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Abstract

We present an efficient approach for solving the spheri-
cal parameterization problem. The essence of the approach
is to look for a solution in the curvilinear coordinate sys-
tem without requiring the additional spherical constraints
usually needed in cartesian formulations. This setup allows
us to take full advantage of some existing techniques orig-
inally developed for planar parameterization. Our results
substantiate the efficiency of the method and confirm its ro-
bustness. Meshes of non-trivial geometry with tens of thou-
sands of triangles are processed in a few seconds, always
yielding bijective maps. This computational achievement
bridges a so far wide gap in performance between spheri-
cal and planar parameterization.

1 Introduction

Surface parameterization establishes bijective maps from
a surface onto a topologically equivalent standard domain.
It serves as an essential tool in many digital geometry
processing applications such as texture mapping, remesh-
ing, shape analysis, compression, morphing, etc. Usually in
these settings surfaces are represented as triangle meshes,
and the maps are required to be at least piecewise linear.
The most fundamental and also best-studied problem is pa-
rameterization of surface patches with disk topology (see
[5] for a recent survey). In theory any higher genus model
can be described as a union of patches through an atlas.
The discontinuities induced by this segmentation render it
unattractive, especially in the particular case of genus-zero
surfaces for which the sphere is the most natural domain.
The fact that many of the available geometric models are
indeed homeomorphic to a sphere makes spherical para-
meterization an appealing geometry processing tool. The
past and recent research interest in this topic echoes its rel-
evance to applications and reflects the demand for efficient
algorithms for establishing low-distortion spherical maps.
Despite the recent advances in the field, the construction of
spherical maps still raises theoretical and numerical chal-

lenges. The spherical setting is much more complex than
the planar one, and any robust method to solve this prob-
lem cannot solely rely on simple modification or extension
of traditional planar methods as pointed out in [6]. Fur-
thermore, the additional spherical constraints and the ever
increasing need for processing large input data raise chal-
lenging theoretical issues such as convergence guarantees
and validity, along with practical ones, associated with find-
ing robust numerical schemes and efficient custom solvers.
Currently, methods with the most sound theoretical founda-
tion are not in measure of addressing even moderately sized
problems numerically [7].

In this work, we present a novel approach to spherical
parameterization, where computation time is dominated by
solving only linear systems. Our method relies on setting
the problem in a curvilinear coordinates system, hence re-
ducing it to a two-dimensional problem. The singularities
of this coordinate system are effectively addressed by re-
moving the poles and introducing a date line connecting the
poles. This way an initial harmonic map can be established
following the outline in [2]. In general, this initial map suf-
fers from unacceptable distortion. As a novel contribution
we undertake further steps to improve distortion. The merit
of our new method is that we perform the crucial distortion
improvement of the initial map in curvilinear coordinates as
well, based on a variant of quasi-harmonic maps [19]. This
way we benefit from guarantees on validity as well as of
the availability of highly efficient and robust solving strate-
gies, while at the same time the overall algorithm and its
implementation are conceptually simple. In a final step, we
apply a local distortion improvement on a small sub-patch
along the date line in order to account for the unavoidable
distortion induced from the Dirichlet boundary conditions.

Our results on non-trivial and considerably large input
meshes show high-quality maps with a fair balance between
angle and area distortion. Computation times are signif-
icantly lower than the ones of preexisting methods. The
remainder of the paper is organized as follows: Section 2
overviews related work, sections 3 and 4 describe the initial
and improved maps, respectively, and section 5 discusses
the final local relaxation. The paper concludes with experi-
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Figure 1. Our approach in brief: (a) The poles are identified on the shape by the user (or automat-
ically). The path from pole to pole constitutes the date line along which the mesh is cut open. (b)
The poles are removed and an initial solution in curvilinear coordinates is obtained on the remaining
mesh. This initial map suffers from unacceptably high distortion. (c) Therefore it is improved in a
second step taking into account spherical distortion. Both, the initial and and second step operate in
the curvilinear domain with fixed boundaries. (d) The secondary solution is then lifted back onto the
sphere. The poles are restored, and a local spherical smoothing is performed in a region along the
date line. The run time for the mannequin head model with 23K∆ is 3 seconds (3.2GHz P4 laptop).

mental results and a discussion in section 6.

