ELIXIR: Learning from User Feedback on Explanations to Improve Recommender Models

Azin Ghazimatin, Soumajit Pramanik, Rishiraj Saha Roy, Gerhard Weikum

Max Planck Institute for Informatics, Saarland Informatics Campus
Saarbrücken, Germany

The Web Conference, 2021
Motivation

User u

Recommendation (rec):
- Fight Club

Explanation (exp):
- 7 years in Tibet
- The Prestige
- Pulp Fiction
Motivation

I want to stop seeing this item and the like.

I want to see more items like this.
Motivation

So far: item-level rating

I want to stop seeing this item and the like.

I want to see more items like this.
Motivation

So far: item-level rating

User u

I want to stop seeing this item and the like.

I want to see more items like this.

Recommendation (rec):

Fight Club

Explanation (exp):

7 years in Tibet

The Prestige

Pulp Fiction

What is it that you (dis)like about the $Fight\ Club$?

Brad Pitt

Surprise Ending

Violence

...
Motivation

The idea: Leverage feedback on pairs of explanations and recommendations

User u

I want to stop seeing this item and the like.

I want to see more items like this.

<table>
<thead>
<tr>
<th>Recommendation (rec)</th>
<th>Explanation (exp):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fight Club</td>
<td>7 years in Tibet</td>
</tr>
<tr>
<td></td>
<td>Brad Pitt</td>
</tr>
<tr>
<td></td>
<td>The Prestige</td>
</tr>
<tr>
<td></td>
<td>Surprise Ending</td>
</tr>
<tr>
<td></td>
<td>Pulp Fiction</td>
</tr>
<tr>
<td></td>
<td>Violence</td>
</tr>
</tbody>
</table>

Similar aspect of (rec, exp):
- Cast: Brad Pitt
- Storyline: Surprise Ending
- Content: Violence

Feedback on (rec, exp):
- Like
- Dislike
ELIXIR

Efficient Learning from Item-level eXplanations In Recommenders
(Improving future recommendations through feedback on pairs of recommendation and explanation items)

User u

Recommendation (rec) at time T
- Fight Club
- 7 years in Tibet
- The Prestige
- Pulp Fiction

Explanation (exp):
- 7 years in Tibet
- The Prestige
- Pulp Fiction

Similar aspect of (rec, exp):
- Cast: Brad Pitt
- Storyline: Surprise Ending
- Content: Violence

Feedback on (rec, exp):
- Liked: Fight Club, The Prestige
- Disliked: 7 years in Tibet, Pulp Fiction

ELIXIR

Collect and densify Feedback
Incorporate Feedback

Recommendation (rec) at time $T+1$
- Ocean’s Eleven
ELIXIR: Feedback Matrix

Recommendation (\(\text{rec}\)) at time \(T\)

Explanation (\(\text{exp}\)):

Do you like the similarity between \((\text{rec}, \text{exp})\)?

\[
\begin{pmatrix}
0 & 1 & 1 & -1 \\
1 & \ddots & & \\
1 & & \ddots & \\
-1 & & & \\
\end{pmatrix}
\]
ELIXIR: Feedback Densification

★ Label propagation [Zhu and Ghahramani, 2002] on pairs of items to mitigate sparsity \(\Rightarrow F^d_u \)

ELIXIR: Feedback Densification

★ Label propagation [Zhu and Ghahramani, 2002] on pairs of items to mitigate sparsity $\Rightarrow F^d_u$

★ Present pairs (\vec{v}_i, \vec{v}_j) with pseudo-items (geometric mean of two vectors)

$$\vec{v}_{ij} = (\vec{v}_i \otimes \vec{v}_j)^{\frac{1}{2}}$$

ELIXIR: Feedback Densification

★ Label propagation [Zhu and Ghahramani, 2002] on pairs of items to mitigate sparsity $\Rightarrow F^d_u$

★ Present pairs (\vec{v}_i, \vec{v}_j) with pseudo-items (geometric mean of two vectors)

$$\vec{v}_{ij} = (\vec{v}_i \otimes \vec{v}_j)^{\frac{1}{2}}$$

★ The affinity matrix W encodes pair-pair similarity. This makes W huge! ($W \in \mathbb{R}^{\mid I \mid^2 \times \mid I \mid^2}$, I is the set of items)

