
Walk’n’Merge: A Scalable Algorithm for Boolean
Tensor Factorization

Dóra Erdős
Boston University
Boston, MA, USA
dora.erdos@bu.edu

Pauli Miettinen
Max-Planck-Institut für Informatik

Saarbrücken, Germany
pauli.miettinen@mpi-inf.mpg.de

Abstract—Tensors are becoming increasingly common in data
mining, and consequently, tensor factorizations are becoming
more important tools for data miners. When the data is binary,
it is natural to ask if we can factorize it into binary factors while
simultaneously making sure that the reconstructed tensor is still
binary. Such factorizations, called Boolean tensor factorizations,
can provide improved interpretability and find Boolean structure
that is hard to express using normal factorizations. Unfortunately
the algorithms for computing Boolean tensor factorizations do not
usually scale well. In this paper we present a novel algorithm
for finding Boolean CP and Tucker decompositions of large
and sparse binary tensors. In our experimental evaluation we
show that our algorithm can handle large tensors and accurately
reconstructs the latent Boolean structure.

Keywords—Tensor factorizations; Boolean tensors; Random
walks; MDL principle

I. INTRODUCTION

Tensors, and their factorizations, are getting increasingly
popular in data mining. Many data sets can be interpreted
as ternary (or higher arity) relations (e.g. sender, receiver,
and date in correspondence). Such relations have a natural
representations as 3-way (or higher order) tensors. A data
miner who is interested in finding some structure from such
a tensor would normally use tensor decomposition methods,
commonly either CANDECOMP/PARAFAC (CP) or Tucker
decomposition. In both of these methods, the goal is to
(approximately) reconstruct the input tensor as a sum of simpler
elements (e.g. rank-1 tensors) with the hope that these simpler
elements would reveal the latent structure of the data.

The type of these simpler elements plays a crucial role
on determining what kind of structure the decomposition will
reveal. For example, if the elements contain arbitrary real
numbers, we are finding general linear relations; if the numbers
are non-negative, we are finding parts-of-whole representations.
In this paper, we study yet another type of structure: that of
Boolean tensor factorizations (BTF). In BTF, we require the
data tensor to be binary, and we also require any matrices and
tensors that are part of the decomposition to be binary. Further,
instead of normal addition, we use the Boolean summation
1+1 = 1. The type of structure found under BTF is different to
the type of structure found under normal algebra (non-negative
or otherwise). Intuitively, if there are multiple “reasons” for a 1
in the data, under normal algebra and non-negative values, for
example, we explain this 1 using a sum of smaller values, but
under Boolean algebra, any of these reasons alone is sufficient,
and there is no penalty for having multiple reasons.

There exists algorithms for BTF (e.g. [1]–[3]), but they
do not scale well. Our main contribution in this paper is
to present a scalable algorithm for finding Boolean CP and
Tucker decompositions. Further, we apply the MDL principle
to automatically select the size of the decomposition.

II. DEFINITIONS

A. Notation

We present the notation for 3-way tensors, but it can be
extended to N -way tensors in a straight forward way. Element
(i, j, k) of a 3-way tensor X is denoted either as xijk or as
(X)ijk. A colon in a subscript denotes taking that mode entirely;
for a 3-way tensor X , x:jk is the (j, k) mode-1 (column) fiber,
xi:k the (i, k) mode-2 (row) fiber, and xij: the (i, j) mode-3
(tube) fiber. Furthermore, X ::k is the kth frontal slice of X .
We use Xk as a shorthand for the kth frontal slice.

The number of non-zero elements in X is denoted by |X |.
The Frobenius norm ‖X‖ is defined as (

∑
i,j,k x

2
ijk)

1/2. If X
is binary, i.e. takes values only from {0, 1}, then |X | = ‖X‖2.
The tensor sum of two n-by-m-by-l tensors X and Y is the
element-wise sum, (X +Y)ijk = xijk + yijk. For binary X
and Y , their Boolean tensor sum is defined as (X ∨Y)ijk =
xijk ∨yijk, and their exclusive or is (X ⊕Y)ijk = xijk+yijk
mod 2. If a, b, and c are vectors of length n, m, and l,
respectively, then their outer product, X = a � b � c, is an
n-by-m-by-l tensor with xijk = aibjck. A tensor that is an
outer product of three vectors has tensor rank 1. Finally, if X
and Y are binary n-by-m-by-l tensors, we say that Y contains
X if xijk = 1 implies yijk = 1 for all i, j, k. This relation
defines a partial order of n-by-m-by-l binary tensors.

