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Abstract
Commonsense knowledge about part-whole relations (e.g.,
screen partOf notebook) is important for interpreting user in-
put in web search and question answering, or for object de-
tection in images. Prior work on knowledge base construction
has compiled part-whole assertions, but with substantial limi-
tations: i) semantically different kinds of part-whole relations
are conflated into a single generic relation, ii) the arguments
of a part-whole assertion are merely words with ambiguous
meaning, iii) the assertions lack additional attributes like vis-
ibility (e.g., a nose is visible but a kidney is not) and cardinal-
ity information (e.g., a bird has two legs while a spider eight),
iv) limited coverage of only tens of thousands of assertions.
This paper presents a new method for automatically acquiring
part-whole commonsense from Web contents and image tags
at an unprecedented scale, yielding many millions of asser-
tions, while specifically addressing the four shortcomings of
prior work. Our method combines pattern-based information
extraction methods with logical reasoning. We carefully dis-
tinguish different relations: physicalPartOf, memberOf, sub-
stanceOf. We consistently map the arguments of all assertions
onto WordNet senses, eliminating the ambiguity of word-
level assertions. We identify whether the parts can be visu-
ally perceived, and infer cardinalities for the assertions. The
resulting commonsense knowledge base has very high qual-
ity and high coverage, with an accuracy of 89% determined
by extensive sampling, and is publicly available.

Introduction
Motivation and Problem. We all know that a thumb is
part of a hand, and that a goalkeeper is part of a soccer or
hockey team. For machines this kind of commonsense is
not obvious at all, yet many modern computer tasks – like
computer vision, Web search, question answering, or ads
placement – require this kind of background knowledge to
simulate human-like behavior and quality. For example, sup-
pose a visual object detection algorithm has recognized two
wheels, pedals and a chain in an image or video; a smart in-
terpretation could then harness knowledge to infer that there
is a bike in this scene. This would be a novel element and po-
tential performance booster in computer vision (Rohrbach,
Stark, and Schiele 2011). However, there is no comprehen-
sive part-whole knowledge base available today.
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There has been considerable research to automatically ac-
quire part-whole knowledge in fields like linguistics and
cognitive sciences (Winston, Chaffin, and Herrmann 1987),
ontology engineering (Keet and Artale 2008), computer vi-
sion (Chen, Shrivastava, and Gupta 2013), and knowledge
base construction (Girju, Badulescu, and Moldovan 2006;
Havasi, Speer, and Alonso 2007; Speer and Havasi 2012;
Tandon, de Melo, and Weikum 2011). Despite these efforts,
however, the by far largest commonsense knowledge col-
lections with part-whole relations are manually constructed
and curated by experts like WordNet (Fellbaum 1998) or by
crowdsourcing like ConceptNet (Havasi, Speer, and Alonso
2007; Speer and Havasi 2012). Their coverage is far from
anywhere near being complete. Automated efforts like (Tan-
don, de Melo, and Weikum 2011) or NEIL (Chen, Shri-
vastava, and Gupta 2013) had to cope with fairly noisy
inputs, like n-gram corpora or images; so their outputs
for part-whole relations are quite inferior in quality com-
pared to WordNet or ConceptNet. Other knowledge base
(KB) projects, such as Cyc, DBpedia, Freebase, NELL,
Probase, or YAGO, have focused on factual knowledge
about individual entities, with commonsense limited to hy-
pernymy/taxonomic relations.

Thus, prior part-whole KB’s have major limitations:

i) The automated efforts to compile part-whole knowledge,
such as (Chen, Shrivastava, and Gupta 2013) or (Tandon,
de Melo, and Weikum 2011) conflate different kinds of
part-whole relations into a single generic relation partOf
and miss out on the semantic differences between phys-
icalPartOf (e.g., wheel physicalPartOf bike), memberOf
(e.g., cyclist memberOf team), or substanceOf (e.g., rub-
ber substanceOf wheel).

ii) In all part-whole KB’s except WordNet, the arguments of
the relations (e.g., screen, notebook) are merely words
with ambiguous meaning, whereas they should ideally
be unique word senses, for example, by disambiguating
them onto WordNet synsets.

