
Normal Based Estimation of the Curvature Tensor for Triangular Meshes

Holger Theisel Christian Rössl Rhaleb Zayer Hans-Peter Seidel
MPI Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

{theisel,roessl,zayer,hpseidel}@mpi-sb.mpg.de

Abstract

We introduce a new technique for estimating the curva-
ture tensor of a triangular mesh. The input of the algorithm
is only a single triangle equipped with its (exact or esti-
mated) vertex normals. This way we get a smooth function
of the curvature tensor inside each triangle of the mesh. We
show that the error of the new method is comparable with
the error of a cubic fitting approach if the incorporated nor-
mals are estimated. If the exact normals of the underlying
surface are available at the vertices, the error drops signifi-
cantly. We demonstrate the applicability of the new estima-
tion at a rather complex data set.

1. Introduction

The problem of estimating the curvature tensor for a tri-
angular mesh is a well-researched area which has a variety
of applications. Many techniques for this have been devel-
oped in the last decade (see e.g. [11] for a recent survey). A
common approach is to locally fit a surface patch and to then
derive the differential quantities analytically. The surface is
locally represented by a certain neighborhood of a vertex,
usually its 1-ring. In [15] this is locally approximated by a
second order Taylor polynomial which directly provides the
first and second order partials. Most recently, Goldfeather
and Interrante [5] propose the use of a cubic approxima-
tion scheme which takes into account vertex normals in the
1-ring (which can be interpreted as enlarging the neighbor-
hood to a 2-ring). Moreover, Cazals and Pouget [2] dis-
cuss the patch fitting approach from an approximation the-
ory point of view. Alternative approaches apply finite differ-
ences to first estimate normal curvatures along edges. Then
the curvature tensor is estimated either directly [13, 10] or
via least-squares fitting [9, 8]. Recently, in [3, 1] the curva-
ture tensor is computed as an average over a certain mesh
region.

All the approaches mentioned above have in common
that they yield discrete estimations of the curvature tensor in
the vertices of the mesh. In this paper we propose an alter-

native approach to estimating the curvature tensor: instead
of computing it per vertex, we do the estimation per trian-
gle. We consider each triangle of the mesh (together with
the normals in its vertices) independently and compute the
curvature tensor as a smooth function on the triangle. The
basic idea for doing so comes from the well-known con-
cept of Phong-shading ([4]): given a triangle of a mesh to-
gether with its vertex normals, two linear interpolations are
applied. The linear interpolation for the vertices gives the
current location, while the linear interpolation of the vertex
normals gives the normal for the illumination model. Al-
though a certain error is taken to account (the normal from
the piecewise linear surface generally differs from the inter-
polated normal), this approach has been proven to produce
smooth-looking representations of meshes.

Bearing in mind that the curvature tensor of a smooth
surface is completely defined by its first order partials and
the first order partials of its normals, we can use the idea
of Phong shading to get an estimation of the curvature ten-
sor on a single triangle: we use the linear interpolation of the
vertices to get the surface and its first order partials, while
the normals and its first order partials are obtained from the
linearly interpolated vertex normals. Similar to Phong shad-
ing, this introduces a certain error which is due to the appli-
cation of two different linear interpolations. However, we
show that this error can compete with the errors of other es-
timation schemes of the curvature tensor.

Recently a similar approach has been proposed in [12]
where a constant curvature tensor is estimated for each tri-
angle. Its averaging per vertex gives an estimation which
can compete with the results of [5].

The rest of the paper is organized as follows: section 2
recollects the concept of the curvature tensor of a smooth
surface and particularly explains how to compute it from
the partials of the surface and its normals. Section 3 explains
our new approach to estimate the curvature tensor in a sin-
gle triangle which is equipped with vertex normals. Section
4 collects properties of this estimation. Section 5 compares
the new estimation with pre-existing estimation schemes.
Section 6 demonstrates the application to a rather complex
test data set.

