
EUROGRAPHICS 2017 / L. Barthe and B. Benes
(Guest Editors)

Volume 36 (2017), Number 2

A GPU-Adapted Structure for Unstructured Grids

Rhaleb Zayer Markus Steinberger Hans-Peter Seidel

Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

Abstract
A key advantage of working with structured grids (e.g., images) is the ability to directly tap into the powerful machinery of linear
algebra. This is not much so for unstructured grids where intermediate bookkeeping data structures stand in the way. On modern
high performance computing hardware, the conventional wisdom behind these intermediate structures is further challenged by
costly memory access, and more importantly by prohibitive memory resources on environments such as graphics hardware.
In this paper, we bypass this problem by introducing a sparse matrix representation for unstructured grids which not only
reduces the memory storage requirements but also cuts down on the bulk of data movement from global storage to the compute
units. In order to take full advantage of the proposed representation, we augment ordinary matrix multiplication by means of
action maps, local maps which encode the desired interaction between grid vertices. In this way, geometric computations and
topological modifications translate into concise linear algebra operations. In our algorithmic formulation, we capitalize on the
nature of sparse matrix-vector multiplication which allows avoiding explicit transpose computation and storage. Furthermore,
we develop an efficient vectorization to the demanding assembly process of standard graph and finite element matrices.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques —
Graphics data structures and data types. I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Geometric
algorithms, languages, and systems. I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors. G.1.3 [Mathe-
matics of Computing]: Numerical Linear Algebra —Sparse, structured, and very large systems. G.1.0 [Mathematics of Com-
puting]: General—Parallel algorithms.

1. Introduction

Unstructured grids arise across a variety of disciplines spanning
simulation, manufacturing, health care, and entertainment, thus
harnessing their unstructured nature is of paramount importance
as it deeply impacts the overall performance of algorithms. While
structured grids can easily take advantage of existing high perfor-
mance linear algebra machinery, unstructured grids are hampered
by the need for intermediate traversal data structures. Traditionally,
grid data is stored as a table of cells or elements. This basic rep-
resentation can be especially efficient when coupled with sparse
matrix formulations as has been demonstrated in finite elements
codes over decades, e.g., [Tay70, PT95], but falls short when con-
nectivity queries are required. Such queries can be facilitated by
edge-centric neighborhood structures, e.g., [Bau72, Män89]. De-
scendants of these graph-like representations, e.g., half-edge, have
shaped the algorithmic landscape in such a way that familiarity
with them has become almost a prerequisite for understanding al-
gorithms. Differential forms offer an alternative tensor based rep-
resentation, e.g., Abrams et al. [AMR88]. This formalism which is
suitable for fields such as electromagnetism and gravitation, where
forms of different orders naturally correspond to measurable quan-
tities such as potentials, electric fields, and magnetic fluxes, might

not be well justified for general purpose use due to the cost of stor-
ing and updating the corresponding boundary operators. While the
above mentioned representations improve accessibility they lead to
redundant data creation, and the aggregate cost creating and main-
taining them is prohibitive to many applications. More importantly,
as the computing landscape is drastically changing towards ubiq-
uitous parallelism, data movement and the creation and update of
extensive indirection lists poses challenging problems and there is
pressing need for rethinking the grid interfacing problem from the
ground up.

The key to supplying a simple interface lies in choosing the right
abstraction level. Our aim is to provide a representation that is fa-
miliar to a majority of practitioners and enthusiasts and to allow
them to manipulate it in an intuitive way. Our algorithmic formu-
lation is centered around objects like matrices, vectors and permu-
tations, and acts by means of operations like sparse matrix-vector
multiplication, sparse matrix-matrix multiplication, and maps. This
linear algebra flavored representation serves several purposes: (a)
compactness and readability. Algorithms are concise and easy
to interpret. Dispensing with intermediate data structures reduces
code bloat and broadens accessibility. (b) reusability. The same
machinery used for numerical optimization can be used for mesh

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

processing. (c) performance. Data access patterns can deeply weigh
on cache and memory related performance. Array-based algorithms
bring forward data access patterns and can be readily optimized.

The central elements in our abstraction are the mesh matrix,
which casts the topological information encapsulated in the basic
cell table into a lean sparse matrix representation, and action maps,
which act as a vehicle for translating cell processing tasks into ma-
trix algebra operations. Throughout this abstraction, algorithms can
be formulated in the clear and concise language of linear algebra. In
this way, improving code performance translates into optimizing al-
gebra operations. In particular, vectorization amounts to the paral-
lelization of key linear algebra primitives. In this respect, advantage
can be taken of the tremendous efforts made by manufacturers and
the numerical computing community to streamline these primitives
on graphics hardware, e.g., [BG09,NVI15,YT12,RG15]. More im-
portantly, mesh management and numerics can be performed with-
out the need for duplicating and transferring data across different
structures which is of utter importance on high performance hard-
ware. This importance is accentuated on graphics hardware where
memory resources are limited.

A crucial but often neglected aspect when performing compu-
tations on meshes is the assembly of linear systems into sparse
matrices. Numerical evidence across various disciplines suggests
that the assembly cost weighs heavily on performance and impedes
scalability [GLG∗15, JHN11, JDB∗15] especially when the matrix
has to be re-assembled several times as in dynamic and nonlinear
settings. In graphics, these scenarios are commonly encountered
in simulation and animation [PO09, HLSO12]. To address the as-
sembly problem, we develop an efficient approach for constructing
standard graph matrices on meshes, e.g., adjacency and uniform
Laplacian and extend them to standard finite element matrices.

In this paper, we make the following contributions:

• A lean general purpose sparse matrix representation for arbitrary
meshes.
• Action maps for recasting standard mesh operations in a linear

algebra formalism
• Efficient numerical routines for mesh handling on serial and par-

allel high performance hardware

We are aware that a single structure cannot be a Swiss-knife for
all problems—as reflected by the myriad of existing specialized
linked lists. We emphasize that the goal of this work is not to mimic
existing half-edge like operations but rather reformulate problems
within a different mind set. The algebraic operations described
herein form the building blocks of MeshBLAS [ip17], which takes
inspiration from BLAS (basic linear algebra subprograms), and
aims to provide standardized subroutines for mesh management.

In the remainder of this paper, we will first discuss previous
work (Section 2), which we restrict to closely related approaches
given the wide scope of topics under investigation. Then, we outline
the construction of the mesh matrix in Section 3. The correspond-
ing storage format and memory footprint are analyzed in Section 4.
Action maps for numerical computations on meshes are introduced
in Subsection 5.1 with focus on sparse matrix-vector multiplica-
tion. We extend these maps to the case of sparse matrix-matrix mul-
tiplication (Subsection 5.2). The construction of standard graph

and finite element matrices is outlined in Section 6. The paral-
lelization of linear algebra routines and details of our GPU imple-
mentation are outlined in Section 7. In Section 8, we develop linear
algebra operation which correspond to standard topological opera-
tions commonly used in mesh simplification. Numerical results on
a set of practical scenarios are presented in Section 9.

2. Related work

“Plato taught that we do not learn new things; we merely remember
things we have forgotten" [Wor81]. This particularly holds for ma-
trix representations of graph-like structures, which can be traced
back to early electrical circuits [Kir47]. The importance of this
graph-matrix analogy has been recognized early on in graph the-
ory [Har67], but it neither translated into practical solutions, nor
widespread use, due to the lack of efficient representations of sparse
arrays at the time. This recoil has been echoed across a variety
of disciplines. In graphics and vision, the graph-based mesh rep-
resentation of Baumgart [Bau72] known as the winged-edge data
structure, which corresponds to the mathematical notion of combi-
natorial maps [Edm60], has shaped how meshes are apprehended.
Descendants of this representation differ mainly in the amount of
stored data and its organization, e.g., quad-edge [GS85] and half-
edge [Män89, Lie94, CKS98, Ket98, BSBK02]. In order to cope
with high frame rates and limited transmission bandwidth, pioneer-
ing efforts attempted to reduce vertex repetitions as well as mem-
ory footprint based on the concept of generalized triangle meshes
(stripes) [Dee95, Cho97, Hop99]. Most of the work on the subject,
see e.g., the survey [MLDH15], assumes triangle mesh connectiv-
ity and does not extend naturally to arbitrary unstructured grids.
As the majority of these methods are built with either rendering or
compression in mind, their suitability for more general settings has
yet to be confirmed.

In linear algebra, systems are commonly represented as ma-
trices. System variables are often loosely coupled, therefore, the
canonical full matrix is set aside in favor of a sparse representation
which better suits memory requirements. As such systems are ubiq-
uitous in science and engineering, there has been a steady effort
within the numerical computing community to represent and pro-
cess sparse matrices efficiently, see e.g., [GMS92, Dav06] and the
references therein. These advances combined with the rise of big
data, e.g., [CDG∗08], are behind the most recent regain of interest
in array-based methods for large graph analysis, e.g. [MBB∗13].

