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ABSTRACT
�e rising popularity of the graphics processing unit (GPU) across
various numerical computing applications triggered a breakneck
race to optimize key numerical kernels and in particular, the sparse
matrix-vector product (SpMV). Despite great strides, most existing
GPU-SpMV approaches trade o� one aspect of performance against
another. �ey either require preprocessing, exhibit inconsistent
behavior, lead to execution divergence, su�er load imbalance or in-
duce detrimental memory access pa�erns. In this paper, we present
an uncompromising approach for SpMV on the GPU. Our approach
requires no separate preprocessing or knowledge of the matrix
structure and works directly on the standard compressed sparse
rows (CSR) data format. From a global perspective, it exhibits a
homogeneous behavior re�ected in e�cient memory access pat-
terns and steady per-thread workload. From a local perspective, it
avoids heterogeneous execution paths by adapting its behavior to
the work load at hand, it uses an e�cient encoding to keep tem-
porary data requirements for on-chip memory low, and leads to
divergence-free execution. We evaluate our approach on more than
2500 matrices comparing to vendor provided, and state-of-the-art
SpMV implementations. Our approach not only signi�cantly out-
performs approaches directly operating on the CSR format ( 20% av-
erage performance increase), but also outperforms approaches that
preprocess the matrix even when preprocessing time is discarded.
Additionally, the same strategies lead to signi�cant performance
increase when adapted for transpose SpMV.
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A =


· 5 · 9 · · 1 · · ·
2 3 6 · 3 6 · 3 6 3
· · 7 · · · 1 · · ·
· · · · · 1 · · · ·
· · 4 8 1 · · · 5 7·


val = {5, 9, 1, 2, 3, 6, 3, 6, 3, 6, 3, 7, 1, 1, 4, 8, 1, 5, 7}

col id = {1, 3, 6, 0, 1, 2, 4, 5, 7, 8, 9, 2, 6, 0, 2, 3, 4, 8, 9}
row ptr = {0, 3, 11, 13, 14, 19}

Figure 1: ACSRmatrixwith (color coded) non-zero splitting.

1 INTRODUCTION
Conceptually, the sparse matrix-vector product (SpMV): y = Ax ,
where A is a sparse matrix and x and y are dense vectors, is a rather
straightforward operation in linear algebra. Nonetheless, it is of
u�er importance, as it is o�en evaluated multiple times, be it in solv-
ing linear systems, performing eigenanalysis, or querying graph
structures. Being part of the critical path of many applications,
every performance improvement in SpMV translates directly into
gains for the entire application. Traditionally, the standard com-
pressed sparse rows (CSR) representation of sparse matrices lends
itself to a simple, yet e�cient sequential SpMV implementation, as
all non-zeros that contribute to one output element are placed next
to another in memory, see Algorithm 1. However, the advent of
a�ordable, parallel architectures, poses new challenges for SpMV
re�ected in recent research e�orts [1–4, 6, 7, 9–17, 19, 21–28].

Algorithm 1: Sequential SpMV y = A · x
1 for i ← 0 to A.num rows do
2 temp← 0
3 for k ← A.row ptr [i] to A.row ptr [i + 1] do
4 temp← temp +A.val [k ] · x [A.col id [k ]]
5 y[i] ← temp

�ere are usually two options when optimizing SpMV for modern
parallel architectures: First, one can adapt the core SpMV algorithm
to the available hardware, by, e.g., tuning the execution strategy,
adjusting memory access pa�erns, or generating a be�er load bal-
ance. Second, one can alter the way the matrix is stored with the
characteristics of the hardware in mind, such that an SpMV imple-
mentation uses the hardware more e�ciently. While the second
approach potentially o�ers more space for improvements, it comes
with the “hidden charges” of preprocessing and additional storage
requirements. �us, an alternative format only makes sense, if there
is su�cient memory available and the preprocessing overhead is
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amortized over multiple SpMV iterations. In practice, numerical
computing applications encompass other algorithmic steps which
may require the matrix in a standard data format. �us, non-general
purpose alternative formats may have limited practical value [9].

Working along the �rst option, one of the earliest SpMV imple-
mentations on the graphics processing unit (GPU), CSR-Scalar [10],
explored parallelization over the matrix rows. Visibly, as rows may
have unequal lengths, each thread ends up with a di�erent nnz,
which will reduce performance. Moreover, as rows grow larger, the
memory access of threads dri�s further apart, rendering the overall
approach ine�cient [21]. To address these issues, one can assign
an entire group of threads to work on a row [6], o�en referred to
as CSR-Vector. However, this strategy does not work well for small
rows, extremely long rows still cause slowdowns, and the output
memory access is ine�cient, as only one thread within a group is
used. To counter these issues, one can assign an equal number of
non-zeros (nnz) to every thread [13], dynamically switch between
CSR-Scalar and CSR-Vector [7, 11], or balance the number of ele-
ments and rows processed by each thread [15]. However, as we will
discuss in section 2, all of the aforementioned approaches still suf-
fer from at least one of the following issues: execution divergence,
detrimental output memory access pa�ern, unnecessary reductions,
or are oblivious to the way the input vector x is accessed.

We propose an SpMV method that considers all levels of the GPU
memory hierarchy, creating coherent memory access for global de-
vice memory while reading non-zeros, column indices, and x (when
possible), and when writingy. Our method performs load balancing
on a global and on a local level, using a strict non-zero spli�ing
(see Figure 1) to avoid thread divergence when possible. When
divergence cannot be avoided, we make sure that it e�ects e�cient
operations, like on-chip shared memory access, rather than global
memory. We encode data e�ciently as we store it in registers or
on-chip shared memory. Finally, we dynamically switch between
di�erent data combination strategies, avoiding unnecessary com-
putations. To some extent these ideas are also applicable when
multiplying with a transpose matrix (SpMVT). We devise the de-
tails of our approach in section 3. We evaluate our method on the
entire University of Florida Sparse Matrix Collection [8], comparing
against vendor provided implementations and state-of-the-art ap-
proaches. Detailed performance comparisons are shown in section
4, as well as in the supplemental material.