B. Ranks and Factorizations

The Boolean Tensor Rank and CP Decomposition. A
binary rank-1 tensor has Boolean rank 1. Higher ranks are
defined as Boolean sums of rank-1 tensors:

Definition 2.1 (Boolean tensor rank): The Boolean rank
of a 3-way binary tensor X , rankB(X), is the least integer r
such that there exist r rank-1 binary tensors with

X =

r∨
i=1

ai � bi � ci . (1)

For (approximate) Boolean CP decomposition, our goal is to
find the least-error Boolean rank-k approximation of the input
tensor. The error is measured as the number of disagreements.

Problem 2.1 (Boolean CP decomposition): Given a binary
tensor X (n-by-m-by-l) and an integer r, find binary matrices
A (n-by-r), B (m-by-r), and C (l-by-r) that minimize∣∣∣∣∣X ⊕

(
r∨
i=1

ai � bi � ci

)∣∣∣∣∣ . (2)

Finding the Boolean rank or a minimum-error rank-r
Boolean CP decomposition of a tensor is NP-hard [2].

Boolean Tucker decompositions. The Boolean Tucker
decomposition of a 3-way Boolean tensor contains a binary
core tensor and three binary factor matrices.

Problem 2.2 (Boolean Tucker decomposition): Given an
n-by-m-by-l binary tensor X = (xijk) and three integers p,
q, and r, find the minimum-error (p, q, r) Boolean Tucker
decomposition of X , that is, tuple (G,A,B,C), where
G is a p-by-q-by-r binary core tensor and A (n-by-p), B
(m-by-q), and C (l-by-r) are binary factor matrices, such that
(G,A,B,C) minimizes

∑
i,j,k

xijk ⊕

 p∨
α=1

q∨
β=1

r∨
γ=1

gαβγ aiαbjβckγ

 . (3)

C. Blocks, Convex Hulls, and Factorizations

Let X be a binary n-by-m-by-l tensor and let X ⊆ [n],
Y ⊆ [m], and Z ⊆ [l], where [x] = {1, 2, . . . , x}. A block
of X is a |X| -by- |Y | -by- |Z| sub-tensor B that is formed by
taking the rows, columns, and tubes of X defined by X , Y ,
and Z, respectively. Block B is monochromatic if all of its
values are 1. We can embed B to n-by-m-by-l tensor by filling
the missing values with 0s. Monochromatic B is (embedded
or not) a rank-1 tensor. Almost-monochromatic B is dense.

Let the sets I , J , and K be such that they contain the
indices of all the non-zero slices of X . That is, I = {i :
xijk = 1 for some j, k}, J = {j : xijk = 1 for some i, k},
and K = {k : xijk = 1 for some i, j}. The convex hull of X
is a binary n-by-m-by-l tensor Y that has 1 in every position
defined by the Cartesian product of I , J , and K, I ×J ×K =
{(i, j, k) : i ∈ I, j ∈ J, k ∈ K}. The following lemma will
explain the connection between monochromatic blocks (rank-1
tensors) and convex hulls.

Lemma 2.1: Let X be a binary n-by-m-by-l tensor. Then
the convex hull of X is the smallest n-by-m-by-l rank-1 binary
tensor that contains X .

For the proof, see [4]. As a corollary to Lemma 2.1 we get
that X is rank-1 if and only if it is its own convex hull.

III. THE WALK’N’MERGE ALGORITHM

In this section we present the main part of our algorithm,
WALK’N’MERGE, that aims to find the dense blocks from
which we build the factorizations. WALK’N’MERGE contains
two phases: RANDOMWALK aims at finding and removing
the most prominent blocks quickly from the tensor. BLOCK-
MERGE uses these blocks together with smaller, easier-to-find
monochromatic blocks and tries to merge them into bigger
blocks.

