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Mesh Segmentation Driven by Gaussian Curvature

Abstract Mesh parameterization is a fundamental
problem in computer graphics as it allows for texture
mapping and facilitates a lot of mesh processing tasks.
Although there exists a variety of good parameteriza-
tion methods for meshes that are topologically equivalent
to a disc, the segmentation into nicely parameterizable
charts of higher genus meshes has been studied less. In
this paper we propose a new segmentation method for
the generation of charts that can be flattened efficiently.
The integrated Gaussian curvature is used to measure
the developability of a chart and a robust and simple
scheme is proposed to integrate the Gaussian curvature.
The segmentation approach evenly distributes Gaussian
curvature over the charts and automatically ensures disc-
like topology of each chart. For numerical stability, we
use area on the Gauss map to represent Gaussian curva-
ture. Resulting parameterization shows that charts gen-
erated in this way have less distortion compared to charts
generated by other methods.

1 Introduction

The goal of surface mesh segmentation is to construct
a covering of a given mesh, which is composed of sur-
face patches i.e. charts. There has been a considerable
body of research devoted to this technique in the last
few years. Its significance to computer graphics arises in
several contexts such as surface parameterization, com-
pression, surface editing, and morphing. This diversity
of applications fosters the need for segmentation tech-
niques that best suit specific purposes. The quality of
segmentation usually depends on its field of application.
As general requirement, it is desirable to maintain clean
boundaries between charts as unresolved boundary arti-
facts reduce the usability of the segmentation to a great
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extent. Other quality measures regarding the flatness of
the charts or how good they capture the semantics of the
surface mesh could be taken into consideration as well.

Our key contribution is a novel efficient segmentation
approach generating charts with balanced curvature dis-
tribution. The mathematical tool at the heart of the ap-
proach is the Gauss map of the surface to the unit sphere,
regardless of its genus. This allows us to guide our new
chart flooding (t-flooding) in an intelligent manner that
automatically cuts along sharp creases and corner points.
An additional property of our method is the total con-
trol over the timing when a chart can start growing and
when it should stop. Furthermore our algorithm consid-
ers the shape of the chart boundary during the growing
process and tends to avoid jagged boundaries. While our
method is especially suited to surface parameterization,
this does not prevent using it for applications such as the
fitting of subdivision surfaces to the original mesh and
compression.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of the literature relevant to
our method. In Section 3, we detail our Gaussian curva-
ture distribution method for surface segmentation. The
results are shown in Section 4, and Section 5 concludes
the paper.

2 Previous and Related Work

The problem of segmenting a polygonal mesh into charts
has been studied in computer graphics with different
goals. This problem is fundamentally an ill-posed prob-
lem. An optimal solution is often application specific,
and quite heavily depends on what is an optimal or what
is a meaningful segmentation. Without loss of generality,
many existing schemes might be classified into one of the
following categories, shape analysis [1,5,10,18,20,23,28],
shape simplification [2, 9, 14], shape modeling and re-
trieval [8, 15], and texture atlas generation [16, 17, 26].
We also refer the reader to [27] for a recent survey of
this area.
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Our goal in mesh segmentation is the generation of
low distortion charts for surface parameterization. From
this point of view, the predominant segmentation crite-
rion is the ability to flatten the generated charts. Appli-
cations of our segmentation approach are texture atlas
generation, sheet- or plate-metal based industrial design,
and so forth. In accordance with this criterion, the next
three categories are relevant to our approach: 1. Approx-
imating surfaces with developable parts, 2. Flatness or
normal based segmentation, 3. Low distortion parame-
terization for texture atlas generation.

Approximating surfaces with developable parts: The
research dedicated to this technique aims at generating
developable surface patches which approximate an origi-
nal surface with Bézier and B-spline surfaces [6,24], sur-
faces of revolution [11], and general triangle mesh [22].

In order to maintain the developability, these meth-
ods tend to generate charts composed of polygon- or
triangle-strips. In general, this yields charts with rather
long boundaries in comparison to their area and may
cause considerable artifacts during texture atlas genera-
tion.