2. The Curvature Tensor of a Surface

The curvature tensor T of a smooth surface is a sym-
metric 3 × 3 matrix with the eigenvalues κ1, κ2, 0 and the
corresponding eigenvectors k1,k2,n where κ1, κ2 are the
principal curvatures, k1,k2 the corresponding principal di-
rections, and n the surface normal. T can be interpreted as
describing how the unit normal changes in a small neigh-
borhood. For a regularly parameterized parametric surface
x(u, v), it is completely defined by its partials and the par-
tials of the unit normals.

Given x(u, v) and its partials xu and xv , we compute the
normalized normal n and its partials as

n =
xu × xv

‖xu × xv‖ , nu =
dn
d u

, nv =
dn
d v

It is a well-known fact that T is completely defined by xu,
xv , nu, nv . These four vectors are not completely indepen-
dent, in fact they have the following dependencies:

1. xu, xv, nu, nv are coplanar (they are in the tangent
plane of x)

2. nu xv = nv xu.

To see this, compute the partials of the equations n2 = 1,
nxu = 0 and nxv = 0 which yield both 1 and 2. Figure 1a
gives an illustration.

xu

xv
nv

nu

n

xu

xv

nv
nu

n

xv

xu

~

~

n0

n1

n2

x0

x1

x2
a)

b)

Figure 1. a) xu, xv, nu, nv completely define
T; b) computing xu, xv, nu, nv on a triangle.

The computation of T from xu, xv , nu, nv is a straight-
forward application of classical concepts of differential ge-
ometry. We compute the coefficients of the first and second
fundamental form as

E = xu xu , F = xu xv , G = xv xv (1)
L = −nu xu , M1 = −nu xv (2)
M2 = −nv xu , N = −nv xv (3)

and note that for a smooth surface we have M1 = M2. Then
we get the Weingarten curvature matrix

W =

L G−M1 F
E G−F 2

M2 G−N F
E G−F 2

M1 E−L F
E G−F 2

N E−M2 F
E G−F 2

 (4)

with its eigenvalues κ1, κ2 and its corresponding eigenvec-

tors w1 =
(

w11

w12

)
,w2 =

(
w21

w22

)
. They define the

Gaussian curvature K, the Mean curvature H and princi-
pal directions k1,k2 as

K = κ1 κ2 , H =
1
2
(κ1 + κ2) (5)

k1 = w11 xu + w12 xv , k2 = w21 xu + w22 xv.(6)

Now we have enough information to construct T as

T = PDP−1 (7)

with P = (k1,k2,n) and

D =

κ1 0 0
0 κ2 0
0 0 0

 . (8)

3. Normal Based Estimation of T

The new approach we present here considers only a sin-
gle (non-degenerate) triangle with the vertices x0, x1, x2,
and the corresponding (un-normalized) normals n0, n1, n2.
Then we can obtain a point and a normal on the triangle by
applying a linear interpolation of xi and ni respectively. We
describe these linear interpolations both in barycentric co-
ordinates (a, b, c) with a + b + c = 1 and in local carte-
sian coordinates (u, v) with the origin x0 and the base vec-
tors x1 − x0 and x2 − x0:

x̃ = x̃(a, b, c) = ax0 + bx1 + cx2

= x̃(u, v) = x0 + u (x1 − x0) + v (x2 − x0)
ñ = ñ(a, b, c) = an0 + bn1 + cn2 (9)

= ñ(u, v) = n0 + u (n1 − n0) + v (n2 − n0).

The conversion between both coordinate systems is a sim-
ple affine transformation.

The main idea now is to use x̃ and ñ to get the neces-
sary vectors xu, xv , nu, nv to compute T. We compute the
normalized normal n and its derivatives as

n(u, v) =
ñ

‖ñ‖ , nu =
dn
d u

, nv =
dn
d v

. (10)

For the partials of the surface we get

x̃u(u, v) =
d x̃
d u

= x1 − x0 , x̃v(u, v) =
d x̃
d v

= x2 − x0.