2 BACKGROUND
Arguably, the two most common sparse matrix formats are coordi-
nate list (COO) and compressed sparse rows (CSR). Although CSR
SpMV usually performs favorably in comparison to COO SpMV as
it reduces memory bandwidth, COO SpMV implementations [4]
can be built around e�cient GPU scan primitives [20]. Trying to
achieve more uniform workloads and be�er memory access pat-
terns, a multitude of di�erent formats have been proposed. A simple
way of achieving uniform workload is to pad all rows to the same
length (ELL format) [4]. More advanced methods partition the ma-
trix to balance the work between threads (PKT format) [3] or bin
rows according to their length [1, 16]. While the above-mentioned
approaches are competitive for certain matrices, they do not achieve
state-of-the-art performance in the general case.

Alternatively, matrices can be organized in blocks. For example
using a bit encoding [24], or as a block compressed COO format
using bit �ags to store row indices (yaSpMV) [27]. yaSpMV even
chooses the estimated best block setup for a given matrix. For-
mats can be combined in a bock-based manner. For example, HYB
combines the ELL and COO format [4]. �e most suitable format
combination depends on the sparsity pa�ern and requires com-
paring a multitude of formats [22]. While block-based or hybrid
formats can increase performance, their preprocessing time can be
in the range of seconds.

2.1 Analysis of State-of-the-art GPU CSR SpMV
To the best of our knowledge, some of the best performers among
publicly available GPU CSR SpMV implementations for general
matrices are CSR5 [13], CSR-adaptive [7, 11], and merge-based
SpMV [15]. �e common theme among all three methods is that
each thread is assigned consecutive non-zeros from the same row,
mirroring parts of the core sequential SpMV (line 4 in Alg. 1). How-
ever, they di�er in terms of work distribution among threads, mem-
ory access, and preprocessing requirements. In the following we
will analyze their behavior. Our �ndings are summarized in Table 1
and �ow charts for all methods are provided in Figure 2.

�e ensuing discussions relies on a basic understanding of GPU
hardware and execution, which we quickly summarize here. Func-
tions executed on a GPU in parallel are called kernels. Every kernel
is split into blocks of threads that run on the same multi-processor
and can communicate via on-chip shared memory. Blocks are trans-
parently split into warps or wavefronts, e.g., 32 or 64 threads, which
execute on one single instruction, multiple data (SIMD) unit. If
threads within the same warp execute di�erent instructions their
execution is serialized, leading to thread divergence. Similarly, when
they access global GPU memory, their access is most e�cient if it is
coalesced, i.e., if they access data within a 128 bytes region. When ac-
cessing shared memory, the distance between accessed words does
a�ect performance. However, access is most e�cient, if addresses
do not fall on the same banks, i.e., if mod (address, 32) is di�erent
for all threads. Also, threads within a warp can access the registers
of one another using shu�e instructions. �e availability of both
shared memory and registers is limited on each multi-processor.

CSR5. �e core algorithm of CSR5 proceeds by assigning a prede-
�ned number n of consecutive non-zeros to every thread, regardless
of how they are distributed across rows. Each thread loops over
its non-zeros, fetches them from global memory alongside the col-
umn id, and loads its entry from x and adds the values up. If one
was operating on the original CSR format, threads would access
matrix and column id values which are n memory locations apart,
resulting in a poor access pa�ern. However, the preprocessing step
of CSR5 rearranges data to achieve coalesced memory access. To
correctly handle the end of rows, CSR5 precomputes and stores a bit
pa�ern indicating whether an entry forms the end of a row. Once
the end of a row is reached, the temporary sum is wri�en to global
memory. As threads are potentially responsible for multiple rows,
the resulting memory accesses can be far apart. Also, threads will
only concurrently write to global memory, when their bit pa�ern
matches, thus, in general, only few threads will access memory
concurrently, leading to thread divergence.
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CSR5 CSR-adaptive merge-based ours
global load balancing equal nnz #nnz rounded down to row equal nnz + rows equal nnz

local load balancing equal nnz row a�er row / reduction equal sums + writes equal nnz
matrix access coalesced (preprocessing) pre-loaded to shared pre-loaded to shared vector load + sh�

input vector access arbitrary arbitrary arbitrary thread sorted
local row overlap warp scan + global atomics block scan block scan warp red. + shared atomics

output access arbitrary coalesced / arbitrary bu�ered, coalesced bu�ered, coalesced
global row overlap atomics locks �x-up pass atomics

empty row handling skip (special handling) not considered balanced skip (special handling)
additional memory full matrix o�set bu�er block starts block starts

separate preprocessing data layout + �ag bu�ers o�set bu�er none none
Table 1: Comparison between di�erent CSR SpMV methods. Characteristics that can be detrimental for performance in com-
parison to other approaches in bold. For details see Section 2.1.
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Figure 2: Flow chart for the di�erent CSR SpMV algorithm.
Yellow bu�ers come from preprocessing, green bu�ers are
global inputs to SpMV, blue bu�ers are placed in shared
memory. �in arrows represent memory accesses, dashed
arrowsmight showdetrimentalmemory access patterns and
dashed steps might lead to thread divergence. Note that
merge-based SpMV is split into three kernels: (top) generat-
ing the block starts bu�er; (bottom) performing SpMV; and
(not shown) merges the �x-up bu�er int y.

If rows are shared across di�erent threads, the result is not writ-
ten to y directly, but a reduction is performed in shared memory
a�er all threads completed the work on their data. �is reduction is
even performed when no threads have le�over values and relies on
information from preprocessing about which threads work on the
same row. As there might be overlaps with other blocks, the result
of the �rst and last row of each block is wri�en using atomic oper-
ations to global memory. �us, the output vector must be zeroed
before running SpMV. CSR5 uses an optimization for long rows,
i.e., the ones spanning an entire block, for which a direct reduction
is executed. As empty rows cannot be represented by their bit
pa�ern, a separate o�set array is created during preprocessing, and
used in case a block contains empty rows. Although the necessary
preprocessing to convert from CSR to CSR5 can be performed on
the GPU, it takes between 10 − 30× longer than SpMV.

