the
mesh surface with associated colors and 2D image Gaus-
sians, with associated colors, assigned to image patches in
each camera view.

4.1. 3D Surface Gaussian

Our implicit model for the input mesh is obtained by
placing a 3D Gaussian at each mesh vertexvs, 8s 2
f 0: : : ns � 1g, ns being the number of vertices. A 3D un-
normalized isotropic Gaussian function on the surface is de-
�ned simply with a mean̂� s, that coincides with the vertex
location, and a standard deviation�̂ s (equally set to7 mm
for all 3D Gaussians on surface) as follows:

Gs(x̂) = exp
(

�
jj x̂ � �̂ s jj2

2�̂ 2
s

)
(1)

with x̂ 2 R3. Note that althoughGs(x̂) has in�nite sup-
port, for visualization purposes we represent its projection
as a square having center (i.e. diagonals intersection) in̂� s

and side length equal to2�̂ s mm (see Fig.3).
We further assign a HSV color value� s to each surface

Gaussian. In order to derive the colors we choose a refer-
ence frame where the initial coarse reconstruction is as close
as possible to the real shape. This is typically the �rst frame
in each sequence. For each vertexvs of the input mesh,
we �rst choose the camera view that sees vertexvs best,
i.e. where normal and camera viewing direction align best.
Thereafter, the 3D Gaussian associated tovs is projected
to the image from the best camera view and the underlying
pixel color average is assigned as a color attribute.

4.2. 2D Image Gaussian

Our implicit model for the input images of all cameras
c 2 f 0: : : nc � 1g, nc being the number of cameras, is ob-
tained by assigning 2D Gaussian functionsGi (x), x 2 R2,
to each image patch,i 2 I (c), of all camera views. Simi-
lar to Stollet al. [15] we decompose each input frame into
squared regions of coherent color by means of quad-tree
decomposition (with maximal depth set to 8). A 2D Gaus-
sian is assigned to each patch (Fig.4), such that its mean



Figure 3. A representation of our collection of 3D Gaussian on
the surface. Our surface Gaussians, here illustrated as tiny red-
bordered squares, are assigned to vertices of the input coarse mesh
(only in the skirt region in this example).

Figure 4. The input image (left) and the estimated collection of
2D image Gaussians (right). The image Gaussians are assigned
to patches of coherent color in the input image and the underly-
ing average pixel color is assigned to the Gaussians as additional
attribute.

� i 2 R2 corresponds to the patch center, and its standard
deviation� i to half of the square patch side length. The un-
derlying average HSV color� i is also assigned to the 2D
Gaussians as additional attribute.

4.3. Projection of 3D Surface Gaussians

In order to evaluate the similarity between the 3D surface
GaussiansGs and the 2D image GaussiansGi , we project
eachGs to the 2D image space. The 3D surface Gaussian
mean�̂ s is projected using the camera projection matrixP,
similarly to any 3D point in the space, as follows:

� s =





[P �̂ h
s ]x

[P �̂ h
s ]z

[P �̂ h
s ]y

[P �̂ h
s ]z



 2 R2 (2)

with [P �̂ h
s ]x;y;z being the respective coordinates of the pro-

jected mean in homogeneous coordinates (i.e. the 4th di-
mension is set to1). The 3D standard deviation is projected
using the following formula:

� s =
�̂ sf

[P �̂ h
s ]z

2 R (3)

wheref is the camera focal length.

5. Surface Re�nement

We employ an analysis-by-synthesis approach to re-
�ne the input coarse mesh animation, at every frame,
by optimizing the following energyE(M ) with respect
to the collection of 3D surface Gaussian meansM =
f �̂ 0; : : : �̂ n s� 1g:

E(M ) = Esim � wreg E reg (4)

The termEsim measures the color similarity of the pro-
jected collection of 3D surface Gaussians with the 2D image
Gaussians obtained from each camera view. The additional
term E reg is used to keep the distribution of the 3D sur-
face Gaussians geometrically smooth, whereaswreg is an
user de�ned smoothness weight, typically set to 1. Since
we constrain the 3D Gaussians to move along the corre-
sponding vertex (normalized) normal directionNs:

�̂ s = �̂ orig
s + Nsks 2 R3 (5)

aiming at maintaining a regular distribution of 3D Gaus-
sians on the surface, we only need to optimize for single
scalar valuesks; s 2 f 0: : : ns � 1g.