In order to fulfill condition 1 of section 2, we map x̃u and
x̃v into the plane defined by nu and nv:

xu = x̃u − (n x̃u)n , xv = x̃v − (n x̃v)n. (11)

Figure 1b gives an illustration. Now we have all ingredients
to compute T: we apply (1)–(8) to xu, xv , nu, nv which
are computed following (10) and (11). Doing so, we obtain
nice closed formulations of the Gaussian curvature K and
the Mean curvature H in barycentric coordinates:

K(a, b, c) =
det(n0,n1,n2)

ñ2 · (ñ m̃)
(12)

H(a, b, c) =
1
2

(ñ h)
‖ñ‖ · (ñ m̃)

(13)

with

ñ = an0 + bn1 + cn2

m̃ = r2 × r0 = r0 × r1 = r1 × r2

h = (n0 × r0) + (n1 × r1) + (n2 × r2)

and

r0 = x2 − x1 , r1 = x0 − x2 , r2 = x1 − x0.

This way, ñ is the (un-normalized) linearly interpolated
normal and m̃ is the (un-normalized) triangle normal (i.e.
‖m̃‖ = 1

2 · area(x0,x1,x2)).

4. Properties of the estimation of T

In this section we collect a number of properties of the
normal based estimation of T. First we explain our visual-
ization of T: given a triangle (x0,x1,x2) with the assigned
normals (n0,n1,n2), we represent H and K as focal sur-
faces ([6]):

xK(a, b, c) = x̃(a, b, c) + sK · ‖K(a, b, c)‖ · n(a, b, c)
xH(a, b, c) = x̃(a, b, c) + sH · ‖H(a, b, c)‖ · n(a, b, c)

where sK and sH are global positive scaling factors con-
trolling the distance between the mesh and the focal sur-
faces. To visualize xK and xH , we only show their bound-
ary curves in a green (for positive K/H) or red (for nega-
tive K/H) color. We preferred such a geometric represen-
tation of K and H to a color coding on the surface (which
is the most common approach) because the human eye re-
acts far more sensitive to small perturbations in shape than
in color.

To visualize the estimated principal directions k1, k2 at
a certain point (a, b, c), we show the two line segments

(x̃ − sL · k1 , x̃ + sL · k1)
(x̃ − sL · k2 , x̃ + sL · k2)

x0
x1

x2

n0

n1

n2

K

H

Figure 2. A single triangle with visualizations
of H, K (focal surfaces) and k1/k2 in 6 points.

where sL is a positive global scaling factor. Figure 2 gives
an illustration for visualizing H , K and k1/k2 for a single
triangle.

The first property of T to be shown is that refining the tri-
angular mesh, our estimated T converges to the T of the un-
derlying smooth surface. To do so, we consider the height
surface

z(x, y) =
1
2

κ1 x2 +
1
2

κ2 y2 (14)

+f30 x3 + f21 x2 y + f12 x y2 + f03 y3

where κ1, κ2 are certain constants and f30, f21, f12, f03 are
certain scalar function of (x, y) describing the higher order
terms in the Taylor approximation of (14). Note that every
surface can locally be represented by (14). For this surface,
the curvature tensor is well-defined at (x = 0, y = 0):

T(0, 0) =

κ1 0 0
0 κ2 0
0 0 0

 .

Now we consider a triangulation of (14) and repeatedly re-
fine it in the neighborhood of (x = 0, y = 0). In fact, we
consider a triangle of the vertices

x0 = (t x0 , t y0 , z(t x0, t y0))T

x1 = (t x1 , t y1 , z(t x1, t y1))T (15)
x2 = (t x2 , t y2 , z(t x2, t y2))T .

where (x0, y0), (x1, y1), (x2, y2) are certain constants
building a non-degenerate triangle in the domain. Since
x0, x1, x2 are on the surface defined by (14), we com-
pute n0, n1, n2 as the surface normals of (14):

n0 = (−zx(t x0, t y0) , −zy(t x0, t y0) , 1)T

n1 = (−zx(t x1, t y1) , −zy(t x1, t y1) , 1)T (16)
n2 = (−zx(t x2, t y2) , −zy(t x2, t y2) , 1)T .

Note that for t → 0 the triangle (x0,x1,x2) collapses to the
single point (0, 0, 0)T with the normal (0, 0, 1)T .

