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Abstract—This paper revisits variational multi-view stereo
and identifies two issues pertaining to matching and view
merging: i) regions with low visibility and relatively high depth
variation are only resolved by the sole regularizer contribution.
This often induces wrong matches which tend to bleed into
neighboring regions, and more importantly distort nearby
features. ii) small matching errors can lead to overlapping
surface layers which cannot be easily addressed by standard
outlier removal techniques. In both scenarios, we rely on the
analysis of the distortion of spatial and planar maps in order
to improve the quality of the reconstruction. At the matching
level, an anisotropic diffusion driven by spatial grid distortion
is proposed to steer grid lines away from those problematic
regions. At the merging level, advantage is taken of Lambert’s
cosine law to favor contributions from image areas where the
cosine angle between the surface normal and the line of sight is
maximal. Tests on standard benchmarks suggest a good blend
between computational efficiency, ease of implementation, and
reconstruction quality.

I. INTRODUCTION

The classical variational matching, e.g. [1], [2], [3], [4]
provides a simple and straightforward mean for multi-view
reconstruction. However, the global nature of the solution
raises several challenges at the data exploitation and post
processing. It is therefore not surprising that on benchmarks
such as [5], none of the top performing methods, e.g. [6],
[7], [8], [9], [10], [11] is purely variational.

The contributions of this paper to the classical variational
setting are twofold. First, a modification of the variational
objective function to account for weakly resolved regions
is proposed. Second, a filtering approach which allows
selecting the best relative contribution of image pairs and
triplets is proposed, thus reducing data redundancy and
noise effects without sacrificing completeness. The proposed
methods are motivated by two observations:

i) At the matching level, we observe that the quality
of the results deteriorates near large discontinuities where
images do not provide enough information. Typical exam-
ples are shown in figure 1. In fact, the classical variational
formulation comprises a data term and a robust smoothing
regularizer. So when there is little image information only
the smoothing term accounts for the results, as for instance,
the basin of the fountain (figure 1). While such data points
can be filtered out in a post-processing step, the global nature

of the solution causes these wrong matches to bleed into
neighboring areas, e.g. the rim of the fountain in figure 1.

It can be argued that one could possibly tweak the param-
eters for individual cases to improve the results around the
mentioned regions or, use a total variation formulation with
an L1 norm (e.g. [12]), in which case the results in other re-
gions would be negatively affected by the staircaising effect
commonly present in results that use this method [13]. Alter-
natively, occlusion detection (e.g. [14], [15]) and confidence
measures (e.g. [16], [17]) can be included in the variational
matching. These approaches have shown improvements for
scenes with small discontinuities (e.g. [14], [15], [16]) and
complete occlusions, as in [17]. In the later work, occluded
regions are excluded from further computations as soon
as they are detected. As a general remark, most of these
methods rely only on 2D information without accounting
for the resulting spatial configuration. Furthermore, we are
not aware of any special treatments for fixing mismatches
located next to largely sheared or occluded regions. The
method proposed herein targets the more general problem
of resolving regions with highly crammed correspondences
regardless if they stem from occlusions or tilts. ii) At the
merging level, we note that due to the dense nature of
the solution, the size of the data can become very large,
encompassing tens or hundreds of millions of points. The
processing of such large spatial data is generally a daunting
task and raises many challenges. Furthermore, the variational
nature of the approach leads to over- and inter-layered data
and none of the available methods are specifically tailored
to take advantage of its nature. A typical example of over
and interlaying data is shown in figure 2.

Certainly, ideas outlined in local matching approaches
e.g. [6], [10] and the more general [7], [18] can help filter out
the resulting point cloud by means of spatial visibility con-
straints. In particular [18], formulates the problem as quasi-
dense matching followed by a variational refinement and a
later global optimization where the number of intersections
of the line of sight with the surface is minimized. Other
multi-view approaches, which work on the fusion of depth
maps to provide an effective multi-view solution (e.g. [19]),
have proven successful when used in a small number of
images and/or at low resolutions (e.g. [20]); but do not scale
well due to the multiple volumetric data structures needed



Figure 1. Closeups on reconstruction results obtained using classical
variational matching across a pair of views. The Fountain-P11 [5] (top)
and our face1 data set (bottom). Please note, the deterioration along the
rim of the fountain and the tip of the nose.

at all times. As a general remark methods which operate
globally e.g. [7], [19] have a significant memory footprint
which can be challenging when dealing with large datasets
or high-resolution images.