Algorithm 1 Random walk algorithm to find blocks.
Input: X , d, walk_length, num_walks, freq
Output: B1,B2 . . .Bk

1: create graph G(V,E) from X
2: while V is not empty do
3: v ← random node from V
4: visitedNodes ← (v, countv = 1)
5: for num_walks number of times do
6: vvis ← random node from visitedNodes
7: for walk_length number of times do
8: v′ ← random neighbor of vvis
9: visitedNodes ← (v′, countv′ ++)

10: B ← empty block
11: for v ∈ visitedNodes do
12: if countv > freq then
13: B ← v
14: V \ convex hull(B)
15: block B is the convex hull of nodes in B
16: if density of B > d then
17: add B to blocks
18: return blocks

1) Random walk algorithm: In this phase we represent the
tensor X with a graph G(V,E). For every xijk = 1 we have
a node vijk ∈ V . Two nodes vijk and vpqr are connected by
an edge (vijk, vpqr) if (i, j, k) and (p, q, r) differ in exactly
one coordinate. Observe, that a node vijk is connected to all
nodes in V that are in the same fiber as vijk in any mode
of X . Moreover, a monochromatic block in X corresponds
to a subgraph of G with radius at most 3. In case of noisy
data, blocks are not perfectly monochromatic and some of the
nodes in V might be missing. Still, if the blocks are fairly
dense, the radius of the corresponding subgraph is not too big.
More precisely, if vijk is a node that participates in a block of
density d, the probability of a random neighbor of vijk also
participating in that block is d

d+d′ , where d′ is the density of
the full tensor. Thus, a random neighbor of a node inside a
dense block B is with high probability also in B.

RANDOMWALK (Algorithm 1) takes as an input the data
tensor X , parameters controlling the length and number of
the random walks, and the minimum density of the resulting
blocks. After creating the graph G(V,E) it finds a block B in
every iteration of the algorithm by means of executing random
walks. Nodes that have been assigned to B are removed from
V , resulting in a smaller graph G′(V − VB, E

′) on which the
subsequent random walks are executed.

The block B is found by executing a number of random
walks on G. The first walk is initiated from a random node in
V , but the subsequent walks start from a random already-visited
node. This ensures that once we hit a block B with a walk, the
consecutive walks start with higher and higher probability from
within that block. The length and number of the walks is given
as an input to the algorithm. After executing the set of walks,
we create block B as the convex hull of the nodes that have
been visited more than the average number of times in this
set. Finally, we accept B only if it has density above a user-
specified threshold d. Before proceeding with the next iteration
of RANDOMWALK we remove all nodes corresponding to B,
regardless of whether B was accepted.

Running time of RANDOMWALK. The crux of this
algorithm is that the running time of every iteration of the
algorithm is fixed and depends only on the number and length
of the walks. How often we have to re-start the walks depends
on how quickly we remove the nodes from the graph, but
the worst-case running time is bound by O(|V |) = O(|X |).
However, if X contains several dense blocks, then the running
time is significantly less, since all nodes corresponding to cells
in the block are removed at the same time. RANDOMWALK is
easily paralellizable (see [4] for details).

2) BLOCKMERGE Algorithm: The RANDOMWALK algo-
rithm is a fast method, but it is only able to reliably find the most
prominent blocks. If a block is too small, the random walks
might visit it as a part of a bigger sparse (and hence rejected)
block. It can also happen that while most part of a block is
found by RANDOMWALK, some of its slices are not discovered.
Therefore the second part of our algorithm, BLOCKMERGE,
executes two tasks. First it finds smaller monochromatic blocks
that for some reason are undiscovered, and adds these to the
set of blocks as well. Then the algorithm has a merging phase,
where it tries to merge the blocks found so far.

The input for BLOCKMERGE is the same data tensor X
given to the RANDOMWALK algorithm, the blocks already
found, and the minimum density d. As its first step, the
algorithm will find all non-trivial monochromatic blocks of X
that are not yet included in any of the blocks found earlier. A
monochromatic block is non-trivial if its volume and dimensions
are above some user-defined thresholds (e.g. all modes have
at least 2 dimensions). We find these non-trivial blocks in a
greedy fashion. We start with singletons: elements xijk = 1
that do not belong into any block, and do an exhaustive search
of its neighbors (singletons sharing at least one coordinate with
it) to find all monochromatic non-trivial blocks containing xijk.
Any singleton not contained in a non-trivial block after this
search is regarded as noise and discarded.