The availability of efficient sparse matrix representations revived
interest in computational aspects of differential forms on simplicial
complexes [Bos98]. Modular frameworks such as, e.g. [CRW05],
allow the construction of p-forms and the discretization of higher
order finite elements within this formalism. Similar developments
followed in computer graphics motivated by ideas from algebraic
topology and exterior calculus [GY03, DKT06, DMPS07]. Many
existing implementations, to the best of our knowledge, require the
half-edge representation alongside sparse matrices. The resulting
operators induce a large memory footprint which impedes deploy-
ment in high performance computing environments, especially, on
graphics processing units (GPUs). Moreover, the adaption of these
representations for performing basic operations in mesh manage-
ment is challenging as it requires familiarity with exterior calculus

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

and/or algebraic topology. The interpretation of forms is more intu-
itive in disciplines where they are naturally associated with physical
quantities as in electromagnetism, or relativistic mechanics where
the concept originated from, e.g. [MTW73].

More pragmatic approaches have been adopted in the finite ele-
ment method since its inception. Existing software packages offer
ingenious ways of coupling the basic face table with sparse matri-
ces for the treatment of a wide range of multi-physics mesh-related
problems, e.g., [PT95, Com16]. The combination of the face ta-
ble and sparse matrices has been also used in geometry processing
applications, e.g., [Zay07]. However, in these settings, the mesh
representation is adapted to existing standard linear algebra oper-
ations which unfortunately leads to the creation of redundant data
and suboptimal memory use.

Instead, in this paper, we will adapt linear algebra to the mesh
representation; with special focus on two key sparse matrix alge-
bra primitives, namely, sparse matrix vector multiplication (SpMV),
and sparse matrix-matrix multiplication (SpMM). For an overview
of standard methods in the serial setting, the reader is referred
to [GMS92, Dav06]. On graphics hardware, there readily exists a
set of efficient implementations for SpMV, e.g., [BG09, BDO12].
Empirical evidence suggests that the performance of the transposed
matrix multiplication is often about ten times slower than direct
matrix multiplication. This contrast with the steady performance
in serial implementations suggests challenging aspects of sparse
matrix algebra vectorization. Still, more challenging is the sparse
matrix-matrix multiplication which has received considerable at-
tention recently. Significant performance gains have been reported
by several authors, e.g., [Dem12, GHS∗15, LV15].

Despite great strides in solving linear systems, the problem of
assembling sparse matrices themselves still poses great challenges,
for instance, direct solvers were abandoned altogether due to as-
sembly cost as in [TMDK15, DMZ∗16]. For serial matrix as-
sembly it can be observed that a large part of the cost stems
from the nature of the standard compressed matrix storage for-
mats formats [GMS92, Dav]. As a remedy, alternative representa-
tions can be used to build an initial matrix, which can be then con-
verted to more computationally efficient formats. In this respect,
representations based on stacks [Jan], hash tables [ASW06], and
index-based sorting [EL14] have been proposed. On parallel ar-
chitectures, the challenge stems from race conditions as multiple
processors attempt to address the same memory location. While
there has been growing interest in speeding up assembly on the
GPU [WBS∗13, TWT∗16], these methods still require additional
data structures to store the topology (vertex, face and edge connec-
tivity information). Crucial operations such as memory allocation is
performed on the CPU in [TWT∗16]. In our view, assembly though
extensive data structures as commonly done on high performance
computing clusters e.g., [TPD15], is not suitable for the GPU as it
restricts the range of applications to moderately sized data-sets.

3. The mesh matrix

For a given unstructured gridM, the corresponding cell or face ta-
ble reads F = {f1, . . . , fn f }, where n f is the number of faces. Each
polygonal face fi groups the vertex indices of its summits as illus-
trated in Figure 1. For an oriented mesh, the orientation is reflected

Figure 1: The connectivity of a simple mesh (left) and its face table
representing counter-clockwise oriented faces (right).

in the traversal order of the face (up to a cyclic permutation). The
vertex coordinates are generally stored in a separate array P of size
nv×3, where nv is the number of vertices.

The face table fully encodes the mesh connectivity but does not
explicitly reveal its underlying topological structure. We propose
to overlay this representation on a sparse matrix while preserving
the prescribed face orientation. We do so by laying out faces along
columns; In each column, the location of the face summits are set
to their order in the face. This introduces the mesh matrix represen-
tation. More formally, this is the sparse matrix Mnv×n f defined by
the location and values of its nonzero elements:

M(fi(k), i) = k; (1)

where i spans the faces and k spans the elements of each face fi. An
example of a simple mesh and its face table is given in Figure 1.
The associated mesh matrix representation M is given by

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1
r2 2 1 5
r3 2 4 4
r4 1 3
r5 2 1
r6 3 3 3 1
r7 2 2
r8 3 2
r9 4 4 1
r10 5 2 5
r11 3 6 1
r12 3 4
r13 4 4
r14 2
r15 3

;

This representation brings forward the topological structure of
the mesh. Faces neighboring a given vertex (vertex fan) line up
along its corresponding row. In principle, classical traversal oper-
ations can also be performed on the mesh matrix however, this is
not the aim of the current contribution. The full face table can be
directly recovered from the matrix by simply scanning the columns
of the matrix and permuting the nonzeros values to preserve the
face orientation without requiring a global or local sorting.

We denote by M the binary mesh matrix representation of M
obtained by setting all nonzero entries of M to 1. This binary rep-
resentation, is sometimes referred in graph theory literature as the
face-vertex incidence matrix. It should not be confused with the
more common edge-vertex incidence which is described in most
introductory graph theory and exterior calculus books. An alterna-
tive definition ofM would be to set up its nonzero values so that

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

they refer to either their direct predecessor or successor in the cell.
In view of action maps, our current formal definition is preferable.

4. Storage requirements

Arguably, the most widely used matrix formats are the coordi-
nates format (COO), Compressed Sparse Row (CSR) or Com-
pressed Sparse Column (CSC), see e.g, [DER87]. In coordinates
format, a sparse matrix is represented by the triplet (r,c,v) which
refers to keys for rows, columns, and corresponding values. In
practice, CRS/CSC are more adapted for numerical computations.
In this paper, we will use the CSC format for explaining algo-
rithmic details. In this format, a matrix is defined by the triplet
{col ptr,rowind,values}, where rowind, and values are the same
as r and v, whereas col ptr is a compressed form of c which marks
only the start of columns. Please note that in theory, CRS and CSC
are simply transposes of each other.

To illustrate the concept behind our mesh matrix storage reduc-
tion, we start from the CSC format of the example in in Figure 1
which translates into the following matrix:

values = [1 2 3 4 1 2 3 4 5 6 4 1 2 3 1 3 2 . . .]
rowind = [1 2 11 13 2 3 6 9 10 11 3 4 5 6 5 6 7 . . .]

↑ ↑ ↑ ↑
col ptr = [1 5 11 15 . . .]

For the sake of argument, assume that the nonzero values are
stored in double precision (sdouble = 8byte) and the indices as in-
tegers (sint = 4byte). The storage requirement for a general ma-
trix within this format amounts to Nz · (sdouble + sint)+ ncol · sint ,
whereas Nz corresponds to the number of nonzeros and ncol is the
width of the matrix. For a triangle mesh, the number of nonze-
ros in the mesh matrix is 3n f and the number of columns is
n f . As the entries in the matrix correspond to indices storing
them as integer is preferable to double. The storage cost then is
3 · n f · (sint + sint) + n f · sint = 7 · n f · sint , which is 28 bytes per
face.

The CSC representation is not unique, in fact, the row indices
and the corresponding values can be reordered within a given col-
umn without changing the matrix. We capitalize on this observation
and show how the storage requirements can be cut down. Consider
the previous example again. For the first and second column, the in-
formation contained in values is redundant since it coincides with
traversal order when stepping through the column ([1,2,3,4] and
[1,2,3,4,5,6]). However, by changing the order of indices in the
third column according to their entries in values (as shown below
in bold), the entries in values become also redundant.

values = [1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3 . . .]
rowind = [1 2 11 13 2 3 6 9 10 11 4 5 6 3 5 7 6 . . .]

↑ ↑ ↑ ↑
col ptr = [1 5 11 15 . . .]

After performing this step for all columns, the role of the values
becomes obsolete. In fact, the number of entries per column is
known from the col ptr and we need simply to traverse the entries in
their order of appearance. The reordering reduces the storage cost
for triangle meshes to 4 ·nt · sint , which corresponds to 16 bytes per
triangle. Thus, in practice, we do not need to store the mesh matrix
but only its sparsity pattern, namely rowind and col ptr.

Storage requirements can be further reduced when all faces are
of the same type. Consider the simple triangle mesh depicted below.