In order to address the issues raised at both levels, we
rely on the analysis of the distortion of spatial and planar
maps. We characterize the distortion induced by these maps
in order to guide the variational matching and the merging
of the results. At the matching stage, we observe that regions
with large discontinuities present important shearing in the
resulting 3D grid. In section (II), we show how this shearing
information can be used to identify problematic regions and

how it can be injected into the variational formulation to
drive the optimization process adaptively. At the merging
stage, described in section (III), we regard the matching as
a mapping of a regular grid from one view to another and
we study the evolution of certain local geometric measures.
While we are well aware that thresholds on triangle quality
have been commonly used in removing possible outliers,
e.g. [7], we emphasize that a naive thresholding indiscrimi-
nately removes data and can negatively affect completeness.
Moreover, it does not necessarily reduce the over- and inter-
laying in the data shown, e.g. figure 2.

Most closely related to our work is the method presented
in [21] which maintains a constant error while merging
multiple views; however, our goal is to define what is best
viewed in an image triplet or in an image pair relative to
their neighboring views. By recalling that the amount of a
viewed area decreases as it is tilted with respect to the view
point (see section III), our approach favors matches from
regions where the cosine of the surface normal and line
of sight is large. Certainly, our merging method does not
aim to provide a globally optimal solution, rather, it aims
to locally and adaptively select the best contributions from
pairs and triplets of views in order to avoid the layering
problem without sacrificing completeness or modifying the
data.

Figure 2. Two slices through the fountain back-wall (see figure 1)
obtained using the classical formulation of variational multi-view matching.
Besides from the overwhelming data size, slight matching errors can lead
to overlaying (top) and interlaying (bottom) data.

II. GEOMETRY DRIVEN VARIATIONAL MATCHING

A. Classical variational matching

The variational stereo pair matching formalism emerged
from the related optical flow problem which has received
extensive attention in the literature [1], [2], [22]. Within this
formalism several issues can be addressed including large
displacements, illumination variations, and strong and large
discontinuities. It aims to minimize the following objective
function:

E(u, v) =

∫
Γ

Ψd((I1 − Iw0 )2) + αΨd((∇I1 −∇Iw0 )2)

+βΨs(|∇u|2 + |∇v|2)
(1)



The first two terms in equation (1) are commonly referred
to as the data terms. They quantify the change in intensities
and gradients between the warped source image Iw0 and the
target image I1, with Iw0 = I0(x+u, y+v). The differences
in image gradients are a reliable way to match when changes
in illumination occur. The warping helps reduce the displace-
ment within the coarse-to-fine (pyramidal) formulation. The
smoothness of the resulting mapping is controlled through
the spatial gradient. The robust functions Ψd and Ψs are
introduced to alleviate problems related to outliers, noise and
occlusions in the data term and, sharpness in the smoothness
term. For both cases we use Ψ(r2) =

√
(r2 + ε2), where ε

is a small (in our experiments ε = 10−4) term for stabilizing
the function when r gets close to zero.

Figure 3. Color coded visualization of the quality of reconstructed triangles
(projected into the image plane), using the classical formulation (top-left),
and our proposed method (top-right). Red and blue represent best and worst
quality resp. Closeups to reconstructions of the fountain’s base are shown
at the bottom. Please note the crisper rim to the right.

B. Distortion driven variational matching

Commonly, the robust regularizer is used to avoid smooth-
ing across discontinuities which can range from small details
to large surface jumps. While it definitely helps curb down
smoothing effects at discontinuities, it falls short in many
cases, e.g. the bleeding problem in figure 3. To address
this shortcoming, we introduce spatial geometric information
to steer grid lines away from largely sheared locations
towards more meaningful regions. In this manner, the bleed-
ing problem is addressed indirectly by means of a simple
geometric characterization, without requiring any intricate
problem reformulation. The idea is to sequentially measure
the qualities of the 3D reconstructed triangular elements
and then re-inject these measurements to drive the matching
computation.

For this purpose, we need first to define a geometric char-
acterization of the distortion of each quadrilateral cell. Since
triangles represent the simplest element for describing a
map distortion, we decompose the quadrilateral cell into two
triangles as shown in figure 4. We found in our experiments
that the condition number c of the jacobian matrix J of
the transform which maps the planar triangle to its spatial
counterpart works well in general. Figure 3-top illustrates
how this measure clearly captures the regions of interest,

in this case, regions with low visibility and relatively high
depth variation (shown in blue).
In the current setting, the condition number of the jacobian
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Figure 4. We decompose the quadrilateral cells into triangles to measure
their distortion.
of the transformation can be explicitly expressed according
to [23] as c = c(J) = (l212 + l213)/2A, where l12 and l13

are the lengths of the reconstructed edges {1, 2} and {1, 3}
resp. and A is the reconstructed triangle area (see figure 4).
We define the distortion measure k for a given cell as the
sum of the distortion of its two sub-triangles weighted by
their respective inverse areas. That is k = c1

A1
+ c2

A2
.