The second part of BLOCKMERGE is to try and merge
any blocks found so far so that we get larger dense blocks.
Each block B is defined by three sets of indices, I , J , and K,
giving the row, column, and tube indices of this block. When we
merge two blocks, B and C, with indices given by (IB, JB,KB)
and (IC, JC,KC), respectively, the resulting block B � C has
its indices given by (IB ∪ IC, JB ∪ JC,KB ∪ KC). (This is
equivalent on taking the convex hull of B ∨ C, ensuring again
that the block is rank-1.) The way we merge two blocks means
that the resulting block can, and typically will, include elements
that were not in either of the merged blocks. Therefore, we will
only merge two blocks if the joint density of 1s and elements
already included in the other blocks in the area not in either of
merged blocks is higher than the density parameter d. (Please
see [4] for implementation details.)

Running time of the BLOCKMERGE algorithm. Let the
densest fiber in X have b = max{n,m, l} × d ones. Observe
that any nontrivial monochromatic block is defined exactly
by 2 of its cells. Thus for a cell xijk we can compute all
nontrivial monochromatic blocks containing it in b2 time by
checking all blocks defined by pairs of ones in fibers i, j and
k. This checking takes constant time. Hence, the first part of
the algorithm takes O(Bb2) time if there are B trivial blocks
in the data. In worst case B = |X |. The second part of the
algorithm is the actual merging of blocks. If there are D blocks

Algorithm 2 BLOCKMERGE algorithm for merging blocks.
Input: Data X , threshold d, blocks B = {B1,B2, . . . ,Br}

from random walk
Output: Final blocks B1,B2 . . .Bk

1: find all non-trivial monochromatic blocks B of size at least
2-by-2-by-2 not included in blocks in B

2: for B is a non-trivial monochromatic block do
3: add B to B
4: let Q be a queue of all the blocks in B
5: while Q is not empty do
6: B ← Q.pop
7: for all C that shares co-ordinates with B in at least

one mode do
8: compute the density of B � C
9: if density > d then

10: Q.push(B � C)
11: replace B and C in B with B � C
12: break
13: return B

at the begin of this phase, we will try at most
(
D
2

)
merges. The

time it takes to check whether to merge depends on the size
of the two blocks involved. Executing the merge A = B � C
takes at most |A| time. In worst case |A| = |X |. As a result,
a very crude upper bound on the running time can be given as
O(|X |(b2 +D3)).

IV. FROM BLOCKS TO FACTORIZATIONS

The WALK’N’MERGE algorithm returns us a set of rank-1
tensors, corresponding to dense blocks in the original tensor. To
obtain the final decompositions, we have to do some additional
post-processing.

A. Ordering and Selecting the Final Blocks for the CP-
decomposition

We can use all the blocks returned by WALK’N’MERGE to
obtain a Boolean CP factorization. The rank of this factorization
is equal to the number of blocks WALK’N’MERGE returned.
Selecting a subset of these blocks that define a CP decom-
position that minimizes the error is NP-hard. Since finding
the optimal solution is hard, we will use a greedy algorithm
proposed in [5]: We will always select the block that has the
highest gain given the already-selected blocks. The gain of a
block is defined as the number of not-yet-covered 1s of X
minus the number of not-yet-covered 0s of X covered by this
block, and an element xijk is covered if bijk = 1 for some
already-selected block. The greedy algorithm has the benefit
that it gives us an ordering of the blocks, so that if the user
wants a rank-k decomposition, we can simply return the first
k blocks, instead of having to re-compute the ordering.

B. The MDL Principle and Encoding the Data for the CP
decomposition

The greedy algorithm returns an ordering of the columns
of matrices A, B and C of the CP-decomposition. A rank r
decomposition then corresponds to using the first r columns of
each matrix. In order to choose the best rank r for the decom-
position we apply the Minimum Description Length (MDL)
principle [6] to the encoding of the obtained decomposition.