5.1. Similarity Term

We exploit the power of the implicit Gaussian represen-
tation of both input images and surface in order to derive a
closed-form analytical formulation for our similarity term.
In principle, one pair of image Gaussian and projected sur-
face Gaussian should have high similarity measures when
they show similar properties in terms of color and their
spacial localization is suf�ciently close. This measure can
be formulated as the integral of the product of the pro-
jected surface GaussianGs(x) and image GaussianGi (x),
weighted by their color similarityT(� is ), as follows:

E is = T(� is )
∫



Gi (x)Gs(x)@x (6)

In the above equation� is = jj � i � � s jj 2 R+ measures the
Euclidean distance between the colors, whileT(� ) : R !
R is the Wendland radial basis function modeled by:

T(� ) =






(
1 � �

�

)4(
4 �

� + 1
)

if � < �

0 otherwise

(7)

where� is esperimentally set to0:05 for all test sequences.
The main advantage of using a Gaussian representation is
that the integral in Eq.6 has a closed-form solution, namely
another Gaussian with combined properties:

E is = T(� is )2�
� 2

s � 2
i

� 2
s + � 2

i
exp

(
�

jj � i � � s jj2

� 2
s + � 2

i

)
(8)



We �rst calculate the similarity for all components of the
two models for each camera view. Then, we normalize the
result considering the maximum obtainable overlapE ii =
�� 2

i , of an image Gaussian with itself, and the number of
camerasnc as follows:

Esim =
1
nc

n c� 1∑

c=0

∑

i 2 I (c)

min
(∑n s� 1

s=0 E is ; E ii

)

E ii
(9)

In this equation, the inner minimization implicitly han-
dles occlusions on the surface as it prevents occluded Gaus-
sians projections into the same image location to contribute
multiple times to the energy. This is an elegant way for
handling occlusion while preserving at the same time en-
ergy smoothness. In fact, exact occlusion detection and
handling algorithms are non-smooth or hard to express in
closed-form.

In order to improve computational ef�ciency, we evalu-
ateE is only for visible surface Gaussians from each camera
view. The Gaussian overlap is then computed against visi-
ble projected Gaussians and 2D image Gaussians in a local
neighborhood.

5.2. Regularization Term

Our regularization term constraints the 3D surface Gaus-
sians in the local neighborhood and each Gaussian such that
the �nal reconstructed surface is suf�ciently smooth. This
is accomplished by minimizing the following equation:

E reg =
n s� 1∑

s=0

∑

j 2 	( s)

T(� sj ) (ks � kj )2; (10)

where	( s) is a set of surface Gaussian indices that are
neighbors ofGs, � sj 2 R+ is the geodesic surface distance
betweenGs andGj measured in number of edges, andT(� )
is de�ned in Eq.7, where� = 2 edges.

5.3. Optimization

Our formulation allows us to compute analytic deriva-
tives of the energy (Eq.4), for which we provide complete
derivation in an additional document. The derivative of the
similarity term, with respect to eachks; s 2 f 0: : : ns � 1g
is:

@
@ks

(Esim ) =

1
nc

n c� 1∑

c=0

∑

i 2 I (c)






∂
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s=0 E is < E ii

0 otherwise
(11)

The derivative of the overlapE is is de�ned as:

@
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wherePc is the projection matrix of camerac, N h
s is

the vertex normal associated to the model gaussianGs in
homogeneous coordinates (i.e. the 4th dimension is set to
0), [� s]z is the z-component of the projected mean, and

@
@ks

(� s) =





[P N h
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The derivative of the regularization termE reg is given by:

@
@ks

(E reg ) = 4
∑

j 2 	( s)

T(� sj ) (ks � kj ) (14)

We ef�ciently optimize our energy functionE(M ) using a
conditioned gradient ascent approach. The general gradient
ascent method is a �rst-order optimization procedure that
aims at �nding local maxima by taking steps proportional
to the energy gradient. The conditioner is a scalar factor
associated to the analytical derivatives that increases (resp.
decreases) step-by-step when the gradient sign is constant
(resp. �uctuating). The use of the conditioner brings three
main advantages: it allows for faster convergence to the �-
nal solution, it prevents typical zig-zag-ing while approach-
ing local maxima, and it constraints at the same time the
analytical derivative size.

6. Results

We tested our approach on three different datasets:
skirt , dance and pop2lock. Input multi-view video se-
quences, as well as camera settings and initial coarse
mesh reconstruction were provided by Gallet al. [7] and
Starck and Hilton [14]. All the sequences are recorded
with 8 synchronized and calibrated cameras and number of
frame ranging between 250 and 721 (see Table1). The
input provided coarse mesh are obtained utilizing low-
quality re�ning technique based on sparse feature match-
ing, shape-from-silhouette and multi-view 3D reconstruc-
tion, and therefore lack of surface details.

In order to re�ne the input mesh sequences, we �rst sub-
divide the input coarse topology, by inserting additional



Sequence Frames Gs Iter/s Frame/min
skirt 721 3053 2.01 0.8
dance 573 3430 1.90 0.76
pop2lock 250 3880 1.67 0.66

Table 1. Computation time for the input sequences. The table
shows the amount of frames for each sequence, as well as amount
of 3D surface GaussiansGs , iteration per second and frames per
minute.

triangles and vertices, aiming at increasing the scale level
of detail. Then we generate a collection of Gaussians on
the surface as explained in Sect.3. Since for the input se-
quences most of the �ne-scale deformations happen on the
clothing, we decided to focus on the re�nement of those ar-
eas, generating surface Gaussians only for the correspon-
dent vertices. Table1 shows the amount of 3D surface
Gaussians created for each sequence.