In order to drive the optimization process, we propose
to replace the standard Laplacian operator div(grad)
within the robust function in the smoothing term by an
anisotropic operator, namely the more general quasi-
harmonic operator div(k grad). The discretization of
the new operator remains similar to the discretization
of the smoothing term in equation 1, but with small
modifications. For instance, for the central vertex in
figure 4, the discrete contribution of u in the regularization
term becomes −β(rSuyS

− rNuyN
+ rEuxE

− rWuxW
);

where the weights rN , rS , rE , rW are associated to
the derivatives at each side (North, South, East, West)
of the vertices in the classical way, see e.g. [13].
In detail, rS is given by rS = (ka + kb)Ψ

′
S , with

Ψ′S = Ψ′S(x, y) = (Ψ′(x, y) + Ψ′(x, y + 1))/2. The terms
rN , rE and rW are defined in a similar manner. The
contribution of v for the same term can be derived in the
same way as for u. In order to maintain a close check on
problematic regions the modified flow formulation needs to
intervene at each level of the coarse to fine optimization.
So at each level of the pyramid we compute the classical
solution, measure the induced spatial distortion and then
re-inject it into the modified anisotropic formulation. The
resulting solution is then transferred to the next level. This
leads to the following variational matching algorithm 1

A typical result using the proposed algorithm is shown
in figure 3-right. The effect of the bleeding problem is
clearly reduced to a thin area around the surface jump
as substantiated by the projected quality of the triangles
(figure 3-top-right), and the crisper fountain rim (figure 3-
bottom-right).



Algorithm 1 Coarse to fine variational matching of images
I1 and I2 using their corresponding projection matrices.

Start at the coarsest level of the pyramid with wg ← 0
while finest level of the pyramid is not yet solved do

1. Using wg as initial state, find a solution wo using
equation 1

2. Compute the 3D positions for the current solution
3. Obtain the values of k
4. Obtain wg using the variational matching with the

distortion driven smoothing operator (using wo as initial
state)

5. Move to a finer level in the pyramid
end while

Figure 5. Illustration of the area change across two different views in
the case of a flat surface (left). This effect becomes more pronounced for
smooth surfaces with visible curvature change (middle), and non-smooth
surfaces (right).

III. DISTORTION DRIVEN MULTIPLE-VIEW MERGING

Our goal, when merging the matches from multiple views,
is to select what is best viewed in a given subset of images
(triplets and pairs). For this purpose, we rely on Lambert’s
cosine law which indicates that the image area of a captured
scene region increases when the line of sight is closer to a
perpendicular configuration. This is illustrated on figure 5 for
the cases of flat surfaces (left), smooth surfaces with visible
curvature change (middle), and for non-smooth surfaces
(right). For the last two cases this area variation becomes
more pronounced.

In practice, we look at the induced distortion when
mapping across different views. A simple measure is the
local change of the signed triangle area ( a negative area tells
when the mapping exhibits triangle flips). While this can be
a sufficient measure in many cases, it fails to capture defor-
mations which do not affect triangle areas (authalic maps).
In general, a planar transformation S which maps a triangle
{p1,p2,p3} onto {q1,q2,q3} can be characterized by its
Jacobian J =

(
∂S
∂x ,

∂S
∂y

)
, where the partial derivatives are

obtained by means of the divergence theorem:

∂S

∂x
=

1

A

∫
A

(
∂S

∂x
)dA (2)

' q1(y3 − y2) + q2(y1 − y3) + q3(y2 − y1)

A
;

where A is the triangle area and ∂S
∂y can be obtained

similarly.

One way to characterize the deformation of the triangle
is by looking at the square roots of the eigenvalues λ1 and
λ2 of T = JTJ , which describe the well known elongation
along the principal axis when mapping a unit circle onto
an ellipse, see figure 6. This eigen-ratio (

√
λ1/λ2) indicates

the amount of induced shearing. Combining this measure-
ment with the signed area, we can characterize the overall
distortion of the triangles.

Figure 6. Mapping of a (triangulated) regular grid into a deformed
configuration(left). Visualization of the deformation by means of its action
on a circle (right).

