Understanding the Linguistic Structure and Evolution of Web Search Queries

Rishiraj Saha Roy
Ph.D. Student, IIT Kharagpur

Dastagiri Reddy
IIT Kharagpur

Niloy Ganguly
IIT Kharagpur

Monojit Choudhury
Microsoft Research India

Evolang X
Vienna, Austria
Datasets

- Dataset 1: 12.8 million queries from AOL USA (2006)
- Dataset 2: 16.7 million queries Bing Australia (2010)
- Two to ten word queries only
- One word queries do not have structure
- Longer queries have different structural properties
- Newswire corpora for English
Before we begin

- “The tail end of unique terms is very long and warrants in itself a linguistic investigation. In fact, the whole area of query language needs further investigation. Such studies have potential to benefit IR system and Web site development.” – Jansen et al. (2000)

- “A small number of search terms are used with high frequency, and a great many terms are unique; the language of Web queries is distinctive.” – Spink et al. (2001)
Before we begin

“It has been widely observed that search queries are composed in a very different style from that of the body or the title of a document… yet a large scale analysis on the extent of the language differences has been lacking.” – Huang et al. (2010)
Motivation

- Millions of global users, without direct interaction, developing a mode of communication with unique properties – Interesting!!
- Understanding queries as a language may add a linguistic perspective to existing methods in query interpretation
- Various sub-problems may prove directly useful for improving Information Retrieval performance
- Perfectly preserved dataset for studying language evolution
Information needs to queries

- How do I hide the network icon from the status bar?
- How many litres are there in a gallon?
- What are the available grants for setting up a business?
- What is the recipe for sweet green tomato pickles?
- Where can I buy an MS office guide book online?
Drop “unimportant” terms

- How do I hide the network icon from the status bar?
- How many litres are there in a gallon?
- What are the available grants for setting up a business?
- What is the recipe for sweet green tomato pickles?
- Where can I buy an MS office guide book online?
Reorder words

- **hide** network icon status bar → network **hide** icon status bar
- **sweet** green tomato pickles → green tomato pickles **sweet**
- **buy** ms office guide book online → ms office guide book **buy** online
An Evolving (Proto-)Language?

- Three dimensions of analysis: Structure, function and dynamics
- Structure – Query syntax differs from parent NL
- Function – Satisfy several design features, asymmetric communication, heterogeneous agents, click semantics
- Dynamics – Continuous two-way interactions leading to more complex needs (user) and algorithmic development (engine)

More than bags-of-words but no formal grammar

Identifying multiword expressions and intent expressions vital for information retrieval

Flexible word order but some proximities and dependencies very important for query understanding
Why has query structure evolved?

- 15 years back
 - Web content limited → Simple information needs
 - Engines could not handle NL sentences – keywords only
- Now
 - Web content has exploded → Complex information needs
 - Search engines much smarter – Content types, user models
- Continuous two-way evolution!!
Google introduces Hummingbird

“Google has overhauled its search algorithm to better cope with the longer, more complex queries it has been getting from Web users… need to match concepts and meanings in addition to words. … The world has changed so much since then: billions of people have come online, the Web has grown exponentially.”

– Reuters, 27 September 2013

http://goo.gl/dgVK31
Query lengths

Percentage of all queries vs. No. of words in query for 2001 (Excite), 2006 (AOL), and 2010 (Bing).
“Measuring” Evolution
Three Approaches

- Three approaches used in this study
- Statistical language modeling
- Complex network modeling
- Positional preferences of query segments
- Track changes using above dimensions
- Draw insights from observations
Statistical Language Models

Definition

- Probability distribution over the various possible strings that can be generated by the language
- Used n-gram and n-set based (generative) models
- Assumes probability of the n-th word in a sentence depends only on the previous $(n-1)$ words
- Simple yet powerful in many real tasks
Statistical Language Models
Examples

- 1-grams: apple, table, harry
- 2-grams: apple pie, table tennis, harry potter
- 3-grams: apple pie recipe, table tennis shots, harry potter games
- 2-sets: {apple, pie}, {table, tennis}, {harry, potter}
- 3-sets: {apple, pie, recipe}, {table, tennis, shots}, {harry, potter, games}
Information theoretic measures for quantification

Measured counts, entropy, perplexity, cross-entropy of probability distributions

Entropy measures the randomness associated with a distribution

Perplexity – number of choices that user has to predict n-th word, given the $(n - 1)$ preceding words

Cross-entropy measures the difference in information content between two probability distributions
Statistical Language Models

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Counts</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Queries (06)</td>
<td>Queries (10)</td>
</tr>
<tr>
<td>1-gram</td>
<td>0.4M</td>
<td>0.7M</td>
</tr>
<tr>
<td>2-gram</td>
<td>3.5M</td>
<td>4.7M</td>
</tr>
<tr>
<td>3-gram</td>
<td>2.1M</td>
<td>2.8M</td>
</tr>
<tr>
<td>2-set</td>
<td>6.9M</td>
<td>9.0M</td>
</tr>
<tr>
<td>3-set</td>
<td>15.3M</td>
<td>20.6M</td>
</tr>
</tbody>
</table>

- 0.2M words common, 0.5M words added, 0.2M words deleted
- Unigram perplexity much greater for queries
- But more predictable for higher levels
- Cross-entropy differs markedly from entropy
Complex Network Models