iii) In all part-whole KB’s, the assertions are merely qual-
itative; there is no information about either visibility or
cardinality. Existing KB’s lack the distinction between
visible and invisible physicalPartOf (e.g., for an ordinary
human, nose physicalPartOf human is visible, while
kidney physicalPartOf human is invisible). Further, it



could be important to know that a bike has two wheels
rather than three, and that a car has one steering wheel
rather than two. These distinctions are crucial for visual
applications.

iv) The coverage of part-whole knowledge is very limited.
For example, ConceptNet contains only 1,086 instances
of various part-whole relations in total. It has the notion
of a memberOf relation and knows the concepts of a cy-
clist and sport team, yet does not have any memberOf
information for these concepts.

The goal and contribution of this paper is to overcome
these limitations and build a comprehensive, semantically
refined, high-quality part-whole KB, PWKB for short.

Approach and Contribution. We developed a complete
knowledge-acquisition pipeline that combines statistical
techniques with logical inference. Our method includes an
extension of pattern-based extraction that substantially im-
proves the extraction quality on large and noisy text corpora
like the Wikipedia full text and the Google n-gram collec-
tion. Subsequently, we further eliminate false positives by
devising rules for constraint checking, and we also infer ad-
ditional assertions by logical deduction rules. For high cov-
erage, these rules need to consider candidate assertions over
multi-word noun phrases. To properly handle these, we have
devised a new technique to integrate such phrases into Word-
Net. Finally, we developed novel techniques to enhance the
assertions with visibility attribute values by tapping into im-
age tags obtained from 100 Million Flickr images, and car-
dinality attribute values by tapping into Google-books n-
grams from multiple languages.

We successfully tackle all four of the aforementioned lim-
itations: i) distinguishing physicalPartOf, memberOf, and
substanceOf, ii) mapping all arguments of our assertions
to WordNet senses, thus eliminating ambiguity and redun-
dancy, iii) inferring visibility and cardinality information for
many instances of the various part-whole relations, and iv)
building a large PWKB with about 6.75 million assertions
– orders of magnitude larger than WordNet or ConceptNet
while having similar of better quality. PWKB is publicly
available at http://tinyurl.com/partwholekb .

We compare our PWKB against state-of-the-art baselines,
most notably ConceptNet, by sampling the various relations
and manually assessing their quality. As an extrinsic use-
case, we show that our PWKB can contribute to the com-
puter vision task of object classification in images.

Overview
Our method uses WordNet (Fellbaum 1998) to disambiguate
concepts extracted from Web and image tags. WordNet is
the most popular lexical database for English, which groups
words into sets of synonyms called synsets or word senses.
WordNet connects synsets by various relations. Relevant for
us are hypernymy/hyponymy (type, subclass), which relate
broader concepts to more specific ones, and three kinds of
part-whole relationships : (physical) partOf, memberOf, and
substanceOf.

Due to the nature of the part-whole relations, not every
synset can be accepted as left argument (i.e., part – domain
of the relation) or right argument (i.e., whole – range of the
relation). For instance, physicalPartOf restricts both domain
and range to be physical, memberOf restricts the range to be
abstract, while substanceOf restricts the domain to be sub-
stance. Therefore, we first consider the synsets that are hy-
ponyms of Abstract Entity (Va) or Physical Entity (Vp). We
assume Va X Vp “ H. WordNet has exceptions to this dis-
jointness: around 1,000 synsets have hypernyms in both Va
and Vp (McCarthy 2001), e.g., roller coaster. For these
we only use hypernyms in Vp.

Abstract entities include, for example, teams, organiza-
tions, music, poems, etc. Physical entities include everything
that one can possibly touch, such as bikes, cars, fingers,
bones, etc. Furthermore we distinguish the synsets under
Substance, denoted as Vs, which is a hyponym of the phys-
ical entity, so that Vs Ă Vp. Substance synsets include for
examples iron, oxygen, clay, oil, etc. Table 1 summarizes
the part-whole relations with our type restrictions.