1

2

3

8

7

6

5

4

1

6
5

4 3

2
f1 f2 f3 f4 f5 f6

1 1 1 4 6 7 1
2 2 3 6 4 1 7
3 3 4 1 5 6 8

After re-ordering the indices in rowind according the entries in
values as shown below it becomes clear that also the col ptr be-
comes redundant since its entries can be inferred.

values = [1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3]
rowind = [1 2 3 1 3 4 4 6 1 6 4 5 7 1 6 1 7 8]

↑ ↑ ↑ ↑ ↑ ↑
col ptr = [1 4 7 10 13 16]

It ensues that we only need to store the rowind, and thus only
12 bytes per triangle. Hence, the storage cost for meshes where all
faces are of the same type is the same as for the face table. In case
of a general mesh, we require an additional index (4 bytes) per face.
However, when using the face table, the number of vertices per face
also needs to be stored. Thus, in practice we achieve equal memory
requirements as the face table representation. The resulting mem-
ory storage reduction can make a substantial difference especially
in concurrent infrastructures with limited memory resources, as for
instance, the GPU. The advantage over the face table is that we gain
the structure of a special sparse matrix on which we can perform
linear algebra operations.

5. Linear algebra primitives

In order to take full advantage of the proposed matrix represen-
tation we endow it with suitable linear algebra primitives, which
allow performing numerical computations on meshes as well as
topological modifications (section 8). We pay special attention to
avoid intermediate data creation which can severely hamper per-
formance as it generates additional memory access. We capitalize
on reusing the sparsity pattern of the mesh matrix in sparse matrix
vector operations (SpMV) and sparse matrix-matrix multiplication
(SpMM) and show how it can be applied in practice.

5.1. Action maps on vectors

For SpMV we define an action map as a function Q which acts
on the nonzero entries of the mesh matrix. Its action can be i) a
compact stencil which encodes interaction between face summits,
ii) avector of the same length as the nonzero values of the matrix
which associates values with summits, e.g. angles, iii) a combina-
tion of both. Without loss of generality, we will illustrate the con-
struction of action maps and their typical applications through a set
of simple but expository examples. Assume one wants to compute
the barycenter of each triangle using the mesh matrix. A straight-
forward way to do so, would be to write the barycenters as 1

3 M>P,
with P being the array of vertex positions (the three dense vectors
that correspond to the x, y, and z coordinates of the vertices). The
problem with such a formulation is that it requires the creation of

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

new data (the sparse matrix M) and the computation of the trans-
pose. Instead, we observe that the sparsity pattern of this intermedi-
ate matrix is similar to M. We propose to use a mapping which acts
on the non-zeros values of the matrix during the computation of the
product, by replacing the values of the nonzero elements of the ma-
trix M by those stored in a given vector or obtained by a predefined
scheme. This is what we call a mesh action map. The advantage of
this formalism is that the intermediate matrix M is actually never
constructed explicitly but its values are only inferred from those
of M during multiplication. More precisely, given a sparse matrix
with nonzero values Vold , we define a mapping Q which acts on the
entries of Vold during multiplication as follows M

Q:Vold→Vnew
.

Since a transpose matrix times vector can be handled algorithmi-
cally as will be shown shortly in Algorithm 1, it is not necessary
to create or store M or M>.

Revisiting the previous example, barycenters can be obtained by
means of the action map which takes (1,2,3) to (1,1,1) as follows

B =
1
3

M>
(1,2,3)→(1,1,1)

P =
1
3

M>P.

Algorithmically, this amounts to modifying the sparse matrix
vector multiplication to account for the action map as outlined for
the CSC matrix format in Algorithm 1.

Algorithm 1 Action mapped sparse matrix vector multiplication
1: procedure MAPPED–SPMV

2: input: Matrix in CSC format (rowind, col ptr, values),vector x,
actionMap Q

3: if Mv
4: for j = 0 to nc−1
5: for k = col ptr[j] to col ptr[j+1]−1
6: y[rowind[k]]+ = Q(values[k])∗ x[j]
7: if M>v
8: for j = 0 to nc−1
9: for k = col ptr[j] to col ptr[j+1]−1

10: y[j]+ = Q(values[k])∗ x[rowind[k]]
11: end procedure

The algorithm covers the action mapped multiplication of a ma-
trix or its transpose by a vector. The multiplication by an array in-
stead of a vector follows naturally by means of an extra loop.

To further illustrate the use of action maps, consider the case of
computing vertex normals of a mesh, whereas the contribution of
each face is weighted by its area. The arrays P1P2 and P1P3 over
all triangles can be obtained by applying the operations

P1P2 = M>
(1,2,3)→(−1,1,0)

P, and P1P3 = M>
(1,2,3)→(−1,0,1)

P. (2)

The un-normalized vertex normals can be obtained by

Nv = M
(1,2,3)→(1,1,1)

Nf = MNf; (3)

where, the array N f holds face normals obtained by a row-wise
vector product of P1P2 and P1P3.

If explicit weights should be associated with faces which are
stored in a vector w of length n f , action maps can be used to
apply those weights. Weighted averaging can then be carried out

using the actions map Q which acts on face indices as follows
Q : (1,2,3)fi → (wi,wi,wi) for all i. In this scenario, the use of
action maps can be likened to a sparse matrix vector multiplica-
tion where the vector holding the nonzero values is replaced by the
weights vector. A numerical example using the weighting scheme
in [Max99] is substantiated in the results section 9.

Using our technique and implementation, a user can write the
above example in about five lines of code. The only data struc-
ture that is used is the mesh matrix representation M and none
of the intermediate matrices are explicitly created or stored. Fur-
thermore, with our parallel GPU implementation, high performance
is guaranteed. If the above example was implemented without ac-
tion maps but traditional matrix algebra, the intermediate matrices
would need to be generated manually by means of iterating over
the entries and using conditionals to write the required values to
memory. This would not only require additional storage, but also
increase memory transfers and branching operations which are es-
pecially costly within a GPU implementation. If a traditional mesh
data structure was used, a user would usually iterate over the en-
tire mesh, explicitly compute the normal for each face and add its
contribution to all face vertices. In case of this simple example this
might be a reasonable approach as long as one is not thriving for
a parallel implementation. As faces contribute to multiple vertices,
threads would have to synchronize while adding the contributions
of their face normal, which not only complicates the code but also
hurts performance.

To underline the advantage of using action maps, let us re-
examine alternative options in details. For a standard CPU imple-
mentation using the face table, the steps can be summarized as fol-
lows: compute face normals, set vertex normals to zero, run over
faces and add face normal to all involved vertex normals, normalize
the resulting vectors. When attempting to perform the same steps
on the GPU, one is faced with two options: i) start one thread for
each face and use atomic adds to sum up the contributions (scatter),
then normalize. ii) start one thread for each vertex normal, run over
all faces surrounding this vertex and sum up face normals (gather),
then normalize. In general, the scatter option (i) is slow due to
access conflicts/atomics. The gather option (ii) is more favorable
but requires an additional data structure for accessing faces around
a given vertex. Clearly, this can be done without action maps as
shown in equation 3 by explicitly creating the matrix M. With ac-
tion maps, we avoid such intermediate data thus saving on storage
(size of M) and memory transfer (two times size of M).

5.2. Action maps on generalized sparse matrix-matrix product

The concept of action maps can even be taken further and applied to
sparse matrix-matrix multiplication. To fix the ideas, let us examine
the matrix Sv = MM> in the light of the example from Figure 1.
The resulting matrix is shown below. The nonzero entries of Sv
represent the number of faces common to any given two vertices.
The diagonal entries count the number of faces common to a given
vertex. Please note, that for general polygonal meshes, two vertices
will flag a 1 even if they are not directly connected by an edge,
they need only to belong to the same face. In the particular case of
triangle meshes, when two vertices share a face, they are connected
by an edge. We can regard the matrix Sv as a generalized vertex-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

vertex adjacency. A similar face-face adjacency matrix is detailed
in Appendix A.

MM> =

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

r1 2 2 1 1 1 1 1
r2 2 3 2 1 1 1 1 2 1 1
r3 1 2 3 2 1 2 1 1 1 1
r4 1 1 2 2 1 1 1
r5 1 1 2 2 1
r6 1 2 1 2 4 2 1 2 1 1
r7 1 2 2 1 1
r8 1 1 2 2 1 1 1
r9 1 1 2 1 2 3 2 1 1 1
r10 1 1 1 1 2 3 2 2 1 1
r11 1 2 1 1 1 2 3 1 2
r12 1 1 2 1 2 1 1
r13 1 1 1 2 1 2
r14 1 1 1 1 1
r15 1 1 1 1 1

Our objective is to facilitate the assembly of commonly used ma-

trices, as, e.g., the one above. Assume a user requires to construct
the adjacency matrix of an oriented mesh by looking at it as a di-
rected graph. Starting with the matrix MM> one can see that it
is clearly symmetric and does not reflect the orientation of edges.
In order to capture this information, so as to obtain the adjacency
matrix, we propose to alter the matrix multiplication by means of
suitable action maps.