ELIXIR: Feedback Densification

- Label propagation [Zhu and Ghahramani, 2002] on pairs of items to mitigate sparsity $\Rightarrow F_u^d$
- Present pairs $(\vec{v_i}, \vec{v_j})$ with pseudo-items (geometric mean of two vectors)

$$\vec{v_{ij}} = (\vec{v_i} \otimes \vec{v_j})^{\frac{1}{2}}$$

- The affinity matrix W encodes pair-pair similarity. This makes W huge! ($W \in \mathbb{R}^{||I||^2 \times ||I||^2}, I$ is the set of items)

- Propagate labels only on kNN of the labeled pairs
 - naive approach: $O(||I||^2)$
 - our approach:
 - find kNN of v_{ij} among the items in I using locality sensitive hashing (LSH), we call this set kNN_{ij}^I.
 - Search for kNN of v_{ij} in $kNN_{ij}^I \times kNN_{ij}^I$.
 - This reduces the time complexity to $O(||I||)$ for small k.

ELIXIR: Feedback Incorporation

The Idea: Learn user-specific parameters \vec{w}_u of a mapping function g to produce user-specific item representations.

$$\min_{\vec{w}_u} \frac{1}{m} \sum_{u, v_j} F_u^d (v_i, v_j) \cdot (\text{sim}(\vec{v}_i, \vec{v}_j) - \text{sim}(g(\vec{v}_i, \vec{w}_u), g(\vec{v}_j, \vec{w}_u))) + \gamma ||\vec{w}_u||^2$$

No. feedback pairs \rightarrow similarity function

Similarity of items in **negative** (positive) pairs **decreases** (increases).
ELIXIR: Feedback Incorporation

The Idea: Learn user-specific parameters \(\vec{w}_u \) of a mapping function \(g \) to produce user-specific item representations.

\[
\min_{\vec{w}_u} \frac{1}{m} \sum_{v_i, v_j} F^d_u (v_i, v_j) \cdot (\text{sim}(\vec{v}_i, \vec{v}_j) - \text{sim}(g(\vec{v}_i, \vec{w}_u), g(\vec{v}_j, \vec{w}_u))) + \gamma ||\vec{w}_u||^2
\]

No. feedback pairs \(\rightarrow \) similarity function

Similarity of items in **negative** (positive) pairs decreases (increases).
ELIXIR: Feedback Incorporation

The Idea: Learn user-specific parameters \vec{w}_u of a mapping function g to produce user-specific item representations.

$$\min_{\vec{w}_u} \frac{1}{m} \sum_{i,j} F_u^{d}(v_i, v_j) \cdot (\text{sim}(\vec{v}_i, \vec{v}_j) - \text{sim}(g(\vec{v}_i, \vec{w}_u), g(\vec{v}_j, \vec{w}_u))) + \gamma ||\vec{w}_u||^2$$

No. feedback pairs \longleftrightarrow similarity function

Similarity of items in **negative** (positive) pairs **decreases** (increases).

After feedback incorporation

User u

Distance of items to user's profile
Instantiation of ELIXIR

★ We instantiated our framework with RecWalkPR [Nikolakopoulos and Karypis, WSDM’19]

\[
\overrightarrow{PPR}(u, .) = \alpha \cdot \overrightarrow{e}_u + (1 - \alpha) \cdot \overrightarrow{PPR}(u, .) \cdot [\beta A + (1 - \beta)S]
\]

★ Explanations generated by PRINCE [Ghazimatin et al., WSDM’20]
Instantiation of ELIXIR

★ We instantiated our framework with RecWalkPR [Nikolakopoulos and Karypis, WSDM’19]

\[PPR(u, \cdot) = \alpha \cdot \vec{e}_u + (1 - \alpha) \cdot PPR(u, \cdot) \cdot [\beta A + (1 - \beta) S] \]

★ Explanations generated by PRINCE [Ghazimatin et al., WSDM’20]