Table 1: Part-whole relations with type restriction
r domainprq rangeprq example
ăP Vp Vp wheel ăP bike

ăM Vp Y Va Va cyclist ăM team

ăS Vs Vp rubber ăS wheel

Our goal is to mine new assertions for the three Word-
Net part-whole relations and enrich them with two new
attributes: visibility and cardinality. The first indicates
whether the part can be visually perceived. The second at-
tribute defines the number of parts in the whole.

Our method proceeds in three phases:

‚ Phase 1 – KB Construction: We extend statistical
techniques for pattern-based extraction by introducing
weighted seeds in candidate scoring to improve the out-
put quality on large and noisy text corpora. This phase
gives us candidate assertions for part-whole relations,
and we map the arguments of the candidate assertions
to WordNet senses.

‚ Phase 2 – KB Enrichment: The candidate assertions
from Phase 1 still contain many false positives. We de-
vise logical inference rules to enforce consistency and
obtain cleaner assertions. Additionally, we propose de-
duction rules for deriving additional assertions, enlarg-
ing the PWKB. A key novelty here is that these rules
apply to assertions over multi-word noun phrases. We
have developed techniques to handle these by carefully
extending the WordNet taxonomy.

‚ Phase 3 – KB Enhancement: We enhance the part-whole
relations by two new attributes visibility and cardinality.
We develop a novel technique that exploits image tags to
detect the visibility of the part in the whole. For cardi-
nality, we exploit the grammatical structure of German
and Italian to handle cases which cannot be easily dealt
with in English.



Phase 1: KB Construction
We construct our PWKB (Part-Whole Knowledge Base) by
introducing novel extensions of the state-of-the-art pattern
based extraction techniques (with a new scoring model)
and disambiguation techniques (extending from words to
phrases).

Extraction of ăP ,ăM ,ăS . We use a pattern-based infor-
mation extraction approach, following (Tandon, de Melo,
and Weikum 2011), to obtain candidate patterns from text.
This method requires a small number of high-quality seed
assertions to bootstrap the identification of extraction pat-
terns. As the text source, we use the full text of Wikipedia
and the Google-Web n-grams. As seeds, we pick 1,200 in-
stances of the physicalPartOf, memberOf, and substanceOf
relations of WordNet. Patterns are automatically obtained by
matching the seed pairs in our input corpora, and extracting
the essential words between the two concepts (i.e., consider-
ing only words with certain part-of-speech tags). For exam-
ple, the seed goalkeeper ăM team leads to the extraction
pattern ăNouną of the ăNouną.

Scoring Model for Candidate Ranking. The quality of
patterns varies widely. We identify good patterns regarding
two aspects: i) patterns should co-occur with many distinct
seeds (not just very frequently with some seeds), and ii) pat-
terns should discriminate between the three part-whole rela-
tions that we aim to populate. The Specificity Ranker (SR) of
(Tandon, de Melo, and Weikum 2011) already takes the first
aspect into account. However, we improve this prior model
by introducing a notion of weighted support and by consid-
ering the second aspect.

Let σSRppiq denote the score that SR assigns to pattern
pi, using all seeds for all relations, and let σSRppi|Rjq be
the score if only seeds for relation Rj (e.g., ăM ) are used.
We leverage these SR scores as weights for scoring the can-
didate assertions that result from the obtained patterns. The
weighted support of candidate assertion ak is

supppakq “
ÿ

pi

σSRppiqδppi, akq

where δppi, akq is 1 if pi co-occurs with ak and 0 otherwise.
Analogously, we define theRj-specific weighted support for
ak as

supppak|Rjq “
ÿ

pi

σSRppi|Rjqδppi, akq

This is the basis for defining the discriminative strength of
ak for Rj :

strpak|Rjq “
ÿ

ν‰j

ˆ

supppak|Rjq

supppRjq
´
supppak|Rνq

supppRνq

˙

where supppRjq “
ř

ak
supppak|Rjq.

Finally, we normalize both support and strength, to yield
values between 0 and 1, and combine them into the overall
score of assertion candidate ak:

σpakq “
esupppakq

1` esupppakq
estrpakq

1` estrpakq

Thus, we can rank candidates and apply thresholding to re-
duce false positives.