Consider the case of a triangle mesh. The sparsity pattern of the
matrix product MM> results from the collisions of nonzero entries
of M and its transpose. The outcome of these collisions can be en-
coded by an action map. Since we would like to capture the initial
counterclockwise orientation of the mesh, we can use a cyclic per-
mutation matrix Q3 to encode triangle orientation

Q3 =

1 2 3

1 0 1 0
2 0 0 1
3 1 0 0

; (4)

When performing an action mapped matrix-matrix product, the
entries of the first mesh matrix are used for indexing along the first
dimension of the action map, the second matrix indexes along the
second dimension, e.g., the collision of a 1 in the first matrix and a
3 in the second matrix corresponds to the third element in the first
row of the action map. A pseudo code illustrating our idea is given
in Algorithm 2; note that the implementation of SpMM itself is
much more involved and requires additional steps such as memory
allocation, see, e.g., [Dav06, Dav] for an ample description. Since
Q3 and its powers Q0

3 = I3×3 and Q2
3 form a basis for all 3× 3

circulant matrices, we can encode a variety of interactions within a
face by means of simple action maps. For instance, for a triangu-
lar mesh, the uniform Laplacian (graph Laplacian) D− (A∨A>),
where ∨ refers to the logical OR, and D to the diagonal degree ma-
trix, can be obtained through the action map Q=Q0

3−(Q2
3+Q3). If

a mesh has a boundary, the boundary adjacency can be captured by
Q3−Q2

3, traversal of positive entries will yield counterclockwise
oriented boundary loops, negative ones yield clockwise traversal.

More generally, given a mesh where all faces are consistently
counterclockwise oriented (n-gones) of the same kind. We define
the action map Qn associated with the matrix product of mesh ma-

Algorithm 2 Action mapped sparse matrix-matrix multiplication
1: procedure MAPPED–SPMM C=AB
2: input: Matrices A, B, and action map Q
3: for j← 1 to n
4: for k where B(k, j) 6= 0
5: for i where A(i,k) 6= 0
6: C(i, j)←C(i, j)+Q(A(i,k),B(k, j))
7: end procedure

trix M and its transpose, as the cyclic permutation

Qn =

0 1 0 . . . 0

0 0
. . .

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0 1
1 0 . . . 0 0

 (5)

All circulant interactions within a face are captured by linear
combinations of Qn and its powers. It is interesting to note that
when the global mesh orientation is changed, the corresponding
adjacency (transposed adjacency) can be obtained by the transpose
of Q which corresponds to Q(n−1).

Consider the case of a quad mesh (such meshes can result from
Catmull-Clark subdivision [CC78]). If we wish to capture relations
only between diagonally opposed vertices within a faces, we can
simply augment the matrix multiplication by the action map Q2

4.
This would flag ones for diagonally opposed vertices. For a mesh
with arbitrary oriented faces, the results above hold by operating
on the sub-matrix meshes corresponding to set of faces of similar
nature and then summing the results up.

We can already see that the combination of action maps and
matrix-matrix multiplication offers an alternative way to build
some well known matrices without having to go through a con-
ventional sparse matrix construction. We will see how this extends
to the more general assembly in finite elements.

6. Fast sparse matrix assembly

In most finite element formulations, a crucial but necessary step
is the assembly of the system matrix, which amount to stiffness,
mass, and/or a linear combination of both. Large sparse matrices
are formed by adding several smaller contributions in a random
order before the final nonzero values are known. This procedure
is laborious and can be a bottleneck for instance in nonlinear or
iterative setups where these matrices need to be updated.

An elemental contribution is a small matrix whose size is defined
by the degrees of freedom of the problem (e.g., integration type).
For instance, in the case of the constant strain triangle (CST) com-
monly known in graphics as the cotangent Laplacian, this will be a
3× 3 matrix per triangle face (which corresponds to the cotangent
Laplacian discretization). By setting action maps in terms of ele-
mental contributions, the global matrix can be similarly obtained
as above. For the sake of simplicity, consider the case of the CST.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

The corresponding elemental contribution is given by

kt=

cotθ2 + cotθ3 −cotθ3 −cotθ2
−cotθ3 cotθ3 + cotθ1 −cotθ1
−cotθ2 −cotθ1 cotθ1 + cotθ2

.

It can be seen that the pattern of the this matrix already resembles
that of Q = Q0

3− (Q2
3 +Q3) from the previous sections. In order to

use these entries along with the action map Q as in Algorithm 2,
we recall that the vector holding the nonzeros entries of the mesh
matrix M and the vector holding the cotangents of face angles are
ordered in the same way. Therefore, upon multiplication the entry
from the action map can be simply multiplied by the corresponding
cotangent value using the index obtained from the mesh matrix.

For tetrahedral elements, the linear tetrahedron is given by:

kt =
1
6

∑1 −l34 cotθ34 −l24 cotθ24 −l23 cotθ23

∑2 −l14 cotθ14 −l13 cotθ13

sym. ∑3 −l12 cotθ12
∑4

 ;

where ∑i infers the sum of non-diagonal entries in row i multiplied
by −1.

We can regard the tetrahedron as a combination of doubly ori-
ented edges or oriented faces and we can associate the following
map Qtet = Q4

4− (Q3
4 +Q2

4 +Q4), i.e,

Qtet =

1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

 . (6)

The use of action maps in this case requires storing only 6 entries
per tetrahedron contribution instead of 16.

Throughout the use of action maps the assembly process is
streamlined by avoiding conditional statements, which is beneficial
for concurrent programming as branching is avoided. Furthermore.
the reduced memory requirements, makes the approach suitable for
platforms with limited memory resources such as graphics hard-
ware. Our construction extends to arbitrary finite elements such as
shells, higher order tetrahedral and hexahedral elements (More de-
grees of freedom and integration points). Given the scope and na-
ture of these scenarios, a detailed description and analysis will be
given elsewhere.

7. Parallel GPU implementation

While usability and expressiveness is a core concept in our ap-
proach, the potential for an efficient implementation is equally
important. Sparse matrix operations can be parallelized and have
been brought to the GPU before. While we could use a standard
sparse matrix library, like cuSparse [Dem12], CUSP [BDO12], or
bhSparse [LV15] for most matrix algebra operations, an integration
of our compressed format and action mapped multiplications forms
a technical issue, as these libraries are either closed source (cuS-
parse), or optimized for a different format (CUSP uses COO), or
only support non-transposed matrix vector operations (bhSparse).

Additionally, these libraries are built for general matrices and there-
fore do not take advantage of the special structure of the mesh ma-
trix. Thus, we have implemented our own library for simple ma-
trix algebra operations around mesh matrices and action maps in
CUDA. For non-action mapped and general matrix operations we
use cuSparse, which can be directly called with pointers to low level
data structures and thus allows for data sharing with our implemen-
tation.

As representation for the mesh matrix, we directly use the for-
mat as described in Section 3, omitting the values and reordering
rowind according to the vertex indices. Note that these reordering
precludes the use of the rowind array with cuSparse, CUSP, and
bhSparse as they expect the data to be ordered. For meshes with
faces of the same type, we also omit the col ptr. For best perfor-
mance, we provide specialized kernels of all operations for triangle
and quad meshes, allowing for a full optimization of the involved
operations, like, e.g, loop unrolling. Specialized kernels for meshes
with larger polygon counts can also be constructed easily, however,
we also provide a generalized form of each operation which takes
the number of vertices per face as input argument.

Mapped Matrix Vector The mapped matrix vector multiplication
can be split into two cases: Mv and M>v. In both cases we follow
the implementation shown in Algorithm 1, and parallelize over the
matrix columns. This results in a parallelization over the output for
M>v and a parallelization over the elements of v for Mv.

In case of M>v, every thread is working on a separate output
element and no inter thread communication is required. Further-
more, we can keep the temporary output result in a local register
and only write the result after completing the loop. Furthermore,
the number of elements processed per threads corresponds to the
vertices of the face. If the mesh has a similar number of vertices
across all faces, all threads will perform a similar number of oper-
ations and thus load balancing will implicitly be good. The entries
of the mesh matrix are accessed once. The col ptr is read once at
the head of the for loop (line 9) and each entry in rowid is read
throughout the loop body (line 10). However, adjacent values are
read by the same thread across iterations of the loop. Thus, perfor-
mance can be increased when caching these values in level-1 cache.
While we could use a texture to perform this caching, we use the
low-level ldg instruction provided in CUDA as there is no need for
texture interpolation or data conversion and the same cache will be
used. The vector v and the map itself will potentially be accessed
multiple times by different threads. Thus, we also enforce caching
of this data in level-1 cache. Note that the implementation is rather
simple, but due to the homogeneous load and efficient use of level-
1 cache, we are competitive to other state-of-the-art, GPU sparse
matrix algorithms.