CSR-adaptive. �e core CSR-adaptive algorithm cuts the non-
zeros of the matrix into approximately equal chunks and rounds
them down, such that small rows do not span across chunks. Chunk
sizes are chosen such that they �t in shared memory. As chunk sizes
vary, an optimal global load balancing is not achieved. However,
they can be loaded in a coalesced manner when a block starts pro-
cessing its chunk. At the same time, the column indices are loaded
and the corresponding input vector entry is fetched. �e access
pa�ern for the input vector solely depends on the column indices.
Depending on the number of rows a block processes, CSR-adaptive
switches between three strategies: CSR-vector (for a single row),
CSR-stream (if threads per row >= 2), and CSR-scalar. �e CSR-
scalar approach assigns one thread to each row, possibly resulting
in shared memory bank con�icts and thread divergence as rows
have di�erent lengths. However, the output access pa�ern will
be coalesced. Clearly, one long row with many short or empty
rows (such that the threshold for CSR-stream is not reached), can
lead to signi�cant load imbalance and slowdowns. �e CSR-stream
approach immediately performs a conditional reduction in shared
memory. In comparison to CSR-scalar the reduction is not cost
e�cient. As the result for each row lies with one of the threads that
was assigned to the row, only a subset of threads write an output
and thus the memory access pa�ern is not coalesced.

�e approach splits long rows into multiple chunks and uses
busy wait locks to resolve access con�icts to output values. �e
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exact impact of this strategy on performance depends on the low-
level GPU scheduler. Certainly, a signi�cant overhead should be
expected if there are many long rows. According to the description
of the approach, it seems that empty rows are not considered for
load balancing. Closely located empty rows can a�ect global load
balancing negatively as they may end up in the same block. Prepro-
cessing for CSR-adaptive is inherently serial and cannot be readily
performed on the GPU. It takes 1 − 10× longer than the SpMV
on the same matrix. When CPU and GPU do not share the same
memory, data transfer further complicates the use of CSR-adaptive
for non-static matrices.

Merge-based SpMV. �e core merge-based SpMV implementation
assigns work to threads in such a way that the sum of handled non-
zeros plus writes to the output vector is equal among all threads.
To this end, in an initial kernel, an additional bu�er is populated
with the position of each block’s �rst and last row/non-zero. It is
assumed that this bu�er has been allocated beforehand and thus
no allocation costs arise. During the SpMV step, threads search
for their own starting row/non-zero from their block’s starting
position. �en, all threads cooperatively load the block’s non-zeros,
column indices and x entries, multiply the values and store them in
shared memory. �e access to x completely depends on the input
data. A�er a synchronization, every thread starts working on its
rows/non-zeros, loading the data from shared memory to registers
or �lling its registers with zeros when a row end is encountered. At
the same time, it computes the SpMV running sums. However, all
but the last row’s result are discarded, which is used in a block-wide
conditional pre�x sum, computing the carryover for shared rows.
With the carryover as a starting point, every thread again computes
the core SpMV summation and stores its results in a shared memory
bu�er, which is used the smooth out the access pa�ern to y. As
rows can span multiple blocks, the last row result in each block is
not wri�en to y, but stored in another bu�er, which is subject to a
conditional reduction in a separate kernel.

While weighing the number of processed rows against summa-
tion operations is not very intuitive per se for a SIMD architecture,
where di�erent instructions result in thread divergence, this ap-
proach nonetheless comes with a set of advantages: First, empty
rows are implicitly handled and do not a�ect load balancing nega-
tively. Second, the number of output rows is bounded per block and
thus the access to y can be bu�ered in shared memory. However,
there are also downsides to the approach. First, each thread has to
search for its starting row/non-zero. Second, the number of reads
(val , col id , x ) may vary signi�cantly between blocks and thus lead
to load imbalances. �ird, comparing against approaches consid-
ering non-zeros as workload, more work needs to be carried out:
Consider rows with two non-zeros each and threads carry out six
steps. Merge-based SpMV would assign two rows to each thread
(2 · 2nnz and 2 cot 1 row ends); CSR5 would assign three rows to
each thread. �us, merge-based SpMV overall needs to execute
more threads to complete the work on the same matrix.

3 HOLA-SPMV
Our approach, globallyhomogeneous, locally adaptive SpMV, (Hola-
SpMV), a�empts to achieve an equally good behavior on all perfor-
mance critical steps discussed earlier (see Table 1). Our approach

consists of two kernels. �e �rst deals with global load balancing
and work assignment (subsection 3.1). �e second describes the
usual path through our implementation, considering local load bal-
ancing, memory access and data compression (subsection 3.2). �e
treatment of long rows and empty rows is detailed in subsection 3.3,
and the extension to transpose SpMV is given in subsection 3.4.

3.1 Global Load Balancing
We understand global load balancing as how work is distributed
between blocks running on the GPU. A homogeneous load among
blocks usually leads to similar run times and is essential for good
performance. Considering that SpMV is in general bounded by
loading input data (non-zeros, col ids, x) and the inner loop of
SpMV runs over the non-zeros, assigning the same number of non-
zeros to every block of threads seems to be the intuitive choice.
CSR-adaptive’s approach of adjusting these boundaries to rows
leads to slight imbalances and requires a sequential preprocessing
step. �e merge-based strategy of considering non-zeros and rows
as equal loads leads to blocks potentially performing signi�cantly
di�erent number of reads and multiply add instructions. �us, we
choose a strict non-zero spli�ing, assigning a prede�ned number
of non-zeros to each block. While a static assignment does not
require a search, each block still needs to know to which rows its
data belongs. As this information is not directly available in the
CSR format, we require an initial step to prepare this information in
a global bu�er. For the example shown in Figure 1, this additional
bu�er would look as follows:

rowStarts = {0, 1, 1, 2, 4, 4}
We use a sca�er approach, as outlined in Algorithm 2. Note that in
comparison to CSR5, which also follows a strict non-zero spli�ing
approach, we avoid costly preprocessing and only run this slim
kernel before the main SpMV step. Please note that we assume the
memory for this bu�er has been allocated in advance.