Flatness or normal based segmentation: Since a plane
is the simplest developable surface, it seems intuitive that
segmentation based on plane fitting or normal clustering
automatically considers the ability to flatten the result-
ing charts. Cohen-Steiner et al. [2] use normal clustering
to subdivide a complex polygonal mesh into regions that
can be approximated by planar polygons. Inoue et al. [12]
develop a method based on normal scoring where the
scores combine the variance of normals and their largest
derivatives.

While these methods yield interesting results, they
are limited to a smaller class of developable surfaces.
For example, a cylinder and a cone are also developable,
however, the plane fitting method would not recognize
these surfaces as such.

Low distortion parameterization for texture atlas gen-
eration: Maillot et al. [19] propose an interactive tool
for user guided segmentation based on a distortion en-
ergy. Sanders et al. [25] use a hierarchical face clustering
method, which was simultaneously proposed by [9], for
mesh segmentation by merging triangles driven by a pla-
narity criterion. In order to account for sharp features
Lévy et al. [17] first detect sharp features and use these
to place chart seeds maximally apart for a chart growing
process. Shlafman et al. [28] combine the region grow-
ing strategy with a Lloyd-Max iteration that allows for
the replacement of the seeds and accounts for geodesic
distances as well as dihedral angles. The stability of this
method was improved by Sanders et al. [26] by intro-
ducing a representative normal which is the average of
all triangle normals in a chart. The method of Sorkine et
al. [29] grows charts and simultaneously creates a param-
eterization. The mesh is cut whenever distortion is above
a certain threshold. Zhou et al. [31] address the problem

using a combination of stretch minimization and multi-
dimensional scaling.

In most of the above-mentioned methods, there is
a tight connection between two problems, segmenta-
tion and parameterization. It is hence hard to see ex-
actly whether the distortion stems from the segmenta-
tion technique or parameterization method. A näıve so-
lution would be to generate all possible segmentations,
and parameterize them, then select the one with minimal
distortion. While such a solution is impractical, an esti-
mation of distortion without explicit parameterization is
the key point to a good segmentation.

Our goal is to segment mesh models based on a mea-
sure that is independent of the subsequent parameteri-
zation method.

Independently from our work, Julius et al. [13] pro-
posed recently an approach similar to ours. Instead of
using the Gaussian curvature to steer the segmentation
process, they rely on a developability measure which cap-
tures how well a chart approximates a cone or a cylin-
der. They straighten out the chart boundaries in a post-
processing step and construct a sewing pattern, that al-
lows for making stuffed toys.

3 Segmentation based on Developability

Texture mapping is one of the oldest techniques in com-
puter graphics, still it is one of the most powerful tools
today to represent complex objects in low computa-
tional cost. Texture mapping usually proceeds on charts
with disk-like topology. In practice however, meshes usu-
ally have arbitrary topology. A straightforward solution
consists of generating a texture atlas which consists of
decomposing high-genus meshes into several disk-like
charts. In general, two problems arise after segmenta-
tion,

1. misalignment of the chart boundary,
2. distortion in a successive parameterization.

In order to address these problems, Lévy et al. [17] ob-
serve that the perceived visual quality is better when the
chart boundary is aligned with surface features. While
the presented results seem to be convincing it is hard
however to formalize the relationship between segmen-
tation and human perceptual factor of textured models.
Sander et al. [26] propose a method which tends to pro-
duce charts with rounded shapes based on similarities
of the normals. Benko et al. [1] propose a normal clas-
sification based segmentation method for point clouds.
However, when applied to meshes, this approach often
generates problematic extra charts due to its insensitiv-
ity to mesh connectivity. Steiner et al. [2] classify trian-
gles using both normals and mesh connectivity. While
this method is primarily proposed for shape simplifica-
tion, it can be used effectively for producing near planar
charts.
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A second category of mesh segmentation techniques
targets the direct control of the segmentation process
using predefined parameterization distortion measures.
This requirement induces a partial or full mesh param-
eterization during the segmentation process. In fact this
would restricts the method to the use of an incremen-
tally computable parameterization e.g. [19,29], where the
number of charts and their shape are completely driven
by the ongoing parameterization, or to an iterative pro-
cess where several chart parameterizations have to be
computed in every step e.g. [31] which may increase the
segmentation cost. Furthermore, the lack of a consensus
on what distortion measure would be the most appropri-
ate makes the coupling of parameterization and segmen-
tation a difficult choice.