2 Related work

We give a bird’s eye view of spherical parameterization
methods. For a more general discussion of surface para-
meterization we refer to the recent survey by Floater and
Hormann [5]. A direct extension of harmonic planar para-
meterization to the spherical domain can be formulated as
a minimization problem of the harmonic objective function
∫

Ω
||∇x||2dA over the surface subject to the constraint

||x||2 = 1.

for all vertices. The nonlinearity of the constraints makes
the spherical setting more involved than its planar counter-
part.

A straightforward way to solve this optimization prob-
lem is the Gauss-Seidel method where each iteration uses
a local relaxation step e.g., tangential Laplacian smooth-
ing, followed by back projection onto the sphere. This type
of solution was carried out in [1, 13]. The result is used
as a starting point for computing a minimal Möbius trans-
form in [8, 9]. A principal problem is that a minimum can
be reached for degenerate configurations, e.g., with vertices
slipping over the sphere until triangles collapse. Heuristic
solutions to this issue such as imposing stopping criteria or
introducing additional boundary conditions fall short from
providing satisfactory results in general. A more promising
alternative is the careful analysis of the discrete objective
function which tries to account for the particularities of the
spherical setting and blends several measures for control-
ling distortion [6].

A more theoretical study of the problem was carried out
in [7] and devises sufficient requirements for generating
provably bijective maps. An alternative constrained mini-
mization problem proposed in [18], adapts the planar angle
based flattening method to the spherical setting. While the-
oretically interesting, both approaches are computationally
too expensive to be of general use in practice.

Methods based on the multi-resolution paradigm which
follow the original algorithmic frameworks outlined in
[3, 11, 14] can also be applied to the spherical setting. In
particular the choice of base mesh and objective function
can be tuned for spherical parameterization as recently pro-
posed in [12, 15].

Another breed of methods resorts to the existence of sim-
ple maps from the plane onto the sphere. In [10], a triangle
is cut from the mesh and then the whole mesh is mapped
into a triangular boundary. The resulting planar parameter-
izing is lifted to the sphere through an inverse stereographic
projection. Besides the high distortion, this method gener-
ally suffers from foldovers. This is due to the fact that the
boundary of the mesh in the planar domain is considered
to extend implicitly to infinity. In order to overcome such
limitations [17] cut the mesh into two halves and map each
half to a circle. These two planar embeddings are mapped
onto the sphere and serve as starting point for subsequent
non-linear optimization on the sphere with an appropriate
distortion measure. The latter work is motivated by [7] and
yields relatively faster computation time. Most related to
our approach is the method proposed in [2] which first es-
tablish an initial parameterization based on curvilinear coor-
dinates. This solution is further improved using a non-linear
optimization in the spherical domain. However, the highly
non-linear nature of this optimization problem makes it un-
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Figure 2. Comparison of the initial (center)
and the secondary map (right) for the Homer
model. The view puts emphasis on the ex-
tremities, only after improvement the left arm
and leg develop adequately.

stable for practical use. An improvement was proposed in
[16] by using a hierarchical implementation for speeding
up convergence. However, the reported performance still
penalizes the approach as whole.

3 Initial parameterization

In order to solve the spherical parameterization problem
we need to pose the problem in a computationally tractable
way. This involves adopting one of the many possible char-
acterizations of the sphere as a mathematical object. In
Euclidean space, a natural description of point locations on
the sphere is achieved through the curvilinear or polar coor-
dinates represented by the angles (θ, φ). In this orthogonal
coordinate system only two parameters are needed to char-
acterize point positions on the sphere. Certainly, this rep-
resentation is more compact than its cartesian counterpart
where three parameters are required.

In curvilinear coordinates, the spherical parameteriza-
tion problem reduces to defining two appropriate scalar
fields over the surface, the azimuthal angle θ ∈ (0, 2π)
also known as longitude, and the polar angle or latitude
φ ∈ [0, π]. Although this setup simplifies the problem to
a great extent, it exhibits clear limitations which are in fact,
inherent to the coordinate system itself: The first one is the
pole singularity — the longitude spans the whole range at
the poles. The second one is the periodicity of the longitude
range. The pole singularity can be addressed by first ex-
cluding the north and south poles from the problem setup
and then reinserting them at the end of the optimization
process. On the other hand, the periodicity of θ, requires
defining a date line which connects the poles and marks the
beginning and the end of the range. The date line can be ef-
ficiently setup, e.g., as shortest path between poles (see also
section 6).