Now we compute T(a, b, c) by applying our estimation
(1)–(11) to the triangle defined by (15) and (16). We are

interested in the behavior of T(a, b, c) for t → 0. It is a
straightforward exercise in algebra1 to show that

lim
t→0

T(1, 0, 0) = lim
t→0

T(0, 1, 0) = lim
t→0

T(0, 0, 1)

=

κ1 0 0
0 κ2 0
0 0 0

which proves the desired property.
The next property we mention is that our estimation of

T does not only depend on xi and the directions of ni, but
also on the length of ni. Figure 3 illustrates different curva-
ture values for changing the length of one normal n0.

n0 n0

n0

K

H

K

H

K

H

Figure 3. Changing the length of n0 changes
H, K and k1/k2.

Other properties of our estimation of T are that k1 and
k2 are in general not perpendicular to each other (i.e. that T
is not symmetric), and that T is not continuous at the junc-
tions of the triangles. The first property is due to the fact
that our estimation gives M1 �= M2 in (2) and (3). The sec-
ond one applies because we consider the triangles indepen-
dently of each other. Figure 4 illustrates this. Both proper-
ties indicate an error in our estimation of T. However, in
section 5 we show that this error can compete with errors of
other estimation methods of T.

Figure 4. K across two adjacent triangles is
not continuous.

1 We used Maple for doing the computations.

5. Comparing T with other estimations

To compare our estimation of T with pre-existing meth-
ods, we consider triangulations of well-defined smooth sur-
faces where the exact curvature tensor is available at every
point. Then the comparison of the exact T with the esti-
mated one gives a measure of the quality of the estimation.
For doing this comparison, we used two smooth test sur-
faces: a torus and the test surface used by Goldfeather and
Interrante in [5]2. Both surfaces cover a variety of different
curvature configurations. They can be described in a closed
parametric form, ensuring that the exact T is available ev-
erywhere on the surface.

Most estimators give good results for rather regular tri-
angulations, while irregular triangulations tend to drop the
quality of the estimators significantly ([5]). In order to con-
sider an interesting triangulation of the surface, we used two
different triangulations for each of the two test surfaces. The
first triangulation places the vertices on a regular grid in the
domain while the triangulation of each grid cell is chosen
randomly. This way a higher number of vertices with dif-
ferent valences is created - the resulting mesh contains ver-
tices ranging from valence 4 to valence 8. The second trian-
gulation does a perturbation of the grid point in the domain
before a Delaunay triangulation is applied. This way we ob-
tain an irregular triangulation where the majority of the ver-
tices has a valence 6. Figure 5 illustrates the test triangula-
tions considered in this paper. The two torus meshes con-
sist of 20.000 triangles while the two Goldfeather meshes
have 10.000 triangles.

Obviously, the quality of our new estimation method of
T strongly depends on the quality of the available normals.
If the underlying surface is known in an implicit form, the
”perfect” normals (both in direction and length) are avail-
able by considering the gradient. In case of an available
parametric description of the underlying surface, the exact
normal direction can be obtained as well. However, in most
cases they have to be estimated. To do so, a number of ap-
proaches exist. For instance, [7] estimates normals to be as
possibly accurate for cubic surfaces while [8] approximate
the mean curvature normal. For our computations we used
the simplest weighting triangle normals by the triangle ar-
eas, which already provides good results.

To find a fair comparison between our new estimation
and pre-existing approaches, we carefully have to choose an
appropriate setup because of the different nature of the esti-
mators: other methods yield discrete estimations of T in the
vertices, while our method gives continuous functions of T
inside each triangle (including discontinuities at the bound-
aries and the vertices). To make both approaches compara-

2 To be precise, we only used the middle part of the Goldfeather surface,
since the remaining two parts do not fit in a curvature continuous way.

a)

b)

c)

d)

Figure 5. The four test triangulations: a) torus
1; b) torus 2 ; c) Goldfeather 1; d) Goldfeather
2.

ble, we have to adapt our method to compute T in every ver-
tex of the mesh. Note that our method generally gives n dif-
ferent values of T for a vertex with a valence of n: depend-
ing on which triangle we compute the estimation, the result-
ing T usually differs. However, to get a unique T for every
vertex, we compute the (non-weighted) average of all esti-
mations of T in this vertex. Figure 6 illustrates this.

a) b)

Figure 6. Estimating T at a vertex xi: a) each
triangle sharing xi gives another T; b) princi-
pal directions of the averaged T.