Mapping Words and Phrases to Senses. The selected as-
sertions are word pairs and hence ambiguous. We extend the
IMS (ItMakesSense) tool (Zhong and Ng 2010) to disam-
biguate words onto WordNet senses. IMS operates at a word
level and can thus not handle multi-word noun phrases. Our
novel contribution is to add a new layer on top of IMS to
solve this problem. First, we perform noun phrase chunking
on the input sentence where the assertion occurs. We use the
widely used OpenNLP Chunker (opennlp.apache.org).
Next, for every noun phrase, we identify and disambiguate
its lexical head using IMS (e.g., the out of WordNet phrase
the electrical plant to plant#1). This yields canon-
icalized assertions for our part-whole relations, with unique
senses and free of redundancy. This also enables us to ap-
ply type-restrictions based on the domain and range of the
relations (see Table 1) to further filter the assertions.

Phase 2: KB Enrichment
We enrich the PWKB by proposing logical inference rules
for deduction and consistency.

Increasing Coverage
We improve the PWKB coverage by applying the following
two deduction rules:
C1. Transitivity: pa ă b^ b ă cq ñ a ă c

C2. Inheritance: pa ă b^ c hyponymOf bq ñ a ă c

We exploit the fact that physicalPartOf and substanceOf
are transitive (Keet and Artale 2008) and perform a 2-step
transitive closure. We do not consider the full transitive clo-
sure as it tends to produce too many trivial assertions (e.g.,
atom ăP matter). We proposeC2 to propagate part-whole
relations to hyponyms of the whole. For example, hav-
ing the knowledge: wheel ăP bike and mountain bike
hyponymOf bike, we infer: wheel ăP mountain bike.

Such an enrichment will fail if a concept is absent in
WordNet (e.g., racing bike). Thus, we extend WordNet
by extracting multi-word noun phrases and mapping them to
the proper WordNet hypernyms. We select candidate multi-
word noun phrases from bigrams and trigrams in the Google
n-grams corpora (Brants and Franz 2006), as noun phrases
are usually upto three tokens. We restrict these by their part-
of-speech tags to consider only nouns and adjectives as a
prefix (e.g., mountain bike, lightweight racing bike).

These restrictions alone are insufficient and we still get
many noisy phrases. So, we rank candidate phrases by NPMI
(normalized pointwise mutual information) (Bouma 2009)
and also by occurrence frequency. Neither of these criteria
alone works robustly, so we propose to accept noun phrases
only if both measures are above specified thresholds.

Specifically, we compute histograms for the NPMI values
and for the log-frequencies. A noun phrase is retained only
if its NPMI is above the 90% quantile (i.e., very high), or,
its NPMI is above the 10% quantile (i.e., above noise level)
and the log-frequency is above the median (i.e., substantial).



For each of the retained noun phrases, we perform sense
disambiguation based on the phrase’s head word, using the
technique of Phase 1. These additional phrases extend Word-
Net, with hypernymy links between phrases and their head-
word senses, enabling us to perform Rule C2 for phrases
absent in WordNet.

While C2 is useful in many cases (e.g., deducing that
mountain bikes have wheels, too), it also comes with the risk
of generating false assertions, e.g., that mountain bikes have
headlights. Here we rely on the pragmatic assumption that
WordNet’s hyponymy links induce subsumptions between
the sets of instances for the respective synsets/classes. Our
experimental evaluation reports on the benefits and risks of
the deduction rules.

Improving Quality
We improve the PWKB quality by checking for inconsis-
tencies and eliminating false assertions, using the following
two constraints:
Q1. Irreflexivity:  pa ă aq

Q2. Acyclicity:  pa ă b^ b ă aq

We drop assertions that violate the first type of inconsis-
tency. For the second type, we detect all cycles of length
ď 3 and break each cycle by dropping the assertion with the
lowest score computed in Phase 1.

Phase 3: KB Enhancement
We enhance the PWKB assertions by introducing two new
attributes: visibility and cardinality.