When rendering the �nal resulting mesh sequences, we
added an extra epsilon to the computed vertex displace-
ments equal to the standard deviation of the surface Gaus-
sians used. This is needed in order to compensate for the
small surface bias (shrink along the normal during opti-
mization) that is due to the spatial extent of the Gaussians.

Evaluation. Our results (Fig.1, Fig.5 and the accompa-
nying video) show that our approach is able to plausibly re-
construct more �ne-scale details,e.g. the wrinkles and folds
in the skirt, and produces closer model alignment to the im-
ages than the baseline methods ([7, 14]).

In order to verify the quantitative performance of our ap-
proach, we textured the model by assigning surface Gaus-
sians colors to the correspondent mesh vertices. Then, we
used optical �ow to generate displacement �ow vectors be-
tween the input images and the reprojected textured mesh
models (original and re�ned) for all time steps. Fig.6 plots
the average optical �ow displacement error difference be-
tween the input and the resulting animation sequences over
time for a single camera view. As shown in the graphs,
our method decreases the average �ow displacement error,
leading to quantitatively more accurate results.

We created an additional experiment to verify the perfor-
mance of our re�nement framework. For this experiment,
we �rst spatially-smooth the input mesh sequence aiming at
eliminating most of the baked-in surface details, if any. The
smooth mesh animation is then used as input to our system.
As we show in Fig.7 and in the accompanying video, our
approach is able to plausibly re�ne the input smooth mesh
animation, reconstructing �ne-scale details in the skirt, t-
shirt and shorts. Quantitative evaluation for the smooth in-
put sequence is provided in an additional document.

We evaluated the performance of our system on an Intel
Xeon Processor E5-1620, Quad-core with Hyperthreading
and 16GB of RAM. Table1 summarizes the performances

Figure 5. Comparison of the results of our re�nement capture
method against the baseline provided by [7, 14] for the pop2lock
(top), dance (middle) andskirt (bottom) sequences. From left
to right: input image, color-coded normals of the input mesh and
color-coded normals of the rendered output re�ned mesh.

we obtained for the three tested sequences. We believe we
can further reduce the computation time by parallelizing or-
thogonal steps and implementing our method on GPU.

Limitations. Our approach is subject to a few limi-
tations. We assume the input mesh sequence to be suf�-
ciently accurate, such that smaller details can be easily and
correctly captured by simply displacing vertices along their
correspondent vertex normals. In cases where the input re-
constructed meshes present misalignments with respect to
the images (e.g. pop2lock) or if it is necessary to recon-
struct stronger deformations, then our method is unable to
perform adequately. In this respect, our re�nement should
be reformulated allowing more complex displacements,e.g.
without any normal constraint. However such weaker prior
on vertices motion requires more complex regularization
formulation in order to maintain smooth surface, also to
handle unwanted self-intersections and collapsing vertices.
On top of that the increased number of parameters to opti-
mize for (i.e. 3 times more, when optimizing for all 3 ver-
tices dimensions,x, y andz) would spoil computational ef-
�ciency and raise the probability of getting stack in local
maxima solutions. The risk of returning local maxima solu-
tions is still high when employing local solvers (e.g. gradi-
ent ascent) on non-convex problems as in our case. A pos-
sible solution is to use more advanced solvers,e.g. global
solvers, when computational ef�ciency is not a requirement.

Another limitation of our approach is the inability to



Figure 7. Results of our re�nement capture method for the smootheddance (top), pop2lock (middle) andskirt (bottom) animation
sequences. From left to right: input image, rendered input mesh, rendered output re�ned mesh, zoom at the rendered input mesh, and zoom
at the rendered output re�ned mesh.

densely re�ne plain colored surfaces with few texture (e.g.
pop2lock anddance). A solution here is to employ a more
complex color model that takes into accounte.g. illumina-
tion and shading effects, at the cost of increased computa-
tional expenses. We would like to investigate these limita-
tions as a future work.

7. Conclusions

We presented a new effective framework for perfor-
mance capture of deforming meshes with �ne-scale time-
varying surface detail from multi-view video recordings.
Our approach captures the �ne-scale deformation of the
mesh vertices by maximizing photo-consistency on all ver-
tex positions. This can be done ef�ciently by densely op-
timizing a new model-to-image consistency energy func-
tion that uses our proposed implicit representation of the
deformable mesh using a collection of 3D Gaussians for the
surface and a set of 2D Gaussians for the input images. Our
proposed formulation enables a smooth closed-form energy
with implicit occlusion handling and analytic derivatives.
We qualitatively and quantitatively evaluated our re�nement
strategy on 3 input sequences, showing that we are able to
capture and model �ner-scale details.
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