In order to address the chart boundary artifacts and
parameterization distortion in a cost effective manner,
we introduce a new method based on Gaussian curva-
ture.

3.1 Charts Gauss area distribution

Our approach is motivated by two goals. Firstly, we aim
at generating suitable charts for mesh parameterization
without any use of parameterization during the segmen-
tation process. Secondly, we aim at segmentation of de-
velopable charts as opposed to planar charts, which have
been treated in the literature before.

In order to decouple the distortion measure from
the parameterization technique, we base our segmenta-
tion strategy on a more objective measure which also
captures the developability of the charts. For this pur-
pose, we introduce the well known Gaussian curvature
K = κminκmax. If K ≡ 0 everywhere, the chart is devel-
opable and can be parameterized without distortion, in-
dependently of the chosen distortion measure. Therefore,
our segmentation method aims at an even distribution
of the error ε in developability, which we define as

ε(ci) =
∫

ci

|K| · dA (1)

where ci is the i-th chart. Let us consider a small surface
patch of area A on a surface. The Gauss map maps the
surface points to their normals, which live on the unit
sphere. Let AG be the area of the patch normals on the
unit sphere. In the limit for A → 0 the ratio AG/A con-
verges to the Gaussian curvature K. This can be abbre-
viated in differential form as K = dAG/dA. Combining
this with Equation (1) yields

ε(ci) =
∫

ci

|dAG|. (2)

Thus the chart error is the integral of the absolute
value of the area on the Gauss map (= Gauss area) and
the segmentation problem reduces to the problem of dis-
tributing the Gauss area evenly among the charts. This

can be achieved by minimizing the standard deviation in
the chart error, i.e.

min
√∑

i

(εave − ε(ci))2 (3)

where the εave is the average charts error (εave =
1
n

∑
i ε(ci) for n charts). In this way, we have defined

the objective function for our developability based seg-
mentation. This setup comes in handy as it allows for a
simple and intuitive discretization.

The main reason for using Gauss area instead of
Gaussian curvature K is numerical stability. This insta-
bility of K was also noted in [13]. A robust estimation
of K is generally a hard problem while the calculation
of the Gauss area offers a simpler alternative and yields
a more appealing numerical problem. In fact, using the
method of Welch et al. [30], the range of |K|, e.g., of
the Happy Buddha model is [2.0 × 10−2, 2.6 × 106], and
its standard deviation is 7.3 × 104. This wide range of
values is numerically difficult to handle, even with the
use of filtering techniques. The Gauss area on the other
hand is always within [0, 4π].

In the rest of this section we first elaborate on the
computation of the Gauss area which is the area per
mesh element computed on the Gauss map. Subsec-
tion 3.3 details the chart growing process, where the
objective function minimization and chart boundary op-
timization are both taken into consideration. Then we
discuss the positioning of seeds for successive iterations
and convergence of them. Subsection 3.5 details an im-
portant contribution, namely the offset strategy which
allows us to perfectly balance the charts in terms of cov-
ered Gauss area. We end the section with a description
of our approach for controlling the topological integrity
of the surface charts.