Using the characterization just described and standard
tools from multi-view geometry [24], our merging approach
proceeds in two stages. In a first stage, we extract matches
which are best viewed in triplets of neighboring views. In a
second stage we use best viewed matches in pairs of views to
recover regions which were not reliably captured by triplets.
For the sake of clarity, let us consider the following scenario,
where cameras are ordered in a daisy chain fashion, see
figure 7. This setting is not a restrictive as it can always be
arranged for by measuring the angle between the cameras’
principal directions [10].

A. Triplet contributions
Without loss of generality, let us consider an image

triplet {Ib, Ic, Id} and its direct neighbors Ia and Ie, see
figure 7. First, we compute the dense variational matching
from Ic to Ib and from Ic to Id. In both computations,
the grid corresponding the middle image Ic remains fixed.
This comes in handy as it yields a direct correspondence
between the three images. Next, the matches {Ic, Ib} are
transferred to Id using the trifocal tensor [24] and then
the distances between the transferred points and the ones
obtained directly from the matching {Ic, Id} are measured.
As the computation is not symmetric, we perform the same
operation in the other direction as shown in figure 7. Only
matches with an error below a threshold εtrif are kept. In
all our experiments we found that setting this parameter to
1 (pixel) gave reasonable results. We perform this operation
on all triplets (defined by neighboring views) in the image
set.

This validation can yield very large data sets. For instance
the fountain data set [5] results in more than 60M points.
To obtain reliable information out of such large number
of points, we observe that errors in the matching manifest
themselves as overlaying and interlaying surface sheets, as
shown in figure 2. The offset between surface sheets can be
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Figure 7. Triplet matches are validated based on trifocal transfer (dotted
green arrows) within the triplet.

very tight at places and disturbingly large at others. In order
to address this problem, we take advantage of the distortion
measure we described previously. We mark a triangle as
best viewed in an image triplet if its area decreases and its
eigen-ratio deteriorates in neighboring views. To do so, we
transfer the matches {Ic, Ib} and {Ic, Id} to neighboring
images Ia and Ie resp. as shown in figure 8. By inspecting
triangles whose areas decay, we can identify which triangles
are better viewed in the triplet {Ib, Ic, Id}.
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Figure 8. The selection of best viewed regions in a triplet is performed
by transferring the grid to neighboring views (dotted green arrows) and
analyzing its distortion.

Additionally, triangles which pass the area test, need
also to satisfy the low distortion measure. We impose√
λ1/λ2 > 1/reig and

√
λ1/λ2 < reig as indicators for

acceptable distortion and proceed similarly to the signed area
case. In all our experiments we found that setting reig to 2
works well in practice (the optimal eigenvalue ratio is 1).

Lastly, we need to account for points which disappear
outside of the triplet as we move to neighboring views. This
can be done by simply checking for points which get out
the image range when transferred to Ia and Ie or triangles
whose areas get close to zero. Such regions are marked in
yellow in figure 10.

It could be argued that the trifocal constraints can
be directly incorporated within the matching formulation
(e.g. [25]) and, although, this can improve the results in
some regions, it turns out to be more problematic for areas
seen only by two views. Because of this, a lot of information
is not recovered at particularly interesting regions and, this
shortcoming becomes stronger as the baseline increases.

B. Pair contribution

Certainly, all points are not necessarily visible in triplets
or do not score high enough during triplet validation.
Therefore, we still need to account for points visible mainly
in pairs of views so as not to miss some important features.
In a similar manner to triplets, we need to validate the

matches. We have two measures at hand. The first is the
distance to the epipolar line, and the second is by means of
the forward backward map [1], see figure 9.

b c d e
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Figure 9. Pair matches are validated by epipolar distance and a forward-
backward map. The selection of best viewed regions in a pair is performed
by transferring the grid to neighboring views and analyzing its distortion.
Only regions which where not covered by triplets are considered.

In order to handle visibility for a pair of images, we keep
only triangles which exhibit an area decrease and satisfy
the eigen-ratio criteria when transferred to neighboring
views. Furthermore, we include points which disappear
and triangles whose areas get close to zero. Despite these
checks, some outlier triangles can pass all the filters. A
simple but reliable way for sorting out these cases, is
to transfer the triangles to a slightly faraway view and
then measure their distortion, e.g. the pair Ia, Ib can be
transferred to Ie.

Figure 10. Processing best viewed regions in the Fountain data set [5].
Each view represents the central image of a triplet (other two images not
shown). The red-colored regions represent areas best viewed in the triplet.
Yellow regions represent regions that are only visible in the triplet and
therefore are included even if they do not comply with the best view
requirement.