In case of Mv, every thread works on a different element of v,
but there is an overlap between the threads when writing the output.
This case is usually about 10× slower than the first case when using
state-of-the-art GPU sparse matrix implementations, like cuSparse.
Current practice suggests that in the general case, the detour of par-
allelization over the outputs and searching through the compressed
column data to find those entries in the matrix that add to the
thread’s output element achieves the best performance. However,
we follow another strategy and stick to Algorithm 1. To perform

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

the inter thread communication, we use the build-in atomic-add op-
erations for float data, and a try-set-loop using atomic-compare-
and-swap instructions for double. We again make sure all input
data is cached in level-1. According to our experiments this strat-
egy achieves superior results for mesh matrix multiplications. We
attribute this fact to the relatively low number of collisions, which
are bounded by the valence of the respective vertices. Additionally,
as the result of the atomic-add instruction is not used by the kernel,
the instruction compiles down to an atomic reduction in machine
code, which is efficient on current GPU hardware. A more detailed
description and performance analysis of our approach on standard
numerical computing benchmarks can be consulted in [SDZS16].

Mapped Matrix-Matrix A mapped matrix-matrix multiplication
is more complicated than the matrix vector product. The biggest
challenges are (i) that the structure of the resulting matrix depends
on the input matrices, (ii) that the organization of the entries in
the resulting matrix requires communication between threads, and
(iii) that the number of operations carried out by individual threads
may vary strongly. To provide an efficient implementation we take
advantage of the algorithmic description of bhSparse [LV15]. We
tackle the aforementioned issues in a four stage approach: In the
first stage, we compute an upper bound for the number for nonze-
ros in each column of the result matrix, which allows for allocating
sufficient storage. To compute this estimate, we use one thread for
each column of the first matrix, which iterates over the columns of
the second matrix. If there is a match between the column index
of the first matrix and the row index of the second matrix, an entry
in the resulting matrix will exist and we increase the memory esti-
mate. The second stage sorts the output matrix columns into bins,
based on the expected number of entries they will contain, which
allows choosing the best fitting strategy for the expected workload.
The third stage applies the heap method [GPJS99] for columns with
few entries, the ESC method [BDO12] for medium sized columns,
and the merge method [GHS∗15] for columns with many entries.
The first two methods can be carried out using efficient on-chip
shared memory, while the latter requires multiple kernel launches
and memory allocations. The final stage rearranges the results of
the previous stag in the final CSC format.

For our mapped matrix-matrix multiplication we perform the
same stages. The first two stages work on the rowind and col ptr
only. Thus, no modifications are required for the general case. In
case the col ptr has been omitted, we can again unroll the loop con-
structs in those kernels to speed up the computation. In the third
stage, we replace the multiplication with the action map lookup
based on the traversal order of the elements. Again, we make sure
that the action map entries are loaded via the level-1 cache. If a
mapped matrix-matrix multiplication is carried out multiple times,
like, e.g., the assembly during each iteration of a solver, we can
reuse information from previous iterations. Specifically, we can
perform binning only once and reuse the bins. In case the mesh
changes only slightly from one iteration to the next, we only need
to re-bin for those columns that were affected by the mesh opera-
tion.

8. Topological operations

Many mesh processing applications require introducing modifica-
tions on the connectivity as for instance in mesh decimation and
simplification, e.g. [GH97]. These applications proceed by per-
forming a series of local operations such as edge collapse and face
decimation. We will show how such operations can be performed
on the mesh matrix representation by means of matrix multiplica-
tion. At this stage, we are not concerned with the geometric validity
of the merging from a modeling viewpoint, but we demonstrate the
algebraic operation capable of performing such task.

Edge collapse removes an edge from a mesh merging its end ver-
tices. Given a mesh defined by its mesh matrix M. Its topology after
collapsing an edge i, j (or merging vertices i and j) is captured by
the matrix N = KM. Where K is the sparse identity matrix Inv with
K(j, j) = 0 and K(i, j) = 1;

Consider the example in Table 1-top: Assume a user would like
to merge vertices 2 and 3, let K be the matrix defined as identity
with K(3,3) = 0 and K(2,3) = 1. KM is shown in the second row,

Table 1: Illustration of mesh simplification operations on an in-
put mesh (top-left). Their effect on the mesh matrix and its binary
form are shown. From second row to bottom, edge collapse, face
collapse, vertex removal, see text for details.

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1
r2 1 1 1
r3 1 1 1
r4 1 1
r5 1 1
r6 1 1 1 1
r7 1 1
r8 1 1
r9 1 1 1
r10 1 1 1
r11 1 1 1
r12 1 1
r13 1 1
r14 1
r15 1

c1 c2 c3 c4 c5 c6 c7 c8

1 1
2 1 5

2 4 4
1 3
2 1

3 3 3 1
2 2

3 2
4 4 1
5 2 5

3 6 1
3 4

4 4
2

3

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1
r2 1 2 1 2
r3

r4 1 1
r5 1 1
r6 1 1 1 1
r7 1 1
r8 1 1
r9 1 1 1
r10 1 1 1
r11 1 1 1
r12 1 1
r13 1 1
r14 1
r15 1

c1 c2 c3 c4 c5 c6 c7 c8

1 1
2 3 4 9

1 3
2 1

3 3 2 1
3 2

3 2
4 4 1
5 2 5

3 6 1
3 4

4 4
2

3

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1
r2 2 6 2 1 2 2 2 2
r3

r4 1 1
r5 1 1
r6

r7 1 1
r8 1 1
r9

r10

r11

r12 1 1
r13 1 1
r14 1
r15 1

c1 c2 c3 c4 c5 c6 c7 c8

1 1
5 21 7 2 5 3 9 6

1 3
2 1

3 2
3 2

3 4
4 4

2
3

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1
r2 2 1
r3 1 1 1
r4 1 1
r5 1 1
r6 1 1 1 1
r7 1 1
r8 1 1
r9 1 1 1
r10 2 1
r11 3
r12 1 1
r13 2
r14 1
r15 1

c1 c2 c3 c4 c5 c6 c7 c8

1 1
3 5
2 4 4

1 3
2 1

3 3 2 1
3 2

3 2
4 4 1
7 5
1
3 4
8

2
3

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

middle in Table 1; Notice that the third row has disappeared. The
faces that are affected by the merging are f2, f3 and f7 and their
new summits are given by the nonzero elements of the matrix. Fur-
thermore, when dealing with the ordered matrix, only the merged
vertices order is affected. The right ordering can be obtained by
simple shifts.

Face collapse amounts to the merging of all face vertices into a
single vertex and it can be achieved similarly. Given a mesh defined
by its mesh matrix M. Its topology after collapsing a face fk into on
of its vertices i is captured by the matrix N = KM. Where K is
sparse identity matrix Inv with K(j, j) = 0 and K(i, j) = 1, for all
j ∈ fk, j 6= i; This scenario is illustrated in the third row of Table 1
for the collapse of face 2 into vertex 2.

Vertex removal directly leads to face merging. The algebraic op-
erations can be summarized in a similar manner, but this time the
action is on the faces. The merging of faces (generally due to the
removal of an edge or a vertex) can be formulated algebraically as:
let f j, j = 1, . . . ,ni be the faces which will be merged into face f i.
let K be a sparse matrix equal to identity of size n f × n f . Let we
set, K(j, j) = 0 and K(i, j) = 1; The topology of the new mesh is
reflected in N = MK>; This scenario is illustrated in the last row
of Table 1 which features the merging of faces 1 and 6 into face 2.

Although matrix based mesh simplification is very efficient
when performing a batch of operations simultaneously, its use
in sequential algorithms, e.g. as proposed by Garland and Heck-
bert [GH97] is not recommended as it is technically expensive to
perform matrix multiplication for the sake of a single simplifica-
tion step. Instead, this can be done efficiently by first extracting the
relevant faces (columns), performing a localized multiplication and
then replacing the results back. Figure 2 illustrates the simplifica-
tion of the mesh of a typical model driven by our matrix based sim-
plification operations which reflects the original approach [GH97].
An animation of the evolution of the matrix and the mesh is shown
in the accompanying media.

Figure 2: Decimation of the Tweety model (top-left). The overall
matrix structure is preserved throughout simplification.

CSC Mapped
Indexed-
Mapped

Indexed-Fixed-
Mapped

Beetle (2M) 9.4 11.3 10.1 5.8

Eembreea Orchid (4M) 18.8 22.3 17.3 12.3

Female Blue Crab (11M) 54.4 62.4 52.7 34.3

Eulaema Meriana Bee (17M) 85.8 99.8 81.4 57.7

Pergolesi Side Chair (29M) 142.6 174.4 134.5 95.6

0

20

40

60

80

100

120

140

160

180

200
Timings (ms)

CSC Mapped
Indexed-
Mapped

Indexed-
Fixed-

Mapped
cuSparse bhSARSE

Beetle (2M) 0.212 0.221 0.195 0.187 0.398 0.424

Eembreea Orchid (4M) 0.393 0.410 0.365 0.354 0.746 0.704

Female Blue Crab (11M) 1.276 1.302 1.095 1.067 2.145 1.824

Eulaema Meriana Bee (17M) 1.639 1.709 1.484 1.448 3.245 2.637

Pergolesi Side Chair (29M) 2.822 2.939 2.535 2.522 5.542 4.279

0

1

2

3

4

5

6
Timings (ms)

Figure 3: Impact of sparse matrix storage reduction and the use
of action maps on matrix vector multiplication M>v on CPU (top)
and on the (GPU) bottom (timings in milliseconds). Note that M>v
implies summation on the compressed direction. For reference, we
report the timings for cuSparse [NVI15] and Bhsparse [LV15].