Visibility Attribute
Our goal is to determine which physical parts of a whole
are visible (for an ordinary human, e.g., not a mechanic or
surgeon). If a and b co-occur in an image and we have the
knowledge that a ăP b, then a is visible. The superscript
V is used for ăP to denote visibility (e.g. license plate
ăV
P car) whileNV denotes non-visibility (e.g. automatic

brake system ăNV
P car).

We could consider obtaining visibility information di-
rectly from images, or alternatively, from annotations of
images like captions and tags. To compare these two ap-
proaches, we computed co-occurrence statistics from i) run-
ning a visual object detector (LSDA (Hoffman et al. 2014))
versus ii) user-provided tags that annotate Yahoo! Flickr
images (Shamma 2014). We compared both results against
the already compiled ăP assertions for a sample of 100K
Flickr images. We obtained ca. 12,000 positive matches with
LSDA object detections versus ca. 26,000 with tags. Thus,
image annotations give better coverage.

We thus used Flickr tags to compute ăV
P at large scale.

We set the visibility of a ăP b to true, if a and b co-occur
as tags of at least a certain number of Flickr images. In the
experiments we set this co-occurrence threshold to two.

Cardinality Attribute
Consider the computer vision task of recognizing different
types of cycles (unicycle, bicycle, tricyle). Knowing that a

unicycle has one wheel, bicycle has two, whereas tricycle
has three wheels, will help the object detector. This moti-
vates us to further extend the PWKB by cardinality informa-
tion, where we distinguish the cases 1,2,3+ and uncountable
denoted as ω. The uncountable case applies, e.g., to the fur
of a dog or pebbles of a beach. We represent the cardinal-
ity as an attribute that we add to the ăP and ăM relations,
and denote it by a superscript c; e.g., wheels ă

t2,V u
P bike

denoting that a bike has two visible wheels. The method for
inferring c in a ăc

rPtP,Mu b has three steps:

1) Determine whether a and b are countable. We use
wiktionary.org to look up if a word is countable.

2) If the dictionary does not have that information for a,
then we compute the frequencies fsinpaq and fplupaq of
the occurrences of a in singular and plural form within
a text corpus, using standard grammar rules. If fsinpaq
" fplupaq or fplupaq " fsinpaq, then we consider a to
be uncountable. The threshold for these comparisons is
determined from a set of known uncountable concepts.

3) We compare the grammatical forms of a and b. If the
majority of a and b occurrences in the same sentence is
in the form {singular, singular} (e.g., {handle, bike}),
then we set c “ 1. If the majority of occurrences has the
form {plural, singular} (e.g., {wheels, bike}), and the
supporting patterns include a numeric token (e.g., 2,3,
. . . ), numbers in text forms (”two”, ”three”, . . . ), or cues
such as “both” or “couple of”, then we set c “ 2 for
patterns indicating 2, and c “ 3` for all others.
For the remaining cases where a, b co-occur in the forms
{singular, plural} or {plural,plural}, we use default set-
tings: c “ 1 for ăP and c “ 3` for ăM .

As English articles and determiners (“the”, “some”,
“any”, etc.) do not easily discriminate singular and plural,
Step 3 is error-prone. We thus tapped German and Ital-
ian corpora (Google-books n-grams) where plural forms are
more easily detectable by variants of articles and inflections
of nouns. For the resulting assertions, we use Wiktionary to
map the German or Italian words back to English.

Results and Experimental Comparisons
Input Data. We construct PWKB from the following:
i) Google Web 1T N-gram Dataset Version 1 (Brants and

Franz 2006) which contains frequencies of n-grams
(n=1,..,5) for English web pages;

ii) Wikipedia (2010 snapshot) (Shaoul 2010) which con-
tains all English Wikipedia articles as of April 2010;

iii) Google books n-grams in English, Italian and German
(2010 snapshot) which contains POS-tagged 4-grams
and 5-grams from millions of books;

iv) Yahoo! Flickr images (Shamma 2014), which contains
100 million images from www.flickr.com with title,
description, and tags.

Baselines. We consider two types of baselines: KB base-
lines and methodology baselines.