The mesh resulting from cutting along the date line and
removing the poles is topologically equivalent to a disk, and

we can readily profit from existing techniques developed for
planar parameterization. A first attempt along these lines
was proposed by [2]. Their method proceeds by solving the
Laplace equation

∇2U = 0 . (1)

for the pair (θ, φ) over the domain [0, 2π] × (0, π). The
north and south pole are assigned the φ-values 0 and π, re-
spectively. Technically the domain of φ can be represented
as [ε1, π − ε2] where ε1 and ε2 are very small. In our im-
plementation we used a value of 0.02 for both, however, the
method as a whole is insensitive to the chosen value as we
will see in section 5. The solution to equation (1) can be
efficiently carried out using either the cotangent weights or
the mean value coordinates discretization of the Laplacian
operator. Vertex positions on the sphere are then given by
the usual polar-to-cartesian mapping

x = cos θ sin φ, y = sin θ sin φ, z = cos φ .

A simple computation of the first fundamental form of this
mapping from polar to cartesian coordinates reveals that it is
neither conformal nor equal-area. Consequently, the result-
ing composite map from the surface onto the sphere enjoys
neither properties. This is not a limitation in itself as the re-
sults from this initial parameterization reflect well behaved
maps-see figure 2, although they may suffer from unaccept-
able high area distortion as noted also in [2]. Furthermore,
there exist no single conformal map from a finite planar do-
main onto the whole sphere. On the other hand aiming only
for a conformal mapping may yield in general results which
exhibit high area distortions-see figures 7 and 11. Our aim
is to establish a mapping which fairly balances angle and
area distortion, a desirable property for the spherical case
as also discussed in [6]. Furthermore, we wish to be able
to process large meshes efficiently. So in order to avoid a
costly non-linear optimization over the sphere we wish to
perform the optimization in the plane and reduce it to a lin-
ear problem.

4 Secondary parameterization

Most recently [19, 20] introduced tensorial quasi-harmonic
maps for improving the distortion of planar parameteriza-
tion. In the same spirit we develop a method for improv-
ing the initial spherical parameterization by incorporating
a measure for spherical distortion. Arguably the most nat-
ural choice to quantify such distortion is the Jacobian of the
mapping. However it is not obvious how to incorporate this
3 × 3 tensor into the current two dimensional curvilinear
coordinate setting. Here, we restrict ourselves to the de-
terminant of the Jacobian of the spherical mapping which
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Figure 3. Spherical parameterization of the
gargoyle2 model 50K∆, runtime 7s.

Figure 4. Local configuration for an edge
(i, j). The coefficients κj and κj+1 are asso-
ciated with the triangles Tj and Tj+1.

quantifies area distortion. On each triangle T of the input
mesh M we define

κT =

(

∑

Ti∈M
A(Ti)

∑

Ti∈M A′(Ti)

)

A′
T

AT

,

where A′
T measures the area of T on the sphere, and AT

corresponds to the area on the initial surface.
The secondary mapping can be then obtained as the so-

lution of the the scalar quasi-harmonic equation

div(κ grad U) = 0 .

in terms of the pair (θ, φ) with similar boundary conditions
as for the initial mapping. In our discrete setting, where the
support of the Laplacian operator is restricted to the 1-ring
of a vertex, the parameterization problem reduces to solving
the following equation for all internal vertices

∑

j∈Ni

wij(Uj − Ui) = 0 .

A direct discretization based on defining linear basis func-
tion over the triangles yields

1

2

∑

j

(κj cot αj + κj+1 cot βj+1)(Uj − Ui) = 0 .

(a) (b) (c)

Figure 5. Effect of local distortion reduction
along the date line. The highlighted region
shows a five-neighborhood of the date line
for the original model (a), before (b) and af-
ter (c) local improvement (close-ups in bot-
tom row). Only this region with fixed bound-
ary is used for relaxation.

Where scalars κ are defined per triangle, i.e., κj corre-
sponds to triangle Tj . In the above expression we can recog-
nize the cotangent weights (see, e.g., [5, 3]) generally asso-
ciated with the discretization of the Laplacian when κ is
constant over the mesh. Alternatively an extension of the
mean value coordinates [4], yields

∑

j

[

κj tan
γj

2
+ κj+1 tan

γj+1

2

] (Uj − Ui)

rj

= 0 .