Another problem to do the comparison is to find a dis-
tance metric of the estimated T at the vertices of the mesh.

We decided not to compare the T themselves but to ex-
tract Gaussian curvature, mean curvature and principal di-
rections, and to compute distance functions based on these
measures. In particular, we compute the distances of the
Gaussian curvature between two estimations3 as

distK =
1
n

n∑
i=1

(K1(i) − K2(i))2

where i is running over the indices of all n vertices, and
K1(i), K2(i) are estimations of K at the i-th vertex using
the two methods to be compared. In a similar way we com-
pute the distance in terms of mean curvature:

distH =
1
n

n∑
i=1

(H1(i) − H2(i))2.

To compute the distance of the principal directions in a ver-
tex xi, we use the following approach: suppose one estima-
tor gives the (normalized) principal directions k1, k2 while
another estimator (or the exact computation) gives the (nor-
malized) principal directions p1, p2, we compute the dis-
tance of the principal directions at xi as

distP (i) = min{ 1
2 (arccos ‖k1p1‖ + arccos ‖k2p2‖),
1
2 (arccos ‖k1p2‖ + arccos ‖k2p1‖) }

which gives the average angle deviation between the cor-
responding directions. This gives for the global distance of
the principal directions

distP =
1
n

n∑
i=1

distP (i).

To evaluate our estimation, we compared it with three well-
established estimation methods which can be considered as
being among the most powerful methods which are cur-
rently available ([5]). In fact, we compare the following es-
timations with the exact curvature values:

• The cubic fitting ([5]) incorporating normals which are
estimated by a weighted average of the triangle nor-
mals. In the following we call this estimation CF.

• The quadratic fitting ([5]), in the following called QF.

• The quadratic fitting ([15]) – QT

• The normal based estimation using the exact (perfect)
normals - NP.

• The normal based estimation using estimated normals
by a weighted average of the triangle normals - NE.

For each of the four test meshes we considered 5 ver-
sions: the original one and four noisy meshes. To create
the noise versions, we randomly perturbed each vertex in

a) b)

Figure 7. Torus 1: a) original; b) added noise
3 · 10−2 times diagonal of bounding box.

normal direction. Figure 7 shows the original torus and the
most noisy one considered here.

Figure 8 shows error diagrams for the torus 1 data set
concerning Gaussian curvature (left), mean curvature (mid-
dle) and principal directions (right). The horizontal axes of
the diagrams show the amount of noise we added to the
data set - we considered { 0 , 0.5 , 1 , 2 , 3 }·10−2· length
of bounding box diagonal. The vertical axes show the er-
rors between the estimation and the exact values for Gaus-
sian curvature, mean curvature and principal directions re-
spectively. The results for the five different estimation tech-
niques are shown in different colors. As we can see in fig-
ure 8, our normal based estimation outperforms the other
techniques if the exact normals are available (NP), e.g. if an
implicit surface is sampled. If the normals have to be esti-
mated, our method (NE) yields similar results as the cubic
fitting (CF). In fact, in most cases NE performs slightly bet-
ter than CF. The two quadratic fitting methods QF and QT
show a rather similar behavior revealing a larger error than
NE and CF. This corresponds to the fact that NE and CF in-
corporate a 2-ring to estimate T while QT and QF work
only on a 1-ring around the vertex.

Figure 9 shows the error plot for the torus 2 data set us-
ing the same setup as for figure 8. We obtain a similar result
as for torus 1: NP generally performs best, CF and NE have
a similar performance (where NE is slightly better), while
QT and QF tend to produce the largest error.