3.2 Gauss area computation

For the computation of the Gauss area integrals in Equa-
tion (2) we regard the polygonal mesh as an approxima-
tion to a smooth surface, which may have sharp creases
and corners. We use a simple thresholding strategy to
extract sharp edges: an edge is tagged as sharp if its di-
hedral angle is larger than a user defined threshold Ta.
One advantage of using the Gauss area integrals is that
we can encapsulate smooth surfaces by simply estimating
the surface normals at the vertices. To account for sharp
features the surrounding of each vertex is split by the
sharp edges into smooth regions. For each region we es-
timate a different vertex normal with weights according
to [21]. We note that a more involved normal partial eval-
uation method was proposed in [3], however we restrict
ourselves to our thresholding method for simplicity.

The vertex normals computed this way lead to the
following computation of the Gauss area integrals for
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∆AG ∆AG

∆AG

(a) vertex (b) edge (c) triangle
Fig. 1 Gauss area (∆AG) computation of each mesh ele-
ment. (a) vertex ∆AG: The vertex normals (blue arrows)
mapped on the unit sphere yield ∆AG > 0. (b) edge ∆AG:
Gauss area for crease edge case. (c) triangle ∆AG.

the different mesh elements. For each mesh element, we
denote the associated absolute Gauss area by ∆AG (c.f.
Equation (2)). Figure 1 illustrates the computation of the
Gauss area for vertices, edges, and faces. For each mesh
element the incident vertex normals are projected onto
the unit sphere and define a spherical polygon. The area
of this polygon is equal to ∆AG and can be computed
using standard formulas from spherical geometry.

We note for non corner points and non crease edges
we get only one normal per vertex as we do not apply the
splitting procedure of normals. Therefore these vertices
and edges have null Gauss area.

During the chart construction the Gauss area as-
signed to an edge or vertex is added to a chart only
when the mesh element is entirely inside the chart, but
not when it is still part of the chart boundary. In this
way a cut through a bent sharp crease or a corner point
does not add up to the Gauss area of all the edges and
vertices on the cut. Our chart growing algorithm exploits
this fact to direct the cut automatically through sharp
features without any special optimization as proposed
for example in [17].

3.3 Chart flooding (t-flooding)

The goal of the flooding algorithm is twofold. It aims
on the one hand to adapt the chart boundaries to fea-
tures and on the other hand to distribute the Gauss area
evenly over the charts. A minimum spanning tree (MST)
approach as described in [26] is not capable of balanc-
ing the Gauss area of the charts since the MST is de-
signed for finding a shortest path from a certain node,
not for balancing of some integral value. Steering the re-
gion growing process only by the normal deviation or
the average squared distances to a reference plane as
done in [2] leads especially to very jagged boundaries for
highly tessellated models.

We therefore designed a new method that floods the
mesh simultaneously from the different seeds, where the
relative growing rate of the charts in terms of Gauss
area is equalized over the charts. As the Gauss area is
not evenly distributed over the surface, we introduce an
artificial time coordinate t to parameterize the flooding
process (t-flooding). For reference we defined an arbi-

s21s

1 d2d

= dd1 2

21>> AA

21A A

Fig. 2 An example of area imbalance. When charts are
flooded from the two seeds (s1, s2) with constant speed, the
chart on the left covers much more area (A1 >> A2) although
they meet at the mid point (d1 = d2). The perimeter lengths
are also imbalanced in this case.

trary total flooding time ttotal. Let AG,total be the total
integrated Gauss area of the mesh and k the number of
charts. The goal is to grow each chart such that the inflow
of Gauss area is constant during the growing process, i.e.

α :=
dAG

dt
= const =

AG,total

k · ttotal
. (4)

We call α the Gauss area inflow or shortly the inflow.
In 1D a constant inflow can be easily achieved by a

weighted distance based growing algorithm, which can
be efficiently implemented by a fast marching method.
But on a 2-manifold this is slightly more complicated.
The typically used approach is to grow the charts with
constant speed of its boundary, where speed is measured.
This results in a generalized Voronoi diagram and does
not even balance the charts. A simplified example is vi-
sualized in Figure 2, where we only considered the un-
weighted case to evenly distribute surface area among
two charts. Although the charts meet at equal distance
from the two seeds, the area of the left chart is much
larger than the area of the right chart. This is due to
the changing perimeter p of the chart. For a flooding
speed of v the area inflow computes to v ·p and therefore
varies with the perimeter. It is obvious that the same
thing happens in a weighted approach as for example
with the Gauss area inflow, which does not allow a bal-
anced generation of charts. Interestingly, all approaches
like [2] or [26] do neglect this fact and just accept the
loss of balance.