★ Learning \(\vec{w}_u (g(\vec{v}_i, \vec{w}_u) = \vec{v}_i + \vec{w}_u) \):

\[
\min \frac{1}{m} \sum_{v_i, v_j} F^d_u (v_i, v_j) \cdot (\cos(\vec{v}_i, \vec{v}_j) - \cos(\vec{v}_i + \vec{w}_u, \vec{v}_j + \vec{w}_u)) + \gamma ||\vec{w}_u||^2
\]

Nikolakopoulos and Karypis, RecWalk: Nearly uncoupled random walks for top-n recommendation, WSDM’19

Ghazimatin et al., PRINCE: Provider-side Interpretability with Counterfactual Explanations in Recommender Systems, WSDM’20
Instantiation of ELIXIR

★ We instantiated our framework with RecWalk$^\text{PR}$ [Nikolakopoulos and Karypis, WSDM’19]

\[PPR(u, v) = \alpha \cdot \vec{e}_u + (1 - \alpha) \cdot PPR(u, \cdot) \cdot [\beta A + (1 - \beta)S] \]

★ Explanations generated by PRINCE [Ghazimatin et al., WSDM’20]

★ Learning $\vec{w}_u (g(\vec{v}_i, \vec{w}_u) = \vec{v}_i + \vec{w}_u)$:

\[
\min_{\vec{w}_u} \frac{1}{m} \sum_{v_i, v_j} F_u^d(v_i, v_j) \cdot (\cos(\vec{v}_i, \vec{v}_j) - \cos(\vec{v}_i + \vec{w}_u, \vec{v}_j + \vec{w}_u)) + \gamma ||\vec{w}_u||^2
\]

★ Updating the model:

\[S_u(v_i, v_j) = \cos(\vec{v}_i + \vec{w}_u, \vec{v}_j + \vec{w}_u) \]

\[PPR(u, \cdot) = \alpha \cdot \vec{e}_u + (1 - \alpha) \cdot PPR(u, \cdot) \cdot [\beta A + (1 - \beta)S_u] \]

[Nikolakopoulos and Karypis, RecWalk: Nearly uncoupled random walks for top-n recommendation, WSDM’19]

[Ghazimatin et al., PRINCE: Provider-side Interpretability with Counterfactual Explanations in Recommender Systems, WSDM’20]
User Study for Data Collection

★ User studies in two domains: movies and books

★ Phase 1: Building users’ profiles
 ○ 50 liked movies selected from Movielens website
 ○ 50 liked books selected from Goodreads website

★ Phase 2: Collecting feedback on items and pairs
 ○ 30 recommendations (generated at time T)
 ■ generated by RecWalk
 ■ S: cosine similarity of item representations learned by applying NMF on item-feature matrix
 ○ 150 pairs corresponding to recommendations and their top 5 explanations
 ○ 150 pairs corresponding to recommendations and their bottom 5 explanations

★ Phase 3: Collecting feedback on final recommendations (evaluation at time $T+1$)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>#Item feedback</th>
<th>#Pair feedback</th>
<th>Sessions</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase1</td>
<td>50</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Phase2</td>
<td>30</td>
<td>300</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Phase3</td>
<td>72</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>300</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Total (All users)</td>
<td>≃4000</td>
<td>7500</td>
<td>175</td>
<td>350</td>
</tr>
</tbody>
</table>
User Study for Data Collection

★ User studies in two domains: movies and books

★ Phase 1: Building users’ profiles
 ○ 50 liked movies selected from Movielens website
 ○ 50 liked books selected from Goodreads website

★ Phase 2: Collecting feedback on items and pairs
 ○ 30 recommendations (generated at time T)
 ■ generated by RecWalk
 ■ S: cosine similarity of item representations learned by applying NMF on item-feature matrix
 ○ 150 pairs corresponding to recommendations and their top 5 explanations
 ○ 150 pairs corresponding to recommendations and their bottom 5 explanations

★ Phase 3: Collecting feedback on final recommendations (evaluation at time $T+1$)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>#Item feedback</th>
<th>#Pair feedback</th>
<th>Sessions</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase1</td>
<td>50</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Phase2</td>
<td>30</td>
<td>300</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Phase3</td>
<td>72</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>300</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Total (All users)</td>
<td>≃4000</td>
<td>7500</td>
<td>175</td>
<td>350</td>
</tr>
</tbody>
</table>
User Study for Data Collection