Algorithm 2: AssignRowsGlobal
1 a ← row ptr [t id ]
2 b ← row ptr [t id + 1]
3 blocka ← divup(a, NNZ PER BLOCK)
4 blockb ← (b − 1)/NNZ PER BLOCK
5 while blocka ≤ blockb do
6 blockRowStar ts[blocka] ← t id
7 blocka ← blocka + 1
8 y[t id ] ← 0

While a sca�er approach requires all row ptr entries to be read,
it is guaranteed that each thread essentially loads data only once
from global memory (row ptr is cached in L1 cache). Each block
of the main SpMV step typically handles between two and four
thousand non-zeros (depending on the setup). �us, in most cases
multiple rows will be processed by one block and only few threads
write to the blockRowStarts bu�er. Also the loop (line 5-7), which
iterates over the blocks that start with the same row, is usually
executed only once. In case a matrix is quite dense (many non-
zeros per row) it could be bene�cial to use multiple threads to write
the output in parallel, reducing the number of loop iterations and
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Figure 3: Flow chart for our core Hola-SpMV. Green blocks
involve global memory, orange a temporary bu�er, blue
shared memory. Dashed steps can cause thread divergence.

achieving a be�er output memory access pa�ern. �is change in
execution setup could be determined from the average number of
non-zeros per row and thus switched dynamically. However, in our
experiments we saw only slight gains when switching the strategy
for matrices with very long rows. �us, for all tests we used the
simple one thread per row setup.

Note, that our main SpMV algorithms requires the output to be
set to zero beforehand. Starting one thread per row allows us to
execute this step in the same kernel (line 8). �is would not have
been possible with a search-based approach (similar to merge-based
SpMV). �e runtime would depend on the matrix structure as each
thread loads row data until the right o�set is found.

3.2 Core Hola-SpMV
�e usual path through our SpMV approach is outlined in Algo-
rithm 3 and can be broken down into �ve major steps:

(1) assign row o�sets for local load balancing (ln 1)
(2) input data loading and distribution (ln 2)
(3) summation and bu�ering in shared memory (ln 6-15)
(4) resolving the output for shared rows (ln 17-20)
(5) transferring data from shared memory to y (ln 22-23)

�e algorithm is carried out by each thread block, working on the
prede�ned number of non-zeros assigned to it. �e role of threads
switches multiple times during the algorithm, making sure that
each step is executed in an e�cient way.

Local Load Balancing. Our local load balancing approach follows
the same modus operandi of the global approach: we assign a
prede�ned number of non-zeros to each thread. In this case, every
thread needs to know to which rows its entries belong, such that
it can combine them accordingly and write to the right output
location. To assign starting rows, we essentially perform the same
step as in the global case, just within a block, storing the result in
shared memory, as shown in Algorithm 4. However, in addition to
the starting row, we also generate information about which entries
are to be combined, which we encode in a bit mask (line 13-15). If
the ith bit of the mask is set, it signals that the thread’s ith non-zero
is the last entry in a row. Using a bit mask, saves shared memory
as well as registers when performing the following steps of the
algorithm. Note that in this way, we only read the row ptr data
once in a coalesced manner and keep all information around in a
compressed form.

Algorithm 3: CoreHola SpMV
1 (rowStar ts, rowBits, f laдs) ←AssignRowsLocal ()
2 (values) ← LoadAndPremultiply ()
3 sync�reads ()
4 if f laдs[t id ]/WARP SIZE then
5 use row ptr instead of rowBits

6 row ← rowStar ts[t id ]
7 bits ← rowBits[t id ]
8 sync�reads ()
9 temp ← 0

10 for i ← 0 to NNZ PER THREAD do
11 temp ← temp + values[i]
12 if ith bit of bits is set then
13 outputBuf f er [row ] ← temp
14 temp ← 0
15 row ← row + 1

16 sync�reads ()
17 if bits = 0 for > WARP SIZE/2 threads then
18 ReduceValues (temp ,row ,bits )
19 else if temp , 0 then

20 outputBuf f er [row ] atomicAdd←−−−−−−−−−−− temp

21 sync�reads ()
22 WriteBu�erInnerCoalesced ()
23 WriteBu�erFirstAndLastAtomic ()

Algorithm 4: AssignRowsLocal
1 block star t ← blockId · NNZ PER BLOCK
2 for r ← t id to block rows step THREADS do
3 a ← row ptr [r + block row star t ] − block star t
4 b ← row ptr [r + block row star t + 1] − block star t
5 b ← min(b, NNZ PER BLOCK)

threada ← divup(max(a, 0), NNZ PER THREAD)
6 threadb ← (b − 1)/NNZ PER BLOCK
7 if a equals b then
8 f laдs[a/(WARP SIZE · NNZ PER THREAD)] = 1
9 else

10 while threada ≤ threadb do
11 rowStar ts[blocka] ← r
12 threada ← threada + 1
13 row end bit ← (b − threadb · NNZ PER THREAD)
14 row end bitmask ← 1 << row end bit

15 rowBits[threadb] atomicOr←−−−−−−−−−− row end bitmask

However, empty rows prohibit e�cient use of bit mask ap-
proaches (cf. CSR5). �us, we store an additional �ag, if a warp faces
empty rows (line 7-8). �is �ag signals all threads of the warp to use
the original row ptr instead of the bit mask. Making this decision
per warp avoids thread divergence. Details about empty rows are
discussed in the special cases subsection (3.3). Again, we could use
multiple threads to perform the assignment of rowStarts as rows
might span multiple threads. Interestingly, using a single thread
again turned out to be faster than a more elaborate approach which
switches to using an entire warp for the assignment on demand.



ICS ’17, June 14-16, 2017, Chicago, IL, USA M. Steinberger et. al.