Our first approach to make the inflow constant over
time was to set growing speed vi of chart i proportional
to the inverse of its perimeter pi on the Gauss map, i.e.
vi = α/pi. To make the whole idea independent of the
perimeter, which is hard to interpret for the Gauss area,
we defined for each chart boundary edge Ej the local in-
flow αj . The quantities defined in the following are illus-
trated in Figure 3. The chart boundary will be extended
by the exterior triangle Tex,j at time tex,j. Suppose the
interior triangle Tin,j was incorporated to the chart at
time tin,j . Then the time delay ∆tj at the chart bound-
ary edge Ej is defined to tex,j − tin,j . When the exterior
triangle Tex,j is incorporated to the chart, it adds its own
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Tex,j

Tin,j

Ej

vrel,j

∆A

∆Aj

∆AG,j

∆sj

Ej

tin,j

tex,j

∆tj = tex,j - tin,j

(a) (b)

Fig. 3 Growing a chart. (a) A chart boundary edge Ej and
its incident triangles Tin,j , Tex,j , and different relative speeds
vrel,j along the boundary. (b) The mesh elements that con-
tribute to ∆AG,j include the triangle Tex,j , the edge Ej and
its incident vertices. The top sphere shows Gauss mapped
normals of adding triangle (bottom).

Gauss area and the one of the newly incorporated edge
Ej . In case Tex,j completes the fan of one of its incident
vertices with all triangles from the same chart i, also the
Gauss area of this vertex is incorporated into the chart
at time tex,j . Summing all the Gauss area contributions
together yields the local delta ∆AG,j in Gauss area, from
which the local inflow is computed to ∆AG,j/∆tj .

By summing over all local inflows of a chart, we ob-
tain a relation between the chart inflow and the local
time delays ∆tj

α =
∑
j∈Bi

αj =
∑

j

∆AG,j

∆tj
(5)

where Bi is the set of boundary edges of i-th chart ci,
i.e. Bi = {Ej |Ej ∈ ∂ci}. As α is constant and the ∆AG,j

are computed from the mesh, only the local delays ∆tj
or equivalently the triangle incorporation times tex,j are
unknown. We sort the exterior triangles incident to the
chart boundaries into a heap, which is sorted by tex,j . To
achieve a flooding with nice evolution of the chart bound-
ary it is essential to compute the incorporation time of
an exterior triangle at the moment when it becomes in-
cident to the chart boundary for the first time. We note
that this is quite different from a greedy approach e.g.
where the heap is sorted by normal deviation. In our
method, the time parameter is related to the distance
from the seed and the chart perimeter while in a greedy
approach there is usually no consideration for both of
them, therefore the boundary generated by such meth-
ods can be more jaggy than ours.

Equation 5 only fixes one of the ∆tj of each boundary
and gives us the freedom to choose the others to best
serve our needs. We interpret this degree of freedom with
the ability to define arbitrary relative growing speeds
vrel,j along the chart boundary, whose scaling is defined
by Equation (5). We used the relative growing speeds to
adapt the charts to sharp features. For this we defined
the relative speed as a function of the absolute value

of the local Gaussian curvature |Kj |, which we robustly
estimated by |Kj| = ∆AG,j/∆Aj , where ∆Aj is just the
triangle area on the 3D mesh of the exterior triangle
Tex,j. From this the local relative speed was defined as

vrel,j =
1

f (|Kj |) . (6)