Figure 12 shows a collection of Gaussian curvature plots
for torus 2 with 0.5·10−2 added noise. Figure 12a shows the
exact curvature plot, figure 12b shows the result for the CF
estimation. Figures 12c and 12d show the quadratic fittings
QF and QT respectively. Figure 12e shows the result for
NP where every triangle is considered independently of its
neighbors. Figure 12f shows NP where the results are aver-
aged per vertex. Figure 12g shows the results for NE (trian-
gles considered independently) while figure 12h shows NE
with averaged values per vertex. Figure 12 clearly shows
that NP comes closest to the correct curvature plot, that CF
and NE have a similar behavior, and that QF and QT intro-
duce the largest errors. A similar statement holds for figure

3 or between one estimation and the exact values

13 which shows a collection of mean curvature plots for the
same data set.

Figure 10 shows the error plots for the Goldfeather 1 data
set with the same setup as in figures 8 and 9. Figure 11 does
so for the Goldfeather 2 mesh. Both plots reveal a rather
similar behavior as observed for the tori: NP performs best,
NE and CF have similar errors, while QF and QT give the
largest error for slightly noisy data. The same trend can be
seen in the curvature plots of the Goldfeather 2 surface with
0.5 · 10−2 added noise. Figure 14 shows the Gaussian cur-
vature plots, figure 15 the mean curvature plots, while fig-
ure 16 visualizes the principal directions.

a) b)

c) d)

e) f)

g) h)

Figure 16. Principal direction for Goldfeather
2: a) exact; b) CF; c) QF; d) QT; e) NP (in-
dependent triangles); f) NP (averaged at ver-
tex); g) NE (independent triangles); h) NE (av-
eraged at vertex).

6. Results

In this section we apply our estimation to a rather com-
plex data set. Figure 17 shows the triangular mesh which
was obtained by a range scan of the wooden sculpture
”Freezing Old Woman” (Frierende Alte, 1937) by the Ger-
man expressionist sculptor Ernst Barlach (1870 – 1938).
This model consists of approx. 1.5 million triangles. It took
2.88 seconds on a 3 GHz Pentium 4 computer to compute
the curvature tensor at each vertex. Figure 18a shows the
Mean curvature plot of a closeup showing a part of the nose

Figure 17. Ernst Barlach: Freezing Old
Woman (appr. 1.5 million triangles).

and one eye. Figure 18b shows the principal directions of a
magnification showing two fingertips of the sculpture.

7. Conclusions

We have introduced a new technique for estimating the
curvature tensor T in a triangular mesh. This technique es-
timates T for a single triangle equipped with (exact or esti-
mated) surface normals. The result is a continuous function
for T inside each triangle. To make it comparable with pre-
existing methods working on vertices, we average all val-
ues of T obtained from all triangles sharing the vertex. The
new estimation technique generally shows a slightly better
error behavior than a cubic fitting ([5]). If the exact nor-
mal of the underling surfaces is available at the vertices,
the error drops significantly. The new approach is indepen-
dent of rotations of the mesh, and it does not incorporate
any parametrization or fitting approaches.

There are a number of improvements of our approach
which can be considered in future research. In the current
version we only considered unit normals at the vertices of
the mesh. Since the lengths of the normals influence the es-
timation, they are additional parameters for improving the
quality of the estimation. If an estimation of T at the ver-
tices is desired, we used a non-weighted average of the
T obtained from the triangles sharing the vertex. Here a
weighted average may improve the estimation as well. Since
our approach heavily depends on the quality of the qual-
ity of the normals, another possible extension is to consider
quadratically interpolated normals ([14]) instead of the lin-
early interpolated normals considered here.

8. Acknowledgements

The authors would like to thank Dr. Volker Probst from
the Ernst Barlach foundation Güstrow (Germany) for per-
mitting the scanning of the sculpture. The scan was carried
out by Heiko Wanning and Hendrik Lensch.

References

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and
M. Desbrun. Anisotropic polygonal remeshing. ACM Trans-
actions on Graphics, 22(3):485–493, July 2003.

[2] F. Cazals and M. Pouget. Estimating differential quantities
using polynomial fitting of osculating jets. pages 177–199.