The intuition behind the MDL principle is that the best
model is the one that allows us to compress the data best. To
compute the encoding length of the data, we use the two-part
MDL: if D is our data (the data tensor) and M is a model
of it, we aim to minimize L(M) + L(D | M), where L(M)
is the number of bits we need to encode M and L(D | M)
is the number of bits we need to encode the data given the
model M. In our application, the model M is the Boolean
CP decomposition of the data tensor. As MDL requires us to
explain the data exactly, we also need to encode the differences
between the data and its (approximate) decomposition; this is
the D | M part.

To compute the encoding length, we modify the Typed
XOR Data-to-Model encoding for encoding Boolean matrix
factorizations [7] to work with tensor factorizations.

The encoding length of the Boolean CP decomposition is
simply the length of encoding the size of the factor matrices,
the possible length to encode the number of ones in each
factor and the number of ones in the remaining error tensor.
To compute the overall length we use standard technique from
in [7]. For details on how this encoding is done for this work
please see our extended work [4].

Having the encoding in place, we can simply compute the
change of description length for every rank 1 ≤ r ≤ B and
return r where this value is minimized. The corresponding
(truncated) matrices A, B and C are the factors of the final
CP decomposition that our algorithm returns.

C. Encoding the Data for the Tucker decomposition

Similar to obtaining a CP decomposition from the blocks
returned by WALK’N’MERGE these blocks also define a trivial
Tucker decomposition of the same tensor. The factor matrices
A, B and C are defined the same way as for the CP. The core
G of the Tucker decomposition is a B-by-B-by-B size tensor
with ones in its hyperdiagonal. Our goal is to obtain a more
compact decomposition starting from this trivial one by merging
some of the factors and adjusting the dimensions and content
of the core accordingly. We want to allow the merge of two
factors even if it would increase the error slightly. The model
M we want to encode is the Boolean Tucker decomposition of
the data tensor, that is, a tuple (G,A,B,C). Encoding the size
of the data tensor as well as the content of the factor matrices
is done in the same way as for the CP decomposition. The
only additional task we have is to also encode the number of
ones in the core tensor. Finally the positive and negative error
tensors are identical to the ones in the CP decomposition and
hence are encoded in the same way.

Given the encoding scheme we can use a straight forward
heuristic to obtain the final Tucker decomposition starting from
the trivial one determined by the output of WALK’N’MERGE.
In every mode and for every pair of factors we compute the
description length of the resulting decompositions if we were to
merge these two factors. Ideally we would compute all possible
merging sequences and pick the one with the highest overall
gain in encoding length. This is of course infeasible, hence we
follow a greedy heuristic and apply every merge that yields an
improvement (for more details, see [4]).

V. EXPERIMENTAL EVALUATION

A. Other methods and Evaluation Criteria

We used two real-valued scalable CP decomposition meth-
ods: CP APR [8] (implementation from the Matlab Tensor
Toolbox v2.51) and PARCUBE [9]2. CP APR is an alternating
Poisson regression algorithm that is specifically developed for
sparse (counting) data (which can be expected to follow the
Poisson distribution) with the goal of returning sparse factors.
The aim for sparsity and, to some extend, considering the data
as a counting data, make this method suitable for comparison;
on the other hand, it aims to minimize the (generalized) K–L
divergence, not squared error, and binary data is not Poisson
distributed.

The other method we compare against, PARCUBE, uses
clever sampling to find smaller sub-tensors. It then solves the
CP decomposition in this sub-tensor, and merges the solutions
back into one. We used a non-negative variant of PARCUBE
that expects non-negative data, and returns non-negative factor
matrices. PARCUBE aims to minimize the squared error.

To compute the error, we used sum of absolute differences
for WALK’N’MERGE and sum-of-squared-errors for the other
methods. This presents yet another apples-versus-oranges
comparison: the squared error can help the real-valued methods,
as it scales all errors less than 1 down, but at the same time,
small errors cumulate unlike with fully binary data. To alleviate
this problem, we also rounded the reconstructed tensors from
CP APR and PARCUBE to binary tensors. We tried different
rounding thresholds between 0 and 1 and selected the one that
gave the lowest (Boolean) reconstruction error. With some of
the real-world data, we were unable to perform the rounding for
the full representation due to time and memory limitations. For
these data sets, we estimated the rounded error using stratified
sampling, where we sampled 10 000 ones and 10 000 zeros
from the data, computed the error on these, and scaled the
results.