★ User studies in two domains: movies and books

★ Phase 1: Building users’ profiles
 ○ 50 liked movies selected from Movielens website
 ○ 50 liked books selected from Goodreads website

★ Phase 2: Collecting feedback on items and pairs
 ○ 30 recommendations (generated at time T)
 ■ generated by RecWalk
 ■ S: cosine similarity of item representations learned by applying NMF on item-feature matrix
 ○ 150 pairs corresponding to recommendations and their top 5 explanations
 ○ 150 pairs corresponding to recommendations and their bottom 5 explanations

★ Phase 3: Collecting feedback on final recommendations (evaluation at time $T+1$)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>#Item feedback</th>
<th>#Pair feedback</th>
<th>Sessions</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase1</td>
<td>50</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Phase2</td>
<td>30</td>
<td>300</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Phase3</td>
<td>72</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>300</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Total (All users)</td>
<td>≃4000</td>
<td>7500</td>
<td>175</td>
<td>350</td>
</tr>
</tbody>
</table>
User Study for Data Collection

★ User studies in two domains: movies and books

★ Phase 1: Building users’ profiles
 ○ 50 liked movies selected from Movielens website
 ○ 50 liked books selected from Goodreads website

★ Phase 2: Collecting feedback on items and pairs
 ○ 30 recommendations (generated at time T)
 ■ generated by RecWalk
 ■ S: cosine similarity of item representations learned by applying NMF on item-feature matrix
 ○ 150 pairs corresponding to recommendations and their top 5 explanations
 ○ 150 pairs corresponding to recommendations and their bottom 5 explanations

★ Phase 3: Collecting feedback on final recommendations (evaluation at time $T+1$)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>#Item feedback</th>
<th>#Pair feedback</th>
<th>Sessions</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase1</td>
<td>50</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Phase2</td>
<td>30</td>
<td>300</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Phase3</td>
<td>72</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>152</td>
<td>300</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Total (All users)</td>
<td>\approx4000</td>
<td>7500</td>
<td>175</td>
<td>350</td>
</tr>
</tbody>
</table>
Evaluation Configurations

★ Item-level feedback (baseline)

★ Pair-level feedback with explanations

★ Pair-level feedback with random items
 ○ explanation items are replaced by the least relevant items from user’s history

★ Item+pair-level feedback with explanations

★ Item+pair-level feedback with random items
 ○ explanation items are replaced by the least relevant items from user’s history
Results

Metrics: P@k, MAP@k, nDCG@k at time $T+1$

Key findings:
- Pair-level feedback improves recommendation.
Results

★ Metrics: P@k, MAP@k, nDCG@k at time $T+1$

★ Key findings:
 ○ Pair-level feedback improves recommendation.
 ○ Pair-level feedback is more discriminative than item-level.

<table>
<thead>
<tr>
<th>Setup [Movies]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.368</td>
<td>0.484</td>
</tr>
<tr>
<td>Pair-level(Exp-1)</td>
<td>0.506*</td>
<td>0.592*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level(Exp-3)</td>
<td>0.506*</td>
<td>0.568*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Pair-level(Exp-5)</td>
<td>0.48*</td>
<td>0.512*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Pair-level(Rand-1)</td>
<td>0.453*</td>
<td>0.504*</td>
<td>0.56*</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.533*</td>
<td>0.544*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.488*</td>
<td>0.572*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup [Books]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.336</td>
<td>0.436</td>
</tr>
<tr>
<td>Pair-level(Exp-1)</td>
<td>0.506*</td>
<td>0.528*</td>
<td>0.54*</td>
</tr>
<tr>
<td>Pair-level(Exp-3)</td>
<td>0.506*</td>
<td>0.536*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level(Exp-5)</td>
<td>0.586*</td>
<td>0.6*</td>
<td>0.656*</td>
</tr>
<tr>
<td>Pair-level(Rand-1)</td>
<td>0.48*</td>
<td>0.504</td>
<td>0.504</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.493*</td>
<td>0.456*</td>
<td>0.56*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.386*</td>
<td>0.416*</td>
<td>0.516*</td>
</tr>
</tbody>
</table>
Results

★ Metrics: P@k, MAP@k, nDCG@k at time $T+1$

★ Key findings:
 ○ Pair-level feedback improves recommendation.
 ○ Pair-level feedback is more discriminative than item-level.
 ○ Using explanations for pair-level feedback is essential.