9. Experimental results

Throughout our experiments, we used the following hardware con-
figuration: an Intel Xeon E5-2637 v3 CPU running at 3.50GHz,
32GB of memory and an NVIDIA Geforce 980Ti with 2816 com-
pute cores and 6GB of memory running at 1GHz.

Matrix-vector multiplication

To evaluate the performance of our sparse matrix-vector multi-
plication, we compare our reference CSC implementation to CSC
combined with action maps in the storage formats described in sec-
tions 4 and 7, namely CSC, rowind+colptr and rowind. Note that
CSC corresponds to a simple matrix multiplication where the val-
ues of the mesh matrix have already been replaced with the values
otherwise inserted by the action map, i.e., we do not capture the
overhead of manually changing the matrix in this case. CSC+maps
corresponds to storing the mesh matrix explicitly in CSC format
and using an action map to look up the value during multiplica-
tion. rowind+colptr+maps recovers the entries of the mesh matrix

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

from the rowind array and performs the lookup in the action map.
rowind+maps is only applicable, if all faces of the mesh have an
equal number of vertices and thus the colptr can be omitted. For
our serial implementation, Figure 3-top shows the effect of these
storage reduction techniques on the CPU for M>v. The pattern is
consistent across our testing data which comprises meshes with tri-
angle counts ranging from 2M to 29M triangles.

For our experiments on graphics hardware, shown in Figure 3-
bottom, we provide the performance of cuSparse [NVI15] and
Bhsparse [LV15] for reference, again assuming the mesh matrix has
already been replaced with the values required for the operation. As
expected, using action maps without storage optimizations slightly
decreases performance in comparison to a plain matrix multipli-
cation, as it adds an additional lookup. However, the overhead is
usually below 20% on the CPU and below 5% on the GPU. Fur-
thermore, the explicit generation of the required matrix would take
considerably longer and additional memory would be required to
store the matrix, before the slightly more efficient traditional ma-
trix multiplication could be carried out. Applying the storage reduc-
tions and specialized implementations consistently improves per-
formance. Surprisingly, our implementation (even in its plain form)
outperformed the highly tuned cuSparse and Bhsparse implemen-
tations. We can only attribute that to the fact that our implemen-
tation is not targeted for the general case where a high number of
load imbalances occur, but rather to mesh matrices which show a
more consistent structure. We conclude that our specialized alge-
bra primitives are better suited for computations on meshes than
general purpose primitives.

A key feature of our sparse matrix implementation is the steady
performance when computing Mv on graphics hardware, i.e, when
access conflicts complicate the computations. Typical results of our
approach are compared to cuSparse [NVI15] in Table 2.

Table 2: Computation of M>v (no access conflicts between
threads) and Mv (access conflicts need to be resolved) of our ap-
proach with action maps and a plain matrix vector multiplication
in cuSparse. Timings in milliseconds.

M>v Mv
cuSparse Ours cuSparse Ours

Embreea Orchid (4M∆) 0.74 0.35 8.97 0.27
Pergolesi side chair (29M∆) 5.54 2.52 63.56 1.96

While a plain matrix multiplication in cuSparse is about two
times slower than our mapped multiplication when no access con-
flicts occur, our implementation is about 30× faster in the case
when access conflicts need to be resolved. It seems that our im-
plementation using atomic operations is very well suited for mesh
matrix operations. Please note that for this scenario, we do not re-
port CPU times since the transpose is implicitly taken care of in the
serial algorithmic formulation as noted earlier.

Matrix assembly: A well established serial method for matrix
assembly is the Sparse function in Matlab [GMS92], which directly
assembles the coordinate triplets into a sparse matrix. A variant
known as Sparse2 which capitalizes on a different sorting scheme
has been proposed in the SuiteSparse package [Dav]. Most recently,

Beetle (2M)
Eembreea

Orchid (4M)
Female Blue
Crab (11M)

Eulaema
Meriana Bee

(17M)

Pergolesi Side
Chair (29M)

Matlab Sparse
(timing in s.)

0.95 1.84 5.98 9.48 17.14

Sparse2 1.56 1.61 1.57 1.59 1.29

Fsparse 1.70 1.82 1.79 1.78 1.82

Ours (CPU) 5.68 6.75 5.85 5.63 5.43

Ours(GPU) 30.75 34.89 38.47 35.05 43.16

0

5

10

15

20

25

30

35

40

45

Speedup w.r.t.
Matlab Sparse

Figure 4: Assembly of linear triangle based stiffness (Laplacian).
Timings for Matlab Sparse are reported in seconds. For Sparse2,
Fsparse, our serial and GPU implementations we report the rela-
tive speedup to Matlab Sparse.

250K 500K 800K 1M

Matlab Sparse(timing in s.) 5.53 12.56 19.92 28.67

Sparse2 1.9 1.9 2.4 2.1

Ours CPU 8.4 8.6 9.3 8.6

Ours CPU (w. reordering) 27.8 30.3 28.4 33.8

Ours GPU 67.1 67.8 69.3 71.3

Ours GPU (w. reordering) 143.0 147.8 153.7 160.1

0

20

40

60

80

100

120

140

160

180

SPEEDUP FOR
SPARSE ASSEMBLY
ON LINEAR TETS

Figure 5: Assembly of the linear tetrahedron based stiffness
(Laplacian). Timings for Matlab Sparse are reported in seconds.
For Sparse2, our serial and GPU implementations we report the
relative speedup to Matlab Sparse. Note the effect of reordering.

an assembly method which takes advantage of the multi-core struc-
ture of modern CPUs was reported [EL14] under the name Fsparse.
We tested our approach for matrix assembly against these state of
the art methods. Figure 4 shows the speedup of Sparse2, Fsparse
and our approach against the Matlab sparse function. In this case,
the stiffness based on the linear triangle is assembled over different
meshes.

Figure 5 shows the speedup of Sparse2, our serial and parallel
implementations with and without reordering (Fsparse is not re-
ported as it crashed for large tet counts). In this scenario, the stiff-

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

ness matrix based on the linear tetrahedron is assembled over the
mesh of a mechanical part with varying tetrahedron count. The data
suggests that as connectivity patterns get more complex as for in-
stance in the case of tetrahedral meshes, the gains achieved by our
lean formulation of the problem become more pronounced reach-
ing speedups of up to 150× compared to the well established gen-
eral purpose Matlab sparse function. The use of memory friendly
layouts through re-ordering is highlighted by our array based ap-
proach. The results shown in figure 5 rely ofn the reverse Cuthill-
McKee (RCM) ordering method [GL81], which attempts to reduce
matrix bandwidth. It can be regarded as an iterative variant of the
basic breadth first search (BFS).

Matrix assembly is central to a wide range of applications such
as parametrization, smoothing, deformation, and simulation. The
speedup obtained by our formulation and especially the simplic-
ity by which our abstraction extends to the parallel setting has
wide reaching effects and can help improve the overall performance
across those applications.

Applications: To substantiate the flexibility and versatility of our
approach, we tested on a set of basic but representative algorithms
commonly used in practice. In all experiments, the timings reflect
only the operation performed on the mesh. Loading and data struc-
ture creation (for methods that use half edge or other structures) is
not included. For our GPU measurements, please note that all of
all our algorithmic steps are performed on the GPU, so there is no
intermediate transfers from main memory.

We implemented the normals estimation of [Max99] using our
abstraction and we compare its performance to an existing li-
brary [Rus15]. Results are summarized in Table 3.

Table 3: Vertex normals computation using the weights of
N. Max [Max99], timings in seconds.

Vertex Normals
Trimesh2 ours(CPU) ours(GPU)

Embreea Orchid (4M∆) .61 .32 0.0078
Earhart Flight Suit (21,5M∆) 3.31 1.93 0.046
Pergolesi side chair (29M∆) 4.45 2.81 0.073

As a second example, we slice a mesh by a plane. This induces
a change of the mesh topology as well as the creation of different
types of faces. For a triangle mesh this yields triangles and quads
along the regions being cut. The results of our serial and parallel
implementations are summarized in Table 4.