The function f can be chosen arbitrarily. A good choice
turned out to be

f(x) = (x + ε)p, (7)

where p was chosen in [1, 6]. The epsilon ε is necessary as
the speed would otherwise become infinite in developable
regions, which would bring us back to a greedy growing
strategy. Epsilon was chosen between 10−3 and 10−6 of
the maximum Gaussian curvature maxj |Kj|, where all
triangles, edges and vertices of the triangulation are con-
sidered for this maximization. For edges and vertices the
area ∆A is chosen as the smallest from the adjacent tri-
angles. The bigger ε is the less adaptive the approach
becomes. Using the relative speeds vrel,j , the actual lo-
cal speeds vj are computed based on a per chart scaling
factor λi: vj = 1

λi
vrel,j . Hence, one can define the time

delays to be ∆tj = ∆sj/vj , and ∆sj is the distance be-
tween triangles measured in Euclidean space as shown in
Figure 3 (b), i.e.

∆sj = ‖cTin,j − cTex,j‖ (8)

where cT is triangle T ’s centroid.
The final step is the computation of the λi’s for

each chart in order to adjust their inflows. This can
be achieved by plugging in the expressions for ∆tj into
Equation (5) and solving for λi. As the sum over the
index j in Equation (5) runs over the chart boundary
edges, λi changes over time. With a changing λi also the
time delays ∆tj(λi) change over time, what makes it dif-
ficult to keep the incorporation times efficiently in the
right order.

To avoid this computational burden for the λi we pro-
pose the use of a multi-heap chart growing approach. For
this we make the assumption that the change of a λi over
time does not re-order the triangle incorporation times
inside chart i but only the incorporation order between
the different charts. This makes sense as we introduced
the λi’s to balance the growing of the different charts.
The idea of the multi-heap approach is to keep one pri-
mary heap of charts and for each chart a secondary heap.
The primary heap is used to sort the charts according to
their accumulated Gauss area. The secondary heap sorts
the triangles adjacent to the chart boundary with respect
to the local time of the chart in order to determine which
triangle will be incorporated next. For a better balancing
we did one additional lookahead step by adding the ∆AG

of the triangle that should be incorporated next to the
Gauss area weight of the primary heap. The secondary
heaps are sorted by local time scales, where the global



6 Hitoshi Yamauchi et al.

time t was scaled by the λi of the charts, i.e. ti = t/λi

such that λi is completely dropped from the equations
defining the ∆tj . In this way the charts could be flooded
with completely balanced Gauss area inflow. Finally, the
∆tj is rewritten as

∆tj = ∆sj · f(|Kj |) (9)

in the multi-heap implementation.

3.4 Seeds positioning and convergence

Our seed placement and re-positioning strategy are sim-
ilar to [2, 26]. We place the first seed at random, grow
one chart and place the next seed furthest apart from
the seeds placed thus far. After each t-flooding phase,
the seeds need to be repositioned in a way to respect the
features even better in the next iteration. We also fol-
lowed a Lloyd-Max strategy in [2,26]. For each chart we
compute the point of maximal distance from the bound-
ary of the chart. We work on the triangle graph of the
charts and weight the Euclidean distances by the ∆tj
of the triangles. This approach repulses seeds from each
other when they are too close on the surface.

After the number of seeds reaches the user specified
number of charts in above iterations, we continue to op-
timize the seed positions by the Lloyd-Max strategy with
a Gauss area offset computation which is detailed in Sub-
section 3.5. This seed position optimization is repeated
until all seed positions are converged. However, discrete
optimization procedure sometimes fails to converge be-
cause of oscillation as also mentioned in [26]. Therefore,
we regard one of the following cases as converged: 1. a
seed place oscillation cycle is detected, 2. the number of
iterations exceeds a user defined threshold, 3. Gauss area
distribution is not improved recent n iterations where n
is a user specified threshold, e.g. n = 10 in this paper.

3.5 Offset computation of Gauss area

A major problem for a perfectly balanced chart gener-
ation is the early blocking of charts during the flooding
procedure. It happens quite often that all the boundary
edges of a chart become adjacent to different neighboring
charts, such that it has no possibility to grow any fur-
ther. We observed the seed repositioning does not seem
to resolve these situations in some cases.