Table 2: Precision (first line) and coverage (second line)
ăP ăM ăS vis. card. overall

WN 1.00 1.00 1.00 1.00 - 1.00
12892 3714 609 1304 - 17215

SR 0.19 0.20 0.23 0.16 - 0.20
0.49M 0.49M 0.15M 0.15M - 1.13M

CN 0.82 0.45 0.43 0.85 - 0.68
921 516 56 665 - 1493

NEIL 0.15 - - 0.15 - 0.15
68 0 0 68 - 68

PWKB 0.89 0.96 0.71 0.98 0.80 0.89
6.65M 0.04M 0.06M 0.74M 6.69M 6.75M

As KB baselines, we consider the manually constructed
WordNet (WN), the recall-oriented text-based Specificity
Ranker (SR) of (Tandon, de Melo, and Weikum 2011), the
image-based NEIL (Chen, Shrivastava, and Gupta 2013),
and the crowdsourcing-based ConceptNet (CN) of (Havasi,
Speer, and Alonso 2007). The part-whole relations of SR
and CN are not refined into the more specific relations that
PWKB has. To make a fair comparison with SR and CN, we
partitioned its assertions into the relations ăP , ăM , ăS by
domain-range type restriction (see Table 1), and set the vi-
sual attribute in case the arguments of ăP map to Flickr tags
(identically to our method). SR and CN contain many part-
whole assertions that are encyclopedic rather than common-
sense (e.g., Castro-district partOf California), in addition to
noise (e.g., misspellings). Such concepts are not mappable
to WordNet, so we drop them. Further, for SR and CN, we
optimized the score thresholds for coverage. This explains
the difference in numbers from original papers on CN and
SR versus our setting.

As methodology baselines for scoring assertions, we in-
clude the widely used Espresso (Pantel and Pennacchiotti
2006) and SR, both run on our input data. For word disam-
biguation, we compare against the widely used and strong
Most Frequent WordNet Sense (MFS) heuristic. For the qual-
ity of noun phrases, NPMI alone is used as a baseline.

PWKB Statistics and Evaluation. In total, PWKB con-
tains 6.75 Million assertions for the three fine-grained part-
whole relations, with disambiguated arguments, and, to
some extent, with the two additional attributes. To evalu-
ate the quality of PWKB, we compiled a random sample
of 1000 assertions from ăP ,ăM ,ăS , with at least 200 as-
sertions from each relation. We relied on human annotators
to judge each assertion. An assertion was marked as correct
if the judge stated that the disambiguation of the arguments
was correct and the part-whole relation was correct.

For the baselines, we generously evaluated the assertions
based on their surface forms as the baselines do not have
disambiguated arguments. We compute the precision as c

c`i ,
where c and i are the counts of correct and incorrect asser-
tions, respectively. For statistical significance, we computed
Wilson score intervals for α “ 95% (Brown, Cai, and Das-
Gupta 2001). The inter-annotator agreement for three judges
in terms of Fleiss’ κ was 0.78. We used majority voting to
decide on the gold-standard labels.

The per-relation results are reported in Table 2. PWKB

Table 3: PWKB anecdotal examples

mouth#1 ă
t1,V u
P man#1 electron#1 ă

t3`,NV u
P atom#1

sheep#1 ă
3`
M herd#1 musician#2 ă

2
M duet#2

fibre#1 ăS cloth#1 steel#1 ăS boiler#1

clearly outperforms all baselines in terms of coverage. In
terms of quality, PWKB has an overall average precision
of 89%, which seems good enough for many downstream
applications (e.g., in computer vision) where commonsense
can be used for distant supervision or as a prior in proba-
bilistic computations. Such applications need to cope with
uncertain inputs anyway, so „90% precision is useful.

PWKB is much larger than all prior KB’s while having
higher precision than all except the manually curated Word-
Net. This holds also for the visibility assertions, where we
outperform NEIL, constructed from 2M images, by an order
of magnitude. Table 3 shows anecdotal results from PWKB.

Evaluating the PWKB Construction Pipeline. We eval-
uated the performance of the components of the three-phase
PWKB pipeline. For each phase, we had three judges assess
the output. For statistical significance, we again computed
Wilson score intervals for α “ 95%.