Table 4: Mesh slicing by a plane, timings in seconds

Mesh slicing
Ours (CPU) Ours (GPU)

Embreea Orchid (4M∆) 0.17 0.011
Earhart Flight Suit (21.5M∆) 1.13 0.065
Pergolesi side chair (29M∆) 1.68 0.125

A more elaborate type of problems are subdivision schemes. The
generalized Catmull-Clark subdivision [CC78] offers an interest-
ing challenge for specialized triangle mesh based on classical data

Table 5: Catmull-Clark subdivision based on the mesh matrix, tim-
ings for 1 step in seconds.

Catmull-Clark subdivision
Ours Ours

Meshlab OpenSubdiv CPU GPU
Embreea Orchid 4M∆ 8.24 6.77 2.93 0.25
Earhart Flight Suit 21.5M∆ 44.58 54.82 27.29 2.01
Pergolesi side chair 29M∆ 252.68 90.75 48.66 4.09

structures since the mesh nature changes to quads after the first
round. Our performance results are summarized below and com-
pared to the reference implementation in [CCC∗08] and to the state
of the art implementation of OpenSubdiv [Pix]. Please note that for
OpenSubdiv, major steps are performed on the CPU, namely topol-
ogy refinement and stencil table creation. Only the evaluation of
stencils is performed on the GPU. We can readily observe that there
is a noticeable deterioration in the performance of Meshlab on the
Pergolesi side chair mesh. This reflects that the implementation is
affected by swapping as it consumes more than the available 32GB
of memory. In contrast, our lean mesh representation maintains a
steady performance even on graphics hardware.

10. Discussion and conclusion

A data structure is not a goal per se, but rather a representation
which facilitates performing desired numerical tasks on the under-
lying data. In this spirit, we described a mesh representation based
on sparse matrices, and demonstrated how the ensuing storage re-
quirements can be effectively reduced. Furthermore, we developed
algebraic tools to allow our representation to blend seamlessly into
the mesh processing pipeline. Special attention is paid to avoid-
ing intermediate data creation (communication) which can severely
hamper performance. Note that ideas like action maps can be eas-
ily implemented on top of existing dedicated linear algebra pack-
ages such as, e.g., Eigen [GJ∗10] thanks to expression template.
Within our formalism, algorithms that generally require consider-
able amounts of code and programming effort can be formulated in
a clear and concise linear algebra syntax. This improves code read-
ability and reduces code bloat bringing us closer to the spirit of the
“ten digits, five seconds, and just one page” jingle [Tre05].

Acknowledgements

Mesh data sets are courtesy of the Smithsonian Institution. We
thank Helge Rhodin for his feedback on the manuscript, and Nadia
Robertini for her most encouraging comments on an early presen-
tation of this material. This research was partially supported by the
Max Planck Center for Visual Computing and Communication.

References
[AMR88] ABRAHAM R., MARSDEN J. E., RATIU R.: Manifolds, Tensor

Analysis, and Applications. Springer-Verlag New York, Inc., 1988. 1

[ASW06] ASPNÄS M., SIGNELL A., WESTERHOLM J.: Efficient as-
sembly of sparse matrices using hashing. In PARA’06 (2006), Springer-
Verlag, pp. 900–907. 3

[Bau72] BAUMGART B. G.: Winged edge polyhedron representation.
Tech. rep., Stanford, CA, USA, 1972. 1, 2

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

[BDO12] BELL N., DALTON S., OLSON L. N.: Exposing fine-grained
parallelism in algebraic multigrid methods. SIAM Journal on Scientific
Computing 34, 4 (2012), C123–C152. 3, 7, 8

[BG09] BELL N., GARLAND M.: Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC ’09: Proceed-
ings of the Conference on High Performance Computing Networking,
Storage and Analysis (2009), ACM, pp. 1–11. 2, 3

[Bos98] BOSSAVIT A.: Computational electromagnetism. Electromag-
netism. Academic Press Inc., San Diego, CA, 1998. Variational formu-
lations, complementarity, edge elements. 2

[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S., KOBBELT L.:
Openmesh – a generic and efficient polygon mesh data structure. In
OpenSG Symposium (2002). 2

[CC78] CATMULL E., CLARK J.: Recursively generated b-spline sur-
faces on arbitrary topological meshes. Computer-Aided Design 10, 6
(1978), 350 – 355. 6, 11

[CCC∗08] CIGNONI P., CALLIERI M., CORSINI M., DELLEPIANE M.,
GANOVELLI F., RANZUGLIA G.: MeshLab: an Open-Source Mesh Pro-
cessing Tool. In Eurographics Italian Chapter Conference (2008). 11

[CDG∗08] CHANG F., DEAN J., GHEMAWAT S., HSIEH W. C., WAL-
LACH D. A., BURROWS M., CHANDRA T., FIKES A., GRUBER R. E.:
Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst. 26, 2 (June 2008), 4:1–4:26. 2

[Cho97] CHOW M. M.: Optimized geometry compression for real-time
rendering. In Proceedings of the 8th Conference on Visualization ’97
(1997), IEEE Computer Society Press, pp. 347—354. 2

[CKS98] CAMPAGNA S., KOBBELT L., SEIDEL H.-P.: Directed edges–a
scalable representation for triangle meshes. J. Graph. Tools 3, 4 (1998),
1–11. 2

[Com16] COMSOL: Multiphysics Reference Guide, 1996–2016. 3

[CRW05] CASTILLO P., RIEBEN R., WHITE D.: Femster: An object-
oriented class library of high-order discrete differential forms. ACM
Trans. Math. Softw. 31, 4 (Dec. 2005), 425–457. 2

[Dav] DAVIS T.: SuiteSparse: A suite of sparse matrix packages.
http://www.cise.ufl.edu/ davis/. 3, 6, 10

[Dav06] DAVIS T. A.: Direct Methods for Sparse Linear Systems (Fun-
damentals of Algorithms 2). Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, USA, 2006. 2, 3, 6

[Dee95] DEERING M.: Geometry compression. In Proceedings of the
22nd Annual Conference on Computer Graphics and Interactive Tech-
niques (1995), SIGGRAPH ’95, ACM, pp. 13–20. 2

[Dem12] DEMOUTH J.: Sparse matrix-matrix multiplication on the gpu.
In Proceedings of the GPU Technology Conference (2012). 3, 7

[DER87] DUFF I. S., ERISMAN A. M., REID J. K.: Direct Methods for
Sparse Matrices. Monographs on Numerical Analysis. Oxford Univer-
sity Press, USA, 1987. 4

[DKT06] DESBRUN M., KANSO E., TONG Y.: Discrete differential
forms for computational modeling. In ACM SIGGRAPH Courses (2006),
ACM, pp. 39–54. 2

[DMPS07] DICARLO A., MILICCHIO F., PAOLUZZI A., SHAPIRO V.:
Solid and physical modeling with chain complexes. In SPM ’07: Pro-
ceedings of the 2007 ACM symposium on Solid and physical modeling
(2007), ACM, pp. 73–84. 2

[DMZ∗16] DEVITO Z., MARA M., ZOLLHÖFER M., BERNSTEIN
G. L., RAGAN-KELLEY J., THEOBALT C., HANRAHAN P., FISHER
M., NIESSNER M.: Opt: A domain specific language for non-linear least
squares optimization in graphics and imaging. CoRR abs/1604.06525
(2016). 3

[Edm60] EDMONDS J.: A combinatorial representation for polyhedral
surfaces. Notices of the American Mathematical Society 7 (1960). 2

[EL14] ENGBLOM S., LUKARSKI D.: Fast matlab compatible sparse
assembly on multicore computers. CoRR abs/1406.1066 (2014). 3, 10

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In SIGGRAPH ’97 (1997), pp. 209–216. 8, 9

[GHS∗15] GREMSE F., HOFTER A., SCHWEN L. O., KIESSLING F.,
NAUMANN U.: Gpu-accelerated sparse matrix-matrix multiplication
by iterative row merging. SIAM Journal on Scientific Computing 37,
1 (2015), C54–C71. 3, 8

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3.
http://eigen.tuxfamily.org, 2010. 11

[GL81] GEORGE A., LIU J. W.: Computer Solution of Large Sparse
Positive Definite Systems. Prentice Hall, 1981. 11

[GLG∗15] GUO X., LANGE M., GORMAN G., MITCHELL L., WEI-
LAND M.: Developing a scalable hybrid mpi/openmp unstructured finite
element model. Computers & Fluids 110 (2015), 227 – 234. 2

[GMS92] GILBERT J. R., MOLER C., SCHREIBER R.: Sparse matrices
in matlab: Design and implementation. SIAM Journal on Matrix Analysis
and Applications 13, 1 (1992), 333–356. 2, 3, 10

[GPJS99] GILBERT J. R., PUGH JR W. W., SHPEISMAN T.: Ordered
sparse accumulator and its use in efficient sparse matrix computation,
Nov. 9 1999. US Patent 5,983,230. 8

[GS85] GUIBAS L., STOLFI J.: Primitives for the manipulation of gen-
eral subdivisions and the computation of voronoi. ACM Trans. Graph. 4,
2 (Apr. 1985), 74–123. 2

