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Abstract

With the rise in popularity of social media, im-
ages accompanied by contextual text form a
huge section of the web. However, search and
retrieval of documents are still largely depen-
dent on solely textual cues. Although visual
cues have started to gain focus, the imperfec-
tion in object/scene detection do not lead to
significantly improved results. We hypothe-
size that the use of background commonsense
knowledge on query terms can significantly
aid in retrieval of documents with associated
images. To this end we deploy three different
modalities - text, visual cues, and common-
sense knowledge pertaining to the query - as a
recipe for efficient search and retrieval.

1 Introduction

Motivation: Image retrieval by querying visual con-
tents has been on the agenda of the database, infor-
mation retrieval, multimedia, and computer vision
communities for decades (Liu et al., 2007; Datta
et al.,, 2008). Search engines like Baidu, Bing or
Google perform reasonably well on this task, but
crucially rely on textual cues that accompany an im-
age: tags, caption, URL string, adjacent text etc.

In recent years, deep learning has led to a boost
in the quality of visual object recognition in images
with fine-grained object labels (Simonyan and Zis-
serman, 2014; LeCun et al., 2015; Mordvintsev et
al.,, 2015). Methods like LSDA (Hoffman et al.,
2014) are trained on more than 15,000 classes of Im-
ageNet (Deng et al., 2009) (which are mostly leaf-
level synsets of WordNet (Miller, 1995)), and anno-
tate newly seen images with class labels for bound-
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Detected visual objects:
traffic light, car, person,
bicycle, bus, car, grille,
radiator grille

(a) Good object detection

Detected visual objects:
tv or monitor, cargo

door, piano

(b) Poor object detection

Figure 1: Example cases where visual object detec-
tion may or may not aid in search and retrieval.

ing boxes of objects. For the image in Figure 1a, for
example, object labels traffic light, car, person, bi-
cycle and bus have been recognized making it easily
retrievable for queries with these concepts. How-
ever, these labels come with uncertainty. For the
image in Figure 1b, there is much higher noise in
its visual object labels; so querying by visual labels
would not work here.

Opportunity and Challenge: These limitations of
text-based search, on one hand, and visual-object
search, on the other hand, suggest combining the
cues from text and vision for more effective re-
trieval. Although each side of this combined feature
space is incomplete and noisy, the hope is that the



“environment friendly
traffic”

“downsides of moun-
taineering”

“street-side soulful mu-
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Figure 2: Sample queries containing abstract con-
cepts and expected results of image retrieval.

combination can improve retrieval quality.

Unfortunately, images that show more sophisti-
cated scenes, or emotions evoked on the viewer are
still out of reach. Figure 2 shows three examples,
along with query formulations that would likely con-
sider these sample images as relevant results. These
answers would best be retrieved by queries with ab-
stract words (e.g. ‘“‘environment friendly”) or ac-
tivity words (e.g. “traffic”’) rather than words that
directly correspond to visual objects (e.g. “car” or
“bike”). So there is a vocabulary gap, or even con-
cept mismatch, between what users want and ex-
press in queries and the visual and textual cues that
come directly with an image. This is the key prob-
lem addressed in this paper.

Approach and Contribution: To bridge the con-
cepts and vocabulary between user queries and im-
age features, we propose an approach that har-
nesses commonsense knowledge (CSK). Recent ad-
vances in automatic knowledge acquisition have
produced large collections of CSK: physical (e.g.
color or shape) as well as abstract (e.g. abili-
ties) properties of everyday objects (e.g. bike, bird,
sofa, etc.) (Tandon et al., 2014), subclass and part-
whole relations between objects (Tandon et al.,

2016), activities and their participants (Tandon et
al., 2015), and more. This kind of knowledge al-
lows us to establish relationships between our ex-
ample queries and observable objects or activities
in the image. For example, the following CSK
triples establish relationships between ‘backpack’,
‘tourist’ and ‘travel map’:

(backpacks, are

carried by, tourists), (tourists, use,
travel maps). This allows for retrieval of images
with generic queries like “travel with backpack”.

This idea is worked out into a query expansion
model where we leverage a CSK knowledge base
for automatically generating additional query words.
Our model unifies three kinds of features: textual
features from the page context of an image, visual
features obtained from recognizing fine-grained ob-
ject classes in an image, and CSK features in the
form of additional properties of the concepts re-
ferred to by query words. The weighing of the dif-
ferent features is crucial for query-result ranking. To
this end, we have devised a method based on statis-
tical language models (Zhai, 2008).

The paper’s contribution can be characterized as
follows. We present the first model for incorporat-
ing CSK into image retrieval. We develop a full-
fledged system architecture for this purpose, along
with a query processor and an answer-ranking com-
ponent. Our system KnowZ2Look, uses common-
sense knowledge to look for images relevant to a
query by looking at the components of the images
in greater detail. We further discuss experiments
that compare our approach to state-of-the-art image
search in various configurations. Our approach sub-

stantially improves the query result quality.

2 Related Work

Existing Commonsense Knowledge Bases: Tra-
ditionally commonsense knowledge bases were cu-
rated manually through experts (Lenat, 1995) or
through crowd-sourcing (Singh et al., 2002). Mod-
ern methods of CSK acquisition are automatic, ei-
ther from test corpora (Liu and Singh, 2004) or from
the web (Tandon et al., 2014).

Vision and NLP: Research at the intersection of
Natural Language Processing and Computer Vision
is in limelight in the recent past. There have been
work on automatic image annotations (Wang et al.,