IV. RESULTS AND DISCUSSION

We tested our method on several data sets comprising
standard benchmarks as well as in-house acquired data. For
the reconstruction, either the original pointclouds are shown
or the textured reconstructions using [26]. Typical results
of our approach are shown for the full sized Fountain-P11
(figure 11), and for the Herz-Jesu-P8 data sets (figure 12).
Both data sets are available from [5]. We benchmarked our
results following the method detailed in [5]. In figures 11
and 12 we show our results obtained and their correspond-
ing error distribution histograms. In these figures the red
color represents locations where no result were obtained or
locations where result are farther than 30σ. In green are
represented regions where no results can be obtained; dark
gray represents larger errors (smaller than 30σ).

In the following table we compare the level of complete-
ness and relative errors of our results with those of Furukawa
and Ponce [6] and Keriven et al [7] (Only completeness is
available at the time of writing).

Fountain Herz-Jesu
Ours [6] [7] Ours [6] [7]

Relative error 1.76 2.04 NA 2.11 2.98 NA
Complete (%) 85.0 79.6 90.8 81.8 80.4 91.1

For the Fountain-P11 the variational matching compu-
tation requires about 10 minutes for a pair. For the same
example, which contains eleven 3, 072× 2, 048 images, the
merging of the correspondences required only 215s in a
Matlab implementation.

We also tested our approach on our own datasets. Results
on a face dataset composed of six 1.3 mega-pixels images
are shown in figure 15. Our approach clearly fares better than
the classical formulation, especially at problematic regions
such as the hair, ears, chin and neck. Figure 13 shows
our results on a different face dataset comprising nine 8
mega-pixels images. In this example, our method does a
particularly better job reconstructing important features such
as the nose and the ears. Lastly, in figure 14 we show results
for the reconstruction of a boot. This dataset consists of five
4 mega-pixels images. We can observe the chipped boot
collar when our distortion driven matching method is not
used.

As our approach operates on local neighboring views, its
memory requirements are low. In fact, we do not require
loading all the spatial data at once for processing as it’s gen-
erally done in related work [6], [7]. In all our experiments,
we observed that our merging strategy allows reducing the
raw variational matching data by up to a 75%.

We are aware that the proposed merging method is
sub-optimal, however we do not see this as a limitation.
The locality and low computational requirements of this
approach allows reducing the data at hand significantly at
a fraction of the computational cost of methods based on
global optimization (e.g. [7], [12]). In particular, the results

of our approach can be directly used in [7].

Figure 11. Top row, result of our approach on the Fountain-P11 data
set [5]. Middle-left, a histogram of the error accumulated for all the views
obtained with our method, [6] and [7]. Middle-right, our depth estimation
error for view five. At the bottom, same evaluations using [6] and [7].

Figure 12. Top row, result of our approach on the Herz-Jesu-P8 data
set [5]. Middle-left, a histogram of the error accumulated for all the views
obtained with our method, [6] and [7]. Middle-right, our depth estimation
error for view four. At the bottom, same evaluations using [6] and [7].



V. CONCLUSIONS

In this paper, we proposed two systematic enhancements
to the classical variational scene reconstruction. For the vari-
ational matching, an adaptive approach allows recapturing
lost details by means of an anisotropic diffusion driven
by geometric distortion. At the merging level, a selective
technique for obtaining the best contributions across neigh-
boring views allows reducing data redundancy. Unlike most
of related work, the approach resolves a large number of
outliers cases prior to estimating the final spatial point cloud.

All of our contributions are achieved by means of a
simple, yet principled, characterization of geometric defor-
mations and, can be easily reused in other methods within
the variational context. Our approach is fairly straightfor-
ward, simple to implement, and our results can be easily
reproduced.

In future work we can explore the idea of having adap-
tive thresholding values for the merging stage described in
section III since they are currently defined globally.

Figure 13. Two images from face1 dataset-9× 8 MP-(top) reconstructed
using our approach (middle) and without the use of our distortion driven
matching (bottom). Note the problems in the nose and around neck and
ears for the second case.

Figure 14. Two images from our boot dataset-5×4 MP- (top) reconstructed
using our approach (middle) and without the use of our distortion driven
matching (bottom). Note the problem near the boot collar for the second
case.

Figure 15. Two images from face2 dataset-6×1.3 MP-(top) reconstructed
using our approach (middle) and using variational matching code provided
by the authors of [22].
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