B. Synthetic Data

We generated sparse 1000-by-1500-by-2000 synthetic bi-
nary tensor as follows: We first fixed parameters for the Boolean
rank of the tensor and the noise to apply. We generated three
(sparse) factor matrices to obtain the noise-free tensor. As
we assume that the rank-1 tensors in the real-world data are
relatively small (e.g. synonyms of an entity), the rank-1 tensors
we use were approximately of size 16-by-16-by-16, with each
of them overlapping with another block. We then added noise
to this tensor. We separate the noise in additive and destructive
noise. The amount of noise depends on the number of 1s in
the noise-free data, that is 10% of destructive noise means that
we delete 10% of the 1s, and 20% of additive noise means
that we add 20% more 1s. To generate the data, we varied
three parameters – rank, additive noise, destructive noise, and
overlap of the latent blocks – and created five random copies
for each set parameters.

The rank of the decomposition was set to the true rank
of the data for all methods. For WALK’N’MERGE we set the
merging threshold to 1−(nd+0.05), where nd was the amount

1http://www.sandia.gov/∼tgkolda/TensorToolbox/
2http://www.cs.cmu.edu/∼epapalex/

of destructive noise, the length of the random walks was set
to 5, and we only considered blocks of size 4-by-4-by-4 or
larger. The results for varying rank and different types of noise
are presented in Figure 1. Varying the amount of overlap did
not have any effect on the results of WALK’N’MERGE, and
we omit the results. Results for PARCUBE were consistently
worse than anything else and they are omitted from the plots.

Rank. For the first experiment (Figure 1(a)) we varied
the rank while keeping the additive and destructive noise at
10%. With rank-5 decomposition, WALK’N’MERGE fits to
the input data slightly worse than CP APR (unrounded) but
clearly better than CP APR0/1 (rounded) and PARCUBE0/1, the
latter being clearly the worse with all ranks. For larger ranks,
WALK’N’MERGE is clearly better than variations of CP APR.
Note that here rank is both the rank of the data and the rank of
the decomposition. When comparing the fit to the original data
(dashed lines), WALK’N’MERGE is consistently better than
the variants of CP APR or PARCUBE0/1, to the extend that it
achieves perfect results for ranks larger than 5.

Additive noise. In this experiment, rank was set to 10,
destructive noise to 10%, and additive noise was varied. Results
are presented in Figure 1(b). In all results, WALK’N’MERGE is
consistently better than any other method, and always recovers
the original tensor perfectly.

Destructive noise. For this experiment, rank was again set
to 10 and additive noise to 10% while the amount of destructive
noise was varied (Figure 1(c)). The results are similar to those
in Figure 1(b), although it is obvious that the destructive noise
has the most significant effect on the quality of the results.

Discussion. In summary, the synthetic experiments show
that when the Boolean structure is present in the data,
WALK’N’MERGE is able to find it – in many cases even exactly.
That CP APR is not able to do that should not come as a surprise
as it does not try to find such structure. That PARCUBE0/1

is almost consistently the worse is slightly surprising (and
the results from the unrounded PARCUBE were even worse).
From Figure 1(b) we can see that the results of PARCUBE0/1

start improving when the amount of additive noise increases.
This hints that PARCUBE’s problems are due to its sampling
approach not performing well on these extremely sparse tensors.

C. Real-World Data

1) Datasets: To assess the quality of our algorithm, we
tested it with three real-world data sets: The Enron data3

(146-by-146-by-38) contains information about who sent e-
mail to whom (rows and columns) per months (tubes).
The TracePort data set4 (501-by-10 266-by-8 622) contains
anonymized passive traffic traces (source and destination IP
and port numbers) from 2009. The Facebook data set5 [10]
(63 891-by-63 890-by-228) contains information about who
posted a message on whose wall per weeks.

2) CP Factorization: We start by reporting the reconstruc-
tion errors with CP decompositions using the same algorithms
we used with the synthetic data. The results are in Table I.

3http://www.cs.cmu.edu/∼enron/
4http://www.caida.org/data/passive/passive 2009 dataset.xml
5The data is publicly available from the authors of [10], see http://

socialnetworks.mpi-sws.org

TABLE I. RECONSTRUCTION ERRORS ROUNDED TO THE NEAREST
INTEGER. NUMBERS PREFIXED WITH * ARE OBTAINED USING SAMPLING.