[GY03] GU X., YAU S.-T.: Global conformal surface parameterization.
In SGP ’03 (2003), pp. 127–137. 2

[Har67] HARARY F.: Graphs and matrices. SIAM Review 9, 1 (1967), pp.
83–90. 2

[HLSO12] HECHT F., LEE Y. J., SHEWCHUK J. R., O’BRIEN J. F.:
Updated sparse cholesky factors for corotational elastodynamics. ACM
Trans. Graph. 31, 5 (Sept. 2012), 123:1–123:13. 2

[Hop99] HOPPE H.: Optimization of mesh locality for transparent vertex
caching. In SIGGRAPH ’99 (1999), pp. 269–276. 2

[ip17] IN PREPARATION: Meshblas. in preparation (2017). 2

[Jan] JANSSON N.: Optimizing sparse matrix assembly in finite element
solvers with one-sided communication. In High Performance Computing
for Computational Science - VECPAR 2012, Springer, pp. 128–139. 3

[JDB∗15] JEHL M., DEDNER A., BETCKE T., ARISTOVICH K.,
KLÖFKORN R., HOLDER D.: A fast parallel solver for the forward prob-
lem in electrical impedance tomography. IEEE Transactions on Biomed-
ical Engineering 62, 1 (Jan 2015), 126–137. 2

[JHN11] JANSSON N., HOFFMAN J., NAZAROV M.: Adaptive simula-
tion of turbulent flow past a full car model. In SC 2011 (Nov 2011),
pp. 1–8. 2

[Ket98] KETTNER L.: Designing a data structure for polyhedral surfaces.
In SCG ’98 (1998), ACM, pp. 146–154. 2

[Kir47] KIRCHHOFF G.: über die auflösung der gleichungen, auf welche
man bei der untersuchungen der linearen verteilung galvanischer ströme
gefführt wird,. Ann. Phys. Chem, 72 (1847), 497–508. Translated by J.
B. O’Toole in I.R.E. Trans. Circuit Theory, CT-5 (1958) 4. 2

[Lie94] LIENHARDT P.: N-dimensional generalized combinatorial maps
and cellular quasi-manifolds. Int. J. Comput. Geometry Appl. 4, 3 (1994),
275–324. 2

[LV15] LIU W., VINTER B.: A framework for general sparse matrix-
matrix multiplication on gpus and heterogeneous processors. J. Parallel
Distrib. Comput. 85, C (Nov. 2015), 47–61. 3, 7, 8, 9, 10

[Män89] MÄNTYLÄ M.: Advanced Topics in Solid Modeling. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1989, pp. 49–74. 1, 2

[Max99] MAX N.: Weights for computing vertex normals from facet
normals. J. Graph. Tools 4, 2 (1999), 1–6. 5, 11

[MBB∗13] MATTSON T., BADER D., BERRY J., BULUC A., DON-
GARRA J., FALOUTSOS C., FEO J., GILBERT J., GONZALEZ J., HEN-
DRICKSON B., KEPNER J., LEISERSON C., LUMSDAINE A., PADUA

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

R. Zayer, M. Steinberger, & H.P. Seidel / A GPU-Adapted Structure for Unstructured Grids

D., POOLE S., REINHARDT S., STONEBRAKER M., WALLACH S.,
YOO A.: Standards for graph algorithm primitives. In IEEE High Per-
formance Extreme Computing Conference (HPEC) (2013), pp. 1–2. 2

[MLDH15] MAGLO A., LAVOUÉ G., DUPONT F., HUDELOT C.: 3d
mesh compression: Survey, comparisons, and emerging trends. ACM
Comput. Surv. 47, 3 (Feb. 2015), 44:1–44:41. 2

[MTW73] MISNER C., THORNE K., WHEELER J.: Gravitation. W.H.
Freeman and Company, 1973. 3

[NVI15] NVIDIA: The API reference guide for cuSPARSE, the CUDA
sparse matrix library., v7.5 ed. NVIDIA, September 2015. 2, 9, 10

[Pix] PIXAR: Opensubdiv. http://graphics.pixar.com/opensubdiv. 11

[PO09] PARKER E. G., O’BRIEN J. F.: Real-time deformation and frac-
ture in a game environment. In Proc. SCA ’09 (2009), ACM, pp. 165–
175. 2

[PT95] PDE TOOLBOX THE MATHWORKS I.: MATLAB and Partial
Differential Equation Toolbox. Natick, Massachusetts, United States,
1995. 1, 3

[RG15] REGULY I. Z., GILES M. B.: Finite element algorithms and data
structures on graphical processing units. Int. J. Parallel Program. 43, 2
(Apr. 2015), 203–239. 2

[Rus15] RUSINKIEWICZ S.: The trimesh2 library-version 2.12.
http://gfx.cs.princeton.edu/proj/trimesh2/, 2015. 11

[SDZS16] STEINBERGER M., DERLER A., ZAYER R., SEIDEL H. P.:
How naive is naive spmv on the gpu? In IEEE High Performance Ex-
treme Computing Conference (HPEC) (2016), pp. 1–8. 8

[Tay70] TAYLOR R. L.: FEAP - finite element analysis program, version
8.4, 2013, 1970. 1

[TMDK15] TENG Y., MEYER M., DEROSE T., KIM T.: Subspace con-
densation: Full space adaptivity for subspace deformations. ACM Trans.
Graph. 34, 4 (July 2015), 76:1–76:9. 3

[TPD15] THÉBAULT L., PETIT E., DINH Q.: Scalable and efficient im-
plementation of 3d unstructured meshes computation: A case study on
matrix assembly. SIGPLAN Not. 50, 8 (Jan. 2015), 120–129. 3

[Tre05] TREFETHEN L. N.: TEN DIGIT ALGORITHMS. Tech. rep.,
Oxford University, 2005. 11

[TWT∗16] TANG M., WANG H., TANG L., TONG R., MANOCHA D.:
CAMA: Contact-aware matrix assembly with unified collision handling
for GPU-based cloth simulation. Computer Graphics Forum (Proceed-
ings of Eurographics) 35, 2 (2016), 511–521. 3

[WBS∗13] WEBER D., BENDER J., SCHNOES M., STORK A., FELL-
NER D.: Efficient gpu data structures and methods to solve sparse lin-
ear systems in dynamics applications. Computer Graphics Forum 32, 1
(2013), 16–26. 3

[Wor81] WORLTON J.: The philosophy behind the machines. Computer
World (Nov.9 1981). 2

[YT12] YOSHIZAWA H., TAKAHASHI D.: Automatic tuning of sparse
matrix-vector multiplication for crs format on GPUs. In IEEE 15th Inter-
national Conference on Computational Science and Engineering (CSE)
(2012), pp. 130–136. 2

[Zay07] ZAYER R.: Numerical and Variational Aspects of Mesh Parame-
terization and Editing. Doctoral dissertation, Universität des Saarlandes,
September 2007. 3

Appendix A: Mesh matrix relations

We can define a generalized face-face adjacency matrix as
Sf = M>M; the nonzero entries of S f represent the number of
shared vertices between any two given faces. The matrix Sf is in-
teresting in many ways. Let us examine it in the light of our first
example from section 3. The corresponding matrix is given below
on the right side. We can see that the diagonal entries count the

number of vertices of a face, whereas the non-diagonal entries re-
veal the nature of adjacency between faces. When two faces share
an edge, the corresponding value is 2, whereas it is 1 when only a
single vertex is shared, as for instance, faces 2 and 4. This informa-
tion reveals which faces lay on the mesh boundary. On a given row,
when the number of off-diagonal entries flagging a 2 matches the
diagonal entry, this means all edges are double and thus the face has
no boundary edges. When they differ, the difference is the number
of face edges on the boundary. The conventional adjacency matrix
Ad of the dual mesh is related to the matrix S f as Ad = {Sf == 2};
The matrix Ad amounts to restricting the face-face connectivity to
shared edges as explained above. Thus it yields exactly the dual
of the original mesh. This is illustrated in the example in figure 6
and its corresponding dual matrix Ad. A more elaborate example is
shown in figure 7.

Figure 6: Example mesh and its dual.

c1 c2 c3 c4 c5 c6 c7 c8

r1 4 2 2 2
r2 2 6 2 1 2 2 2 2
r3 2 4 2 1 2
r4 1 2 3 2
r5 2 1 2 4 2
r6 2 2 4 2
r7 2 2 2 5
r8 2 2 2 5

S f

;

c1 c2 c3 c4 c5 c6 c7 c8

r1 1 1 1
r2 1 1 1 1 1 1
r3 1 1 1
r4 1 1
r5 1 1 1
r6 1 1 1
r7 1 1 1
r8 1 1 1

Ad

Figure 7: A mesh (right) and its dual (left) as obtained from Ad.
Here, figure of a dancer from 1910, courtesy of the Smithsonian.

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