Data Loading. As SpMV is mainly bounded by memory access,
an e�cient way of loading data is of paramount importance. CSR-
adaptive and merge-based SpMV use shared memory to load data
in an coalesced manner and distribute it from there. �e use of
shared memory is also necessary in their cases as they do not have
a static non-zero assignment, but assign a variable number of non-
zeros to each thread. CSR5 uses a static mapping, but changes the
data layout in a preprocessing step to achieve coalesced access.
Working directly with the CSR data, we need a sophisticated way of
loading data. As we already use share memory for rowStarts and
rowBits , we want to avoid using shared memory for loading data.
We implement an approach around shu�e instructions, which are
in general faster than shared memory [18].

In any case, the underlying problem of data loading comes from
the fact that each thread requires multiple consecutive elements
from the val and col id arrays. Accessing this data directly leads to
bad memory access pa�erns and essentially a transpose of the data
is required. Such a transpose can be completed in a cost e�cient
manner in parallel [5]. We slightly adjust their algorithm, replacing
shu�e instructions by more e�cient register move, see Algorithm 5.

Algorithm 5: LoadAndPremultiply
1 Vecs← VEC SIZE/NNZ PER THREAD
2 warp of f set ← blockId · NNZ PER BLOCK +

t id/WARP SIZE ·WARP SIZE · NNZ PER THREAD
3 for i ← 0 to Vecs do
4 el ← warp of f set + VEC SIZE · (laneId + i ÛWARP SIZE)
5 vec val [i] ← LoadVector (val + el )
6 vec col id [i] ← LoadVector (col id + el )
7 (vec col id, ids) ← Sort (vec col id , 0:NNZ PER THREAD)
8 for i ← 0 to VEC SIZE do
9 vec v[i] ← vec val [i] · x [vec col id [i]]

10 (·, vec v) ← Sort (ids , vec v )
11 for k ← 0 to mod (laneId, Vecs) do
12 tmp ← vec v[Vecs − 1]
13 for j ← Vecs − 1 to 1 do
14 vec v[j] ← vec v[j − 1]
15 vec v[0] ← tmp

16 paddinд ← Vecs − laneId · V ecs/WARP SIZE
17 sect ion ← mod (laneId · Vecs, WARP SIZE)
18 for j ← 0 to VEC SIZE do
19 source ← sect ion + mod (paddinд + j, Vecs)
20 vec v[j] ← Sh�(vec v[j], source)
21 for k ← 0 to laneId · Vecs/WARP SIZE) do
22 tmp ← vec v[0]
23 for j ← 0 to Vecs − 1 do
24 vec v[j] ← vec v[j + 1]
25 vec v[Vecs − 1] ← tmp

Because memory access pa�erns only ma�er within a warp, ev-
ery warp can load its data in a coalesced manner (line 3-6). �en,
sequence of move instructions generates a layout that follows diag-
onals (line 11-15). �is allows shu�e instructions to move data to
the target thread (line 18-20). Again using move instructions, each
thread can restore the original data order (line 21-25). Note that our

adapted approach only works when the number of elements held
by each thread is a power of two. Loading single elements with
every thread would lead to many move instructions. Using vector
loads (line 4-6), we can fetch multiple elements in their right order
at once (four in case of single precision �oat and integer, two for
double) and treat them as single items in the outlined algorithm. In
this way, a single move instruction is su�cient for single precision.

�e access pa�ern to x depends on the row indices of the ma-
trix and ignoring this fact has the potential to slow down SpMV
considerably. �ere are multiple options to smooth out this access
pa�ern: (a) sort the fetched col id within the block, (b) sort within
each warp, or (c) sort the elements of each thread. According to our
experiments, the overheads of (a) and (b) outweigh the gains seen
in typical matrices (across the test data set [8]). However, using a
simple odd-even-merge sort for each thread’s col ids shows hardly
any overhead and increased performance by 2% on average.

Summation and Bu�ering. A�er the entire data has been loaded
and the bit masks as well as the �rst row o�sets are readily available,
the basic SpMV step is straight forward and translates into simple
fused-multiply-add instructions on the GPU. If the rowBit is set,
a conditional move writes the current temporary value to shared
memory. As every thread only writes a value if it is the last entry of
a row, every row will be wri�en exactly once and we do not need
to clear the shared memory bu�er beforehand. Note, that the last
thread writes the block’s last row due to the way we compute the
bit mask. As the memory access pa�ern depends on the input data,
bank con�icts can occur. However, bank con�icts in shared memory
are preferable to threads writing arbitrarily to global memory.

Algorithm 6: ReduceValues(temp,row,bits)
1 end ← bits , 0
2 end in ← lanedId =WARP SIZE − 1
3 for o ← 1 to WARP SIZE/2 step o ← 2 · o do
4 temp in ← Sh�Down (if end then 0 else temp , o)
5 if ¬end in then
6 temp ← temp + temp in

7 end in ← end in or Sh�Down (end or end in, o)
8 if pivot or laneId = 0 then

9 outputBuf f er [row ] atomicAdd←−−−−−−−−−−− temp

Shared Rows. To handle rows shared between threads, CSR-
adaptive and merge-based SpMV execute a block-wide conditional
scan, which requires an up and down pass with barriers in between.
We propose an adaptive approach instead: If every thread in a warp
holds data for a di�erent row, we directly write the data to shared
memory using atomic operations, avoiding the reduction entirely.
Even if some threads hold data for identical rows, it is more e�-
cient to use atomic instructions directly instead of performing a
reduction. However, if there are more shared rows, we perform a
conditional reduction within each warp, as shown in Algorithm 6.

Output. Because the output bu�er resides in shared memory, it
must be of prede�ned size. We choose its size to be equal to the
number of non-zeros handled by the block, which is a conservative
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estimate as long as there are no empty rows. A�er all threads
have added their contribution to the bu�er, we transfer it to y in a
coalesced manner and make sure that the accesses of all warps are
aligned with cache lines, leading to the lowest possible bandwidth
for the transfer. As the �rst and last row might overlap with other
blocks, we use atomic operations to add them to y. �is is one
reason for initializing y to zero.