For the first phase – the initial construction of
ăP ,ăM ,ăS , assertion ranking is the most important com-
ponent which in turn relies on the ranking of patterns. Our
assertion ranking model (0.85˘0.05) outperforms the base-
line Espresso ranking (0.34˘0.07) and also the Specificity
Ranker (0.55 ˘0.06) by a large margin. For the disam-
biguation of arguments, our IMS-based method (0.80˘0.07)
achieves substantially better precision than the MFS base-
line (0.70˘0.07). Table 5 lists some prominent patterns for
the three part-whole relations. Note that some of them are
of mixed quality: good for recall, but poor in precision –
for example, “y’s x” for x ăP y, which would be matched
by “Alice’s husband”. Note, however, that the patterns are
further restricted by the domain and range of the relations
(Table 1). Candidates such as (x=Alice, y=husband) are re-
jected because Alice is an instance rather than a concept of
WordNet type ”physical entity”.

For the second phase – enrichment, our noun phrase
ranker (0.60˘0.04) significantly outperforms the baseline
NPMI (0.25 ˘ 0.05), yielding 36,498 high quality noun
phrases that we attach to WordNet. We performed an ab-
lation study on the influence of the logical rules; Table 4
shows the results. The C rules for deduction increased the
coverage from ca. 382K assertions to 6.75M. TheQ rules for
constraint checking, on the other hand, were able to remove
nearly 150K false assertions that exhibited inconsistencies.
For coverage, each of the two rules individually yields a ma-
jor increase in the size of the PWKB; their combined effect
boosts the size even more. Note, though, that even without
any logical rules at all, PWKB with 382K assertations is
already an order of magnitude larger than WordNet or any
other prior KB of similarly high quality.

In the third phase – cardinality inference, our method
achieved a precision of 0.80˘0.07, significantly improving
upon relying solely on English (0.61˘0.09). As for the car-
dinality values, we found that we achieve high precision for



Table 5: Prominent patterns for PWKB relations
ăP ăM ăS

y have x x (be) member of y y (be) made of/from x
y ’s x x be in y x found in y
x be part of y x be of y y (be) composed of x

cardinalities 1 and 2. However, we did not compute many
assertions with 3+. This was because our heuristic method
preferred a cardinality of ω (uncountable) in many cases.

Use Case: Image Classification. In this experiment we
evaluate the benefit of PWKB for image classification. The
task is to recognize unseen image categories by transferring
knowledge from known categories. For example, being able
to recognize wheels of cars and seats of chairs might allow
us to recognize a wheelchair even if we have no training im-
age for wheelchair. This “zero-shot recognition” is crucial
as many categories have no (or very sparse) training data.

For this task, we repeated the experiment of (Rohrbach,
Stark, and Schiele 2011), who trained classifiers for 811
part categories to recognize unseen categories. To associate
the unseen categories with the parts, part-whole patterns
(Berland and Charniak 1999) were retrieved with Yahoo
search. For comparability, we used the same visual features
and the same image classification architecture as in the origi-
nal study. We solely replaced the original part-whole relation
with the relations from PWKB.

On the zero-shot task of recognizing 200 unseen cate-
gories, the top-5 accuracy increases from 23.8% (best sin-
gle part-whole variant Yahoo Snippets) to 25.5% by using
PWKB. We note that (Rohrbach, Stark, and Schiele 2011)
achieved better performance, up to 35% accuracy, with a
hierarchy-based transfer or combining multiple measures,
which is orthogonal to the use of our part-whole knowl-
edge. We could combine the PWKB asset with this tech-
nique. Note that this task is inherently difficult; we are not
aware of any methods that achieve more than 40% accuracy.

Related Work
Part-whole relations are studied in several disciplines.

Philosophy. In mereology, there is wide consensus that the
part-whole relation should be modeled as a weak partial or-
dering, i.e., a property that is reflexive, transitive, and anti-
symmetric (Varzi 2014). (Winston, Chaffin, and Herrmann
1987) and (Keet and Artale 2008) discuss semantic variants
of part-whole relations in natural languages. (Smith et al.
2005) discusses the specific setting of biomedical ontolo-
gies. Our work, just like WordNet, follows the conceptual
framework of (Winston, Chaffin, and Herrmann 1987).