If the function κ is constant over the mesh, the above ex-
pression reduces to the mean value coordinates. The later
coordinates are insensitive to the quality of the triangula-
tion in the sense that they are guaranteed to be positive.

In this framework, the resulting solution can be further
improved by reiterating the same process until convergence.
For all our results two to three iterations revealed to be
largely sufficient.
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Figure 6. Comparison of spherical parameter-
ization results for the skull model 40K∆. Cen-
ter: using [17]. Right: our method. Overall
runtimes are 132 and 5s, respectively.

5 Local domain distortion reduction

As our spherical mapping stems from lifting a quadri-
lateral patch onto the sphere, the result is expected to have
a higher distortion around the poles and along the date line
(see figure 5). In order to overcome such artifacts, we define
a sub-patch around the date line by choosing, e.g., third to
fifth order neighborhood (five rings are used in our imple-
mentation), and we perform tangential Laplacian smoothing
on the sub-patch. Then the algorithm reads as simple as

1. For each vertex i of the sub-patch

• xi := xi + [L(xi) − 〈L(xi),xi〉xi] (update)
• xi := xi/||xi|| (back projection)

2. Repeat step (1) until convergence.

In all our experiments three iterations revealed to be suf-
ficient. A simple choice of L(·) would be to use the uni-
form tangential Laplacian operator. However such operator
ignores the geometry of the mesh and may cause feature to
fade out along the sub-patch. Since the positivity of weights
is crucial for the tangential Laplacian, the mean value based
operator seems to be more appropriate in this step.

Furthermore, since the boundary of the sub-patch is
fixed, there is no risk of slippage or folding and collapsing
of the mesh onto one region of the sphere. Such limitations
are in fact common to spherical parameterization methods
based solely on the tangential Laplacian operator, and they
do not apply here.

6 Results and discussion

We conducted experiments on a variety of meshes. The
implementation of our method needs only a simple mod-
ification of existing planar mesh parameterization meth-
ods. All results are bijective maps and reflect a good bal-
ance between area and angle distortion as illustrated in fig-
ures 1, 3, 8, and 9. Since our method is based on a compo-
sition of several maps, the validity of each them guarantees

Figure 7. Comparison of spherical parameter-
ization results for the gargoyle model 20K∆.
Center: [13, 1] using mean value discretiza-
tion. Right: our method.

Figure 8. Different views of the turtle model
38K∆, and its spherical parameterization
viewed from the front, the side, and the back.

the validity of the whole map. In theory, our extended mean
value based weights are all positive and thus guarantee a
bijective map. Furthermore, our tangential smoothing on
the sphere is only local and thus there is no risk of mesh
slippage. This way, all our intermediate maps are valid and
thus the resulting map is guaranteed to be bijective. Typical
timings of our method are in the order of a few seconds for
meshes with tens of thousand of triangles. This confirms
that our approach is significantly more efficient than preex-
isting methods.

We compare our results to the results of tangential
smoothing methods (which lack convergence guarantees in
practice) in figure 7, and to the practical approach of [17]
in figure 6. We second the visual inspection of the figures
with numerical charts comparing their respective area and
angle distortion, see figures 10 and 11. We compute the
angle distortion as the ratio of angles of the result to the in-
put. The area distortion is computed similarly and scaled
accordingly by the ratio of total areas. In the polar charts,
the values are placed using the distortion value as the radius
and the triangle or angle index as the polar angle.
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Figure 9. Features such as the long legs
of the camel model 78K∆ and the legs and
horns of the cow model 23K∆ are extreme
challenges for most spherical parameteriza-
tion methods. Our method efficiently embeds
the models on the sphere.

At the current stage, the choice of the poles is not auto-
matic. We do not see this as limitation as it can be useful
for aligning spherical maps. In the following, we provide
simple guidelines for defining the date line. The poles and
the date line should in general reflect the symmetry of the
models when they exhibits symmetry traits. The date line
should be as straight as possible and the poles should have
sufficient distance to allow the surface to evolve correctly
but not too far away to cause additional stretch. For all our
examples, we used the Dijkstra algorithm for the computa-
tion of shortest paths.

We plan to investigate the optimal choice of poles and
date lines in a future work.
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