[3] D. Cohen-Steiner and J.-M. Morvan. Restricted delaunay tri-
angulations and normal cycle. In Proceedings of the nine-
teenth Conference on Computational Geometry (SCG-03),
pages 312–321, New York, June 8–10 2003. ACM Press.

[4] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer
Graphics, Principles and Practice. Addison-Wesley Pub-
lishing Company, Reading Massachusetts, 1996.

[5] J. Goldfeather and V. Interrante. A novel cubic-order algo-
rithm for approximating principal directions vectors. ACM
Transactions on Graphics, 23(1):45–63, 2004.

[6] H. Hagen et al. Surface interrogation algorithms. IEEE Com-
puter Graphics and Applications, 12(5):53–60, 1992.

[7] N. Max. Weights for computing vertex normals from facet
normals. Jounal of Graphics Tools, 4(2):1–6, 1999.

[8] M. Meyer, M. Desbrun, M. Schröder, and A. H. Barr.
Discrete differential-geometry operators for triangulated 2-
manifolds. In Proceedings of VisMath, 2002.

[9] H. P. Moreton and C. H. Séquin. Functional optimization
for fair surface design. In E. E. Catmull, editor, Proceedings
of the 19th Annual ACM Conference on Computer Graph-
ics and Interactive Techniques, pages 167–176, New York,
NY, USA, July 1992. ACM Press.

[10] D. L. Page, A. Koschan, Y. Sun, J. Paik, and A. Abidi. Ro-
bust crease detection and curvature estimation of piecewise
smooth surfaces from triangle mesh approximations using
normal voting. In Proceedings on Computer Vision and Pat-
tern Recongition, 2001.

[11] S. Petitjean. A survey of methods for recovering quadrics in
triangle meshes. ACM Computing Surveys, (2), 2001.

[12] S. Rusinkiewicz. Estimating curvatures and their derivatives
on triangle meshes. In Symposium on 3D Data Processing,
Visualization, and Transmission, 2004.

[13] G. Taubin. Estimating the tensor of curvature of a sur-
face from a polyhedral approximation. In Proceedings In-
ternational Conference on Computer Vision, pages 902–907,
1995.

[14] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved
PN triangles. In Proceedings of the Symposium on Interac-
tive 3D graphics, pages 159–166, 2001.

[15] W. Welch and A. Witkin. Free–Form shape design using tri-
angulated surfaces. In A. Glassner, editor, Proceedings of
SIGGRAPH ’94, pages 247–256. ACM Press, 1994.

Figure 8. Error diagram torus 1: error (vertical axes) against amount of present noise (horizontal
axes).

Figure 9. Error diagram torus 2: error (vertical axes) against amount of present noise (horizontal
axes.

Figure 10. Error diagram Goldfeather 1: error (vertical axes) against amount of present noise (hori-
zontal axes).

Figure 11. Error diagram Goldfeather 2: error (vertical axes) against amount of present noise (hori-
zontal axes).

a) b) c) d)

e) f) g) h)

Figure 12. Gaussian curvature plots for torus 2: a) exact; b) CF; c) QF; d) QT; e) NP (independent
triangles); f) NP (averaged at vertex); g) NE (independent triangles); h) NE (averaged at vertex).

a) b) c) d)

e) f) g) h)

Figure 13. Mean curvature plots for torus 2: a) exact; b) CF; c) QF; d) QT; e) NP (independent trian-
gles); f) NP (averaged at vertex); g) NE (independent triangles); h) NE (averaged at vertex).

a)
b)

c) d)

e) f) g) h)

Figure 14. Gaussian curvature for Goldfeather 2: a) exact; b) CF; c) QF; d) QT; e) NP (independent
triangles); f) NP (averaged at vertex); g) NE (independent triangles); h) NE (averaged at vertex).

a) b) c) d)

e) f)
g) h)

Figure 15. Mean curvature for Goldfeather 2: a) exact; b) CF; c) QF; d) QT; e) NP (independent trian-
gles); f) NP (averaged at vertex); g) NE (independent triangles); h) NE (averaged at vertex).

a) b) c)

Figure 18. Details of ”Freezing Old Woman”: a) Mean curvature; b) Gaussian curvature; c) principal
directions.