3.3 Special Case Handling
�ere are three cases for which we use special code branches. �e
simplest concerns a single row being assigned to a block. It is
directly detected from the starting and end row of the block. If they
are identical, we directly execute a block-wide reduction and use
one thread to write the result using an atomic add.

�e second case arises when empty rows are assigned to a block.
In this case, the bit mask cannot be used to increase the current
counter, as it needs to skip rows. To avoid thread divergence, we
use a per warp �ag (see Algorithm 4) to switch entire warps into
an alternative mode. When in this mode, threads encountering a
bit that signals the end of a row, they look up the correct row from
the original row ptr array instead. Additionally, empty rows also
require the output bu�er to be cleared. To this end, we use the
entire warp to clear the rows it is assigned to when switching into
this mode. �en, the summation can ignore empty rows. Note that
o�en the row ptr data will reside in L1 cache and thus the overhead
for again looking up the row pointers is low.

�e above considerations are only valid when the number of
overall rows assigned to a block allows them to be cached in shared
memory, i.e., the sum of populated rows and empty rows is smaller
than nnz assigned to a block. If the number of rows exceeds this
threshold, we switch the entire block into an alternative mode.
Instead of compressing row starts in bit masks, we use the entire
shared memory to store the actual row for each non-zero, which
corresponds to decoding a COO description from CSR. Each thread
then compares the row ids for its premultiplied values instead of
referring to the bitmask. If a new row is encountered, the temporary
sum is wri�en to global memory directly. To consider row overlaps,
we apply the same heuristics as in the standard case, and use atomic
instructions to global memory. With this approach, non-zeros are
completely skipped by the algorithm and not wri�en to y, which
is possible as y is initialized to zero. �e only detriment here is
that the output memory pa�ern is not smoothed out. However, as
this special treatment usually only arises, when many empty rows
fall between populated rows, memory access would be sca�ered
independently of which thread writes which row. �us, the impact
on performance can be expected to be small.

3.4 Transpose SpMV
A multiplication on a transpose CSR matrix is not likely to achieve
the same performance as the direct case, as elements that are con-
secutive in memory reference arbitrary output locations and thus it
is not possible to simply sum elements up. However, we can apply
some of the ideas from SpMV to SpMVT, as shown in Algorithm 7.
We apply the same global and local load balancing strategies. In-
stead of premultiplying the input data, we load both values and
column ids (line 2). �e common trait among the elements in the

Algorithm 7: Hola-SpMVT
1 (rowStar ts, rowBits, f laдs) ←AssignRowsLocal ()
2 (values, col ids) ← Load ()
3 sync�reads ()
4 if f laдs[t id ]/WARP SIZE then
5 use row ptr instead of rowBits

6 row ← rowStar ts[t id ]
7 bits ← rowBits[t id ]
8 sync�reads ()
9 row f actor ← x [row ]

10 for i ← 0 to NNZ PER THREAD do
11 values[i] ← row f actor · values[i]
12 if ith bit of bits is set then
13 row ← row + 1
14 row f actor ← x [row ]

15 (col ids, values) ← Sort (col ids , values )
16 for i ← 0 to NNZ PER THREAD do

17 y[col id [i]] atomicAdd←−−−−−−−−−−− values[i]

same row, is that they are multiplied by the same x-value. Using
the information from the local load balancing step, we load this
common value only once and perform the multiplication (line 9-
14). In accordance with our SpMV implementation, we would now
combine the values in a bu�er in shared memory. Experiments
with bu�ering the values turned out to be less e�cient than writing
the values directly using atomic operations (line 16-17). �is is not
surprising, as there is no guarantee that column indices overlap in
any way. In case of long rows, it is even guaranteed that they are
all unique and thus, no combination is possible. Note that even if
we combined data in shared memory, we would have to write the
results using atomic operations, as other blocks can reference the
same column. However, we apply one more step from Hola-SpMV,
namely, sorting the column access within threads (line 15).

4 EVALUATION
To evaluate our approach, we benchmarked the entire University
of Florida Sparse Matrix Collection [8], which contains more than
2500 unique matrices of non-trivial size from various application
domains with di�erent matrix characteristics. We compare our ap-
proach to the vendor provided cuSparse [17], the most recent merge-
based SpMV [15], and a naive SpMV implementation [21] which
all work directly on CSR, as well as yaSpMV [27] and CSR5 [13],
which both require preprocessing and involve a format change.
To evaluate our SpMVT performance working directly on CSR,
we compare to cuSparse and a naive SpMVT implementation us-
ing atomic operations [21]. As test system we use an Intel Xeon
CPU×2 @3.40GHz with 32GB of RAM and an NVIDIA Titan X
(Pascal) (compute capability 6.1) and CUDA Toolkit 8.0.61.

4.1 SpMV Performance
Summary plots for SpMV on the entire test body are shown in
Figure 4, detailed plots for all matrices are available with our source
code. Relative speed ups against the evaluated methods are shown
in Table 2, commonly compared matrices in Figure 5. For small



ICS ’17, June 14-16, 2017, Chicago, IL, USA M. Steinberger et. al.

∗ CSR5 requires 10 − 30× of additional preprocessing, † yaSpMV requires up to 150 000× of additional preprocessing time
Figure 4: Trend line of the SpMV performance for all tested methods over the entire University of Florida Sparse Matrix
collection. Additional line thickness indicates variance.

Figure 5: SpMV results for commonly tested matrices.

matrices, the di�erence between the approaches is small, as perfor-
mance is dominated by launch overhead and sub-par GPU utiliza-
tion, e.g., our method starts to fully �ll the test GPU for matrices
with 400 000 or more nnz. �us, it is also not surprising that cuS-
parse and naive, which �ll the GPU faster and only start a single
kernel, dominate the tests for tiny matrices. However, considering
the harmonic mean speedup, our approach performs on average
as well on matrices between 10 000 - 300 000 nnz. On larger matri-
ces, which show more variance in row length, the naive approach
clearly loses ground. cuSparse’s performance also deteriorates,
while our approach increases its speedup to 55% and 36%. Hola-
SpMV is faster than cuSparse in 94% / 82% of large matrices.