Enron TracePort Facebook

Algorithm r = 12 r = 15 r = 1370 r = 15

WALK’N’MERGE 1 753 10 968 7 613 612 314
PARCUBE 2 089 33 741 4 · 1055 8 · 10140
PARCUBE0/1 1 724 11 189 * 2 · 107 * 1 788 874
CP APR 1 619 11 069 5 230 626 349
CP APR0/1 1 833 11 121 * 1 886 * 626 945

The Enron data reverses the trend we saw with the
synthetic data, as both CP APR and PARCUBE0/1 are better
than WALK’N’MERGE, possible because Enron does not
have strong Boolean CP structure. With TracePort and
r = 15 WALK’N’MERGE is again the best, if only slightly.
With r = 1370, WALK’N’MERGE improves, but not as much
as CP APR and especially CP APR0/1. The very high rank
probably lets CP APR to better utilize the higher expressive
power of continuous factorizations, explaining the significantly
improved results. For Facebook and r = 15 the situation is
akin to TracePort with r = 15 in that WALK’N’MERGE
is the best followed directly with CP APR. PARCUBE’s errors
were off the charts with both TracePort (r = 1370) and
Facebook; we suspect that the extreme sparsity (and high
rank) fooled its sampling algorithm.

Running time. The running time of WALK’N’MERGE
depends on the structure of the input tensor and on the
parameters used, complicating systematic studies of running
times. But to give some idea, we report the running times for
the Facebook data, as that is the biggest data set we used.
The fastest algorithm for k = 15 was PARCUBE, finishing in
a matter of minutes (but note that it gave very bad results).
Second-fasters was WALK’N’MERGE. We tried different density
thresholds d, effecting the running time. The fastest was
d = 0.2, when WALK’N’MERGE took 85 minutes, the slowest
was d = 0.70, taking 277 minutes, and the average was 140
minutes. CP APR was in between these extremes, taking 128
minutes for one run. Note, however, that WALK’N’MERGE
didn’t return just the r = 15 decomposition, but in fact all
decompositions up to r = 3300. Neither PARCUBE or CP APR
was able to handle so large ranks with the Facebook data.

3) Tucker Decomposition: For the Enron dataset we
obtained a decomposition with a core of size 9-by-11-by-9 from
the MDL step. While this might feel small, the reconstruction
error was 1775, i.e. almost as good as the best BCP decompo-
sition. (MDL does not try to optimize the reconstruction error,
but the encoding length.)

With the Tucker decomposition, we also used fourth data set
(see [11]). This data set contains noun phrase–context pattern–
noun phrase triples that are observed forms of subject–relation–
object triples. With this data our goal is to find a Boolean
Tucker decomposition such that the core G corresponds to the
latent subject–relation–object triples and the factor matrices
tell us which surface forms are used for which entity and
relation. The size of the data is 39 500-by-8 000-by-21 000
and it contains 804 000 surface term triplets. The running
time of WALK’N’MERGE on this dataset was 52 minutes,
and computing the Tucker decomposition took another 3 hours.

5 10 15 20

0

0.2

0.4

0.6

0.8

1

Rank

R
e
la

ti
v
e
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Walk’n’Merge

CP_APR

CP_APR
0/1

ParCube
0/1

0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

Additive Noise

R
e
la

ti
v
e
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Walk’n’Merge

CP_APR

CP_APR
0/1

ParCube
0/1

0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1

Destructive Noise

R
e
la

ti
v
e
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Walk’n’Merge

CP_APR

CP_APR
0/1

ParCube
0/1

(a) (b) (c)

Fig. 1. Results on synthetic data sets using CP-type decompositions. (a) Varying rank. (b) Varying additive noise. (c) Varying destructive noise. Solid lines
present the relative reconstruction error w.r.t. input tensor; dashed lines present it w.r.t. the original noise-free tensor. All points are mean values over five random
datasets and the width of the error bars is twice the standard deviation.