We therefore extend our multi-heap approach. To
each chart i we assign a Gauss area offset AG,off,i. The
offset is kept constant over each flooding step and ini-
tialized to zero in the beginning. The weights for the
primary heap were simply computed as the sum of the
incorporated Gauss area plus the chart offset. Some too
fast growing charts have this offset as a penalty. This
allows to delay the flooding of some charts with relation
to the others.

1) 2) 3)

4) 5) 6)

Fig. 4 HandleCutter tool. 1) start growing, 2)-3) split
boundary/growing, 4)-5) meets split boundary and detects
handle, 6) cut result. The final cutting paths are chosen by
keeping the shortest perimeters for each wavefront during the
growing.

This very simple mechanism can be efficiently ex-
ploited to improve the balancing performance. After each
flooding step the Gauss areas of the resulting charts are
used to define the offsets for the next flooding round. We
increase the offsets of the larger charts and keep the off-
sets of the smallest chart fixed. If AG,off,min is the Gauss
area of the smallest chart we set

AG,off,i := AG,off,i +β(AG,off,i −AG,off,min), β ∈]0, 1]

with the damping factor β. In our experiments, we use
β = 0.9. This simple method allowed us to well balance
the charts with respect to Gauss area.

3.6 Topology constraints

The final part of our approach deals with the topological
consistency of the charts. In a texture mapping context,
it is desirable to have chart with disk topology. Thus we
implement two tools, a handle cutting tool (HandleCut-
ter) and a tool that cuts a genus zero chart with several
boundary loops into a disk-like chart with one boundary
loop (LoopMergeCutter). Both tools employ greedy ap-
proaches and do not try to generate optimal cuts as this
problem is known to be NP-complete [7].

The HandleCutter detects handles and cuts each han-
dle to make a cylinder. This algorithm is based on a re-
gion growing algorithm similar to the approximate han-
dle cutting procedure in [7]. We start with a seed, which
is usually randomly selected, and grow a region while
keeping the region boundary as short as possible. Around
a handle the region boundary will split at least once and
exactly once per handle two different region boundaries
merge again. The two boundary loops that merge are
both candidates for cutting the handle. We remember
the shortest wavefront boundary loops during the grow-
ing, and when we detect a handle, we always select the
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max

min

(a) vertex AG (b) edge AG (c) triangle AG

Fig. 5 Gauss area computation. Color coded Gauss area :
blue (small Gauss area) to red (large Gauss area). High Gaus-
sian curvature elements are detected as features.

shorter of the two candidate loops as a cutting path.
Then we continue to grow until the region grows over
all triangles. Figure 4 demonstrates how to cut a double
torus.

The LoopMergeCutter traverses the resulting mesh
starting from the largest chart boundary loop in a
breadth first order storing the shortest distances to the
surrounding boundary loop. The interior boundary loop
that is hit first to its surrounding boundary is connected
with a shortest path to the surrounding boundary. The
shortest path can be found by a simple backtracking pro-
cedure on the stored shortest distances. The resulting cut
and the hit boundary loop are merged with the surround-
ing loop and the process is continued until all loops have
been merged into the surrounding boundary loop. It is
additionally possible to cut to the tips cylindrical shapes,
which are closed on one side. These typically cause high
distortions that are not captured in terms of Gaussian
curvature. To cut such tips we detect the local extrema
in the distance map resulting from the loop merging pro-
cess. If an extremum is found that is at least as distant
from the final boundary loop as the length of the final
boundary loop, we also generate a shortest cut to this
local extremal vertex.

4 Results and Discussions

We applied our algorithm to several data sets and com-
pared the result to some of the existing methods.

Figure 5 visualizes the Gauss area of each mesh ele-
ment type, (a) vertex, (b) edge, and (c) triangle. Large
Gauss area coincides with high Gaussian curvature. The
elements which have high Gaussian curvature are de-
tected as they are usually recognized features.