<table>
<thead>
<tr>
<th>Setup [Movies]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.368</td>
<td>0.484</td>
</tr>
<tr>
<td>Pair-level(Exp-1)</td>
<td>0.506*</td>
<td>0.592*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level(Exp-3)</td>
<td>0.506*</td>
<td>0.568*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Pair-level(Exp-5)</td>
<td>0.48*</td>
<td>0.512*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Pair-level(Rand-1)</td>
<td>0.453*</td>
<td>0.504*</td>
<td>0.56*</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.533*</td>
<td>0.544*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.488*</td>
<td>0.572*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup [Books]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.336</td>
<td>0.436</td>
</tr>
<tr>
<td>Pair-level(Exp-1)</td>
<td>0.506*</td>
<td>0.528*</td>
<td>0.54*</td>
</tr>
<tr>
<td>Pair-level(Exp-3)</td>
<td>0.506*</td>
<td>0.536*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level(Exp-5)</td>
<td>0.586*</td>
<td>0.6*</td>
<td>0.656*</td>
</tr>
<tr>
<td>Pair-level(Rand-1)</td>
<td>0.48*</td>
<td>0.504</td>
<td>0.504</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.493*</td>
<td>0.456*</td>
<td>0.56*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.386*</td>
<td>0.416*</td>
<td>0.516*</td>
</tr>
</tbody>
</table>
Some insights

★ Users give much more positive feedback than negative.
Some insights

★ Users give much more positive feedback than negative.
★ User behavior carries over from items to pairs (pearson correlation ≥ 0.5).
Some insights

- Users give much more positive feedback than negative.
- User behavior carries over from items to pairs (pearson correlation ≥ 0.5)
- Users mostly give feedback on shared genres/content between rec and exp

![Graphs showing mentions of different categories for Movies and Books](image-url)
ELIXIR

★ A human-in-the-loop framework that elicits lightweight user feedback on pairs of recommendation and explanation items.
★ Learns user-specific item representations based on user feedback.
★ Instantiated with recommenders based on random walks with restart.
★ Major gains in recommendation quality over item-level feedback, shown with real user studies.
ELIXIR

- A human-in-the-loop framework that elicits lightweight user feedback on pairs of recommendation and explanation items.
- Learns user-specific item representations based on user feedback.
- Instantiated with recommenders based on random walks with restart.
- Major gains in recommendation quality over item-level feedback, shown with real user studies.

Thanks!
Explanations in Action

★ The role of explanations is mostly limited to improving user trust and satisfaction.

★ Critiqued-enabled recommenders [Jin et al., CIKM’19], [Luo et al., SIGIR’20]
 ○ Feedback on explicit and coarse-grained item properties
 ○ Negative feedback

★ ELIXIR
 ○ elicits lightweight user feedback on similarity of recommendation and explanation items.
 ○ supports both positive and negative feedback.

Jin et al., MusicBot: Evaluating Critiquing-Based Music Recommenders with Conversational Interaction, CIKM’19
Luo et al., Deep Critiquing for VAE-based Recommender Systems, SIGIR’20
Explanations in Action

★ The role of explanations is mostly limited to improving user trust and satisfaction.

★ Critiqued-enabled recommenders [Jin et al., CIKM’19], [Luo et al., SIGIR’20]
 ○ Feedback on explicit and coarse-grained item properties
 ○ Negative feedback
 ✔️ I want to stop seeing this item and the like.
 ✗ I want to see more items like this.

★ ELIXIR
 ○ elicits lightweight user feedback on similarity of recommendation and explanation items.
 ○ supports both positive and negative feedback.
 ✔️ I want to stop seeing this item and the like.
 ✔️ I want to see more items like this.