Definition

- Complex networks – powerful mathematical framework for modeling complex systems, also useful for visualization
- Use word co-occurrence networks in this study (Cancho and Solé 2001)
- Each word forms a node in the network
- Words co-occurring in queries have an edge between them
- Joint probability measures used to prune random collocations
Complex Network Models

Example

Diagram showing interconnected nodes labeled "buy", "extreme", "config", "laptop", "gprs", "gaming", "dell", "samsung", "at&t", and "focus". The diagram illustrates the network model relationships among these terms.
Complex Network Models
Measurement

- Find largest connected component of network
- Numbers of nodes and edges
- Average degree (number of connections) of nodes
- Cumulative degree distribution – probability distribution of nodes having degree greater than or equal to value
- Clustering coefficient – Degree of triadic closure in network
- Average shortest path length between every pair of nodes
Complex Network Models

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Queries (06)</th>
<th>Queries (10)</th>
<th>NL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nodes</td>
<td></td>
<td>83,525</td>
</tr>
<tr>
<td></td>
<td>Edges</td>
<td></td>
<td>1.1M</td>
</tr>
<tr>
<td>Average degree</td>
<td>25.404</td>
<td>20.660</td>
<td>69.863</td>
</tr>
<tr>
<td>Degree distribution</td>
<td>2-regime</td>
<td>2-regime</td>
<td>2-regime</td>
</tr>
<tr>
<td>Clustering coefficient</td>
<td>0.592</td>
<td>0.630</td>
<td>0.437</td>
</tr>
<tr>
<td>Average shortest path length</td>
<td>3.193</td>
<td>3.305</td>
<td>2.670</td>
</tr>
</tbody>
</table>

- Two-regime power law in queries and NL
- Reflects kernel-periphery structure in both
- Interesting differences in graph structure!!
- Less tight kernel, more kernel-periphery edges

April 14, 2014

Query Structure and Evolution
Positional Preferences of Segments
Definition

- Structural units of queries identified through query segmentation (Saha Roy et al. 2012)

 harry potter | online videos | youtube

- Content and intent segments labeled using co-occurrence statistics (Yu and Ren 2012)

 harry potter | online videos | youtube

- Segment positions in queries labeled as beginning, middle or end

 harry potter (beg) | online videos (mid) | youtube (end)
Positional Preferences of Segments
Measurement

- Compute class-wise positional probabilities for each log
- For each (content or intent) segment in each log, measure
 - Probability of being at beginning of query
 - Probability of being at the middle of query
 - Probability of being at end of query
- Interpret changes for possible implications
Positional Preferences of Segments

Results

Content in 2006, Intent in 2010

<table>
<thead>
<tr>
<th>Segment</th>
<th>Example query in 2006</th>
<th>Example query in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>youtube</td>
<td>youtube videos</td>
<td>new visions 31 youtube</td>
</tr>
<tr>
<td>xbox</td>
<td>xbox logo</td>
<td>sonic the hedgehog xbox</td>
</tr>
</tbody>
</table>

Beginning probability drops

Dominant Trend

393/445

#Support Segments
Positional Preferences of Segments
Results

- 2006: Segments mostly issued as navigational queries for internal searches or as informational queries
- 2010: Appended with content words as search engines can handle direct queries now
- Manifold increase in frequency leads to user-guided search engine rules
- Positional dynamics vital to query intent detection!
Positional Preferences of Segments

Results

<table>
<thead>
<tr>
<th>Segment</th>
<th>Example query in 2006</th>
<th>Example query in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow pages</td>
<td>granger indiana yellow pages</td>
<td>yellow pages wikipedia</td>
</tr>
<tr>
<td>motels</td>
<td>maryland motels</td>
<td>motels for sale brisbane</td>
</tr>
</tbody>
</table>

Intent in 2006, Content in 2010

- Ending probability drops: 481/576
- Dominant Trend:
 - #Support Segments
Positional Preferences of Segments
Results

- 2006: High popularity leads to intent labels
- 2010: Usage becoming obsolete, esoteric interests
- Error analysis: *what to do, cheat codes* and *official site* labeled as content in 2010 due to drops in co-occurrence counts
- But relative positions still indicate “intent”-ness!
Positional Preferences of Segments

Results

- Segments whose roles have not changed show stabilizations in their relative positions (content at beginnings, intent at ends)
- Users conceptualize and type in content segments first
- Add intent segments to specify user intention explicitly
- Stacking of intent segments main contributor to increasing query lengths over years
- Example: *titanic* → *titanic movie review imdb*
Conclusions and Future Work

- Analyzed evolution of structural properties of queries over four years through three approaches
- Web search queries structurally simpler than NL, but more complex than the bags-of-words model
- SLM measures show that queries approaching NL-like properties
- CNM based analysis shows reverse trend of divergence from NL
- Observations underline uniqueness of linguistic evolution of Web search queries
Conclusions and Future Work

- Web search queries are a very interesting case of a self-organizing communication system.
- System has its unique characteristics, but also has several similarities with NL that make this system interesting to study from a language evolution perspective.
- Can significantly enrich our knowledge of NL evolution, utilizing large volumes of well-preserved query logs.

Questions please!!
Thank you!!