Computational Linguistics. In contrast to the extensive
work on lexico-syntactic patterns for hyponymy/hypernymy
and taxonomy induction, there is relatively little work on ex-
tracting meronymy/holonymys concept pairs. (Berland and
Charniak 1999) used two Hearst patterns, on genitive forms,
to extract candidate pairs and used statistical measures for

Table 4: Ablation study on the logical rules of Phase 2
No Rule +Rule 1 +Rule 2 +Rule 1,2

C rules 382K +55K +700K +6.4M

Q rules +6.4M -476 -146K -146K

ranking. However, the high ambiguity of genitive forms
(’s, of) led to very limited results. (Girju, Badulescu, and
Moldovan 2003; 2006) extended and generalized this ap-
proach by using additional, still handcrafted, patterns and
adding constraints about the lexical hypernyms (in Word-
Net) that concept pairs need to be in a meaningful part-
whole relation. The method achieved a precision of ca. 80%
on a few 10,000 sampled sentences from news corpora.

(Pantel and Pennacchiotti 2006) developed the Espresso
algorithm that extended prior work on seed-based pattern
induction (such as (Ravichandran and Hovy 2002)) by intro-
ducing PMI-based pattern rankings. This resulted in a pre-
cision of 80% for part-whole extractions from benchmark
corpora. The output pairs were not sense-disambiguated and
the output size was small. (Ruiz-Casado, Alfonseca, and
Castells 2007) harnessed Wikipedia and patterns near hy-
perlinks, and achieved a precision for meronymy/holonymy
ď 70% in small-scale experiments.

Recent works on acquisition of lexical relations include
(Tandon, de Melo, and Weikum 2011) and (Ling, Clark, and
Weld 2013). The former addressed a wide variety of com-
monsense relations without specific concern for part-whole,
whereas the latter was geared for meronyms among biologi-
cal concepts. (Ittoo and Bouma 2010; 2013) studied refined
classes of part-whole relations, based on the taxonomy of
(Keet and Artale 2008). They extended prior work by us-
ing different seed sets for different part-whole relations ex-
tracted from Wikipedia texts, and achieved an overall preci-
sion of ca. 80% for an output of ca. 10,000 concept pairs.

None of these prior works was designed for constructing
a large, fine-grained and disambiguated part-whole KB.

Knowledge Acquisition. Commonsense acquisi-
tion projects like Cyc (Lenat 1995; Matuszek et al.
2005), ConceptNet (Havasi, Speer, and Alonso 2007;
Speer and Havasi 2012), NELL (Carlson et al. 2010;
Mitchell et al. 2015), and WebChild (Tandon et al. 2014)
have compiled large amounts of commonsense knowledge.
Among these, only Cyc and ConceptNet contain a sizable
number of instances of part-whole relations. Cyc has relied
on manual expert input, which is expensive and does not
scale. ConceptNet is based on crowdsourcing, but lacks
argument disambiguation and semantic refinement.

The NEIL project (Chen, Shrivastava, and Gupta 2014)
has embarked on discovering part-whole and other common-
sense relations about scenes by analyzing a large number of
images. So far the project has acquired around a hundred
instances of a generic part-whole relation.

Conclusions
We presented the methodology for automatically construct-
ing a large, high-quality KB of part-whole relations. We
improve the state of the art in several ways: i) by captur-
ing many instances for the refined relations physicalPartOf,



memberOf, and substanceOf, ii) by disambiguating the ar-
guments of assertions onto WordNet senses, iii) by addi-
tionally inferring visibility and cardinality information for
part-whole instances, and iv) by doing all this at very large
scale using a novel combination of statistical pattern-based
extraction and logical reasoning. The resulting KB contains
more than 6.75 million assertions; sample-based manual as-
sessment shows that this output is of high quality. As future
work, we aim to extract facts from additional languages and
an even wider range of Web contents.
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