Jin et al., MusicBot: Evaluating Critiquing-Based Music Recommenders with Conversational Interaction, CIKM’19
Luo et al., Deep Critiquing for VAE-based Recommender Systems, SIGIR’20
Anecdotal Examples

<table>
<thead>
<tr>
<th>History at time T (recs)</th>
<th>Recommendations</th>
<th>Feedback on recs</th>
<th>Explanations exp from h</th>
<th>Feedback on (recs, exp) pairs</th>
<th>(recs, exp) Similarity</th>
<th>Recommendation at time T+1 using only item-level feedback</th>
<th>Recommendation at time T+1 using both item and pair-level feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>Divergent</td>
<td>☑</td>
<td>Doctor Strange</td>
<td>☑</td>
<td>Genre: Science Fiction</td>
<td>Space</td>
<td>The BFG</td>
</tr>
<tr>
<td></td>
<td>Harry Potter and the Deathly Hallows: Part 1</td>
<td>☑</td>
<td>Charlie and the Chocolate Factory</td>
<td>☑</td>
<td>Content: Based on a book, fantasy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Books</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Economic Naturalist</td>
<td>☑</td>
<td>Influence: The Psychology of Persuasion</td>
<td>☑</td>
<td>Genre/Content: Self-Help, Psychology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setup [Movies]</td>
<td>P@3</td>
<td>P@5</td>
<td>P@10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.368</td>
<td>0.484</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair-level (Exp-1)</td>
<td>0.506*</td>
<td>0.592*</td>
<td>0.58*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair-level (Exp-3)</td>
<td>0.506*</td>
<td>0.568*</td>
<td>0.596*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair-level (Exp-5)</td>
<td>0.48*</td>
<td>0.512*</td>
<td>0.568*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pair-level (Rand-1)</td>
<td>0.453*</td>
<td>0.504*</td>
<td>0.56*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.533*</td>
<td>0.544*</td>
<td>0.596*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.488*</td>
<td>0.572*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup [Books]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.336</td>
<td>0.436</td>
</tr>
<tr>
<td>Pair-level (Exp-1)</td>
<td>0.506*</td>
<td>0.528*</td>
<td>0.54*</td>
</tr>
<tr>
<td>Pair-level (Exp-3)</td>
<td>0.506*</td>
<td>0.536*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level (Exp-5)</td>
<td>0.586*</td>
<td>0.6*</td>
<td>0.656*</td>
</tr>
<tr>
<td>Pair-level (Rand-1)</td>
<td>0.48*</td>
<td>0.504</td>
<td>0.504</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.493*</td>
<td>0.456*</td>
<td>0.56*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.386*</td>
<td>0.416*</td>
<td>0.516*</td>
</tr>
</tbody>
</table>
Results

★ Metrics: P@k, MAP@k, nDCG@k at time $T+1$

★ Key findings:
 ○ Pair-level feedback improves recommendation.
Results

★ Metrics: P@k, MAP@k, nDCG@k at time T+1

★ Key findings:
- Pair-level feedback improves recommendation.
- Pair-level feedback is more discriminative than item-level.

<table>
<thead>
<tr>
<th>Setup [Movies]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.368</td>
<td>0.484</td>
</tr>
<tr>
<td>Pair-level (Exp-1)</td>
<td>0.506*</td>
<td>0.592*</td>
<td>0.580*</td>
</tr>
<tr>
<td>Pair-level (Exp-3)</td>
<td>0.506*</td>
<td>0.568*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Pair-level (Exp-5)</td>
<td>0.480*</td>
<td>0.512*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.504*</td>
<td>0.560*</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.533*</td>
<td>0.544*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.488*</td>
<td>0.572*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup [Books]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.336</td>
<td>0.436</td>
</tr>
<tr>
<td>Pair-level (Exp-1)</td>
<td>0.506*</td>
<td>0.528*</td>
<td>0.54*</td>
</tr>
<tr>
<td>Pair-level (Exp-3)</td>
<td>0.506*</td>
<td>0.536*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level (Exp-5)</td>
<td>0.586*</td>
<td>0.600*</td>
<td>0.656*</td>
</tr>
<tr>
<td>Pair-level (Rand-5)</td>
<td>0.480*</td>
<td>0.504*</td>
<td>0.504</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.493*</td>
<td>0.456*</td>
<td>0.560*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.386*</td>
<td>0.416*</td>
<td>0.516*</td>
</tr>
</tbody>
</table>
Results

★ Metrics: P@k, MAP@k, nDCG@k at time $T+1$

★ Key findings:

○ Pair-level feedback improves recommendation.