An example of a factor of the subjects is {claude de
lorimier, de lorimier, louis, jean-baptiste},
corresponding to Claude-Nicolas-Guillaume de Lorimier, a
Canadian politician from the 18th Century (and his son, Jean-
Baptiste). An example of an object-side factor is {borough
of lachine, villa st. pierre, lachine quebec},
corresponding to the borough of Lachine in Quebec, Canada,
and an example of a factor in the relations is {was born was,
[[det]] born in}. In the core G the element corresponding
to these three factors is 1, that is, according to our algorithm,
de Lorimier was born in Lachine, Quebec – as he was.

VI. RELATED WORK

Normal tensor factorizations are well-studied, dating back
to the late Twenties. The Tucker and CP decompositions were
proposed in Sixties [12] and Seventies [13], [14], respectively.
The topic has nevertheless attained growing interest in recent
years, both in numerical linear algebra and computer science
communities. For a comprehensive study of recent work,
see [15], and the recent work on scalable factorizations [9].

One field of computer science that has adopted tensor
decompositions is computer vision (see [16], [17]).

The theory of Boolean tensor factorizations was studied
in [2], although the first algorithm for Boolean CP factorization
was presented in [1]. A related line of data mining research
has also studied a specific type of Boolean CP decomposition,
where no 0s can be presented as 1s (e.g. [18]). For more on
these methods and their relation to Boolean CP factorization,
see [2].

VII. CONCLUSIONS

We have presented WALK’N’MERGE, an algorithm for
computing the Boolean tensor factorization of large and sparse
binary tensors. Analysing the results of our experiments sheds
some light on the strengths and weaknesses of our algorithm.
First, it is obvious that it does what it was designed to do, that is,
finds Boolean tensor factorizations of large and sparse tensors.
But it has its caveats, as well. The random walk algorithm, for
example, introduces an element of randomness, and it seems
that it benefits from larger tensors. The algorithm, and its
running time, is also somewhat sensible to the parameters,
possibly requiring some amount of tuning.

REFERENCES

[1] I. Leenen, I. Van Mechelen, P. De Boeck, and S. Rosenberg, “INDCLAS:
A three-way hierarchical classes model,” Psychometrika, vol. 64, no. 1,
pp. 9–24, Mar. 1999.

[2] P. Miettinen, “Boolean Tensor Factorizations,” in ICDM ’11, 2011, pp.
447–456.

[3] R. Bělohlávek, C. Glodeanu, and V. Vychodil, “Optimal Factorization
of Three-Way Binary Data Using Triadic Concepts,” Order, Mar. 2012.

[4] D. Erdős and P. Miettinen, “Scalable Boolean tensor factorizations using
random walks,” arXiv, Tech. Rep., 2013.

[5] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila, “The
Discrete Basis Problem,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 10,
pp. 1348–1362, Oct. 2008.

[6] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,
no. 5, pp. 465–471, Sep. 1978.

[7] P. Miettinen and J. Vreeken, “MDL4BMF: Minimum description length
for boolean matrix factorization,” Max-Planck-Institut für Informatik,
Tech. Rep. MPI–I–2012–5-001, Jun. 2012.

[8] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Nonnegative
Factorizations,” SIAM J. Matrix Anal. Appl., vol. 33, no. 4, pp. 1272–
1299, Dec. 2012.

[9] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “ParCube:
Sparse Parallelizable Tensor Decompositions,” in ECML PKDD ’12,
2012, pp. 521–536.

[10] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
Evolution of User Interaction in Facebook,” in WOSN ’09, 2009, pp.
37–42.

[11] D. Erdős and P. Miettinen, “Discovering facts with Boolean tensor tucker
decomposition,” in CIKM, 2013.

[12] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[13] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N-way generalization of ‘Eckart-Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[14] R. A. Harshman, “Foundations of the PARAFAC procedure: Models
and conditions for an ‘explanatory’ multimodal factor analysis,” UCLA
Working Papers in Phonetics, Tech. Rep., 1970.

[15] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[16] A. Shashua and T. Hazan, “Non-negative tensor factorization with
applications to statistics and computer vision,” in ICML ’05, 2005.

[17] Y.-D. Kim and S. Choi, “Nonnegative Tucker Decomposition,” in CVPR
’07, 2007, pp. 1–8.

[18] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut, “Closed patterns
meet n-ary relations,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 1,
2009.