Ignoring approaches that do not work on the original CSR data,
merge-based SpMV achieves the closest performance to Hola-SpMV.
Overall, the relative behavior of the two approaches is widely con-
sistent across the entire data set, with our approach consistently
achieving a be�er performance. For single precision �oating point
data, we achieve a speedup of about 13%, for double precision ap-
proximately 19%, with our approach being be�er for 93% / 98% of
all matrices. Figure 5 shows that out approach also works well for
those matrices that favor cuSparse over merge-based SpMV.

yaSpMV, which only supports single precision �oat—as expected—
achieves the best result in many test cases. �e extremely long
preprocessing (150 000× time) spent disassembling matrices into
perfectly aligned and bit compressed sub-matrices is rewarded by an
immense performance increase for matrices which contain many
strongly connected regions. However, for more general matrix

Figure 6: Performance predictability for small and largema-
trices in double precision (best: 1.0).

Figure 7: SpMV performance on a 1M square matrix with
22Mnon-zeros normal distributed around the diagonal with
increasing distribution variance.

structures, its performance o�en drops below Hola-SpMV. Also,
note that yaSpMV failed during preprocessing for many matrices
and did not yield the correct result for some larger matrices, point-
ing towards race conditions in the implementation.

Although CSR5 performs signi�cant preprocessing, it did not on
average achieve very competitive performance, being 4− 6× slower
than our approach for small matrices and 1.4 − 1.90× slower on
large matrices. However, for very large matrices it outperformed
cuSparse for single precision and cuSparse and merge-based for
double precision matrices. We note that CSR5 does not clear the
output vector, although that would be required for correctness.
Arguably, this gives it an advantage for matrices with low non-zero
count per row and empty rows, where the clearing e�ort becomes
noticeable. Nonetheless, Hola-SpMV is consistently faster.
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small matrices (10k < nnz < 300k) large matrices (300k < nnz < 800M)
speed up of Hola be�er than best speed up of Hola be�er than bestmin max h. mean Hola min max h. mean Hola

�o
at

cuSparse 0.20 119.36 1.01 60% 17% 0.26 432.74 1.55 6% 3%
naive 0.14 138.61 0.98 55% 43% 0.20 413.87 2.30 8% 3%

merge-based 0.27 1.42 1.17 6% 0% 0.21 1.47 1.13 7% 2%
CSR5∗ 1.04 13.72 5.83 0% 0% 0.34 8.29 1.90 1% 0%

yaSpMV† 0.20 1.28 0.88 80% 31% 0.18 1.51 0.87 52% 47%
Hola - - - - 9% - - - - 45%

do
ub

le

cuSparse 0.33 124.91 1.06 55% 20% 0.36 320.09 1.36 18% 16%
naive 0.15 169.86 1.03 53% 41% 0.32 309.32 2.34 6% 5%

merge-based 0.30 1.77 1.21 3% 2% 0.30 1.80 1.19 2% 2%
CSR5∗ 0.86 13.35 4.77 0% 0% 0.34 5.21 1.43 7% 6%

Hola - - - - 37% - - - - 71%
∗ CSR5 requires 10 − 30× of additional preprocessing time, † yaSpMV requires up to 150 000× of additional preprocessing time

Table 2: Relative speedup of Hola-SpMV over competing approaches and number of cases the respective approaches achieved
a better performance than Hola-SpMV / achieved the best performance. Excluding YaSpMV (due to its preprocessing times),
naive dominates small matrices, followed by cuSparse and Hola-SpMV. For large matrices, Hola-SpMV signi�cantly outper-
forms the other approaches leading to 20% mean performance increase for large double precision matrices.

4.2 Performance Predictability
�e more balanced an approach is, the more likely it is to achieve a
consistent performance across di�erent data sets. However, for CSR
SpMV sca�ered column entries may always lead to slowdowns due
to cache-ine�cient accesses to x . �us, a variance free performance
cannot be expected, if the distribution of row entries becomes more
unpredictable, as shown in Figure 7. �e �gure also shows that Hola-
SpMV consistently performs best over all distribution variances.
Interestingly, it seems that merge-based SpMV does not handle
variances above 40 000 well, dropping below cuSparse. However,
all approaches signi�cantly drop in performance when there is no
correlation between the entries of di�erent rows.

However, as can be seen in Figure 6, there is a high correlation
between performance and the number of non-zeros for various
approaches for the tested matrices. Merge-based SpMV shows the
highest correlation for small matrices and Hola-SpMV for large
matrices. We a�ribute the higher correlation of merge-based SpMV
for small matrices partially to their optimization, which avoids the
initial search kernel for small matrices (see matrices wtih nnz <
200k in Figure 8). Using a sca�ering approach, we cannot skip our
�rst step and our time always includes a constant launch overhead,
increasing the non-linearity of the execution time.

4.3 Row Starts Bu�er
Of the tested methods, Hola-SpMV, merge-based SpMV and CSR5
require additional bu�ers which are �lled before running the core
SpMV kernel. While Hola-SpMV and merge-based SpMV create
these bu�ers as a �rst step during SpMV; for CSR5 it is a full prepro-
cessing step. Nevertheless, all three approaches require additional
memory and potentially face overheads due to memory allocation of
these bu�ers. In our tests, we have ignored the allocation overhead
as memory for these bu�ers can be allocated once at application
start and reused for di�erent matrices during SpMV. �e required

∗ CSR5 timings do not include clearing the output vector

Figure 8: Times of the individual kernels (di�erent shades)
per non-zero in ns with average number of non-zeros per
row and overall nnz on top. �e overhead of the additional
kernels reduces with increasing non-zero count per row.

∗ assuming CSR5 overwrites the original CSR data

Figure 9: Additionalmemory requirements per non-zero for
commonly tested matrices.
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additional memory is shown in Figure 9. CSR5 requires signi�cant
additional memory and reuses the original CSR storage. Merge-
based SpMV treats rows as work and uses smaller and thus more
blocks than Hola-SpMV which leads to a multiple of the memory
requirement of Hola-SpMV. Our approach requires approximately
0.002 bytes of additional memory per non-zero.