○ Pair-level feedback is more discriminative than item-level.

○ Using explanations for pair-level feedback is essential.

<table>
<thead>
<tr>
<th>Setup [Movies]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.368</td>
<td>0.484</td>
</tr>
<tr>
<td>Pair-level (Exp-1)</td>
<td>0.506*</td>
<td>0.592*</td>
<td>0.580*</td>
</tr>
<tr>
<td>Pair-level (Exp-3)</td>
<td>0.506*</td>
<td>0.568*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Pair-level (Exp-5)</td>
<td>0.480*</td>
<td>0.512*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.504*</td>
<td>0.560*</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.533*</td>
<td>0.544*</td>
<td>0.596*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.453*</td>
<td>0.488*</td>
<td>0.572*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Setup [Books]</th>
<th>P@3</th>
<th>P@5</th>
<th>P@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item-level</td>
<td>0.253</td>
<td>0.336</td>
<td>0.436</td>
</tr>
<tr>
<td>Pair-level (Exp-1)</td>
<td>0.506*</td>
<td>0.528*</td>
<td>0.54*</td>
</tr>
<tr>
<td>Pair-level (Exp-3)</td>
<td>0.506*</td>
<td>0.536*</td>
<td>0.58*</td>
</tr>
<tr>
<td>Pair-level (Exp-5)</td>
<td>0.586*</td>
<td>0.600*</td>
<td>0.656*</td>
</tr>
<tr>
<td>Pair-level (Rand-5)</td>
<td>0.480*</td>
<td>0.504*</td>
<td>0.504</td>
</tr>
<tr>
<td>Item+Pair-level (Exp-5)</td>
<td>0.493*</td>
<td>0.456*</td>
<td>0.560*</td>
</tr>
<tr>
<td>Item+Pair-level (Rand-5)</td>
<td>0.386*</td>
<td>0.416*</td>
<td>0.516*</td>
</tr>
</tbody>
</table>
ELIXIR: Feedback Densification

Recommendation \((\text{rec})\) at time \(T\)

Explanation \((\text{exp})\):

Do you like the similarity between \((\text{rec}, \text{exp})\):

★ Label propagation [Zhu and Ghahramani, 2002] on pairs of items to mitigate sparsity ⇒ \(F_u^d\)
 ○ defining pseudo-items, selecting unlabeled pairs, using locality-sensitive hashing (LSH) for efficiency, ...

ELIXIR: Feedback Incorporation

The Idea: Learn user-specific parameters \vec{w}_u of a mapping function g to produce user-specific item representations

$$\min_{\vec{w}_u} \frac{1}{m} \sum_{v_i, v_j} F_u^d(v_i, v_j) \cdot (\text{sim}(v_i, v_j) - \text{sim}(g(v_i, \vec{w}_u), g(v_j, \vec{w}_u))) + \gamma ||\vec{w}_u||^2$$

No. feedback pairs \leftarrow similarity function \rightarrow Distance of items to user's profile
ELIXIR: Feedback Incorporation

The Idea: Learn user-specific parameters \vec{w}_u of a mapping function g to produce user-specific item representations

$$\min_{\vec{w}_u} \frac{1}{m} \sum_{v_i, v_j} F^d_u(v_i, v_j) \cdot (\text{sim}(v_i, v_j) - \text{sim}(g(v_i, \vec{w}_u), g(v_j, \vec{w}_u))) + \gamma ||\vec{w}_u||^2$$

No. feedback pairs \rightarrow similarity function

After feedback incorporation

Distance of items to user’s profile
Translation vs. Scaling

Translation

Scaling
Diversity