Figure 6 compares the segmentation results of (a)
Multi-chart geometry image (MCGIM) [26], (b) Varia-

tional shape approximation (VSA) [2], and (c) our ap-
proach. The method of [2] is a shape approximation
method, and is not presented as a segmentation method.
However, this method usually generates high quality seg-
mentation.

Table 1 shows L2 geometric stretch [25] measure-
ment results. To obtain these results we first cut the
patches into topological discs, then we projected each
chart boundary to an unit circle, parameterized each
chart with [4] and measured L2-geometric stretch. The
results show that our method gave clearly lowest distor-
tion compared to others. We segmented the meshes into
20 charts in all experiments. For the VSA method, both
teleportation and merge of charts were activated. For
our method (t-flooding), the dumping factor was set to
β = 0.9 during offset calculation, ε = 0.0001, the power p
of the speed function was 3.0 for Happy model and 1.0 for
Santa and Rocket. As partial normal evaluation thresh-
old we used Ta = 45 degrees for all examples. From Fig-
ure 6 and Table 1 one can see that t-flooding distributes
distortions equally over the charts, while other methods
have both low distortion and high distortion charts.

Table 1 also shows elapsed time of t-flooding and
number of triangles of each mesh. Currently, no opti-
mization has been carried out in our implementation.
All timings were measured on a 1.7 GHz Pentium4 Linux
machine.

Table 2 shows the distribution of Gauss area over
charts and total Gauss area of the models. Since our
method is designed for minimizing this standard devia-
tion, it has the lowest standard deviation of Gauss area
distribution.

5 Conclusions and Future Work

In this work we presented a new criterion for mesh seg-
mentation, which is based on the even distribution of
Gaussian curvature over the resulting charts. For numer-
ical stability we used Gauss area on the Gauss map to es-
timate Gaussian curvature. This method generates close
to developable charts. We showed that the created charts
are suited better for parameterization than charts gener-
ated with approaches known from the literature. Our ap-
proach is especially suited for the cutting of higher genus
models into a small number of charts. The generated cuts
are nicely shaped and adapt to sharp surface features
that are not developable. Our approach generates charts
that can be parameterized with low distortion without
directly measuring the distortion during segmentation.

For the Gauss area equalization we introduced the
new paradigm of flooding with constant inflow, which we
implemented with an efficient multi-heap strategy. We
also proposed an offset scheme for the repeated flood-
ing process allowing for a much better balanced mesh
segmentation.
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(a) MCGIM [26] (b) VSA [2] (c) t-flooding

Fig. 6 Segmentation effect for texturing of several models. (a) Segmentation by MCGIM [26], (b) by VSA [2], (c) by our
t-flooding. Number of charts is 20 for all examples. The green line shows chart boundary. A conformal parameterization
method [4] is applied for all charts with the same parameters. Each parameterized chart is mapped to [0, 1]× [0, 1]. The size
of checker board texture is 256 × 256 pixels.
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Table 1 Parameterization distortion. Distortion is measured
by L2-geometric stretch [25]. The values are averaged over all
patches. Standard deviation is given in parentheses. Number
of triangles and t-flooding elapsed time (sec.) are also shown.

model Happy Rocket Santa
MCGIM [26] 8.1(7.8) 29.1(39.3) 22.9(11.6)

VSA [2] 12.4(12.6) 28.2(21.5) 60.1(47.1)
t-flooding 7.3(4.7) 17.9(7.3) 17.2(8.6)

# of tris. 19976 80354 151558
Elapsed time 20.6 91.5 363

Table 2 Standard deviation (Equation (3)) of the Gauss
area distribution.

model Happy Rocket Santa
MCGIM [26] 64.3 11.0 14.3

VSA [2] 69.0 17.3 18.9
t-flooding 25.6 4.55 2.48

In future work we would like to apply the t-flooding
approach to other region growing based mesh segmenta-
tion approaches in order to achieve better error equal-
ization. We also would like to improve the Gauss area
estimation since current our method is based on simple
angle thresholding.
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