�e time for generating the additional bu�er for Hola-SpMV
is shown in Figure 8. �e timings for the �xup kernel of merge-
based SpMV as well as the �xup kernels apparently executed by
the publicly available version of CSR5 are shown. Note that merge-
based SpMV only runs one kernel for the very small TSOPF… and
two kernels for the small email-EuAll and dictionary28. �e cost of
the additional kernels in all cases is larger for matrices with low
non-zero count per row, as all approaches execute additional steps
proportional to the row count. For more than 7 non-zeros per row,
the overhead seems negligible.

4.4 Empty Rows
While merge-based SpMV implicitly handles empty rows, we re-
quire special code branches for empty rows which may reduce
performance. Surprisingly, as can be seen in Figure 10, our ap-
proach also works well when matrices contain many empty rows,
achieving the best performance in all but two cases. For matrices
where the empty rows are clustered (marked with ∗), like relat,
or rel, our approach achieves an even be�er relative performance,
as it can skip these empty rows e�ciently. �e plot also shows
that there is no correlation between relative performance and num-
ber of switched warp (percentage over the bar). For example, for
web-Google all warps follow the slow path and we still achieve the
best performance. cnr-2000 is an interesting case, as our approach
performs poorly. Deeper investigation showed that the schedul-
ing of blocks to multiprocessors is suboptimal for our approach as
warps following the slow branch are launched late and end up on
the same multiprocessor. �us one multiprocessor stays active for
nearly twice as long as all others, essentially doubling the runtime.
A similar issue arises for in-2004 but with less severe consequences.

4.5 Transpose SpMV Performance
�e performance for transpose SpMV is outlined in Figure 11 as
well as Table 3 and selected matrices are shown in Figure 12. We
only compare to cuSparse and naive, as they provide SpMVT imple-
mentations. Naive follows a one-thread-per-row strategy and uses
atomic operations to merge the output. For small matrices, naive
and Hola-SpMVT achieve approximately the same performance.
For large matrices our approach is on average 15% and 40% faster,
and more than 200× faster in particular cases. Overall, we achieve
a be�er performance in 80% to 90% of matrices. In some cases, how-
ever, naive can be 100× faster, e.g., for Rucci1 with 300 GFLOPS.
�is variance is not surprising, as the performance is dominated
by the distribution of column ids and cache behavior as a result of
di�erent load balancing strategies. However, for non-pathologic
cases, Hola-SpMVT is the best performing approach across various
non-zero distributions, as shown in Figure 13. It shares similar
characteristics to our direct SpMV, albeit slower, and yields a steady
runtime.

Figure 10: SpMV results for matrices withmany empty rows
(% with the matrix). �e percentage over the bar is the num-
ber of warps that altered their behavior in our approach.

Figure 11: Trend line of the performance for SpMVT. Addi-
tional line thickness indicates variance.

small matrices large matrices
(10k < nnz < 300k) (300k < nnz < 800M)

min max h. mean best min max h. mean best

�o
at

cuSparse 1.73 168 12.61 0% 0.56 324 6.40 1%
naive 0.03 73.9 0.98 50% 0.01 217 1.15 16%
Hola - - - 50% - - - 83%

do
ub

le cuSparse 1.84 159 13.1 0% 0.75 226.70 6.55 0%
naive 0.04 108 1.10 45% 0.01 181.18 1.37 8%
Hola - - - 55% - - - 92%

Table 3: Relative speedup of Hola-SpMVT

Figure 12: SpMVT results for commonly tested matrices.
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Figure 13: SpMVT performance on a 1M square matrix with
22Mnon-zeros normal distributed around the diagonal with
increasing distribution variance.

As cuSparse most likely computes a full transpose before mul-
tiplication, its performance falls short. Certainly, the cost of an
explicit transpose can be amortized over many SpMVT operations
however, it signi�cantly increases memory requirements. Figure 11
additionally shows the performance obtained when bu�ering the
output (Hola-bu�ered) in shared memory. �e results suggest this
strategy does not work well in general for SpMVT and con�rm the
prediction in Section 3.4. �e bu�ered approach only works well
for highly varying non-zero distributions, e.g., circuit5M, where
it can sometimes outperform the other approaches.

5 CONCLUSION
We have presented a GPU sparse matrix-vector multiplication ap-
proach that advances the state-of-the-art in multiple aspects. Start-
ing from a diagnosis of the shortcomings of existing CSR SpMV
approaches, we have designed Hola-SpMV to perform global and
local load balancing based on non-zero spli�ing, load input data
directly to registers, smooth out memory access pa�erns, use a
conditional warp-wide reduction to handle long rows, and rely on
atomic operations when they show the best performance. Most
importantly, our approach does not require any preprocessing or
characterization of the input matrix and thus it is also perfectly
suited for dynamic problems with changing matrix structure.

Performance analysis over the entire University of Florida Sparse
Matrix collection placed Hola-SpMV as the most e�cient CSR SpMV
approach, increasing performance of more than 20% over previous
state-of-the-art on average for large matrices, showing the best
performance in about three quarters of all cases. For small matrices,
it is on par with approaches that show less overhead and achieve
be�er GPU occupancy, highlighting that the core of Hola-SpMV is
more e�cient than previous approaches. A more detailed perfor-
mance analysis for matrices with many empty rows revealed that
Hola-SpMV also achieves the overall best performance in those
cases, when many warps switch into the slower mode. However,
occasionally unfortunate scheduling choices can reduce the perfor-
mance of our approach.

Adopting similar strategies to the transpose SpMV resulted in
the fastest approach working directly on the CSR format, to the best
of our knowledge. Hola-SpMVT is on par with the naive approach
on small matrices, and achieves the best performance in 90% of all
large matrices in the test set.

�e source code of our approach and supplemental plots are
available at h�ps://bitbucket.org/gpusmack/holaspmv.
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